SlideShare a Scribd company logo
1 of 36
Download to read offline
The Author-Topic Model
Presented by:
Darshan Ramakant Bhat
Freeze Francis
Mohammed Haroon D
by M Rosen-Zvi, et al. (UAI 2004)
Overview
● Motivation
● Model Formulation
○ Topic Model ( i.e LDA)
○ Author Model
○ Author Topic Model
● Parameter Estimation
○ Gibbs Sampling Algorithms
● Results and Evaluation
● Applications
Motivation
● joint author-topic modeling had received little attention.
● author modeling has tended to focus on problem of predicting an author given
the document.
● modelling the interests of authors is a fundamental problem raised by a large
corpus (eg: NIPS dataset).
● this paper introduced a generative model that simultaneously models the
content of documents and the interests of authors.
Notations
● Vocabulary set size : V
● Total unique authors : A
● Document d is identified as (wd
, ad
)
● Nd
: number of words in Document d.
● wd
: Vector of Nd
words (subset of vocabulary)
wd
= [w1d
w2d
…….. wNd d
]
● wid
: ith
word in document d
● Ad
: number of authors of Document d
● ad
: Vector of Ad
authors (subset of authors)
ad
= [a1d
a2d
…….. aAd d
]
● Corpus : Collection D documents
= { (w1
, a1
) , (w2
, a2
) ……. (wD
, aD
) }
Plate Notation for Graphical models
● Nodes are random variables
● Edges denote possible dependence
● Observed variables are shaded
● Plates denote replicated structure
Dirichlet distribution
● generalization of beta distribution into multiple dimensions
● Domain : X = (x1
, x2
….. xk
)
○ xi
∈ (0 , 1)
○ k
xi
= 1
○ k-dimensional multinomial distributions
● "distribution over multinomial distributions"
● Parameter : = ( 1
, 2
…… k
)
○ i
> 0 , ∀i
○ determines how the probability mass is distributed
○ Symmetric : 1
= 2
=…… k
● Each sample from a dirichlet is a multinomial distribution.
○ ↑ : denser samples
○ ↓ : sparse samples
Topic 2
(0,1,0)
Topic 1
(1,0,0)
Topic 3
(0,0,1)
.
(⅓,⅓,⅓ )
Fig : Domain of Dirichlet (k=3)
Fig : Symmetric Dirichlet distributions for k=3
pdf
samples
Model Formulation
Topic Model (LDA)
Model topics as distribution over words
Model documents as distribution over topics
Author Model
Model author as distribution over words
Author-Topic Model
Probabilistic model for both author and topics
Model topics as distribution over words
Model authors as distribution over topics
Topic Model : LDA
● Generative model
● Bag of word
● Mixed membership
● Each word in a document has a topic
assignment.
● Each document is associated with a
distribution over topics.
● Each topic is associated with a
distribution over words.
● α : Dirichlet prior parameter on the
per-document topic distributions.
● β : Dirichlet prior parameter on the
per-topic word distribution.
● w : observed word in document
● z : is the topic assigned for w
Fig : LDA model
Author Model
● Simple generative model
● Each author is associated with a
distribution over words.
● Each word has a author assignment.
● β : Dirichlet prior parameter on the
per-author word distributions.
● w : Observed word
● x : is the author chosen for word w
Fig : Author Model
Model Formulation
Topic Model (LDA)
Model topics as distribution over words
Model documents as distribution over topics
Author Model
Model author as distribution over words
Author-Topic Model
Probabilistic model for both author and topics
Model topics as distribution over words
Model authors as distribution over topics
Author-Topic
Model
● Each topic is associated with a
distribution over words.
● Each author is associated with a
distribution over topics.
● Each word in a document has an
author and a topic assignment.
● Topic distribution of document is a
mixture of its authors topic distribution
● α : Dirichlet prior parameter on the
per-author topic distributions.
● x : author chosen for word w
● z : is the topic assigned for w from
author x topic distribution
● w : observed word in document
Fig : Author Topic Model plate notation
Author-Topic
Model
Fig : Author Topic model
Special Cases of ATM
Topic Model (LDA):
Each document is written by a
unique author
● the document determines
the author.
● author assignment becomes
trivial.
● author’s topic distribution
can be viewed as
document’s topic
distribution.
Special Cases of ATM
Author Model:
each author writes about a unique topic
● the author determines the topic.
● topic assignment becomes trivial.
● topic’s word distribution can be
viewed as author’s word
distribution.
Variables to be inferred
Variables to be inferred
Variables to be inferred
Collapsed Gibbs Sampling - LDA
● The assignment variables contain information about and .
● Use this information to directly update the Topic assignment variable with the
next sample. This is Collapsed Gibbs Sampling.
Collapsed Gibbs Sampling - Author Model
● Need to infer Author - word distribution A
● WIth Collapsing GIbbs sampling, directly infer author word assignments
Author Topic Model - Collapsed Gibbs Sampling
● Need to infer T
and ϴA
● Instead through
collapsed Gibbs
Sampling directly infer
Topic and Author
assignments
● By finding the author -
topic joint distribution
conditioned on all other
variables
Example
AUTHOR 1 2 2 1 1
TOPIC 3 2 1 3 1
WORD epilepsy dynamic bayesian EEG model
TOPIC-1 TOPIC-2 TOPIC-3
epilepsy 1 0 35
dynamic 18 20 1
bayesian 42 15 0
EEG 0 5 20
model 10 8 1
...
TOPIC-1 TOPIC-2 TOPIC-3
AUTHOR-1 20 14 2
AUTHOR-2 20 21 5
AUTHOR-3 11 8 15
AUTHOR-4 5 15 14
...
Example
AUTHOR 1 2 ? 1 1
TOPIC 3 2 ? 3 1
WORD epilepsy dynamic bayesian EEG model
TOPIC-1 TOPIC-2 TOPIC-3
epilepsy 1 0 35
dynamic 18 20 1
bayesian 42(41) 15 0
EEG 0 5 20
model 10 8 1
...
TOPIC-1 TOPIC-2 TOPIC-3
AUTHOR-1 20 14 2
AUTHOR-2 20(19) 21 5
AUTHOR-3 11 8 15
AUTHOR-4 5 15 14
...
Author-Topic How much topic ‘j’ likes the word ‘bayesian’ How much author ‘k’ likes the topic
A1T1 41/97 20/36
A2T1 41/97 19/45
A1T2 15/105 14/36
A2T2 ... ...
A2T3 ... ...
A2T3 ... ...
● To draw new Author-Topic assignment (equivalently)
○ Roll K X ad
sided die with these probabilities
○ Assign the Author-Topic tuple to the word
AUTHOR 1 2 1 1 1
TOPIC 3 2 3 3 1
WORD epilepsy dynamic bayesian EEG model
Example (cont..)
● Update the probability ( T
and A
) tables with new values
● This implies increasing the popularity of topic in author and word in topic
Sample Output (CORA dataset)Topicprobabilities
Topics shown with 10 most probable words
Author :
Experimental Results
● Experiment is done on two types of dataset, papers are chosen from NIPS and
CiteSeer database
● Extremely common words are removed from the corpus, leading V=13,649
unique words in NIPS and V=30,799 in CiteSeer, 2037 authors in NIPS and
85,465 in CiteSeer
● NIPS contains many documents which are closely related to learning theory
and machine learning
● CiteSeer contains variety of topics from User Interface to Solar astrophysics
Examples of topic author distribution
Importance ofTopicprobabilityofarandomauthor
Evaluating the predictive power
● Predictive power of the model is measured quantitatively using perplexity.
● Perplexity is ability to predict the words on a new unseen documents
● Perplexity of set of d words in a document (wd
,ad
) is
● When p(wd
|ad
) is high perplexity ≈ 1, otherwise it will be a high positive
quantity.
Continued….
● Approximate equation to calculate the joint probability
Continued….
Applications
● It can be used in automatic reviewer recommendation for a paper review.
● Given an abstract of a paper and a list of the authors plus their known past
collaborators, generate a list of other highly likely authors for this abstract who
might serve as good reviewers.
References
● Rosen-Zvi, Michal, et al. "The author-topic model for authors and documents."
Proceedings of the 20th conference on Uncertainty in artificial intelligence.
AUAI Press, 2004.
● D. M. Blei, A. Y. Ng, and M. I. Jordan (2003). “Latent Dirichlet Allocation”.
Journal of Machine Learning Research, 3 : 993–1022.
● T. L. Griffiths, and M. Steyvers (2004). “Finding scientific topics”. Proceedings
of the National Academy of Sciences, 101 (suppl. 1), 5228–5235.
● https://github.com/arongdari/python-topic-model
● https://www.coursera.org/learn/ml-clustering-and-retrieval/home/welcome
Questions?

More Related Content

What's hot

IBM Cloud Artificial Intelligence : A Comprehensive Overview
IBM Cloud Artificial Intelligence : A Comprehensive OverviewIBM Cloud Artificial Intelligence : A Comprehensive Overview
IBM Cloud Artificial Intelligence : A Comprehensive OverviewSatyajit Panda
 
Ontologies and semantic web
Ontologies and semantic webOntologies and semantic web
Ontologies and semantic webStanley Wang
 
Natural language processing and transformer models
Natural language processing and transformer modelsNatural language processing and transformer models
Natural language processing and transformer modelsDing Li
 
Use Case Patterns for LLM Applications (1).pdf
Use Case Patterns for LLM Applications (1).pdfUse Case Patterns for LLM Applications (1).pdf
Use Case Patterns for LLM Applications (1).pdfM Waleed Kadous
 
Unlocking Geospatial Analytics Use Cases with CARTO and Databricks
Unlocking Geospatial Analytics Use Cases with CARTO and DatabricksUnlocking Geospatial Analytics Use Cases with CARTO and Databricks
Unlocking Geospatial Analytics Use Cases with CARTO and DatabricksDatabricks
 
How Graph Databases efficiently store, manage and query connected data at s...
How Graph Databases efficiently  store, manage and query  connected data at s...How Graph Databases efficiently  store, manage and query  connected data at s...
How Graph Databases efficiently store, manage and query connected data at s...jexp
 
Natural Language Processing
Natural Language ProcessingNatural Language Processing
Natural Language ProcessingToine Bogers
 
Fine tune and deploy Hugging Face NLP models
Fine tune and deploy Hugging Face NLP modelsFine tune and deploy Hugging Face NLP models
Fine tune and deploy Hugging Face NLP modelsOVHcloud
 
Neural Architectures for Named Entity Recognition
Neural Architectures for Named Entity RecognitionNeural Architectures for Named Entity Recognition
Neural Architectures for Named Entity RecognitionRrubaa Panchendrarajan
 
10 Limitations of Large Language Models and Mitigation Options
10 Limitations of Large Language Models and Mitigation Options10 Limitations of Large Language Models and Mitigation Options
10 Limitations of Large Language Models and Mitigation OptionsMihai Criveti
 
Data science project presentation
Data science project presentationData science project presentation
Data science project presentationKevin Bluer
 
Grammarly AI-NLP Club #8 - Arabic Natural Language Processing: Challenges and...
Grammarly AI-NLP Club #8 - Arabic Natural Language Processing: Challenges and...Grammarly AI-NLP Club #8 - Arabic Natural Language Processing: Challenges and...
Grammarly AI-NLP Club #8 - Arabic Natural Language Processing: Challenges and...Grammarly
 
Large Language Models Bootcamp
Large Language Models BootcampLarge Language Models Bootcamp
Large Language Models BootcampData Science Dojo
 
An introduction to the Transformers architecture and BERT
An introduction to the Transformers architecture and BERTAn introduction to the Transformers architecture and BERT
An introduction to the Transformers architecture and BERTSuman Debnath
 

What's hot (20)

Word embedding
Word embedding Word embedding
Word embedding
 
Transformers - Part 1
Transformers - Part 1Transformers - Part 1
Transformers - Part 1
 
Topics Modeling
Topics ModelingTopics Modeling
Topics Modeling
 
IBM Cloud Artificial Intelligence : A Comprehensive Overview
IBM Cloud Artificial Intelligence : A Comprehensive OverviewIBM Cloud Artificial Intelligence : A Comprehensive Overview
IBM Cloud Artificial Intelligence : A Comprehensive Overview
 
Topic Models
Topic ModelsTopic Models
Topic Models
 
Ontologies and semantic web
Ontologies and semantic webOntologies and semantic web
Ontologies and semantic web
 
Natural language processing and transformer models
Natural language processing and transformer modelsNatural language processing and transformer models
Natural language processing and transformer models
 
Use Case Patterns for LLM Applications (1).pdf
Use Case Patterns for LLM Applications (1).pdfUse Case Patterns for LLM Applications (1).pdf
Use Case Patterns for LLM Applications (1).pdf
 
Natural language processing
Natural language processingNatural language processing
Natural language processing
 
Unlocking Geospatial Analytics Use Cases with CARTO and Databricks
Unlocking Geospatial Analytics Use Cases with CARTO and DatabricksUnlocking Geospatial Analytics Use Cases with CARTO and Databricks
Unlocking Geospatial Analytics Use Cases with CARTO and Databricks
 
How Graph Databases efficiently store, manage and query connected data at s...
How Graph Databases efficiently  store, manage and query  connected data at s...How Graph Databases efficiently  store, manage and query  connected data at s...
How Graph Databases efficiently store, manage and query connected data at s...
 
Natural Language Processing
Natural Language ProcessingNatural Language Processing
Natural Language Processing
 
Fine tune and deploy Hugging Face NLP models
Fine tune and deploy Hugging Face NLP modelsFine tune and deploy Hugging Face NLP models
Fine tune and deploy Hugging Face NLP models
 
Neural Architectures for Named Entity Recognition
Neural Architectures for Named Entity RecognitionNeural Architectures for Named Entity Recognition
Neural Architectures for Named Entity Recognition
 
10 Limitations of Large Language Models and Mitigation Options
10 Limitations of Large Language Models and Mitigation Options10 Limitations of Large Language Models and Mitigation Options
10 Limitations of Large Language Models and Mitigation Options
 
Data science project presentation
Data science project presentationData science project presentation
Data science project presentation
 
Grammarly AI-NLP Club #8 - Arabic Natural Language Processing: Challenges and...
Grammarly AI-NLP Club #8 - Arabic Natural Language Processing: Challenges and...Grammarly AI-NLP Club #8 - Arabic Natural Language Processing: Challenges and...
Grammarly AI-NLP Club #8 - Arabic Natural Language Processing: Challenges and...
 
Large Language Models Bootcamp
Large Language Models BootcampLarge Language Models Bootcamp
Large Language Models Bootcamp
 
LLMs Bootcamp
LLMs BootcampLLMs Bootcamp
LLMs Bootcamp
 
An introduction to the Transformers architecture and BERT
An introduction to the Transformers architecture and BERTAn introduction to the Transformers architecture and BERT
An introduction to the Transformers architecture and BERT
 

Similar to Author Topic Model

TopicModels_BleiPaper_Summary.pptx
TopicModels_BleiPaper_Summary.pptxTopicModels_BleiPaper_Summary.pptx
TopicModels_BleiPaper_Summary.pptxKalpit Desai
 
graduate_thesis (1)
graduate_thesis (1)graduate_thesis (1)
graduate_thesis (1)Sihan Chen
 
Latent dirichletallocation presentation
Latent dirichletallocation presentationLatent dirichletallocation presentation
Latent dirichletallocation presentationSoojung Hong
 
Diversified Social Media Retrieval for News Stories
Diversified Social Media Retrieval for News StoriesDiversified Social Media Retrieval for News Stories
Diversified Social Media Retrieval for News StoriesBryan Gummibearehausen
 
Survey of Generative Clustering Models 2008
Survey of Generative Clustering Models 2008Survey of Generative Clustering Models 2008
Survey of Generative Clustering Models 2008Roman Stanchak
 
KDD 2014 Presentation (Best Research Paper Award): Alias Topic Modelling (Red...
KDD 2014 Presentation (Best Research Paper Award): Alias Topic Modelling (Red...KDD 2014 Presentation (Best Research Paper Award): Alias Topic Modelling (Red...
KDD 2014 Presentation (Best Research Paper Award): Alias Topic Modelling (Red...Aaron Li
 
Author paper identification problem final presentation
Author  paper identification problem final presentationAuthor  paper identification problem final presentation
Author paper identification problem final presentationPooja Mishra
 
Сергей Кольцов —НИУ ВШЭ —ICBDA 2015
Сергей Кольцов —НИУ ВШЭ —ICBDA 2015Сергей Кольцов —НИУ ВШЭ —ICBDA 2015
Сергей Кольцов —НИУ ВШЭ —ICBDA 2015rusbase
 
Graph Techniques for Natural Language Processing
Graph Techniques for Natural Language ProcessingGraph Techniques for Natural Language Processing
Graph Techniques for Natural Language ProcessingSujit Pal
 
Topic Models - LDA and Correlated Topic Models
Topic Models - LDA and Correlated Topic ModelsTopic Models - LDA and Correlated Topic Models
Topic Models - LDA and Correlated Topic ModelsClaudia Wagner
 
A Neural Probabilistic Language Model_v2
A Neural Probabilistic Language Model_v2A Neural Probabilistic Language Model_v2
A Neural Probabilistic Language Model_v2Jisoo Jang
 
A Text Mining Research Based on LDA Topic Modelling
A Text Mining Research Based on LDA Topic ModellingA Text Mining Research Based on LDA Topic Modelling
A Text Mining Research Based on LDA Topic Modellingcsandit
 
A TEXT MINING RESEARCH BASED ON LDA TOPIC MODELLING
A TEXT MINING RESEARCH BASED ON LDA TOPIC MODELLINGA TEXT MINING RESEARCH BASED ON LDA TOPIC MODELLING
A TEXT MINING RESEARCH BASED ON LDA TOPIC MODELLINGcscpconf
 
Machine Learning in News Media: Case study 24sata.hr - Marko Velic, Enes Deumic
Machine Learning in News Media: Case study 24sata.hr - Marko Velic, Enes DeumicMachine Learning in News Media: Case study 24sata.hr - Marko Velic, Enes Deumic
Machine Learning in News Media: Case study 24sata.hr - Marko Velic, Enes DeumicInstitute of Contemporary Sciences
 
End-to-end sequence labeling via bi-directional LSTM-CNNs-CRF
End-to-end sequence labeling via bi-directional LSTM-CNNs-CRFEnd-to-end sequence labeling via bi-directional LSTM-CNNs-CRF
End-to-end sequence labeling via bi-directional LSTM-CNNs-CRFJayavardhan Reddy Peddamail
 

Similar to Author Topic Model (20)

Topic modelling
Topic modellingTopic modelling
Topic modelling
 
TopicModels_BleiPaper_Summary.pptx
TopicModels_BleiPaper_Summary.pptxTopicModels_BleiPaper_Summary.pptx
TopicModels_BleiPaper_Summary.pptx
 
graduate_thesis (1)
graduate_thesis (1)graduate_thesis (1)
graduate_thesis (1)
 
Latent dirichletallocation presentation
Latent dirichletallocation presentationLatent dirichletallocation presentation
Latent dirichletallocation presentation
 
Diversified Social Media Retrieval for News Stories
Diversified Social Media Retrieval for News StoriesDiversified Social Media Retrieval for News Stories
Diversified Social Media Retrieval for News Stories
 
Survey of Generative Clustering Models 2008
Survey of Generative Clustering Models 2008Survey of Generative Clustering Models 2008
Survey of Generative Clustering Models 2008
 
话题模型2
话题模型2话题模型2
话题模型2
 
KDD 2014 Presentation (Best Research Paper Award): Alias Topic Modelling (Red...
KDD 2014 Presentation (Best Research Paper Award): Alias Topic Modelling (Red...KDD 2014 Presentation (Best Research Paper Award): Alias Topic Modelling (Red...
KDD 2014 Presentation (Best Research Paper Award): Alias Topic Modelling (Red...
 
Author paper identification problem final presentation
Author  paper identification problem final presentationAuthor  paper identification problem final presentation
Author paper identification problem final presentation
 
Lec1
Lec1Lec1
Lec1
 
Spatial LDA
Spatial LDASpatial LDA
Spatial LDA
 
Сергей Кольцов —НИУ ВШЭ —ICBDA 2015
Сергей Кольцов —НИУ ВШЭ —ICBDA 2015Сергей Кольцов —НИУ ВШЭ —ICBDA 2015
Сергей Кольцов —НИУ ВШЭ —ICBDA 2015
 
Graph Techniques for Natural Language Processing
Graph Techniques for Natural Language ProcessingGraph Techniques for Natural Language Processing
Graph Techniques for Natural Language Processing
 
Probabilistic content models,
Probabilistic content models,Probabilistic content models,
Probabilistic content models,
 
Topic Models - LDA and Correlated Topic Models
Topic Models - LDA and Correlated Topic ModelsTopic Models - LDA and Correlated Topic Models
Topic Models - LDA and Correlated Topic Models
 
A Neural Probabilistic Language Model_v2
A Neural Probabilistic Language Model_v2A Neural Probabilistic Language Model_v2
A Neural Probabilistic Language Model_v2
 
A Text Mining Research Based on LDA Topic Modelling
A Text Mining Research Based on LDA Topic ModellingA Text Mining Research Based on LDA Topic Modelling
A Text Mining Research Based on LDA Topic Modelling
 
A TEXT MINING RESEARCH BASED ON LDA TOPIC MODELLING
A TEXT MINING RESEARCH BASED ON LDA TOPIC MODELLINGA TEXT MINING RESEARCH BASED ON LDA TOPIC MODELLING
A TEXT MINING RESEARCH BASED ON LDA TOPIC MODELLING
 
Machine Learning in News Media: Case study 24sata.hr - Marko Velic, Enes Deumic
Machine Learning in News Media: Case study 24sata.hr - Marko Velic, Enes DeumicMachine Learning in News Media: Case study 24sata.hr - Marko Velic, Enes Deumic
Machine Learning in News Media: Case study 24sata.hr - Marko Velic, Enes Deumic
 
End-to-end sequence labeling via bi-directional LSTM-CNNs-CRF
End-to-end sequence labeling via bi-directional LSTM-CNNs-CRFEnd-to-end sequence labeling via bi-directional LSTM-CNNs-CRF
End-to-end sequence labeling via bi-directional LSTM-CNNs-CRF
 

Recently uploaded

TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024Lonnie McRorey
 
A Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software DevelopersA Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software DevelopersNicole Novielli
 
Manual 508 Accessibility Compliance Audit
Manual 508 Accessibility Compliance AuditManual 508 Accessibility Compliance Audit
Manual 508 Accessibility Compliance AuditSkynet Technologies
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.Curtis Poe
 
(How to Program) Paul Deitel, Harvey Deitel-Java How to Program, Early Object...
(How to Program) Paul Deitel, Harvey Deitel-Java How to Program, Early Object...(How to Program) Paul Deitel, Harvey Deitel-Java How to Program, Early Object...
(How to Program) Paul Deitel, Harvey Deitel-Java How to Program, Early Object...AliaaTarek5
 
Genislab builds better products and faster go-to-market with Lean project man...
Genislab builds better products and faster go-to-market with Lean project man...Genislab builds better products and faster go-to-market with Lean project man...
Genislab builds better products and faster go-to-market with Lean project man...Farhan Tariq
 
Data governance with Unity Catalog Presentation
Data governance with Unity Catalog PresentationData governance with Unity Catalog Presentation
Data governance with Unity Catalog PresentationKnoldus Inc.
 
Time Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directionsTime Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directionsNathaniel Shimoni
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsSergiu Bodiu
 
Why device, WIFI, and ISP insights are crucial to supporting remote Microsoft...
Why device, WIFI, and ISP insights are crucial to supporting remote Microsoft...Why device, WIFI, and ISP insights are crucial to supporting remote Microsoft...
Why device, WIFI, and ISP insights are crucial to supporting remote Microsoft...panagenda
 
Connecting the Dots for Information Discovery.pdf
Connecting the Dots for Information Discovery.pdfConnecting the Dots for Information Discovery.pdf
Connecting the Dots for Information Discovery.pdfNeo4j
 
Assure Ecommerce and Retail Operations Uptime with ThousandEyes
Assure Ecommerce and Retail Operations Uptime with ThousandEyesAssure Ecommerce and Retail Operations Uptime with ThousandEyes
Assure Ecommerce and Retail Operations Uptime with ThousandEyesThousandEyes
 
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxA Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxLoriGlavin3
 
What is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfWhat is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfMounikaPolabathina
 
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxUse of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxLoriGlavin3
 
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024BookNet Canada
 
[Webinar] SpiraTest - Setting New Standards in Quality Assurance
[Webinar] SpiraTest - Setting New Standards in Quality Assurance[Webinar] SpiraTest - Setting New Standards in Quality Assurance
[Webinar] SpiraTest - Setting New Standards in Quality AssuranceInflectra
 
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyesHow to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyesThousandEyes
 
Enhancing User Experience - Exploring the Latest Features of Tallyman Axis Lo...
Enhancing User Experience - Exploring the Latest Features of Tallyman Axis Lo...Enhancing User Experience - Exploring the Latest Features of Tallyman Axis Lo...
Enhancing User Experience - Exploring the Latest Features of Tallyman Axis Lo...Scott Andery
 
Modern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
Modern Roaming for Notes and Nomad – Cheaper Faster Better StrongerModern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
Modern Roaming for Notes and Nomad – Cheaper Faster Better Strongerpanagenda
 

Recently uploaded (20)

TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024
 
A Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software DevelopersA Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software Developers
 
Manual 508 Accessibility Compliance Audit
Manual 508 Accessibility Compliance AuditManual 508 Accessibility Compliance Audit
Manual 508 Accessibility Compliance Audit
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.
 
(How to Program) Paul Deitel, Harvey Deitel-Java How to Program, Early Object...
(How to Program) Paul Deitel, Harvey Deitel-Java How to Program, Early Object...(How to Program) Paul Deitel, Harvey Deitel-Java How to Program, Early Object...
(How to Program) Paul Deitel, Harvey Deitel-Java How to Program, Early Object...
 
Genislab builds better products and faster go-to-market with Lean project man...
Genislab builds better products and faster go-to-market with Lean project man...Genislab builds better products and faster go-to-market with Lean project man...
Genislab builds better products and faster go-to-market with Lean project man...
 
Data governance with Unity Catalog Presentation
Data governance with Unity Catalog PresentationData governance with Unity Catalog Presentation
Data governance with Unity Catalog Presentation
 
Time Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directionsTime Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directions
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platforms
 
Why device, WIFI, and ISP insights are crucial to supporting remote Microsoft...
Why device, WIFI, and ISP insights are crucial to supporting remote Microsoft...Why device, WIFI, and ISP insights are crucial to supporting remote Microsoft...
Why device, WIFI, and ISP insights are crucial to supporting remote Microsoft...
 
Connecting the Dots for Information Discovery.pdf
Connecting the Dots for Information Discovery.pdfConnecting the Dots for Information Discovery.pdf
Connecting the Dots for Information Discovery.pdf
 
Assure Ecommerce and Retail Operations Uptime with ThousandEyes
Assure Ecommerce and Retail Operations Uptime with ThousandEyesAssure Ecommerce and Retail Operations Uptime with ThousandEyes
Assure Ecommerce and Retail Operations Uptime with ThousandEyes
 
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxA Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
 
What is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfWhat is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdf
 
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxUse of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
 
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
 
[Webinar] SpiraTest - Setting New Standards in Quality Assurance
[Webinar] SpiraTest - Setting New Standards in Quality Assurance[Webinar] SpiraTest - Setting New Standards in Quality Assurance
[Webinar] SpiraTest - Setting New Standards in Quality Assurance
 
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyesHow to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
How to Effectively Monitor SD-WAN and SASE Environments with ThousandEyes
 
Enhancing User Experience - Exploring the Latest Features of Tallyman Axis Lo...
Enhancing User Experience - Exploring the Latest Features of Tallyman Axis Lo...Enhancing User Experience - Exploring the Latest Features of Tallyman Axis Lo...
Enhancing User Experience - Exploring the Latest Features of Tallyman Axis Lo...
 
Modern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
Modern Roaming for Notes and Nomad – Cheaper Faster Better StrongerModern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
Modern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
 

Author Topic Model

  • 1. The Author-Topic Model Presented by: Darshan Ramakant Bhat Freeze Francis Mohammed Haroon D by M Rosen-Zvi, et al. (UAI 2004)
  • 2. Overview ● Motivation ● Model Formulation ○ Topic Model ( i.e LDA) ○ Author Model ○ Author Topic Model ● Parameter Estimation ○ Gibbs Sampling Algorithms ● Results and Evaluation ● Applications
  • 3. Motivation ● joint author-topic modeling had received little attention. ● author modeling has tended to focus on problem of predicting an author given the document. ● modelling the interests of authors is a fundamental problem raised by a large corpus (eg: NIPS dataset). ● this paper introduced a generative model that simultaneously models the content of documents and the interests of authors.
  • 4. Notations ● Vocabulary set size : V ● Total unique authors : A ● Document d is identified as (wd , ad ) ● Nd : number of words in Document d. ● wd : Vector of Nd words (subset of vocabulary) wd = [w1d w2d …….. wNd d ] ● wid : ith word in document d ● Ad : number of authors of Document d ● ad : Vector of Ad authors (subset of authors) ad = [a1d a2d …….. aAd d ] ● Corpus : Collection D documents = { (w1 , a1 ) , (w2 , a2 ) ……. (wD , aD ) }
  • 5. Plate Notation for Graphical models ● Nodes are random variables ● Edges denote possible dependence ● Observed variables are shaded ● Plates denote replicated structure
  • 6. Dirichlet distribution ● generalization of beta distribution into multiple dimensions ● Domain : X = (x1 , x2 ….. xk ) ○ xi ∈ (0 , 1) ○ k xi = 1 ○ k-dimensional multinomial distributions ● "distribution over multinomial distributions" ● Parameter : = ( 1 , 2 …… k ) ○ i > 0 , ∀i ○ determines how the probability mass is distributed ○ Symmetric : 1 = 2 =…… k ● Each sample from a dirichlet is a multinomial distribution. ○ ↑ : denser samples ○ ↓ : sparse samples Topic 2 (0,1,0) Topic 1 (1,0,0) Topic 3 (0,0,1) . (⅓,⅓,⅓ ) Fig : Domain of Dirichlet (k=3)
  • 7. Fig : Symmetric Dirichlet distributions for k=3 pdf samples
  • 8. Model Formulation Topic Model (LDA) Model topics as distribution over words Model documents as distribution over topics Author Model Model author as distribution over words Author-Topic Model Probabilistic model for both author and topics Model topics as distribution over words Model authors as distribution over topics
  • 9. Topic Model : LDA ● Generative model ● Bag of word ● Mixed membership ● Each word in a document has a topic assignment. ● Each document is associated with a distribution over topics. ● Each topic is associated with a distribution over words. ● α : Dirichlet prior parameter on the per-document topic distributions. ● β : Dirichlet prior parameter on the per-topic word distribution. ● w : observed word in document ● z : is the topic assigned for w Fig : LDA model
  • 10. Author Model ● Simple generative model ● Each author is associated with a distribution over words. ● Each word has a author assignment. ● β : Dirichlet prior parameter on the per-author word distributions. ● w : Observed word ● x : is the author chosen for word w Fig : Author Model
  • 11. Model Formulation Topic Model (LDA) Model topics as distribution over words Model documents as distribution over topics Author Model Model author as distribution over words Author-Topic Model Probabilistic model for both author and topics Model topics as distribution over words Model authors as distribution over topics
  • 12. Author-Topic Model ● Each topic is associated with a distribution over words. ● Each author is associated with a distribution over topics. ● Each word in a document has an author and a topic assignment. ● Topic distribution of document is a mixture of its authors topic distribution ● α : Dirichlet prior parameter on the per-author topic distributions. ● x : author chosen for word w ● z : is the topic assigned for w from author x topic distribution ● w : observed word in document Fig : Author Topic Model plate notation
  • 14. Special Cases of ATM Topic Model (LDA): Each document is written by a unique author ● the document determines the author. ● author assignment becomes trivial. ● author’s topic distribution can be viewed as document’s topic distribution.
  • 15. Special Cases of ATM Author Model: each author writes about a unique topic ● the author determines the topic. ● topic assignment becomes trivial. ● topic’s word distribution can be viewed as author’s word distribution.
  • 16. Variables to be inferred
  • 17. Variables to be inferred
  • 18. Variables to be inferred
  • 19. Collapsed Gibbs Sampling - LDA ● The assignment variables contain information about and . ● Use this information to directly update the Topic assignment variable with the next sample. This is Collapsed Gibbs Sampling.
  • 20. Collapsed Gibbs Sampling - Author Model ● Need to infer Author - word distribution A ● WIth Collapsing GIbbs sampling, directly infer author word assignments
  • 21. Author Topic Model - Collapsed Gibbs Sampling ● Need to infer T and ϴA ● Instead through collapsed Gibbs Sampling directly infer Topic and Author assignments ● By finding the author - topic joint distribution conditioned on all other variables
  • 22. Example AUTHOR 1 2 2 1 1 TOPIC 3 2 1 3 1 WORD epilepsy dynamic bayesian EEG model TOPIC-1 TOPIC-2 TOPIC-3 epilepsy 1 0 35 dynamic 18 20 1 bayesian 42 15 0 EEG 0 5 20 model 10 8 1 ... TOPIC-1 TOPIC-2 TOPIC-3 AUTHOR-1 20 14 2 AUTHOR-2 20 21 5 AUTHOR-3 11 8 15 AUTHOR-4 5 15 14 ...
  • 23. Example AUTHOR 1 2 ? 1 1 TOPIC 3 2 ? 3 1 WORD epilepsy dynamic bayesian EEG model TOPIC-1 TOPIC-2 TOPIC-3 epilepsy 1 0 35 dynamic 18 20 1 bayesian 42(41) 15 0 EEG 0 5 20 model 10 8 1 ... TOPIC-1 TOPIC-2 TOPIC-3 AUTHOR-1 20 14 2 AUTHOR-2 20(19) 21 5 AUTHOR-3 11 8 15 AUTHOR-4 5 15 14 ...
  • 24. Author-Topic How much topic ‘j’ likes the word ‘bayesian’ How much author ‘k’ likes the topic A1T1 41/97 20/36 A2T1 41/97 19/45 A1T2 15/105 14/36 A2T2 ... ... A2T3 ... ... A2T3 ... ...
  • 25. ● To draw new Author-Topic assignment (equivalently) ○ Roll K X ad sided die with these probabilities ○ Assign the Author-Topic tuple to the word AUTHOR 1 2 1 1 1 TOPIC 3 2 3 3 1 WORD epilepsy dynamic bayesian EEG model
  • 26. Example (cont..) ● Update the probability ( T and A ) tables with new values ● This implies increasing the popularity of topic in author and word in topic
  • 27. Sample Output (CORA dataset)Topicprobabilities Topics shown with 10 most probable words Author :
  • 28. Experimental Results ● Experiment is done on two types of dataset, papers are chosen from NIPS and CiteSeer database ● Extremely common words are removed from the corpus, leading V=13,649 unique words in NIPS and V=30,799 in CiteSeer, 2037 authors in NIPS and 85,465 in CiteSeer ● NIPS contains many documents which are closely related to learning theory and machine learning ● CiteSeer contains variety of topics from User Interface to Solar astrophysics
  • 29. Examples of topic author distribution
  • 31. Evaluating the predictive power ● Predictive power of the model is measured quantitatively using perplexity. ● Perplexity is ability to predict the words on a new unseen documents ● Perplexity of set of d words in a document (wd ,ad ) is ● When p(wd |ad ) is high perplexity ≈ 1, otherwise it will be a high positive quantity.
  • 32. Continued…. ● Approximate equation to calculate the joint probability
  • 34. Applications ● It can be used in automatic reviewer recommendation for a paper review. ● Given an abstract of a paper and a list of the authors plus their known past collaborators, generate a list of other highly likely authors for this abstract who might serve as good reviewers.
  • 35. References ● Rosen-Zvi, Michal, et al. "The author-topic model for authors and documents." Proceedings of the 20th conference on Uncertainty in artificial intelligence. AUAI Press, 2004. ● D. M. Blei, A. Y. Ng, and M. I. Jordan (2003). “Latent Dirichlet Allocation”. Journal of Machine Learning Research, 3 : 993–1022. ● T. L. Griffiths, and M. Steyvers (2004). “Finding scientific topics”. Proceedings of the National Academy of Sciences, 101 (suppl. 1), 5228–5235. ● https://github.com/arongdari/python-topic-model ● https://www.coursera.org/learn/ml-clustering-and-retrieval/home/welcome