Diese Präsentation wurde erfolgreich gemeldet.
Die SlideShare-Präsentation wird heruntergeladen. ×

LTE Introduction.pptx

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige

Hier ansehen

1 von 186 Anzeige

Weitere Verwandte Inhalte

Ähnlich wie LTE Introduction.pptx (20)

Aktuellste (20)

Anzeige

LTE Introduction.pptx

  1. 1. LTE ntroduction
  2. 2. Market Update Frequency and Coverage considerations LTE principles Network Architecture and Site Solution d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 2
  3. 3. Market Update Frequency considerations LTE principles Network Architecture and Site Solution d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 3
  4. 4. d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 4 Source: WCIS and Operator re Rest of the World 31M Korea 35M LTE SUBSCRIPTIONS Q3, 2014 373 Million Lte uptake Japan 60M USA 140 M China 47M Europe 55M
  5. 5. 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 4 000 3 500 3 000 2 500 2 000 1 500 1 000 500 0 LAM NAM APAC CEMA WE Ericsson Mobility Report 3.5 BILLION LTE subscriptions by end of 2020 d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 5 LTE Subscriptions outlook
  6. 6. LTE Handsets hipments and Forecasts Source: Strategy Analy 45% of total smartphone shipments LTE enabled in 2015 Source: Strategy Analytics d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 6 Q3
  7. 7. d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 7 Mobile Traffic by end o f 2019 en times more Mobile d a t a t r a f f i c 3.3 GB 1.4GB 0.65 GB 13GB 6.3 GB 2.5 GB onthly consumption per device type 2013 2019 Source: Ericsson Mobility Report, June
  8. 8. w w w . g s a c " " o f L T E n U&4! 1IIOO MHz 1511 LTE1IIOO I l a u n c h e d c o u n t r i f o r e c a s t s 4 5 0 + r:;on,,nercja/J- c h e d L T E end20415 U L T E - A d w neoworlc& la c o u n t 80 o p er.wto n . j in V o LTEd ep /4 a i a t & o r 5 t u c : , o p e r a t o n i l a l ' b l . . e d I, . ' C o u n t r i e s wilh conunerci. al L T E s e r v i c e C o u n a i e s wilh LTEi n 1Kogr es s deploym ents o . - p l a n n e C o u n l r i e s wilh LTEtri.al s y s t e m s ( p e - c a m m i b n e n f ) C Glohaf m o b i J e S u p p l i e n . As&ocM.11
  9. 9. d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 9
  10. 10. Market Update Frequency and Coverage considerations LTE Principles Network Architecture and Site Solution d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 10
  11. 11. d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 11 3GPP Frequency Bands * Most used bands world wide N * * * * * * T D D B a n d Identifier F r e q u e n c i e s 33 TDD 2 0 00 L o w er 1 9 00 - 1920 34 TDD 2 0 00 Upper 2 0 10 - 2025 37 PCS Center G a p 1 9 10 - 1930 38 IMT Extension G a p 2 5 70 - 2620 39 China TDD 1 8 80 - 1920 40 2300 2 3 00 - 2400 41 U S 2600 2 4 96 - 2690 42 3500 3 4 00 - 3600 43 3700 3 6 00 - 3800 44 A P T 7 0 0 LTE 6 9 8 - 806 F D D ( W o r k i n p r o g r e s s ) B a n d Identifier F r e q u e n c i e s T B D LTE 1 6 7 0 - 1 6 75 U S 1646.7 - 1651.7 / 1 6 70 - 1675 T B D 2GHz LTE Reg 1 1 9 20 - 2 0 10 / 2 1 10 - 2 2 00 1710-1780 / 2110-2180 or, T B D A W S - 3 1710-1780 / 2110-2200 or, 1685-1780 / 2110-2200 T D D ( W o r k i n p r o g r e s s ) B a n d Identifier F r e q u e n c i e s None None None F D D B a n d Identif ier F r e q u e n c i e s 1 I M T C o r e B a n d 1 9 2 0 - 1 9 8 0 / 2 1 1 0 - 2 1 7 0 2 P C S 1 9 0 0 1 8 5 0 - 1 9 1 0 / 1 9 3 0 - 1 9 9 0 3 1 8 0 0 1 7 1 0 - 1 7 8 5 / 1 8 0 5 - 1 8 8 0 4 A W S 1 7 1 0 - 1 7 5 5 / 2 1 1 0 - 2 1 5 5 5 8 5 0 8 2 4 - 8 4 9 / 8 6 9 - 8 9 4 7 I M T E x t e n s i o n 2 5 0 0 - 2 5 7 0 / 2 6 2 0 - 2 6 9 0 8 9 0 0 8 8 0 - 9 1 5 / 9 2 5 - 9 6 0 9 1 7 0 0 ( J a p a n # 2 ) 1 7 4 9 . 9 - 1 7 8 4 . 9 / 1 8 4 4 . 9 - 1 8 7 9 . 9 1 0 3 G A m e r i c a s 1 7 1 0 - 1 7 7 0 / 2 1 1 0 - 2 1 7 0 1 1 1 5 0 0 ( J a p a n # 3 ) 1 4 2 7 . 9 - 1 4 4 7 . 9 / 1 4 7 5 . 9 - 1 4 9 5 . 9 1 2 U S 7 0 0 L o w e r A , B , C 6 9 9 - 7 1 6 / 7 2 9 - 7 4 6 1 3 U S 7 0 0 U p p e r C 7 7 7 - 7 8 7 / 7 4 6 - 7 5 6 1 4 U S 7 0 0 U p p e r D 7 8 8 - 7 9 8 / 7 5 8 - 7 6 8 1 7 U S 7 0 0 L o w e r B , C 7 0 4 - 7 1 6 / 7 3 4 - 7 4 6 1 8 8 5 0 ( J a p a n # 4 ) 8 1 5 - 8 3 0 / 8 6 0 - 8 7 5 1 9 8 5 0 ( J a p a n # 5 ) 8 3 0 - 8 4 5 / 8 7 5 - 8 9 0 2 0 C E P T 8 0 0 8 3 2 - 8 6 2 / 7 9 1 - 8 2 1 2 1 1 5 0 0 ( J a p a n # 6 ) 1 4 4 7 . 9 - 1 4 6 2 . 9 / 1 4 9 5 . 9 - 1 5 1 0 . 9 2 2 3 5 0 0 3 4 1 0 - 3 4 9 0 / 3 5 1 0 - 3 5 9 0 2 3 U S S - B a n d / A W S - 4 2 0 0 0 - 2 0 2 0 / 2 1 8 0 - 2 2 0 0 2 4 U S L - B a n d 1 6 2 6 . 5 - 1 6 6 0 . 5 / 1 5 2 5 - 1 5 5 9 2 5 P C S 1 9 0 0 G 1 8 5 0 - 1 9 1 5 / 1 9 3 0 - 1 9 9 5 2 6 E 8 5 0 U p p e r 8 1 4 - 8 4 9 / 8 5 9 - 8 9 4 2 7 E 8 5 0 L o w e r L T E 8 0 7 - 8 2 4 / 8 5 2 - 8 6 9 2 8 A P T 7 0 0 L T E 7 0 3 - 7 4 8 / 7 5 8 - 8 0 3 2 9 L T E D L F D D N / A / 7 1 7 - 7 2 8 3 0 L T E W C S 2 3 0 5 - 2 3 1 5 / 2 3 5 0 - 2 3 6 0 3 1 L T E 4 5 0 B r a z i l 4 5 2 . 5 - 4 5 7 . 5 / 4 6 2 . 5 - 4 6 7 . 5 3 2 S D L L - b a n d N / A / 1 4 5 2 - 1 4 9 6
  12. 12. (Total 63.4MHz) Rightel (37MHz) MTN (Total 58Mhz) GSM 900MHz ology Frequency BW (MHz) 900MHz 18.6 (Tehran)/16.8 1.8GHz 14.8 2.1GHz 15 2.6GHz 15 3G 2.1GHz 15 H Technology Frequency BW(M GSM 900MHz 10 GSM 1800MHz 12 3G 2.1GHz 15 GSM 1800Hz GSM 900MHz GSM 1800Hz WCDMA 2.1GHz GSM 900MHz GSM 1800Hz WCDMA 2.1GHz Technology Frequency BW(MHz) 2G 900MHz 6.2 (Tehran ) / 8 2G/LTE 1.8GHz 15+5 LTE 2.6GHz 15 MTN MCI Downlink ( Tehran ) Downlink MTN MCI Rightel Rightel Rightel MTN MCI 935 1835 1847 Downlink 1820.1 1834.9 2125 941.2 941.3 959.9 1860 1880 2140 2155 LTE 2.6 GHz MTN 2670 2685 Downlink Lower frequency carriers for coverage & Higher frequency carriers for capacity pectrum Assets LTE 2.6 GHz WCDMA 2.1GHz d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 12
  13. 13. Started as a basic GSM and WCDMA NW Carriers were added A low band carrier added – Refarming GSM 900 Small cells added LTE added n advanced multilayered Network F2 F1 F3 LTE F4 - LB F1 GSM 1800 GSM 900 d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 13
  14. 14. d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 14 RAN c o r e and border c e l l s
  15. 15. ECHNOLOGY DEPLOYMENT GSM 1800 GSM 1800 GSM 900 W2100 C2 W2100 C1 W2100 C1 GSM 900 W2100 C2 Multi-Carrier LTE 1800 LTE 1800 W2100 C3 d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 15
  16. 16. Gsm Mobility s t r a t e g y GSM 1800 GSM 1800 GSM 900 LTE 1800 W2100 C2 W2100 C1 W2100 C1 LTE 1800 GSM 900 W2100 C2 W2100 C3 d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 16
  17. 17. Wcdma mobility s t r a t e g y GSM 1800 GSM 1800 GSM 900 LTE 1800 W2100 C2 W2100 C1 W2100 C1 LTE 1800 d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 17 GSM 900 W2100 C2 INTER Frequency HO INTRA Frequency HO IRAT HO IRAT HO MC W2100 C3 IRAT HO M INTER Frequency HO
  18. 18. TE Mobility s t r a t e g y GSM 1800 GSM 1800 GSM 900 LTE 1800 W2100 C2 W2100 C1 W2100 C1 LTE 1800 GSM 900 W2100 C2 W2100 C3 INTRA Freq HO CSFB 3 Release with Redirect to LTE Session Continuity d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 18
  19. 19. pectrum evolution with minimal site impact M Low + High PAHigh 21 Mbps GSM Mixed mode +AIR RBS 6000 Multi standard Low + High A Low + High 42 Mbps High 10 MHz ow + High ow + High 42 Mbps w + High 20 MHz GSM HSPA 700 900 1800 GSM+HSPA GSM+LTE HSPADC GSM+LTE HSPADC LTE GSM+HSPA DC AIR 2100 2600 MHz LTE CA d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 19
  20. 20. 0.5 Relative cell coverage area 1.0 00 MHz 00 MHz 0 MHz 0 MHz 0 MHz Assumptions: Propagation based. Suburban environment. Reference frequency is 800 MHz. 5 dB higher antenna gain at 2,100 MHz and 6 dB higher antenna gain at 2,600 MHz. LTE and HSPA: re-use 1 HSPA/LTE LTE ROADBAND CAPACITY & COVERAGE Typical deployment by EMEA Operators FDD DL 10 MHz FDD DL 10 MHz FDD DL 20 MHz FDD DL 15 MHz FDD DL 10 MHz Radio link throughput proportional to e 2G/LTE 2G/HSPA d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 20
  21. 21. 0.47 d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 21 1.29 1.07 0.71 0.64 Carrier frequency vs. Range overage 0.67 ~50% Fewer sites 0.58 ~33% Fewer sites 1.13 ~80% Fewer Reference
  22. 22. Urban Suburban Rural LTE GSM / EDGE WCDMA/HSPA YPICAL SPECTRUM STRATEGY troduce LTE 800 and 2600 MHz MHz MHz MHz MHz LTE WCDMA / HSPA GSM / EDGE LTE WCDMA / HSPA Carrier Aggregation d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 22
  23. 23. app Coverage 25% OF Mobile ABANDON AFTER 4 SE 50% OF MOBILE ABANDON AFTER 10S >50% 10 <1% 0.1 MBPS DOWNLINK SPEED d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 23 >90% 1 › Capture High value subscribers – High end devices – High performance expectations – High end services › Secure Mass market – High volume devices – Robust performance › Secure user experience, everywhere & any
  24. 24. d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 24 Notes on frequency usage 00MHz is the most popular band in the world for LTE with a total of 44% of the networks worldwide running in this quency band. 158 LTE1800 networks are commercially launched in 76 countries. (GSA source) 00MHz also has the largest ecosystem with 944 devices available (GSA source); 2600MHz has 893 devices available SA source). ue to the lower frequency band, the 1800MHz can allow for better coverage assuming all other parameters are equal. T n result in less sites, depending on the deployment. 00 band is usually occupied by GSM1800, meaning that it may not be possible to get 20MHz of spectrum. Having 10M spectrum limits the overall performance of the system, compared for instance with the 20MHz of bandwidth typic ailable in the 2600MHz (in throughput: 75Mbps for 1800MHz vs. 150Mbps for 2600MHz). ven to get 10MHz of free spectrum in the 1800MHz may require refarming of the GSM1800 (to release the necessary ectrum). This activity can impact the GSM900 and the WCDMA2100 due to the need to increase the capacity in these t stems, to cope with the decrease of capacity in the GSM1800.
  25. 25. Market Update Frequency and Coverage considerations LTE Principles Network Architecture and Site Solution d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 25
  26. 26. History 80’s 90’s 00’s 00’s 00’s 10’s G FDMA (NMT, AMPS, TACS) Voice (analog traffic, digital signaling) G TDMA (GSM, D-AMPS, PDC) and CDMA (IS-95) Voice, SMS, CS data transfer ~ 9.6 kbit/s (50 kbit/s HSCSD) 5G TDMA (GPRS) PS data transfer ~ 50 kbit/s 75G TDMA (GPRS+EDGE) PS data ~ 500kbit/s 3.5G WCDMA (UMTS) and CDMA 2000 PS & CS data transfer ~ 14-84 Mbit/s (HSPA/HSPA+), Voice, SMS 9G OFDMA (LTE/SAE) PS Data and Voice (VoIP) for LTE ~ 300 Mbit/s G IMT Advanced d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 26
  27. 27. CDMA Fundamentals ultiple Access Approaches Frequency Division Multiple Access rs separated in frequencies AMPS, NMT, TACS Time 1 2 3 25 kHz (NMT) 30 kHz (AMPS) Frequency •Several users share the same frequency – separated in time •In practice: combined with FDMA GSM, PDC, IS-136 (TDMA) Time DivisionMul tiple Access 200 kHz (GSM) Time Code 1 2 3 Frequency •Many users share the same frequency an time •Users separated by code •Can be combined with FDMA -More than carrier WCDMA, CDMA2000 Code DivisionMul tiple Access Time Frequency 1.25 MHz (CDMA2000) 5 MHz (WCDMA) Code 1 2 3 d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 27
  28. 28. Key LTE radio access features TX TX 20 MHz 1.4 MHz Advanced antenna solutions Diversity Beam-forming Multi-layer transmission (MIMO) Spectrum flexibility Flexible bandwidth New and existing bands Duplex flexibility: FDD and TDD OFDMA SC-FDMA TE radio access ownlink: OFDM plink: SC-FDMA d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 28
  29. 29. LTE introduction: OFDM TX Subcarrier #1 Subcarrier #2 Subcarrier #n RX Transmitter Air Interface Receiver ubcarrier #1 ubcarrier #2 ubcarrier #n d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 29
  30. 30. Modulation QPSK (2 bits/symbol) 16 QAM (4 bits/symbol) 64 QAM (6 bits/symbol) d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 30
  31. 31. daptive Modulation QPSK (2 bits/symbol) 16 QAM (4 bits/symbol) 64 QAM (6 bits/symbol) Radio Environment: Poor Good d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 31
  32. 32. daptive Coding Radio Environment: Poor Good Information Bit Redundancy Bit high data rate/ low protection Low data rate/ high protection d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 32
  33. 33. TE Maximum instantaneous Speed vs. bandwidth 10 MHz 15 MHz 20 MHz ak rate d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 33 ~75 Mbps ~100 Mbps ~150Mbps ical spectrum band 800/1800 MHz 1800 MHz 1800/2600 MHz
  34. 34. r e a t e r BANDWIDTH HIpset support 100 Mbps Cat 3 150 Mbps Cat 4 11-12 12-13 2x20 End13 - 14 4x4 MIMO Beyond 2015 300 Mbps Cat 6 2013 2x10 20 MHz 40 MHz 60 MHz 450 Mbps Cat 9 3x20 2015 d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 34
  35. 35. n < = 3 DL Radio Frame ( 10 ms ) Slot n Slot n + 1 Subframe m Subframe 9 18 Slot Slot Subframe 5 10 Slot 11 Slot Subframe 0 Slot 0 Slot 1 OFDM Symbol SCH - Physical DL SharedChannel S - Primary Sync Channel S - Secondary Sync Channel, slot 0 S - Secondary Sync Channel, slot 10 Sub-carrier (15kHz) 12 sub-carriers CCH - Physical DL Control Channel CH - Physical Broadcast Channel - Reference Signal – Tx antenna0 - Reference Signal – Tx antenna1 CH - Physical Hybrid ARQ Indicator Channel FICH - Physical Control Format Indication Ch. 6 RB 1.08 MHz Scheduling unit 1 TTI = 12 sub-carriers x 14 Symbols d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 35
  36. 36. LTE Downlink Physical Rates 10 msec 168 168 168 168 168 168 168 168 168 168 1.4 MHz BW => 6 RBs 3 MHz BW => 16 RBs 5 MHz BW => 25 RBs 10 MHz BW => 50 RBs 15 MHz BW => 75 RBs 20 MHz BW => 100 RBs 168 168 168 168 168 168 168 168 168 168 g 168 X 10 X 100 = 168000 symbols in 10 msec = 16.8 Msps 100.8 Mbps using 64 QAM and 201.6* Mbps using 64 QAM and MIMO User rate will be less due to signaling and adaptive coding overhead Frequency d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 36
  37. 37. LTE Uplink Physical Rates 10 msec 168 168 168 168 168 168 168 168 168 168 1.4 MHz BW => 6 RBs 3 MHz BW => 16 RBs 5 MHz BW => 25 RBs 10 MHz BW => 50 RBs 15 MHz BW => 75 RBs 20 MHz BW => 100 RBs 168 168 168 168 168 168 168 168 168 168 g 168 X 10 X 100 = 168000 symbols in 10 msec = 16.8 Msps 67.2 Mbps using 16 QAM User rate will be less due to signaling and adaptive coding overhead Frequency d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 37
  38. 38. Downlink: OFDM - Orthogonal Frequency Division Multiplexing nefits Frequency diversity Robust against ISI Easy to implement Flexible BW Suitable for MIMO Classic technology (WLAN, ADSLetc) Drawbacks - Sensitive to doppler and fr errors - High PAPR (not suitable fo uplink) - Overhead › Orthogonal: all other subcarriers zero at sampling point › Sub carrier spacing 15 kHz (MBMS also 7.5 kHz) › Delay spread << Symbol time < Coherence time ∆f=15kHz d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 38
  39. 39. Frequency Reuse in WCDMA quency Reuse concept is not implemented in WCDMA network, i.e all the cells having the same quency instead of having different frequencies in different cells like GSM network. F1 F2 F3 F2 F3 F1 F2 F1 F2 F3 F1 F2 d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 39 F2 F3 F1 F2 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 o, the cells in WCDMA network are not differentiated by Frequency like GSM network, they are ifferentiated by a special code called Scrambling code. Frequency Reuse in GSM Frequency Reuse in WCDMA
  40. 40. M WCDMA Node-B RNC UE  Separate users through different codes  Large bandwidth (Carrier Seperation 5 MHz  Continuous transmission and reception  Continuous transmission and reception  No frequency planning- Code Planning  Soft/Softer Handover, Hard Handover  Radio Link: 1 UE <-> Many Node-B’s › Power is Capacity › Variable Cell Radius: Cell Breathing › Admission and Congestion Control t f code Orthogonal in time within a cell Low BW (Carrier Seperation 200 KHz) Discontinuous transmission and reception Synchronization in time Frequency planning Hard Handover Radio Link: 1 MS <-> 1 RBS # of Frequencies limit capacity “Fixed” Cell Radius Timeslot base admission t f d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 40
  41. 41. Lte considerations d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 41 No Intra-Cell interference in LTE (users in same cell are orthogonal), so there is no cell breathing due to traffic/load. Inter-Cell interference is the major concern in LTE. The power is assigned dynamically and link adaptation is used (same as HSPA). There is also no Soft/er Handover in LTE, nor Channel Switching. NB: Need to have as little “Cell Overlap” as possible in LTE, as there is no Soft/er Handover . The RND for LTE is a critical activity which must be done properly and the site integration/installation must follow the LTE RND. The Scheduler uses the following information for Link Adaptation: – CQI (RF conditions) – RI (Rank Indicator: MIMO, TX Diversity)
  42. 42. d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 42 SM and WCDMA Overview | © Ericsson AB 20 1 | 20 1 08 19 | Page 42 Frequency Division Duplex Frequency UL DL With FDD we separate the uplink and downlink paths in the frequency domain n this case each operator uses a paired band. 5 Mhz of BW in both the uplink and downlink is called a licence Power Duplex Distance
  43. 43. f ode t MS 1 MS 2 MS 3 5 MHz r a t e users t h r o u g h different codes e bandwidth – 5 MHz nology delivering c os t effective voice & High Speed Dat a monly used Spectrum 2100 MHz WCDMA – Wideband Code division multiple access d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 43
  44. 44. WCDMA Codes d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 44 So when using WCDMA we have 2 tasks to be carried out: 1. Spreading out the data to 5MHz - Carried out by Channelisation Codes Pseudo-Noise 2. Separating out the individual user channels - Carried out by Channelisation Codes and Codes
  45. 45. spreading and scrambling codes d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 45
  46. 46. preading the d a t a - Bits and Chips Bipolar data sequence Code (1 -1 1 -1) +1 -1 +1 annelisation -1 +1 Signal -1 1 Bit Bits/s 0 1 0 Chips/s Chip Chips/s d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 46
  47. 47. User Bitrate and Spreading Fa c t o r SF d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 47 Chiprate Mchips/s Bit-Rate Downlink Chiprate Mchips/s -Rate SF link 5 256 3.84 15 512 3.84 0 128 3.84 30 256 3.84 0 64 3.84 60 128 3.84 20 32 3.84 120 64 3.84 40 16 3.84 240 32 3.84 80 8 3.84 480 16 3.84 60 4 3.84 960 8 3.84 1920 4 3.84
  48. 48. Scrambling Code SC3 SC4 SC5 SC6 SC1 SC1 Cell “1” transmits using SC 1 SC2 SC2 Cell “2” transmits using SC 2 Uplink: Scrambling Code used to distinguish each UE Downlink: Scrambling Code used to distinguish each cell d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 48
  49. 49. Channelization Codes CC1, CC2 CC5, CC6, CC7 CC1 , CC2, CC3 CC1, CC2 CC1, CC2, CC3, CC4 Uplink: Channelization Codes used to distinguish data channels coming from each User Equipment, UE Downlink: Channelization Codes used to distinguish data channels coming from each cell SC1 CC3, CC4 SC3 SC4 SC5 d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 49
  50. 50. 11 1-1 1111 11-1-1 1-11-1 1-1-11 1111111 N/A N/A N/A 384k 128k, HS 64k FACH SPEECH FR, COMMON CHANNELS SPEECH HR, COMMON CHANNELS Service Spr F Channelization Code Tree 1 NLINK PICH AICH BCH S-CCPCH (FACH or PCH) PCH
  51. 51. hannelization code Tree … … … … … 128 256 =64 CPICH BCH AICH PICH FACH PCH 1 -> V= 3,84 Msps 2 -> V/2 4 -> V/4 8-> V/8 16 =32 Code 4,1= 1100 Code 8,2= 11001100 Code 8,3= 11000011 d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 51
  52. 52. 6 8 FACH PCH 3 * HS-SCCH CPICH BCH AICH PICH 4 * E-AGCH 1 * HS-SCCH 4 * E-HICH/E-RGCH 2 * DCH L code availability with HSPA numEhichErgchCodes = 4 numEagchCodes = 4 Codes availability: – 14 codes HS-PDSCH – 1 speech SF128 Advantage: – Efficient EUL scheduler, more EUL throughput. Disadvantage: – Code DL HS decrease. SF=16 SF=8 SF=2 SF=4 SF=1 14 HS-PDSCH d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 52
  53. 53. Radio resource setup on CCCHs ImmediateAssignment: Go to SDCCH #5 on C0-TS1 to setup call Call setup signaling on SDCCH (or TCH) Actual traffic on TCH Assignment Command: Go to FR-TCH on C2-TS4 for traffic natomy o f a C a l l Setup IN GSM d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 53
  54. 54. d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 54
  55. 55. d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 55
  56. 56. d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 56
  57. 57. d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 57
  58. 58. WCDMA variability principle: Power is the common shared physical resource Varying user bit rate Translates into w Varying power level w Varying spreading factor Bit rate Power level Spreading factor WCDMA Bit-rate Flexibility d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 58
  59. 59. 7.2 Mbps Coverag Bitrate 42 Mbps (MIMO+64QAM) 28.8 Mbps (MIMO) 14.4 Mbps elation between Peak Rate & Coverage Capacity does not scale with peak rate d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 59
  60. 60. What is HSPA? asic Principles Shared Channel Transmission 2 ms Dynamically shared in time & code domain Higher-order Modulation 16QAM in complement to QPSK for higher peak bit rates Short Transmission Time Interval (2 ms) Reduced round trip delay Fast Hybrid ARQ with Soft Combining Reduced round trip delay Fast Link Adaptation Data rate adapted to radio conditions on 2 ms time basis Fast Radio Channel Dependent Scheduling Scheduling of users on 2 ms time basis d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 60
  61. 61. d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 61 SM and WCDMA Overview | © Ericsson AB 20 1 | 20 1 08 19 | Page 61 3.5G HSPA - High Speed Packet Access (HSPA) is an amalgamation of two mobile telephony protocols, High Speed Downlink Packet Access (HSDPA) and High Speed Uplink Packet Access (HSUPA), that extends and improves the performance of existing WCDMA protocols. −HSPA supports increased peak data rates of up to 21 Mbit/s in the downlink and 5.8 Mbit/s in the uplink. It also reduces latency and provides up to five times more system capacity in the downlink and up to twice as much system capacity in the uplink, reducing the production cost per bit compared to original WCDMA protocols. HSPA increases peak data rates and capacity in several ways: *Shared‐channel transmission, which results in efficient use of available code and power resources in WCDMA *A shorter Transmission Time Interval (TTI), which reduces round‐trip time and improves the tracking of fast channel variations * Link adaptation, which maximizes channel usage and enables the base station to operate at close to maximum cell power * Fast scheduling, which prioritizes users with the most favorable channel conditions * Fast retransmission and soft‐combining, which further increase capacity * 16QAM and 64QAM (Quadrature Amplitude Modulation), which yields higher bit‐rates * MIMO, which exploits antenna diversity to provide further capacity benefits.
  62. 62. d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 62 12 48 Downlink … 2 21 28 42 84 168 10 ms TTI 2 ms TTI Dual-carrier or 16QAM Dual-carrier + MIMO or Dual-carrier + 16QAM 64QAM MIMO 64QAM + MIMO or Dual-carrier + 64QAM Dual-carrier + 64QAM + MIMO or Multi-carrier (4) + 64QAM Multi-carrier (4) + 64QAM + MIMO or Multi-carrier (8) + 64QAM 1.4 5.8 24 Uplink Dual-carrier + MIMO + 16QAM 0.384 hspa evolution 84 Mbps DL & 12 Mbps in UL a r e in commercial service
  63. 63. d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 63 LTE Physical Layer link: SC-FDMA with dynamic bandwidth (Pre-coded OFDM) Low PAPR  Higher power efficiency Reduced uplink interference (enables intra-cell orthogonality ) wnlink: Adaptive OFDM and OFDMA Channel-dependent scheduling and link adaptation in time and frequency domain lti-Antennas, both RBS and terminal MIMO, antenna beams, TX- and RX diversity, interference rejection High bit rates and high capacity TX R frequency frequency le bandwidth ossible to deploy in 6 different bandwidths p to 20 MHz rmonized FDD and TDD concept – Maximum commonality between FDD and TDD nimum UE capability: BW = 20 MHz 10 15 20 MHz 3 fDL fUL FDD-only fDL fUL Half-duplex FDD fDL/UL TDD-on ∆f=15kHz 180 User #2 scheduled User #1 scheduled User sche 1.4 5
  64. 64. te air interface 1 TTI 15 KHz each – Total 180 KHz d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 64
  65. 65. W h a t do we schedule? 180 kHz cheduling Block, SB: Smallest entity that could be scheduled ew scheduling opportunity every 1 ms. user could be scheduled x SBs every ms, i.e. x*180 kHz bandwidth. n UL contiguous allocation of spectrum required 12 sub-carriers, 180 kHz 7 OFDM symbols , 0 . 5 ms , 1 ms , 14 OFDM symbols one subframe Resource element 1 ms Resource block time frequency Reference signal PUSCH resource element Scheduling Block Modulation symbol ( 66.7 s) d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 65
  66. 66. 12 sub-carriers One Scheduling Block 180 kHz and 1 ms < f = 15kHz OFDM symbols are grouped into resource blocks d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 66 frequency The Resource Blocks have a total size of 180kHz in the frequency domain and 0.5ms in the time domain Each user is allocated a number of Resource Blocks in the time/frequency grid LTE DL Physical Resources
  67. 67. Scheduling in Time and Frequency OFDMA frequency UE 1 UE 2 UE 3 Scheduling Block d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 67
  68. 68. Spectrum Flexibility Operation in differently-sized spectrum allocations – Core specifications support any bandwidth from 1.4 to 20 MHz – Radio requirements defined for a limited set of spectrum allocations time time FDD Half-duplex FDD d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 68 (terminal-side only) time TDD 10 MH6zRB (1.4 MHz) 100 RB (20 MHz) 15 MHz 20 MHz 3 MHz 5 MHz 1.4 MHz Support for paired and unpaired spectrum allocations with a single radio-access technology  economy-of-scale
  69. 69. Resource Alloc ation in LTE d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 69 MTS, one or more Channelization codes are allocated for the UE. In LTE, the resource allocated to the use d Resource Block (RB) E , three different entities are defined: esource Element esource Block cheduling Block Resource Block (RB) is defined in two dimensions: Frequency and Time equency: it is in composed of 12 sub-carriers of the cell bandwidth (12x15KHz) me: it is composed of 7 slots where the duration of every slot is 0.5ms/7 Resource Element (RE) is the smallest defined unit in Resource elements. It corresponds to one single c g the duration of one symbol (0.5ms/7) Scheduling block (SB) is composed of two consecutives Resource Block. In time that is two timeslots of and in frequency it is composed of 12 sub-carrier as is the case of a Resource Block. The Scheduling Blo mallest resource that eNodeB can allocate to a UE
  70. 70. 12 sub-carriers One Scheduling Block 180 kHz and 1 ms < f = 15kHz OFDM symbols are grouped into resource blocks d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 70 frequency The Resource Blocks have a total size of 180kHz in the frequency domain and 0.5ms in the time domain Each user is allocated a number of Resource Blocks in the time/frequency grid LTE DL Physical Resources
  71. 71. LTE DL peak r a t e 20 MHz and 4x4 MIMO AND 64 QAM 14 OFDM symbols per 1.0 ms subframe 64QAM = 6 bits per symbol 6 x 14 = 84 bits per 1.0 ms subframe 84bits/1.0ms = 84kbps per subcarrier 12 x 84kbps = 1.008Mbps per Scheduling Block 100 Scheduling Blocks in 20MHz 100 x 1.008Mbps = 100.8Mbps per antenna 4 x 4 MIMO: 403.2Mbps ! BUT in reality approx. 300Mbps …and UL no MIMO 75Mbps d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 71
  72. 72. 3 peak data rates L 3 P e a k D a t a R a t e 2 5 . 5 1 8 . 3 3 6 . 7 5 5 . 1 7 5 . 4 4 . 4 8 . 8 2 2 .2 3 6 .7 7 3 .7 1 1 0 .1 1 4 9 .8 1 7 .6 4 3 .8 7 5 .4 1 4 6 .9 2 2 0 .3 2 9 9 .9 5 1 . 0 3 7 . 9 1 2 . 6 7 . 5 1 1 . 1 3 . 0 0 .0 5 0 .0 1 0 0 .0 1 5 0 .0 2 0 0 .0 2 5 0 .0 3 0 0 .0 3 5 0 .0 1 . 4 M H z 3 M H z 5 M H z 1 0 M H z 1 5 M H z 2 0 M H Z B a n d w i d t h U L S I M O 1 6 Q A M U L S I M O 6 4 Q A M D L M I M O 2 x 2 6 4 Q A M D L M I M O 4 x 4 6 4 Q A M 150 50 110 37.5 75 25 d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 72
  73. 73. FDD User peak r a t e s Unit for the rates is Mbps d t h U L Q P S K , 2 r e c e i v e a n t e n n a s U L 1 6 Q A M , 2 receiv e a n t e n n a s U L 6 4 Q A M , 2 r e c e i v e a n t e n n a s 1,5 3 3,9 7,5 6,5 12,6 1 3 25,5 19,1 37,9 25,5 5 1 d t h D L Q P S K s i n g l e a n t e n n a o r T x D i v D L Q P S K 2 T x spatial multiplexin g D L 1 6 Q A M s i n g l e a n t e n n a o r T x div 4 8 8 16 11,8 23,7 15,8 31,7 d t h D L 1 6 Q A M 2 T x Spatial multiplexing D L 6 4 Q A M s i n g l e a n t e n n a o r T x D i v ( S I M O ) D L 6 4 Q A M 2 T x Spatial multiplexin g ( M I 3,4 4,4 9,7 11,8 15,5 18,3 30,5 36,7 45,8 55,1 61,2 75,4 d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 73
  74. 74. TDD Overview PP › TDD UL/DLConfigurations › Timing fDL/UL fDL fUL TDD UL/DL f FDD f FDD/TDD: LTE d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 74
  75. 75. TDD UL/DL Configurations #2 #3 #7 #8 #0 #4 #9 #5 #1 #6 0 #0 #2 #3 #4 #5 #7 #8 #9 1 #0 #2 #3 #4 #5 #7 #8 #9 2 #0 #2 #3 #4 #5 #7 #8 #9 3 #0 #2 #3 #4 #5 #6 #7 #8 #9 4 #0 #2 #3 #4 #5 #6 #7 #8 #9 5 #0 #2 #3 #4 #5 #6 #7 #8 #9 6 #0 #2 #3 #4 #5 #7 #8 #9 d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 75
  76. 76. Challenges with Tdd d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 76 eNB-to-eNB interference UE-to-UE interference Guard periods between UL and DL Efficient co-existence of TDD networks
  77. 77. Subframe 1ms = 14OFDM symbols long GP Special subframe Creation of guard period d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 77
  78. 78. nterference 1 2 ~stochastic ~static eNodeB 1 eNodeB 2 Solution: Synchronizing to a ”common reference” e.g. GPS based sync d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 78
  79. 79. FDD-TDD CA boosts TDD DL coverage › TDD DL apps coverage > UL appscoverage › Slow UL also leads to slowDL › Improved coverage with CA by utilizing FDDUL › Feedback for both FDD&TDD DLs from the FDDUL FDD-TDD CA leverage on FDD UL capacity “surplus” › Most loaded FDD eNBs in commercial networks (~100% DL PRB utilization) typically have ~30% UL load FDD-TDD CA increases user data rate › Combining FDD and TDD datarates › Avoiding TDD HARQ bundling (by FDD-TDD CA) further lifts data rate for the TDD Scell FDD-TDD Carrier aggregation TDD UL TDD DL FDD UL&DL Boost TDD coverage leveraging FDD UL d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 79
  80. 80. Multiple a n t e n n a techniques
  81. 81. uplink Transmission Types MO 1X2(4/8) UE Stream 1 eNB Rx Diversity d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 81
  82. 82. Downlink Transmission Types MO 1X2(4) eNB Div 2(4)X2(4) Stream 1 Stream 1 Stream n Stream n+1 UE Rx Diversity UE Rx Diversity eNB UE MIMO MO 2(4/8)X2(4) eNB SISO MISO d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 82
  83. 83. Multi-antenna Transmission TE implementation One, two, or four antenna ports Multiple time-frequency grids Reference signals for identification Antenna#1 Antenna#2 Antenna#3 Antenna#4 Time Frequency d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 83
  84. 84. r e a coNcept d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 84
  85. 85. Area Concept - UMTS d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 85 In UMTS, there are 3 defined areas where the UE can be paged: –LAC: It is formed of a group of cells . When a mobile in Idle mode is called from CS Core Network, then it is paged in all cells of the LAC –RAC: It is formed of a group of cells. When a mobile in Idle mode is called from PS Core Network, then it is paged in all cells of the RAC –URA: it is formed of a group of cells and it is used when mobile in URA PCH mode is paged
  86. 86. In LTE, there is only one defined area where the UE can be paged: TA (Tracking Area): A Tracking Area corresponds to the Routing Area (RA) used in UMTS TAC: Tracking area Code: A cluster of RBSs having the same Tracking Area Code (TAC) TAL: Tracking Area List: Includes one TAC or more and it is used by the MME to page the UE and track its position in le mode d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 86 Area Concept - lTE
  87. 87. TA1 TA4 TA3 TA2 racking Area Concept king Area list UEs can belong to multiple TAs which belong to one TAlist. 1. UE belongs to TA1, TA3 and TA2. The UE can move within TA1, TA2 and TA3 without TA 2. The UE will perform a TAupdate when moving to a cel TA4. 3. After successful TAupdate in TA4 the UE will belong to TA3 and TA4. MME .......... TAlist 1: - TA1 - TA2 - TA3 TAlist 2: - TA2 - TA3 - TA4 d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 87
  88. 88. Paging and TA List d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 88 MME provides the UE with a Tracking Area List – UE behavior is to stay silent as long as it moves between Tracking Areas that are part of the TAI list in idle mode The length of Tracking Area List defines radio behavior – A short list provides the MME with better granularity in knowledge about UE location in IDLE mode – A longer list lowers the frequency of Tracking Area Update procedure MME is triggered from SGW (due to DL data) to page the UE – MME sends a paging request towards the UE – UE replies with a Service Request MME will page over the ”Tracking Area List” – Additional functionality to configure the number of paging attempts, configure the paging timer and the value of the repeat paging timer
  89. 89. 1 area (3 in WCDMA) – Tracking area, TA dle Mode Mobility Area Concept TA list 2 -TA2 -TA3 -TA4 TA1 TA2 TA3 TA4 MME TAUpdate TAUpdate confirm TA list 1 -TA1 -TA2 -TA3 TA list 1 -TA1 -TA2 -TA3 d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 89
  90. 90. Area Concept - lTE ping-pong effects along TA d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 90 The TAlist makes it possible to avoid frequent TAupdates due to borders TAupdate and paging are on TAL level and the UE is known in EPC at the TAL level and not th TAC level Configuration of TAlists is one on MME level
  91. 91. Location Registration (TA Update) d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 91 Three different types of TAU: Normal TAU Periodic TAU Attach/detach
  92. 92. Normal TAU Normal TAupdate is done when: The UE is moving into a new TA(-list) MME TA1 TA2 d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 92
  93. 93. Periodic Registration UE moves to connected mode Timer TAUpdate TAUpdate UE moves to idle mode in idle mode Timer TAUpdate Timer d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 93
  94. 94. e states d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 94
  95. 95. UE States in UMTS d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 95 There are 5 states for the UE in UMTS: ) Detached (mobile is switched off): User could not be reached ) Idle: User is in Idle mode however it is known by both CS and PS CN and could be paged ) CELL FACH: Mobile could exchange signaling and small amount of data. All users in Cell FACH in a articular cell share the same radio channel ) URA PCH: Mobile is not exchanging data however it could be paged. Advantage of this status in omparison to Idle Mode is that the mobile is still connected to the Core Network. In case some data are ent from the mobile or the Core the move to Connected Mode is quicker than in the case of Idle Mode ) Cell DCH: Mobile is in communication either voice call or a packet call ( download a file, web-browsing ternet, emails etc..).
  96. 96. UE States in LTE d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 96 LTE is designed to be simpler and requiring less signaling than UMTS There are 5 UE states in UMTS whereas in LTE there are only 3: 1) Detached 2) Attached (Idle) 3) Connected These 3 status have exactly the same meaning as in UMTS. The only difference with UMTS is that in LTE there is no intermediate status between Connected mode and Idle Mode In LTE, No Cell FACH and no URA PCH
  97. 97. obility in lte d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 97
  98. 98. dle Mode Tasks LMN Selection ell Selection/Reselection ocation Registration Monitor System Information Monitor Paging PLMNA PLMN B PLMN C MM E IDLE MODE d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 98
  99. 99. 1 area (3 in WCDMA) – Tracking area, TA dle Mode Mobility Area Concept TA1 TA2 TA3 TA4 TA list 1 -TA1 -TA2 -TA3 MME d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 99
  100. 100. Connected Mode Mobility UE Measures: - Reference Signal Received Power (RSRP) - Reference Signal Received Quality (RSRQ) A1: Serving cell becomes better than absolute threshold. A2: Serving cell becomes worse than absolute threshold. A3: Neighbor cell becomes amount of offset better than serving. A5: Serving cell becomes worse than absolute threshold1 AND neighbour becomes better than another absolute threshold2 B2: Serving cell becomes worse than absolute threshold1 AND an inter-RAT neighbor becomes better than absolute threshold2 d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 100
  101. 101. ntra-LTE Handovers S-GW MME MME MME S-GW S-GW S1 CP S1 UP X2 CP and UP MME in Pool MME in Pool MME MME tra-eNodeB X2 Handover S1 Handover d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 101
  102. 102. Unchanged or relocated 2-based Handover S1-MME S1-U S5/S8 S6a S-GW eNB eNB HSS S5/S8 S-GW PDN MME S1-U S11 X2 S11 Data forwarding d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 102 over using the X2 interface between the eNodeBs ty within a MME service area, no change of MME ty within (and between) Serving Gateway service areas
  103. 103. TA1 d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 103 3. Path Switch RequestAcknowledge 1. Path Switch Request 2. Modify Bearer Req/Resp PGW SGW MME eNodeB eNodeB X2-based Handover Without SGW relocation
  104. 104. TA1 UE MME SGW PGW eNB1 eNB2 source eNB detects UE is on the way to another eNB Ue still connected Checks target eNB and TAI is supported UE TA2 UE detaches from old cell and synchronizes to the new cell D It is a simplifiedTA -Based Handover Without MME and SGW Relocation d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 104
  105. 105. based Handover without MME Relocation , with S-GWRelocation TA1 UE TA2 MME SGW1 PGW eNB1 eNB2 D SGW2 UE d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 105
  106. 106. 1-based Handover with MME Relocation only TA1 UE TA2 MME1 PGW eNB1 eNB2 Handover Required Handover Request Ack Handover Request Modify bearer Req/Resp D TAU Request SGW UE Modify bearer Req/Resp MME2 Forward RelocationReq Forward RelocationResp d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 106
  107. 107. 1-Based Handover with both MME and SGW Relocation d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 107 reparation Phase and an Execution Phase reparation Phase: – Source eNB makes a decision to perform a S1-based Handover and sends a request to source MME. – Source MME send Forward Relocation Request to the target MME. – Target MME makes reservation/allocation of resources in target eNB and target SGW. – Target MME sends Forward Relocation Response to source MME. xecution Phase: – Source eNB gives the order to UE to handover to the target eNB. – When UE has moved over to target eNB, source MME will release all resources in source eNB and source SGW. – UE performs a TAU Request in target MME.
  108. 108. 1-based Handover with both MME and SGW Relocation TA1 UE TA2 MME1 SGW1 PGW eNB1 eNB2 UE is source eNB detectson the way to another eNB Ue still connected Handover Required Handover Request Handover Request Ack UE detaches from old cell and synchronizes to the new cell Modify bearer Req/Resp D TAU Request It is a simplified TAU, only Update Location towards HSS is done SGW2 Create bearer Req/Resp UE Modify bearer Req/Resp Delete Session Req/Resp MME2 Checks targeteNB and TAI is supported,SGW relocation Forward RelocationReq Forward RelocationResp UE Context Release Command/Complete d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 108
  109. 109. LTE Mobility Introduction LTE f1 Intra-eNodeB Handover X2 or S1 Handover LTE f2 WCDMA GSM CDMA2000 nter-Frequency Session ontinuity, overage-Triggered r nter-Frequency Handover, overage-Triggered r Inter-mode HO CDMA2000 Session Continuity, Coverage-Triggered WCDMA Session Continuity, Coverage-Triggered Or WCDMA IRATHandover, Coverage-Triggered GERAN Session Continuity, Coverage Triggered System Information SIB 3: Common reselection info SIB 4: LTE same frequency SIB 5: LTE different frequency SIB 6: WCDMA SIB 7: GSM SIB 8: CDMA2000 d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 109
  110. 110. obility overview W C D M A F x W C D M A F 1 G S M S H O / S O H O R R C C o n n . E s t . R A B Est. Idle m o d e , F A C H a n d U R A C e l l _ D C H IR A TH O /C C DirectedRetrytoGSM IF L S IF L D ServiceBasedHO IF H O H S C S H C S IFL B H O LBHOtoGS M H SIF L S NonHSIFLS H SIF L S L T E CSFB from LTE SessioncontinuityfromLTE S H O / S O H O Ce l l R e s e l e c t i o n Cell Reselection- G S M Cell Reselection–LTE (idleandURA) C e l l R e s e l e c t i o n Cell Reselection Redirect to LTE Redirect to LTE Packet HO d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 110
  111. 111. The CS F a l l B a c k Concept › CSFB subscribers roam with preference on LTE access, no CS-voice service available (only PS based services) › Fallback triggered to overlapping CS domain (GSM / WCDMA) whenever voice services are requested › Resumed LTE access for PS services after call completion LTE LTE LTE LTE GSM / WCDMA LTE island PS CS (+PS) PS d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 111
  112. 112. SFB High l e v e l DATA f l o w s (II) SFB MT c a l l LTE S1-U e-Uu Abis / Iub Um / Uu S1-MME S11 SGs A / IuCS BTS NodeB GSM / WCDMA eNodeB BSC RNC MME MSS SGSN S3 Gb / IuPS S4 S&P GW RAT change Nc / Nb Internet SGi B A 1. Incoming call to the subscriber currently attached over LTE. Paging in LTE via SGs. 4. UE fall back to GSM or WCDMA 5. Page response and call setup over GSM or WCDMA 2. MME orders the UE to release from LTE and execute CSFB Paging 6. UE reselects an LTE cell after call completion, time staying in GSM/WCDMA is implementation dependent 3. eNodeB orders the UE to release from LTE to a target frequency and RAT using the RRC Connection Release with Redirect message d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 112
  113. 113. FAST r e t u r n t o LTE FROM WCDMA elease with redirect t o LTE Concept of feature Move UEs back to LTE NW quickly after they finish CS call or PS on WCDMA IDLE CELL_DCH CELL_FACH URA_PCH IDLE RRC_CONNTECTED UTRAN E-UTRA LTE Cell Reselection (W11) Release with Redirect to LTE (W12) WCDMA => LTE Mobility With this feature d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 113 › “Chatty” LTE UEs can be redirected to L from DCH or FACH States › Release with Redirect is based on Blin Redirection from Idle
  114. 114. Market Update LTE principles Frequency considerations Network Architecture and Site Solution d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 114
  115. 115. GSM RAN Overview Radio Access Network Iub A Um MSC-S SGSN Abis Abis Um Um OSS-RC TEMS External Management System Abis e Station Controller nscoder Controller dio Base Station st Mobile Station Operation Support System – Radio Core RBS RBS RBS RBS UE UE Core Network Network Management Environment A-ter A Gb BSC TRC/ BSC TRC Gb UE d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 115
  116. 116. WCDMA RAN Overview RadioAccess Network Iub Iu Iur Mur Uu Mut Mub RNC RNC RXI Iub Iub Uu Uu Iu OSS-RC TEMS External Management System Iub dio Network Controller adio Base Station st Mobile Station o Access NetworkAggregator Operation Support System – Radio Core NodeB NodeB NodeB NodeB UE UE Core Network Network Management Environment Mun Mun MSC-S Iu-cs UE d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 116 SGSN Iu-ps
  117. 117. LTE RAN Overview RadioAccess Network S1 Mul Mul Uu MME X2 Uu Uu TEMS External Management System Evolved Node B lved Packet Core way me Subscriber Server bility ManagementEntity ket Data Network st Mobile Station Operation Support System – Radio Core UE EPC Network Management Environment Mun Mun S1 S1 X2 X2 Mul HSS PDN GW Serving GW OSS-RC eNodeB eNodeB UE UE d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 117 eNodeB
  118. 118. BSS — Base Station System BTS — Base TransceiverStation BSC — Base Station Controller MS — Mobile Station NSS — Network Sub-System MSC — Mobile-service Switching Controller VLR — Visitor Location Register HLR — Home Location Register AuC — Authentication Server GMSC — Gateway MSC GSM 2G Architecture BTS BSC MSC VLR HLR AuC GMSC SS7 BSS PSTN NSS A E C D PSTN Abis B H MS GSM — Global System for Mobile communication Call routing between GSM Network and otherNetwork Call Setup Stores LocalSubscriber information Controls Radio Resources for Subscriber connectivity Converts 64Kbps to/from 16Kbps/8Kbps Provides Subscribers with Radio Connections Stores SubscriberLocatio information for all subscrib d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 118 SM and WCDMA Overview | © Ericsson AB 20 1 | 20 1 08 19 | Page 118
  119. 119. BTS BSC VLR HLR AuC GMSC SS7 BSS PSTN NSS A E C D PSTN Abis B H MS BSS — Base Station System BTS — Base TransceiverStation BSC — Base Station Controller NSS — Network Sub-System MSC — Mobile-service Switching Controller VLR — Visitor Location Register HLR — Home Location Register AuC — Authentication Server GMSC — Gateway MSC 2.5G Architectural Detail SGSN — Serving GPRS Support Node GGSN — Gateway GPRS Support Node GPRS — General Packet RadioService IP S (voice & data) PSDN Gi SGSN Gr Gb MSC Gs GGSN Gc Gn MS (voice only) d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 119 SM and WCDMA Overview | © Ericsson AB 20 1 | 20 1 08 19 | Page 119
  120. 120. G rel99 Architecture (UMTS) — 3G Radios IP BTS BSC VLR HLR AuC GMSC SS7 BSS SGSN GGSN PSTN PSDN CN C D Gc Gr Gn Gi Abis MSC Gs B H RNS — Radio Network System RNC — Radio Network Controller CN — Core Network MSC — Mobile-service Switching Controller VLR — Visitor Location Register HLR — Home Location Register AuC — Authentication Server GMSC — Gateway MSC SGSN — Serving GPRS Support Node GGSN — Gateway GPRS Support Node A E PSTN MS (voice only) S (voice & data) UMTS — Universal Mobile Telecommunication System Gb Node B (voice & data) BSS — Base Station System BTS — Base Transceiver Station BSC — Base Station Controller RNC RNS Iub IuCS ATM IuPS d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 120 SM and WCDMA Overview | © Ericsson AB 20 1 | 20 1 08 19 | Page 120
  121. 121. EPC/LTE Architecture (release 8) u n c t i o na l changes compared t o the c u r r e n t UMTS Architecture Moving all RNC functions to the Node B … …, SGSN CP functions to the MME, and GGSN functions to the S-GW & P-GW GGSN SGSN RNC P-GW S-GW PDN GateWay Serving GateWay Node B / HSPA eNodeB MME Mobility Management Entity (not user plane functions) d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 121
  122. 122. 2G/3G migration TOEPC a r g e t a r c h i t e c t u r e f o r commercial services 2G/3G Mobile Broadband LTE/EPC Migration Target network ”one common core” SGSN Pool SAPC (PCRF) Charging IP Networks GSM WCDMA Pool SAPC (PCRF) Charging PDN GW Serving GW Non-3GPP WLAN Fixed acces S S G G S S N N MME Pool IP Networks GSM WCDMA LTE GGSN 2 different paths Full upgrade 2G 3G 2G 3G LTE 2G 3G PCRF SGSN GGSN SGSN SGSN PCRF SGSN PGW SGW HLR HSS/ HLR SGSN SGSN G S M W C D M A L T E I P N e tw o rk s N S S G G S S N G G G G S S N N P/ P S G G W/ W SGW M M M M E E d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 122
  123. 123. EPC/E-UTRAN Architecture X2-UP Internet S1-CP E-UTRAN eNodeB eNodeB S1-UP LTE Gi S11 SAE S-GW •Idle mode mobility management •NAS signalling •IRAT handover •EPS Bearer Management (QoS) •Security – AAA •UE attach/detach Charging (UE), PCEF (QoS) Termination of U-plan packets for paging reasons; Switching of plane for support of U mobility inates all user plane functions seen by the terminal uding security) io Resource Management dio Bearer Control dio Admission Control nnection Mobility Control /DL scheduling eader compression and encryption of userdata ams surement and measurement reportingconfiguration mobility and scheduling P-GW S5/S8 X2-CP MME Evolved Packet Core S10 MME Charging (Service), Pac d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 123 filtering (QoS), PCEF (Q IP PoP EPS Bearer Handling Not seen by terminal
  124. 124. X2 eNB LTE/EPC Architecture odeB l resource management adcast information E selection nsfer of transparent NAS signalling ting of user data towards the S-GW a-LTE handover, inter-MME pool over initiation, inter-RAT handover initiation realization urity S aintain and provide subscription data er Identification handling cess Authorization ovide Keys for Authentication and Encryption er Registration management aintain knowledge of used PDN GW & MME E hentication signaling selection rer management mode tracking ing r-MME and IRAT mobility Ciphering and Integrity ction S GW • Intra-LTE (inter eNB hand-over) mob anchor • Packet routing & forwarding • Lawful intercept PCRF •Set QoS for each Service Data Flow •Define Charging for eachService Data Flow •Enables Bearer QoS Control •Correlation between Application and Bearer charging PDN GW • External IP point of interconnect • IP address allocation • Packet routing & forwarding • Lawful itercept SASN •Packet Inspection and Service Classification • Credit control • Quality of Service control • Content filtering • Access control • Policy control • Usage records IP IP IP IP IP d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 124
  125. 125. PS, GERAN and UTRAN Architecture G Direct Tunnel Approach Iub Gn GGSN 3G (HSPA & DCH) S1-UP UTRAN Node B Internet Evolved Packet Core GPRS Packet Core S1-CP Gn/S4 Iub Node B Iur RNC Iu-CP LTE Gi S11 SAE BTS Gb Abis 2G GERAN BSC MME P/S-GW RNC SGSN X2-UP E-UTRAN eNodeB eNodeB X2-CP d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 125
  126. 126. ypical Implementation of SAE/LTE ombined SGSN/MME Iub 3G (HSPA & DCH) S1-UP UTRAN Node B Internet S1-CP Iu-CP LTE Gi S4/S11 SAE BTS Gb Abis 2G GERAN BSC Evolved Packet Core SGSN/ MME P/S-GW RNC X2-UP E-UTRAN eNodeB eNodeB X2-CP Gn d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 126
  127. 127. e t w o r k a r c h i t e c t u r e SGS SGSN External IP networks PCRF Gn Gb Iu-PS S16 S11 S10 Gn S4 N S 3 S12 Gn S5/S8 OCS OFCS S1-MME S1-U Gx Gx SGi Rx S2a HLR HSS SWx MME SGs Sv S13 S13’ Gf SLs+SLg SBc Gy S9 PDN GW Serving GW LTE eNB X2 HSS+HLR Iu/Gn Gz 3GDT GSM WCDMA RNC NB Iub RBS Abis BSC SGSN-MME G EP PCRF SAPC Gr S6d S6a CS FallGbnacksupported over SGs interface to MSC EPG/SSR N-MME GGSN IMS d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 127 NMS
  128. 128. Why do we need t o discuss elephony in LTE ? LTE/EPC is a packet only architecture d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 128 LTE/EPC has no inbuilt voice + SMS service engine An LTE terminal cannot transmit/receive in GSM or WCDMA whilst attached to LTE
  129. 129. Why Telephony in LTE ? magine LTE without it ... Textmessage: "Hi Sue, it‘s Bob. I‘ve got a cool new device. It‘s LTE. It‘s superfast. It‘s pretty cool!" Textmessage: "Hi Bob, sounds great! But I tried to call you, I didn‘t get through ...?" Textmessage: "It‘s Internet only. One cannot make calls with it...." Textmessage: "You can‘t call me with it? That‘s weird" Textmessage: "Why don‘t you try with Google or Skype?" People want to make phone calls. If operators do not offer it, subscribers will seek alternatives! d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 129
  130. 130. VoIP vs Classic Telephony › VoIP – Packet switched shared best effort channel – Variable latency › jitter – Variable packet loss › Classic Telephony – Circuit Switched dedicated channel – Fixed low latency – (very) Low packet loss d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 130
  131. 131. d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 131 TE/EPC is o n l y Packet (IP) LTE/EPC › Telephony is treated as any other IP based service/application CS: Circuit Switched PS: Packet Switched Packet Data 2G/3G and CDMA › Specific management of CS telephony through th system Circuit-Switched AMR coded voice 2G/3G RAN CS Domain PS Domain Internet Access Packet Data Circuit-Switched data CS Bearer PS Bearer LTE RAN PS Domain EPS Bearers Voice Voice or Video InternetAccess
  132. 132. d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 132 elephony o v e r LTE/EPC a r i a n t s CSoPS IMS signaling? IMS Variant Voice Service VoIP Variant MSS service Any VoIP (e.g. Telcordia flavour ) CS PS f. Voice MMTel MMtel Std. Std ? Domain IMS in visited ??? Home Iu from eNb User Plane Tunneled via MME OTT Voice GAN based UNI SIP based SIP to vMSC VoLTEvG CS in EPS CS o LTE IMS VoIP IMS MMTel MSCAS IMS-GW-MSS Localized IMS CS Fallback 1 working solutions! (probably more…) – All supporting telephony – All with specific meritsNo operator Not viable for the in V d ari u ant stry to support all – Fragmentation of the in bd ase u dstry – Roaming limitations E–InteropD e or m a ain bility limitations Strategy – select a few and go worldo w n IM i S de –3GPP: IMS/MMtel and CS Fallback –Ericsson: IMS/MMtel and CS Fallback VoLT VoLG Skype
  133. 133. d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 133 TE/EPC/IMS Architecture e-Uu eNodeB PDN- GW P-CSCF/ Signaling Bearer (Default) , QCI=5 S1-U PCRF SIP (SDP) SGi Rx Dedicated Voice Bearer , QCI=1 I-/S- CSCF MTAS HSS Cx ISC Sh Ut Mw Gm Mb 1, 2, 5, 6 Radio BearerRealization • Admission control,, Scheduling, DRX, Broadcast information tioning MME S1-MME S11 S6a Gx • Enables Bearer QoS Control • Set QoS for each Service DataFlow • Define Charging for each Service DataFlow Dedicated Video Bearer , QCI=2/6 Voice (RTP) RTCP Video (RTP) RTCP • Well Known IMS APN • P-CSCF Discovery • External IP PoP • IP address allocation • Policy enforcement S-GW S5/S8 • Subscription/user data • Default APN provisioned -UTRAN EPC • First IMS (MMTel) point of contactfor the UE • Located in the home or avisited network. • I: Home network for SIP registratio • S: sessioncontro for the UE Application Server for MMTel BGF / MGw • Gateway for M e Id Mi aS Signaling Bearer (Default) , QCI=9 XCAP CLASS IDENTIFIE E R CSCF:CALL SESSION CONTROL
  134. 134. obile Broadband radio ne RAN i n f r a s t r u c t u r e LTE WCDMA GSM BSC RNC Transport node OS C Antenna System te Power nsmission Multi- Standard Radio te O&M RBS d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 134
  135. 135. r a n s p o r t convergence BSC/RNC BTS/NodeB/eNodeB Common Site BSC RNC CGW BTS eNB NodeB TDM/IP GOAL: ONE SINGLE IP TRANSPORT INTERFACE @ RAN Aggregation IP upgrade Single interface Native IP/Eth IP upgrade Single interface Native IP/Eth Fully flexiIbPle network With lowest total cost of ownership All IP RAN over Ethernet MSR Multi tandard Radio A TMI/PIP EVO d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 135
  136. 136. d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 136 BS 6000 Multi standard High capacity Complete site Radio performance Full flexibility
  137. 137. vo c o n t r o l l e r 8200/RNC EPBs for traffic 20 68 68 68 Iub throughput [Gbps]* 6 20 20 50 Simultaneous users [ksubs] 275 930 930 >1 000 Number of RBS 768 768 1 767 3 500 Number of cells 2308 2308 5301 10000 Cell relations [k rel] 90 90 220 500 Future W14B W12B W12B * Engineering limit xample configurations with maximum values d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 137
  138. 138. E V O E T S C X B C M X B S C C M X X B B E V O E T Cabling Evo C o n t r o l l e r 8200/RNC IP: 8 x 10 GE (Iu, Iur and Iub) Ext Subrack 1 (optional) S C C M X X B B S C C M X X B B APP x 2 (mandatory) Main Subrack (mandatory) Mandatory Ethernet Subrack Link (ESL) cable / topology (10G Ethernet, HW prepared for 40G Ethernet) Inter Subrack Link (ISL) cable / star topology Ethernet) ATM: n x STM-1 (Iub) E V O E T E V O E T es and cables used for APP and fan not shown S C C M X X B B S C C M X X B B Ext Subrack 2 (optional) d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 138
  139. 139. SCXB 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 CMXB SCXB CMXB Optional EPB/EvoET Optional EPB Optional EPB Optional EPB Optional EPB Optional EPB Optional EPB Optional EPB Optional EPB/EvoET Optional EPB Optional EPB/EvoET Optional EPB/EvoET Optional EPB Optional EPB/EvoET Optional EPB vo C o n t r o l l e r 8200/RNC Extension subrack optional boards for scalability and flexibility andatory boards in extension subrack including min 2 EPBs for traffic Optional EPB Optional EPB Optional EPB Optional EPB/EvoET Optional EPB Optional EPB Optional EPB EPB EPB d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 139
  140. 140. RNC Mobile Backhaul HSPA Capacity Analysis ottlenec k f l o w (BackHaul and RNC) CPU load User Throughput Drop Drop Drop NodeB d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 140 NodeB
  141. 141. RBS 6000 Hardware Architecture Radio Units (RUs) Digital Units (DUs) Transmission Equipment Batteries d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 141
  142. 142. RBS 6000 Multistandard Node GSM 3x4 900 LTE 3x20MHz 2600 GSM 3x4 1800 WCDMA 3x4 2100 d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 142 RBS 6201 Example
  143. 143. MULTISTANDARD MIXED MODE IVE ONAIR IDL1 DUW DUW Eth DUG20 DUL Eth E1s DUG20 E1s S I U GPS Out GPS Out 2100 MHz 3*2 WCDMA, 40 W/carrier 1800 MHz 3*1 LTE MIMO 10 MHz, 40 W 3*2 GSM, 20 W/TRX 900E MHz 3*1 WCDMA, 40W/carrier 3*2 GSM, 20W/TRX RUS2100 RUS900E RUS1800 D U W D U W D D U U G L RUS RUS 01 80W RUS RUS ONE PIPE DUG S I U d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 143
  144. 144. MACRO DEPLOYMENT Antenna integrated radio Macro Main-remote Base station Baseband RRU AIR Baseband RUS d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 144
  145. 145. m ac ro vs m-r/distributed d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 145
  146. 146. Add baseband as Main Unit RRU ithAIR MAIN-REMOTE with RRU w HYBRID CONFIGURATIONS RBS 6000 MACRO RBS 6201, 6202, 6101, 6102 MACRO RF d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 146
  147. 147. C o n f i g u r a t i o n N o of R U s O u t p u t P o w e r ( 3 X 2 0 3 6 0 3 X 2 0 M I M O 6 6 0 + 6 0 6 X 2 0 6 6 0 6 X 2 0 M I M O 1 2 6 0 + 6 0 3 X 2 0 | 3 X 2 0 ( Du a l B a n d ) 3 | 3 6 0 | 6 0 3 X 2 0 | 3 X 2 0 M I M O ( D u a l B a n d ) 6 | 6 6 0 + 6 0 | 6 0 + 6 d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 147 Radio Unit LTE Configurations
  148. 148. RBS 6000 RU and DU Variants GSM DUG + WCDMA DUW + LTE DUL + RUS RUW RUL Multistandard Support: GSM, WCDMA and LTE (two simultaneously) + + + RUG d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 148
  149. 149. IGITAL UNITS FOR WCDMA DUW 20 › WCDMA: 1x Gigabit Ethernet port IP & ATM support 384 CE DL / 384/576* CE UL 252 Mbps DL 36 Mbps UL DUW 30 › WCDMA: 1x Gigabit Ethernet port HW Prepared for 12 cc IP & ATM support 768 CE DL / 512/768* CE UL 252 Mbps DL 88 Mbps UL DUW 10 › WCDMA: 1x Gigabit Ethernet port IP & ATM support 128 CE DL / 128/192* CE UL 84 Mbps DL 12 Mbps UL * With feature FAJ 121 2598 CE extension for EUL d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 149
  150. 150. DUW 41 › WCDMA: 3x Gigabit Ethernet ports HW Prepared for 12 cc IP & ATM support 1152 CE DL / 768/1152* CE UL 336 Mbps DL 138 Mbps UL ew DIGITAL UNITS FOR WCDMA DUW 31 › WCDMA: 3x Gigabit Ethernet ports HW Prepared for 12 cc IP support only 768 CE DL / 512/768* CE UL 252 Mbps DL 92 Mbps UL DUW 11 › WCDMA: 3x Gigabit Ethernet ports IP & ATM support 128 CE DL / 128/192* CE UL 168 Mbps DL 24 Mbps UL * With feature FAJ 121 2598 CE extension for EUL d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 150
  151. 151. RUS – RADIO UNITS FOR MACRO RB S RUS 02 › GSM, WCDMA and LTE › 8 carriers over 40 MHz IBW › 8 carriers GSM › 4 carriers WCDMA or LTE › Up to 1 x 100 W RUS 01 › GSM, WCDMA and LTE › 4 carriers over 20 MHz IBW › 4 carriers GSM › 4 carriers WCDMA or LTE › Up to 1 x 80 W d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 151
  152. 152. RRUS – REMOTE RADIO UNITS RRUS 01 GSM, WCDMA, LTE 4 carriers over 20 MHz IBW 4 carriers GSM 4 carriers WCDMA, LTE Up to 1 x 80 W RRUS 11 › WCDMA, LTE › 4 carriers over 20 MHz IBW › 4 carriers WCDMA, LTE › Up to 2 x 40 W RRUS 02/12 › GSM, WCDMA, LTE › 8 carriers over 40 MHz IBW › 8 carriers GSM › 4 carriers WCDMA, LTE › Up to 1 x 100 W (02) › Up to 2 x 60 W (12) d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 152
  153. 153. IR Achievements Commercially deployed for GSM / WCDMA / LTE 60,000+ units delivered Proven advantages: – RF performance – Site design – Installations – Reliability A family of products: – 6 variants being shipped commercially d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 153
  154. 154. ies EUL Or R99 R99 EUL UL User Thp No 10msTTI YES No ChEs & TTI scheduler YES 2msTTI Cell Thp Congestion HS, R99 OrR99 Speech HS Modulation Codes YES 2msTTI No ChES & TTI Scheduler Bottleneck f l o w (NodeB) DL User Thp Power Drop Wait Scheduler Drop Drop Wait Scheduler UL ChEs HW HWAC SW DL ChEs HW HWAC SW Drop Speech Drop d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 154
  155. 155. RBS 6000 segmentation based on n e t w o r k reality” 100% 5% 20% 50% affic/site sites Real traffic data from 2G, 3G and 4G networks shows an almost identical traffic distribution 20% of Traffic There are a large traffic variation between different sites in an 1 operator’s network The traffic growth for the 50% low traffic sites are significantly 2 slower than for high traffic sites Low, mid and high traffic sites are found in urban as well as in 3 suburban and rural areas 50% of Traffic 15% of Traffic R(R)USx1 and R(R)USx2 DUW41 or DUS41 R(R)USx1 and R(R)USx2 DUW31/30/20 or DUS31/DUL20 R(R)USx1 DUW11/10 or DUS31/DUL20 d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 155
  156. 156. HWAC and s w license handling WRAN/GRAN
  157. 157. ctivation codes facilitate ‘pay as you grow’ models HW HW SW SW Price based on delivered capability • High capability delivered • HW & SW activation according to growth HW SW SW SW Pay as you grow HWAC HW HW d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 157 hat’s HWAC =HW activation code)? W Activation Codes is fundamental in the new commercial model for RBS6000, “Pay-as-you- row” pricing on HW.
  158. 158. Order/delivery process f o r HWAC ? d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 158 HWAC is categorized as HW, not SW, however order/delivery process is same as that for SW license. CU should order HWAC for RBS6000 with HWAC Bulk Product Package (PP), and for RNC with HW PP, then receive LAC and activate via ELIS, generate LKF together with SW license. Need both HWAC/SW License for integration, so Node doesn’t work without them. HWAC concept is currently applied to only RNC, RBS, but to other nodes in future.
  159. 159. HW Activation Codes together with the physical HW constitute the HW and is sold as such – Priced as HW – Terms and conditions as HW The HW Activation Code is once installed, integrated in the acquired physical HW instance and consumed – When physical HW is moved, the corresponding HW Activation Codes are moved accordingly – HW Activation Codes only can not be moved – No re-use of HW Activation Codes for new HW generations. HW Activation Codes are purchased prior to usage HW Activation Codes have a clear connection to pay-as-you-grow for a HW resource HW Activation Codes ommercial Guiding Principles DUL 20 100/30 Mbps, 100 CU Physical HW DUL 20 HWAC EXAMPL d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 159
  160. 160. n s d c s GSM WCDMA LTE GSM Power Activation Code FAK 101 0009 20W-40W, FAK 101 0010 40W-60W, FAK 101 0022 60W-80W, FAK 101 0023 80W-100W, FAK 101 0024 100W-120W GSM TRX Activation FAK 101 0008 WCDMA Carrier Activation FAJ 121 1344 WCDMA Channel Element UL FAK 101 0001 WCDMA Channel Element DL FAK 101 0002 WCDMA HS Codes FAK 101 0003 LTE Bandwidth Activation FAK 101 0036 TDD 5 MHz FAK 101 0037 TDD 10 MHz FAK 101 0038 TDD 15 MHz FAK 101 0039 TDD 20 MHz LTE Throughput Mbps UL FAJ 121 0545 LTE Throughput Mbps DL FAJ 121 0544 LTE Connected User FAJ 121 0762 Coverage Radio Capacity Data Capacity WCDMA Power Activation Code FAJ 121 1347 20W-40W, FAJ 121 1348 40W-60W, FAK 101 0017 60W-80W, FAK 101 0018 80W-100W , FAK 101 0019 100W-120W LTE Power Activation Code FAJ 121 0546 20W-40W, FAJ 121 0547 40W-60W, FAK 101 00 20 60W-80W, FAK 101 0021 80W-100W, FAK 101 0025 100W-120W, LTE Bandwidth Activation FAJ 121 0548 5 MHz FAJ 121 0668 10 MHz FAJ 121 0669 15 MHz FAJ 121 0670 20 MHz GSM AIR Number of 4RX Branches FAK 101 0035 LTE AIR Number of 4RX Branches FAK 101 0033 WCDMA AIR Number of 4RX Branches FAK 101 0034 User Capacity W S F CDMA TM-1 AK 101 0004 WCDMA Electrical IP FAK 101 0005 WCDMA Optical IP Interface FAK 101 0006 LTE Optical IP Interface FAK 101 0007 d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 160 HW Activation Codes BS 6000
  161. 161. pecific es WCDMA Evo-ET, BSC additional Port FAK 101 0031 EvoC 8200 –BSC TRX Capacity FAK 101 0030 EvoC 8200 – RNC User Capacity FAK 101 0015 Transmission port Radio Capacity Data Capacity User Capacity EvoC 8200 – RNC Throughput Capacity FAK 101 0014 EvoC 8200 –BSC Data Capacity (GPRS / EDGE capacity) FAK 101 0032 8200 BSC ET Board Evo-ET, RNC additional port FAK 101 0016 d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 161 8200 BSC Capacity b 8200BSC Capacity board=EP HW Activation Codes VO C o n t r o l l e r 8200 GSM
  162. 162. WRAN Fingerprint Handling in RBS 6000
  163. 163. Fingerprint in RBS 6000 (1) verview f o r WCDMA Node Id is fingerprint – defined as the serial number on the active Core Main Processor (MP) plus a time stam Fingerprint is generated in DUW at first startup, normally at factory test “Node ID” is copied to other Plug in Units (DU/RU) Fingerprint Format – 123456_123456 d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 163
  164. 164. Fingerprint in RBS 6000 (2) verview f o r WCDMA ingerprint is maintained within the node using RU and DU configured RU will keep a copy of the node fingerprint alidation of fingerprint is done at each node restart hrough a voting procedure – During voting procedure, the DUW asks each RU for their node identity – In case of one DUW and one RU, fingerprint in DUW is selected – The fingerprint will change if DUW is replaced in a 1 DU + 1 RU configuration –Place a Support Request to change fingerprint accordingly in ELIS and receive a new key file DU RU RU RU d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 164
  165. 165. Fingerprint in RBS 6000 (3) verview f o r WCDMA o keep the node fingerprint – Only replace one board at the time + node restart – Only expand one board at the time + node restart DUW keeps a copy of the node fingerprint – If sDUW is moved to other node, the disc should be erased/formatted RU is moved between different nodes, the copy of the ngerprint is also moved – It will be updated by the voting procedure in the new node DU RU RU RU d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 165
  166. 166. ntegration u n l o c k d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 166 Function to open up all capacity and all features before the LKF has been delivered. – Makes all capacities and features in the node available for a period of 21 days. – Can be used once per node, after that time it is not possible to activate it again in that node. – It is only possible to activate Integration Unlock if no LKF has yet been installed in the node. – No reset key is needed, the node will leave Integration Unlock state when an ordinary LK is installed.
  167. 167. Emergency Unlock d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 167 Emergency Unlock -In an emergency situation, the emergency state can be set. This enables all features and removes all capacity restrictions in the node. -If the emergency state has expired seven days after being set, it can be set once more. All feature and capacity restrictions are removed for a second period of seven days. -No 3rd time emergency unlock. But can reset emergency unlock with special LKF ordered via Ericsson.
  168. 168. Grace Period(GP) d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 168 Grace Period (Or Grace Time Period) –For a specific SW license capacity(CE, HS Codes …)or a HW Activation Code capacity, it shall be a configurable possibility to exceed its Licensed limit for a preset number of days. –Before specified range of days are exceeded, Max capability for the capacity can be used is set to Full HW capability. –When specified range of days are exceeded, the node shall be “hard” locked to Licensed limit. i.e. set Capacity Limit to Licensed limit and Capacity Limit will change with Licensed limit .
  169. 169. Flexible License mechanisms Level B Purchased HW capa Level A Purchased SW cap Flexible mechanisms supporting customers’ business and processes Integration unlock 21 DAYS Grace Period 14 DAYS Emergency unlock 7 DAYS d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 169
  170. 170. d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 170 What’s next 2G 3G 4G 1G 5G
  171. 171. ERICSSO N d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 171
  172. 172. MMT el/IMS IMS telephony TE Deployment scenario ntroduction o f IMS telephony Data Voice over LTE IMS telephony will coexist with CS telephony for a long time CS telephony -CS Fallback -MMTel Trials and Early Deployments - MMTel including SR-VCC - CS Fallback for • Roaming • Emergency calls - ICS for legacy phones - IMS roaming - IMS emergency calls d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 172
  173. 173. LTE A GSM Packet Core LTE WCDMA Circuit switched Core MMTel/ IMS W h a t about telephony in r e l a t i o n t o LTE? INTERNET LTE is PS only - no CS Telephony over LTE is VoIP with Quality of Service! d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 173
  174. 174. › Circuit Switched Fall Back (CSFB) › Single Radio Voice Call Continuity (SRVCC) › IMS Centralized Services (ICS) LT E d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 174 LT E G S M / W C D M A LT E o n t e n t
  175. 175. S and LTE co-existence build out pace will form the CS co-existence requirements Circuit witched CS LTE LTE LTE LTE CSFB LTE LT LT LTE LTE LTE LTE LTE LTE LTE LTE LTE LT LT LTE LTE LTE LTE LTE LT LT LTE LTE LTE LTE LTE LTE LTE LTE LTE LTE LTE LT LTE 3G / HSPA LTE LTE LTE LTE LTE CS d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 175 LTE LTE LTE LTE LTE LTE LTE LTE LTE LTE LTE SRVCC LTE LTE LTE LTE LTE LTE cy GSM or UTRAN Spotty LTE coverage Areas with continuous LTE coverage Continuous IMS voice o coverage
  176. 176. Spotty LTE coverage Areas with continuous LTE coverage Continuous IMS voice ove coverage Evolution stages CS LTE LTE LTE LTE CSFB LTE LTE LTE LTE LTE LTE LTE LTE LTE LTE L L L L LTE LTE LTE LTE LTE LTE LTE LTE LTE LTE LTE LTE LTE L L L LTE LTE LTE LTE LTE LTE LTE 3G / HSPA LTE LTE CS LTE LTE LTE LTE LTE LTE LTE LTE LTE LTE LTE SRVCC LTE LTE LTE LTE LTE LTE CS voice service via CSFB MSS CSFB CS attach CSFB Phone CSFB = Circuit Switched Fallback SRVCC = Single Radio Voice Call Continuity ICS = IMS centralized services LTE HSPA IMS VoLTE Phone IMS Voice service overLTE and HSPA & ICS IMS VoLTE Phone MSS SRVCC CSFB CS attach IMS Voice service over LTE and CS access using SRVCCand ICS LTE SRVCC d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 176
  177. 177. Circuit Switch F a l l Back (CSFB) - Concept › CSFB subscribers attach with preference on LTE access, no voice service available (only PS based services) › Fallback triggered to overlapping CS domain (GSM / WCDMA) whenever voice services are requested › Resumed LTE access for PS services after call completion LTE LTE LTE LTE GSM / WCDMA LTE island PS CS (+PS) PS d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 177
  178. 178. LTE High l e v e l c a l l f l o w (MT c a l l ) S1-U e-Uu Abis / Iub Um / Uu S1-MME S11 SGs A / IuCS BTS NodeB GSM / WCDMA eNodeB BSC RNC MME MSS SGSN S3 Gb / IuPS S4 S&P GW RAT change Nc / Nb Internet SGi B A 1. Incoming call to the subscriber currently attached over LTE. Paging in LTE via SGs. l back to or WCDMA 5. Page response and call setup over GSM or WCDMA 2. MME orders the UE to release from LTE and execute CSFB Paging 6. UE reselects an LTE cell after call completion, time staying in GSM/WCDMA is implementation dependent 3. eNodeB orders the UE to release from LTE to a target frequency and RAT d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 178
  179. 179. Single Radio Voice C a l l Continuity SRVCC ) MS Telephony Voice to CS handover – Telephony service in IMS – Handover triggered by LTE RAN. – CS Network prepares to take over call – Session handed over from PS to CS CS coverage LTE SRVCC handover Moving UE MMTel IMS d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 179
  180. 180. igh l e v e l solution and use cases R-VCC = Single Radio - Voice C a l l Continuity S Telephony Voice to CS handover Handover triggered by LTE RAN. Handover signalling from MME to MSC (via Sv interface) MSC prepares handover and connects CS leg to IMS SCC AS executes access transfer MMTel IMS SCC AS MSS EPC GERAN UTRAN GSM / WCDMA LTE LTE B RVCC andover A Sv Access transfer Prepare Handover LTE d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 180 SRVCC handover CS coverage Moving UE
  181. 181. Description – A VoLTE call can be handed over to GSM in case of moving out of LTE coverage Operator benefit – Leverage GSM coverage for VoLTE services – Enables launch of VoLTE without the need for ubiquitous LTE coverage SRVCC Handover t o GERAN Enables early launch of VoLTE service LTE GSM Packet Core MSC IMS CS Voice VoIP d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 181
  182. 182. SRVCC & ICS SRVCC VoLTE Phone Recap o f evolution mechanisms GSM /WCDMA) LTE CSFB LTE CSFB LTE CSFB WCDMA (CS + PS) or GSM (CS) acy Mobile telephony (starting point) CSFB SRVCC / ICS igration mechanism Radio situation User Service IRAT PS HO LTE (IMSvoice) WCDMA (CS + PS) or GSM (CS) User device LTE (IMS Voice) LTE (IMS Voice) IRAT PS HO HSPA (IMS Voice) Legacy Phone CS attach MSS MSS IMS MSS LTE HSPA IMS CSFB Phone CSFB CS attach CSattach LTE VoLTE Phone LTE (IMS voice) SRVCC SRVCC WCDMA (CS + PS) or GSM (CS) (LTE islands or very spottycoverage) d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 182 (Larger areas with continuous LTE coverage supporting IMS voice)
  183. 183. ice functions in terminals CSFB Phone VoLTE Phone VoPS Phone CSAttach CSFB* CSAttach CSFB* SRVCC / DRVCC IMS Voice over LTE CSAttach CSFB* SRVCC / DRVCC IMS Voice over PS d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 183 * Not required for 2Rx-2Tx phones
  184. 184. DEFINITION AND CONCEPTS d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 184 MTE Mobile Telephony Evolution, Ericsson’s proposition to evolve from MSS to all-IP IMS/MMT solution. MSS Ericsson Mobile Soft switch Solution for Circuit Systems Voice Solution. CSFB Circuit Switched Fall Back offers CS based voice services to LTE users by “falling back” to a overlapping GSM or WCDMA network during call setup. service to SMSoSG SMS over SG Interface (new i/f in MME and MSC-S), enabling existing SMS used for LTE subscriber, without switching the CS domain. offering. VoLTE Voice over LTE GSMA Service profile for Voice & SMS over LTE. MMTel Multimedia Telephony, 3GPP Terminology. MMTel is E/// solution for IMS based telephony SR-VCC Circuit Switche Single Radio Voice Call Continuity, (SRVCC) provides handover from LTE to GSM/WC ICS IMS Centralized Services, enabling IMS service (VoLTE, i.e.) also when an IMS user is d network and keep the voice session. accessing via CS access network, enabler towards SINGLE Voice network.
  185. 185. 3GPP PACKET CORE ARCHITECTUR E SGSN SGSN GSM LTE CDMA Trusted Non-3GPP Non-trusted Non-3GPP Serving GW GGSN IMS External IP networks PCRF Gn Gb Iu-PS S16 S11 S10 Gn S3 S4 S12 Iu/Gn Iu/Gn Gn Gn S5/S8 OCS OFCS S6a 3GDT eNB X2 S1-MME S1-U S6d Gr S101 S102 S103 Gxc Gx Gx SGi Gi Rx Gxa S2a 3GPP AAA HLR HSS SWx STa S6b WCDMA MME SGs Sv S13 S13’ Gf SLs+SLg SBc Gy Gy Gz Gz/Rf ANDSF S9 S2b S2c PDN GW S2c SWa STa S2a SWn SWu SWm Gxb ePDG SWd Options Options d Tittle | Ericsson Internal | © Ericsson AB 2015 | 2015-01-18 | Page 185
  186. 186. O v e r a l l EPC ARCHITECTURE SGSN SGSN GGSN External IP networks IMS PCRF Gn Gb Iu-PS S16 S11 S10 Gn S3 S4 S12 Iu/Gn Iu/Gn Gn Gn S5/S8 OCS OFCS S6a 3GDT S1-MME S1-U S6d Gr S101 S103 Gxc Gx Gx SGi Gi Rx Gxa S2a 3GPP AAA HLR HSS SWx STa S6b Gn MME SGs Sv S13 S13’ Gf SLs+SLg SBc Gy Gy Gz/Rf Gz/Rf S9 S2b S2c PDN GW S2c SWa STa S2a SWn SWu SWm Gxb ePDG SWd Options Options ANDSF GSM WCDMA Serving GW LTE eNB X2 CDMA Trusted Non-3GPP Non-trusted Non-3GPP HSS+HLR+CUDB N-MME IPWorks SAPC GGSN-MPG CS P 10G 2 d Tittle | E r i c s s o n PI Cn t e Rr n Fa l P| O© LIE Cr i Yc s s Ao NnD A B C 2 H 0 1 A 5 R | G 2 I 0 N 1 5 G - 0 R 1 - U 1 8 L E |S P a F g U eN 1 8 C 6 TION SAPC SERVICE-AWARE POLICY CONTROLLER

×