SlideShare a Scribd company logo
1 of 56
Download to read offline
Explaining the Postgres Query Optimizer
BRUCE MOMJIAN
January, 2012
The optimizer is the "brain" of the database, interpreting SQL
queries and determining the fastest method of execution. This
talk uses the EXPLAIN command to show how the optimizer
interprets queries and determines optimal execution.
Creative Commons Attribution License http://momjian.us/presentations
1 / 56
Postgres Query Execution
User
Terminal
Code
Database
Server
Application
Queries
Results
PostgreSQL
Libpq
Explaining the Postgres Query Optimizer 2 / 56
Postgres Query Execution
utility
Plan
Optimal Path
Query
Postmaster
Postgres Postgres
Libpq
Main
Generate Plan
Traffic Cop
Generate Paths
Execute Plan
e.g. CREATE TABLE, COPY
SELECT, INSERT, UPDATE, DELETE
Rewrite Query
Parse Statement
Utility
Command
Storage ManagersCatalogUtilities
Access Methods Nodes / Lists
Explaining the Postgres Query Optimizer 3 / 56
Postgres Query Execution
utility
Plan
Optimal Path
Query
Generate Plan
Traffic Cop
Generate Paths
Execute Plan
e.g. CREATE TABLE, COPY
SELECT, INSERT, UPDATE, DELETE
Rewrite Query
Parse Statement
Utility
Command
Explaining the Postgres Query Optimizer 4 / 56
The Optimizer Is the Brain
http://www.wsmanaging.com/
Explaining the Postgres Query Optimizer 5 / 56
What Decisions Does the Optimizer Have to Make?
◮ Scan Method
◮ Join Method
◮ Join Order
Explaining the Postgres Query Optimizer 6 / 56
Which Scan Method?
◮ Sequential Scan
◮ Bitmap Index Scan
◮ Index Scan
Explaining the Postgres Query Optimizer 7 / 56
A Simple Example Using pg_class.relname
SELECT relname
FROM pg_class
ORDER BY 1
LIMIT 8;
relname
-----------------------------------
_pg_foreign_data_wrappers
_pg_foreign_servers
_pg_user_mappings
administrable_role_authorizations
applicable_roles
attributes
check_constraint_routine_usage
check_constraints
(8 rows)
Explaining the Postgres Query Optimizer 8 / 56
Let’s Use Just the First Letter of pg_class.relname
SELECT substring(relname, 1, 1)
FROM pg_class
ORDER BY 1
LIMIT 8;
substring
-----------
_
_
_
a
a
a
c
c
(8 rows)
Explaining the Postgres Query Optimizer 9 / 56
Create a Temporary Table with an Index
CREATE TEMPORARY TABLE sample (letter, junk) AS
SELECT substring(relname, 1, 1), repeat(’x’, 250)
FROM pg_class
ORDER BY random(); -- add rows in random order
SELECT 253
CREATE INDEX i_sample on sample (letter);
CREATE INDEX
All the queries used in this presentation are available at
http://momjian.us/main/writings/pgsql/optimizer.sql.
Explaining the Postgres Query Optimizer 10 / 56
Create an EXPLAIN Function
CREATE OR REPLACE FUNCTION lookup_letter(text) RETURNS SETOF text AS $$
BEGIN
RETURN QUERY EXECUTE ’
EXPLAIN SELECT letter
FROM sample
WHERE letter = ’’’ || $1 || ’’’’;
END
$$ LANGUAGE plpgsql;
CREATE FUNCTION
Explaining the Postgres Query Optimizer 11 / 56
What is the Distribution of the sample Table?
WITH letters (letter, count) AS (
SELECT letter, COUNT(*)
FROM sample
GROUP BY 1
)
SELECT letter, count, (count * 100.0 / (SUM(count) OVER ()))::numeric(4,1) AS "%"
FROM letters
ORDER BY 2 DESC;
Explaining the Postgres Query Optimizer 12 / 56
What is the Distribution of the sample Table?
letter | count | %
--------+-------+------
p | 199 | 78.7
s | 9 | 3.6
c | 8 | 3.2
r | 7 | 2.8
t | 5 | 2.0
v | 4 | 1.6
f | 4 | 1.6
d | 4 | 1.6
u | 3 | 1.2
a | 3 | 1.2
_ | 3 | 1.2
e | 2 | 0.8
i | 1 | 0.4
k | 1 | 0.4
(14 rows)
Explaining the Postgres Query Optimizer 13 / 56
Is the Distribution Important?
EXPLAIN SELECT letter
FROM sample
WHERE letter = ’p’;
QUERY PLAN
------------------------------------------------------------------------
Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=32)
Index Cond: (letter = ’p’::text)
(2 rows)
Explaining the Postgres Query Optimizer 14 / 56
Is the Distribution Important?
EXPLAIN SELECT letter
FROM sample
WHERE letter = ’d’;
QUERY PLAN
------------------------------------------------------------------------
Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=32)
Index Cond: (letter = ’d’::text)
(2 rows)
Explaining the Postgres Query Optimizer 15 / 56
Is the Distribution Important?
EXPLAIN SELECT letter
FROM sample
WHERE letter = ’k’;
QUERY PLAN
------------------------------------------------------------------------
Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=32)
Index Cond: (letter = ’k’::text)
(2 rows)
Explaining the Postgres Query Optimizer 16 / 56
Running ANALYZE Causes
a Sequential Scan for a Common Value
ANALYZE sample;
ANALYZE
EXPLAIN SELECT letter
FROM sample
WHERE letter = ’p’;
QUERY PLAN
---------------------------------------------------------
Seq Scan on sample (cost=0.00..13.16 rows=199 width=2)
Filter: (letter = ’p’::text)
(2 rows)
Autovacuum cannot ANALYZE (or VACUUM) temporary tables because
these tables are only visible to the creating session.
Explaining the Postgres Query Optimizer 17 / 56
Sequential Scan
T
A
D
A
T
A
D
A
T
A
D
A
T
A
D
A
T
A
D
A
T
A
D
A
T
A
D
A
T
A
D
A
T
A
D
8K
Heap
A
A
D
T
A
T
A
D
A
T
A
D
A
Explaining the Postgres Query Optimizer 18 / 56
A Less Common Value Causes a Bitmap Heap Scan
EXPLAIN SELECT letter
FROM sample
WHERE letter = ’d’;
QUERY PLAN
-----------------------------------------------------------------------
Bitmap Heap Scan on sample (cost=4.28..12.74 rows=4 width=2)
Recheck Cond: (letter = ’d’::text)
-> Bitmap Index Scan on i_sample (cost=0.00..4.28 rows=4 width=0)
Index Cond: (letter = ’d’::text)
(4 rows)
Explaining the Postgres Query Optimizer 19 / 56
Bitmap Index Scan
=&
Combined
’A’ AND ’NS’
1
0
1
0
TableIndex 1
col1 = ’A’
Index 2
1
0
0
col2 = ’NS’
1 0
1
0
0
Index
Explaining the Postgres Query Optimizer 20 / 56
An Even Rarer Value Causes an Index Scan
EXPLAIN SELECT letter
FROM sample
WHERE letter = ’k’;
QUERY PLAN
-----------------------------------------------------------------------
Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2)
Index Cond: (letter = ’k’::text)
(2 rows)
Explaining the Postgres Query Optimizer 21 / 56
Index Scan
A
D
A
T
A
D
A
T
A
D
A
T
A
D
A
T
A
D
A
T
A
D
A
T
A
D
< >=Key
< >=Key
Index
Heap
< >=Key
A
T
A
D
A
T
A
D
A
T
A
D
A
T
A
D
A
T
A
D
A
T
Explaining the Postgres Query Optimizer 22 / 56
Let’s Look at All Values and their Effects
WITH letter (letter, count) AS (
SELECT letter, COUNT(*)
FROM sample
GROUP BY 1
)
SELECT letter AS l, count, lookup_letter(letter)
FROM letter
ORDER BY 2 DESC;
l | count | lookup_letter
---+-------+-----------------------------------------------------------------------
p | 199 | Seq Scan on sample (cost=0.00..13.16 rows=199 width=2)
p | 199 | Filter: (letter = ’p’::text)
s | 9 | Seq Scan on sample (cost=0.00..13.16 rows=9 width=2)
s | 9 | Filter: (letter = ’s’::text)
c | 8 | Seq Scan on sample (cost=0.00..13.16 rows=8 width=2)
c | 8 | Filter: (letter = ’c’::text)
r | 7 | Seq Scan on sample (cost=0.00..13.16 rows=7 width=2)
r | 7 | Filter: (letter = ’r’::text)
…
Explaining the Postgres Query Optimizer 23 / 56
OK, Just the First Lines
WITH letter (letter, count) AS (
SELECT letter, COUNT(*)
FROM sample
GROUP BY 1
)
SELECT letter AS l, count,
(SELECT *
FROM lookup_letter(letter) AS l2
LIMIT 1) AS lookup_letter
FROM letter
ORDER BY 2 DESC;
Explaining the Postgres Query Optimizer 24 / 56
Just the First EXPLAIN Lines
l | count | lookup_letter
---+-------+-----------------------------------------------------------------------
p | 199 | Seq Scan on sample (cost=0.00..13.16 rows=199 width=2)
s | 9 | Seq Scan on sample (cost=0.00..13.16 rows=9 width=2)
c | 8 | Seq Scan on sample (cost=0.00..13.16 rows=8 width=2)
r | 7 | Seq Scan on sample (cost=0.00..13.16 rows=7 width=2)
t | 5 | Bitmap Heap Scan on sample (cost=4.29..12.76 rows=5 width=2)
f | 4 | Bitmap Heap Scan on sample (cost=4.28..12.74 rows=4 width=2)
v | 4 | Bitmap Heap Scan on sample (cost=4.28..12.74 rows=4 width=2)
d | 4 | Bitmap Heap Scan on sample (cost=4.28..12.74 rows=4 width=2)
a | 3 | Bitmap Heap Scan on sample (cost=4.27..11.38 rows=3 width=2)
_ | 3 | Bitmap Heap Scan on sample (cost=4.27..11.38 rows=3 width=2)
u | 3 | Bitmap Heap Scan on sample (cost=4.27..11.38 rows=3 width=2)
e | 2 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2)
i | 1 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2)
k | 1 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2)
(14 rows)
Explaining the Postgres Query Optimizer 25 / 56
We Can Force an Index Scan
SET enable_seqscan = false;
SET enable_bitmapscan = false;
WITH letter (letter, count) AS (
SELECT letter, COUNT(*)
FROM sample
GROUP BY 1
)
SELECT letter AS l, count,
(SELECT *
FROM lookup_letter(letter) AS l2
LIMIT 1) AS lookup_letter
FROM letter
ORDER BY 2 DESC;
Explaining the Postgres Query Optimizer 26 / 56
Notice the High Cost for Common Values
l | count | lookup_letter
---+-------+-----------------------------------------------------------------------
p | 199 | Index Scan using i_sample on sample (cost=0.00..39.33 rows=199 width=
s | 9 | Index Scan using i_sample on sample (cost=0.00..22.14 rows=9 width=2)
c | 8 | Index Scan using i_sample on sample (cost=0.00..19.84 rows=8 width=2)
r | 7 | Index Scan using i_sample on sample (cost=0.00..19.82 rows=7 width=2)
t | 5 | Index Scan using i_sample on sample (cost=0.00..15.21 rows=5 width=2)
d | 4 | Index Scan using i_sample on sample (cost=0.00..15.19 rows=4 width=2)
v | 4 | Index Scan using i_sample on sample (cost=0.00..15.19 rows=4 width=2)
f | 4 | Index Scan using i_sample on sample (cost=0.00..15.19 rows=4 width=2)
_ | 3 | Index Scan using i_sample on sample (cost=0.00..12.88 rows=3 width=2)
a | 3 | Index Scan using i_sample on sample (cost=0.00..12.88 rows=3 width=2)
u | 3 | Index Scan using i_sample on sample (cost=0.00..12.88 rows=3 width=2)
e | 2 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2)
i | 1 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2)
k | 1 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2)
(14 rows)
RESET ALL;
RESET
Explaining the Postgres Query Optimizer 27 / 56
This Was the Optimizer’s Preference
l | count | lookup_letter
---+-------+-----------------------------------------------------------------------
p | 199 | Seq Scan on sample (cost=0.00..13.16 rows=199 width=2)
s | 9 | Seq Scan on sample (cost=0.00..13.16 rows=9 width=2)
c | 8 | Seq Scan on sample (cost=0.00..13.16 rows=8 width=2)
r | 7 | Seq Scan on sample (cost=0.00..13.16 rows=7 width=2)
t | 5 | Bitmap Heap Scan on sample (cost=4.29..12.76 rows=5 width=2)
f | 4 | Bitmap Heap Scan on sample (cost=4.28..12.74 rows=4 width=2)
v | 4 | Bitmap Heap Scan on sample (cost=4.28..12.74 rows=4 width=2)
d | 4 | Bitmap Heap Scan on sample (cost=4.28..12.74 rows=4 width=2)
a | 3 | Bitmap Heap Scan on sample (cost=4.27..11.38 rows=3 width=2)
_ | 3 | Bitmap Heap Scan on sample (cost=4.27..11.38 rows=3 width=2)
u | 3 | Bitmap Heap Scan on sample (cost=4.27..11.38 rows=3 width=2)
e | 2 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2)
i | 1 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2)
k | 1 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2)
(14 rows)
Explaining the Postgres Query Optimizer 28 / 56
Which Join Method?
◮ Nested Loop
◮ With Inner Sequential Scan
◮ With Inner Index Scan
◮ Hash Join
◮ Merge Join
Explaining the Postgres Query Optimizer 29 / 56
What Is in pg_proc.oid?
SELECT oid
FROM pg_proc
ORDER BY 1
LIMIT 8;
oid
-----
31
33
34
35
38
39
40
41
(8 rows)
Explaining the Postgres Query Optimizer 30 / 56
Create Temporary Tables
from pg_proc and pg_class
CREATE TEMPORARY TABLE sample1 (id, junk) AS
SELECT oid, repeat(’x’, 250)
FROM pg_proc
ORDER BY random(); -- add rows in random order
SELECT 2256
CREATE TEMPORARY TABLE sample2 (id, junk) AS
SELECT oid, repeat(’x’, 250)
FROM pg_class
ORDER BY random(); -- add rows in random order
SELECT 260
These tables have no indexes and no optimizer statistics.
Explaining the Postgres Query Optimizer 31 / 56
Join the Two Tables
with a Tight Restriction
EXPLAIN SELECT sample2.junk
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id)
WHERE sample1.id = 33;
QUERY PLAN
---------------------------------------------------------------------
Nested Loop (cost=0.00..234.68 rows=300 width=32)
-> Seq Scan on sample1 (cost=0.00..205.54 rows=50 width=4)
Filter: (id = 33::oid)
-> Materialize (cost=0.00..25.41 rows=6 width=36)
-> Seq Scan on sample2 (cost=0.00..25.38 rows=6 width=36)
Filter: (id = 33::oid)
(6 rows)
Explaining the Postgres Query Optimizer 32 / 56
Nested Loop Join
with Inner Sequential Scan
aag
aar
aay aag
aas
aar
aaa
aay
aai
aag
No Setup Required
aai
Used For Small Tables
Outer Inner
Explaining the Postgres Query Optimizer 33 / 56
Pseudocode for Nested Loop Join
with Inner Sequential Scan
for (i = 0; i < length(outer); i++)
for (j = 0; j < length(inner); j++)
if (outer[i] == inner[j])
output(outer[i], inner[j]);
Explaining the Postgres Query Optimizer 34 / 56
Join the Two Tables with a Looser Restriction
EXPLAIN SELECT sample1.junk
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id)
WHERE sample2.id > 33;
QUERY PLAN
----------------------------------------------------------------------
Hash Join (cost=30.50..950.88 rows=20424 width=32)
Hash Cond: (sample1.id = sample2.id)
-> Seq Scan on sample1 (cost=0.00..180.63 rows=9963 width=36)
-> Hash (cost=25.38..25.38 rows=410 width=4)
-> Seq Scan on sample2 (cost=0.00..25.38 rows=410 width=4)
Filter: (id > 33::oid)
(6 rows)
Explaining the Postgres Query Optimizer 35 / 56
Hash Join
Hashed
Must fit in Main Memory
aak
aar
aak
aay aaraam
aao aaw
aay
aag
aas
Outer Inner
Explaining the Postgres Query Optimizer 36 / 56
Pseudocode for Hash Join
for (j = 0; j < length(inner); j++)
hash_key = hash(inner[j]);
append(hash_store[hash_key], inner[j]);
for (i = 0; i < length(outer); i++)
hash_key = hash(outer[i]);
for (j = 0; j < length(hash_store[hash_key]); j++)
if (outer[i] == hash_store[hash_key][j])
output(outer[i], inner[j]);
Explaining the Postgres Query Optimizer 37 / 56
Join the Two Tables with No Restriction
EXPLAIN SELECT sample1.junk
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id);
QUERY PLAN
-------------------------------------------------------------------------
Merge Join (cost=927.72..1852.95 rows=61272 width=32)
Merge Cond: (sample2.id = sample1.id)
-> Sort (cost=85.43..88.50 rows=1230 width=4)
Sort Key: sample2.id
-> Seq Scan on sample2 (cost=0.00..22.30 rows=1230 width=4)
-> Sort (cost=842.29..867.20 rows=9963 width=36)
Sort Key: sample1.id
-> Seq Scan on sample1 (cost=0.00..180.63 rows=9963 width=36)
(8 rows)
Explaining the Postgres Query Optimizer 38 / 56
Merge Join
Sorted
Sorted
Ideal for Large Tables
An Index Can Be Used to Eliminate the Sort
aaa
aab
aac
aad
aaa
aab
aab
aaf
aaf
aac
aae
Outer Inner
Explaining the Postgres Query Optimizer 39 / 56
Pseudocode for Merge Join
sort(outer);
sort(inner);
i = 0;
j = 0;
save_j = 0;
while (i < length(outer))
if (outer[i] == inner[j])
output(outer[i], inner[j]);
if (outer[i] <= inner[j] && j < length(inner))
j++;
if (outer[i] < inner[j])
save_j = j;
else
i++;
j = save_j;
Explaining the Postgres Query Optimizer 40 / 56
Order of Joined Relations Is Insignificant
EXPLAIN SELECT sample2.junk
FROM sample2 JOIN sample1 ON (sample2.id = sample1.id);
QUERY PLAN
------------------------------------------------------------------------
Merge Join (cost=927.72..1852.95 rows=61272 width=32)
Merge Cond: (sample2.id = sample1.id)
-> Sort (cost=85.43..88.50 rows=1230 width=36)
Sort Key: sample2.id
-> Seq Scan on sample2 (cost=0.00..22.30 rows=1230 width=36)
-> Sort (cost=842.29..867.20 rows=9963 width=4)
Sort Key: sample1.id
-> Seq Scan on sample1 (cost=0.00..180.63 rows=9963 width=4)
(8 rows)
The most restrictive relation, e.g. sample2, is always on the outer side of
merge joins. All previous merge joins also had sample2 in outer position.
Explaining the Postgres Query Optimizer 41 / 56
Add Optimizer Statistics
ANALYZE sample1;
ANALYZE sample2;
Explaining the Postgres Query Optimizer 42 / 56
This Was a Merge Join without Optimizer Statistics
EXPLAIN SELECT sample2.junk
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id);
QUERY PLAN
------------------------------------------------------------------------
Hash Join (cost=15.85..130.47 rows=260 width=254)
Hash Cond: (sample1.id = sample2.id)
-> Seq Scan on sample1 (cost=0.00..103.56 rows=2256 width=4)
-> Hash (cost=12.60..12.60 rows=260 width=258)
-> Seq Scan on sample2 (cost=0.00..12.60 rows=260 width=258)
(5 rows)
Explaining the Postgres Query Optimizer 43 / 56
Outer Joins Can Affect Optimizer Join Usage
EXPLAIN SELECT sample1.junk
FROM sample1 RIGHT OUTER JOIN sample2 ON (sample1.id = sample2.id);
QUERY PLAN
--------------------------------------------------------------------------
Hash Left Join (cost=131.76..148.26 rows=260 width=254)
Hash Cond: (sample2.id = sample1.id)
-> Seq Scan on sample2 (cost=0.00..12.60 rows=260 width=4)
-> Hash (cost=103.56..103.56 rows=2256 width=258)
-> Seq Scan on sample1 (cost=0.00..103.56 rows=2256 width=258)
(5 rows)
Use of hashes for outer joins was added in Postgres 9.1.
Explaining the Postgres Query Optimizer 44 / 56
Cross Joins Are Nested Loop Joins
without Join Restriction
EXPLAIN SELECT sample1.junk
FROM sample1 CROSS JOIN sample2;
QUERY PLAN
----------------------------------------------------------------------
Nested Loop (cost=0.00..7448.81 rows=586560 width=254)
-> Seq Scan on sample1 (cost=0.00..103.56 rows=2256 width=254)
-> Materialize (cost=0.00..13.90 rows=260 width=0)
-> Seq Scan on sample2 (cost=0.00..12.60 rows=260 width=0)
(4 rows)
Explaining the Postgres Query Optimizer 45 / 56
Create Indexes
CREATE INDEX i_sample1 on sample1 (id);
CREATE INDEX i_sample2 on sample2 (id);
Explaining the Postgres Query Optimizer 46 / 56
Nested Loop with Inner Index Scan Now Possible
EXPLAIN SELECT sample2.junk
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id)
WHERE sample1.id = 33;
QUERY PLAN
---------------------------------------------------------------------------------
Nested Loop (cost=0.00..16.55 rows=1 width=254)
-> Index Scan using i_sample1 on sample1 (cost=0.00..8.27 rows=1 width=4)
Index Cond: (id = 33::oid)
-> Index Scan using i_sample2 on sample2 (cost=0.00..8.27 rows=1 width=258)
Index Cond: (sample2.id = 33::oid)
(5 rows)
Explaining the Postgres Query Optimizer 47 / 56
Nested Loop Join with Inner Index Scan
aag
aar
aai
aay aag
aas
aar
aaa
aay
aai
aag
No Setup Required
Index Lookup
Index Must Already Exist
Outer Inner
Explaining the Postgres Query Optimizer 48 / 56
Pseudocode for Nested Loop Join
with Inner Index Scan
for (i = 0; i < length(outer); i++)
index_entry = get_first_match(outer[j])
while (index_entry)
output(outer[i], inner[index_entry]);
index_entry = get_next_match(index_entry);
Explaining the Postgres Query Optimizer 49 / 56
Query Restrictions Affect Join Usage
EXPLAIN SELECT sample2.junk
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id)
WHERE sample2.junk ˜ ’^aaa’;
QUERY PLAN
-------------------------------------------------------------------------------
Nested Loop (cost=0.00..21.53 rows=1 width=254)
-> Seq Scan on sample2 (cost=0.00..13.25 rows=1 width=258)
Filter: (junk ˜ ’^aaa’::text)
-> Index Scan using i_sample1 on sample1 (cost=0.00..8.27 rows=1 width=4)
Index Cond: (sample1.id = sample2.id)
(5 rows)
No junk rows begin with ’aaa’.
Explaining the Postgres Query Optimizer 50 / 56
All ’junk’ Columns Begin with ’xxx’
EXPLAIN SELECT sample2.junk
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id)
WHERE sample2.junk ˜ ’^xxx’;
QUERY PLAN
------------------------------------------------------------------------
Hash Join (cost=16.50..131.12 rows=260 width=254)
Hash Cond: (sample1.id = sample2.id)
-> Seq Scan on sample1 (cost=0.00..103.56 rows=2256 width=4)
-> Hash (cost=13.25..13.25 rows=260 width=258)
-> Seq Scan on sample2 (cost=0.00..13.25 rows=260 width=258)
Filter: (junk ˜ ’^xxx’::text)
(6 rows)
Hash join was chosen because many more rows are expected. The
smaller table, e.g. sample2, is always hashed.
Explaining the Postgres Query Optimizer 51 / 56
Without LIMIT, Hash Is Used
for this Unrestricted Join
EXPLAIN SELECT sample2.junk
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id);
QUERY PLAN
------------------------------------------------------------------------
Hash Join (cost=15.85..130.47 rows=260 width=254)
Hash Cond: (sample1.id = sample2.id)
-> Seq Scan on sample1 (cost=0.00..103.56 rows=2256 width=4)
-> Hash (cost=12.60..12.60 rows=260 width=258)
-> Seq Scan on sample2 (cost=0.00..12.60 rows=260 width=258)
(5 rows)
Explaining the Postgres Query Optimizer 52 / 56
LIMIT Can Affect Join Usage
EXPLAIN SELECT sample2.id, sample2.junk
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id)
ORDER BY 1
LIMIT 1;
QUERY PLAN
------------------------------------------------------------------------------------------
Limit (cost=0.00..1.83 rows=1 width=258)
-> Nested Loop (cost=0.00..477.02 rows=260 width=258)
-> Index Scan using i_sample2 on sample2 (cost=0.00..52.15 rows=260 width=258)
-> Index Scan using i_sample1 on sample1 (cost=0.00..1.62 rows=1 width=4)
Index Cond: (sample1.id = sample2.id)
(5 rows)
Explaining the Postgres Query Optimizer 53 / 56
LIMIT 10
EXPLAIN SELECT sample2.id, sample2.junk
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id)
ORDER BY 1
LIMIT 10;
QUERY PLAN
------------------------------------------------------------------------------------------
Limit (cost=0.00..18.35 rows=10 width=258)
-> Nested Loop (cost=0.00..477.02 rows=260 width=258)
-> Index Scan using i_sample2 on sample2 (cost=0.00..52.15 rows=260 width=258)
-> Index Scan using i_sample1 on sample1 (cost=0.00..1.62 rows=1 width=4)
Index Cond: (sample1.id = sample2.id)
(5 rows)
Explaining the Postgres Query Optimizer 54 / 56
LIMIT 100 Switches to Hash Join
EXPLAIN SELECT sample2.id, sample2.junk
FROM sample1 JOIN sample2 ON (sample1.id = sample2.id)
ORDER BY 1
LIMIT 100;
QUERY PLAN
------------------------------------------------------------------------------------
Limit (cost=140.41..140.66 rows=100 width=258)
-> Sort (cost=140.41..141.06 rows=260 width=258)
Sort Key: sample2.id
-> Hash Join (cost=15.85..130.47 rows=260 width=258)
Hash Cond: (sample1.id = sample2.id)
-> Seq Scan on sample1 (cost=0.00..103.56 rows=2256 width=4)
-> Hash (cost=12.60..12.60 rows=260 width=258)
-> Seq Scan on sample2 (cost=0.00..12.60 rows=260 width=258)
(8 rows)
Explaining the Postgres Query Optimizer 55 / 56
Conclusion
http://momjian.us/presentations http://www.vivapixel.com/photo/14252
Explaining the Postgres Query Optimizer 56 / 56

More Related Content

What's hot

SQL Performance Solutions: Refactor Mercilessly, Index Wisely
SQL Performance Solutions: Refactor Mercilessly, Index WiselySQL Performance Solutions: Refactor Mercilessly, Index Wisely
SQL Performance Solutions: Refactor Mercilessly, Index Wisely
Enkitec
 
Introduction to R
Introduction to RIntroduction to R
Introduction to R
Rajib Layek
 

What's hot (20)

Histograms : Pre-12c and Now
Histograms : Pre-12c and NowHistograms : Pre-12c and Now
Histograms : Pre-12c and Now
 
Explaining Explain
Explaining ExplainExplaining Explain
Explaining Explain
 
Do You Know The 11g Plan?
Do You Know The 11g Plan?Do You Know The 11g Plan?
Do You Know The 11g Plan?
 
Stack, queue and hashing
Stack, queue and hashingStack, queue and hashing
Stack, queue and hashing
 
Functions in advanced programming
Functions in advanced programmingFunctions in advanced programming
Functions in advanced programming
 
Trig
TrigTrig
Trig
 
[APJ] Common Table Expressions (CTEs) in SQL
[APJ] Common Table Expressions (CTEs) in SQL[APJ] Common Table Expressions (CTEs) in SQL
[APJ] Common Table Expressions (CTEs) in SQL
 
The Magic of Window Functions in Postgres
The Magic of Window Functions in PostgresThe Magic of Window Functions in Postgres
The Magic of Window Functions in Postgres
 
Star Transformation, 12c Adaptive Bitmap Pruning and In-Memory option
Star Transformation, 12c Adaptive Bitmap Pruning and In-Memory optionStar Transformation, 12c Adaptive Bitmap Pruning and In-Memory option
Star Transformation, 12c Adaptive Bitmap Pruning and In-Memory option
 
MERGE SQL Statement: Lesser Known Facets
MERGE SQL Statement: Lesser Known FacetsMERGE SQL Statement: Lesser Known Facets
MERGE SQL Statement: Lesser Known Facets
 
Programming the SQL Way with Common Table Expressions
Programming the SQL Way with Common Table ExpressionsProgramming the SQL Way with Common Table Expressions
Programming the SQL Way with Common Table Expressions
 
SQLQueries
SQLQueriesSQLQueries
SQLQueries
 
حل اسئلة الكتاب السعودى فى شرح قواعد البيانات اوراكل
حل اسئلة الكتاب السعودى فى شرح قواعد البيانات اوراكلحل اسئلة الكتاب السعودى فى شرح قواعد البيانات اوراكل
حل اسئلة الكتاب السعودى فى شرح قواعد البيانات اوراكل
 
La tex basics
La tex basicsLa tex basics
La tex basics
 
12c SQL Plan Directives
12c SQL Plan Directives12c SQL Plan Directives
12c SQL Plan Directives
 
Advanced latex
Advanced latexAdvanced latex
Advanced latex
 
SQL Performance Solutions: Refactor Mercilessly, Index Wisely
SQL Performance Solutions: Refactor Mercilessly, Index WiselySQL Performance Solutions: Refactor Mercilessly, Index Wisely
SQL Performance Solutions: Refactor Mercilessly, Index Wisely
 
Introduction to R
Introduction to RIntroduction to R
Introduction to R
 
Structured Query Language(SQL)
Structured Query Language(SQL)Structured Query Language(SQL)
Structured Query Language(SQL)
 
Les03
Les03Les03
Les03
 

Similar to Explaining the Postgres Query Optimizer - PGCon 2014

pg_proctab: Accessing System Stats in PostgreSQL
pg_proctab: Accessing System Stats in PostgreSQLpg_proctab: Accessing System Stats in PostgreSQL
pg_proctab: Accessing System Stats in PostgreSQL
Command Prompt., Inc
 
Flink Forward San Francisco 2019: Build a Table-centric Apache Flink Ecosyste...
Flink Forward San Francisco 2019: Build a Table-centric Apache Flink Ecosyste...Flink Forward San Francisco 2019: Build a Table-centric Apache Flink Ecosyste...
Flink Forward San Francisco 2019: Build a Table-centric Apache Flink Ecosyste...
Flink Forward
 
Flink Forward San Francisco 2019: Build a Table-centric Apache Flink Ecosyste...
Flink Forward San Francisco 2019: Build a Table-centric Apache Flink Ecosyste...Flink Forward San Francisco 2019: Build a Table-centric Apache Flink Ecosyste...
Flink Forward San Francisco 2019: Build a Table-centric Apache Flink Ecosyste...
Flink Forward
 
PostgreSQL 8.4 TriLUG 2009-11-12
PostgreSQL 8.4 TriLUG 2009-11-12PostgreSQL 8.4 TriLUG 2009-11-12
PostgreSQL 8.4 TriLUG 2009-11-12
Andrew Dunstan
 
Overview of query evaluation
Overview of query evaluationOverview of query evaluation
Overview of query evaluation
avniS
 
Postgres performance for humans
Postgres performance for humansPostgres performance for humans
Postgres performance for humans
Craig Kerstiens
 
Advanced tips of dbms statas
Advanced tips of dbms statasAdvanced tips of dbms statas
Advanced tips of dbms statas
Louis liu
 

Similar to Explaining the Postgres Query Optimizer - PGCon 2014 (20)

How the Postgres Query Optimizer Works
How the Postgres Query Optimizer WorksHow the Postgres Query Optimizer Works
How the Postgres Query Optimizer Works
 
Advanced pg_stat_statements: Filtering, Regression Testing & more
Advanced pg_stat_statements: Filtering, Regression Testing & moreAdvanced pg_stat_statements: Filtering, Regression Testing & more
Advanced pg_stat_statements: Filtering, Regression Testing & more
 
pg_proctab: Accessing System Stats in PostgreSQL
pg_proctab: Accessing System Stats in PostgreSQLpg_proctab: Accessing System Stats in PostgreSQL
pg_proctab: Accessing System Stats in PostgreSQL
 
pg_proctab: Accessing System Stats in PostgreSQL
pg_proctab: Accessing System Stats in PostgreSQLpg_proctab: Accessing System Stats in PostgreSQL
pg_proctab: Accessing System Stats in PostgreSQL
 
SQL Functions and Operators
SQL Functions and OperatorsSQL Functions and Operators
SQL Functions and Operators
 
Query optimizer vivek sharma
Query optimizer vivek sharmaQuery optimizer vivek sharma
Query optimizer vivek sharma
 
PostgreSQL 9.6 새 기능 소개
PostgreSQL 9.6 새 기능 소개PostgreSQL 9.6 새 기능 소개
PostgreSQL 9.6 새 기능 소개
 
Flink Forward San Francisco 2019: Build a Table-centric Apache Flink Ecosyste...
Flink Forward San Francisco 2019: Build a Table-centric Apache Flink Ecosyste...Flink Forward San Francisco 2019: Build a Table-centric Apache Flink Ecosyste...
Flink Forward San Francisco 2019: Build a Table-centric Apache Flink Ecosyste...
 
Flink Forward San Francisco 2019: Build a Table-centric Apache Flink Ecosyste...
Flink Forward San Francisco 2019: Build a Table-centric Apache Flink Ecosyste...Flink Forward San Francisco 2019: Build a Table-centric Apache Flink Ecosyste...
Flink Forward San Francisco 2019: Build a Table-centric Apache Flink Ecosyste...
 
Using PostgreSQL statistics to optimize performance
Using PostgreSQL statistics to optimize performance Using PostgreSQL statistics to optimize performance
Using PostgreSQL statistics to optimize performance
 
PostgreSQL 8.4 TriLUG 2009-11-12
PostgreSQL 8.4 TriLUG 2009-11-12PostgreSQL 8.4 TriLUG 2009-11-12
PostgreSQL 8.4 TriLUG 2009-11-12
 
Non-Relational Postgres / Bruce Momjian (EnterpriseDB)
Non-Relational Postgres / Bruce Momjian (EnterpriseDB)Non-Relational Postgres / Bruce Momjian (EnterpriseDB)
Non-Relational Postgres / Bruce Momjian (EnterpriseDB)
 
Basic Query Tuning Primer - Pg West 2009
Basic Query Tuning Primer - Pg West 2009Basic Query Tuning Primer - Pg West 2009
Basic Query Tuning Primer - Pg West 2009
 
Basic Query Tuning Primer
Basic Query Tuning PrimerBasic Query Tuning Primer
Basic Query Tuning Primer
 
pg_proctab: Accessing System Stats in PostgreSQL
pg_proctab: Accessing System Stats in PostgreSQLpg_proctab: Accessing System Stats in PostgreSQL
pg_proctab: Accessing System Stats in PostgreSQL
 
Overview of query evaluation
Overview of query evaluationOverview of query evaluation
Overview of query evaluation
 
Postgres performance for humans
Postgres performance for humansPostgres performance for humans
Postgres performance for humans
 
Advanced tips of dbms statas
Advanced tips of dbms statasAdvanced tips of dbms statas
Advanced tips of dbms statas
 
SQL Performance Tuning and New Features in Oracle 19c
SQL Performance Tuning and New Features in Oracle 19cSQL Performance Tuning and New Features in Oracle 19c
SQL Performance Tuning and New Features in Oracle 19c
 
Introduction to Oracle Functions--(SQL)--Abhishek Sharma
Introduction to Oracle Functions--(SQL)--Abhishek SharmaIntroduction to Oracle Functions--(SQL)--Abhishek Sharma
Introduction to Oracle Functions--(SQL)--Abhishek Sharma
 

More from EDB

EFM Office Hours - APJ - July 29, 2021
EFM Office Hours - APJ - July 29, 2021EFM Office Hours - APJ - July 29, 2021
EFM Office Hours - APJ - July 29, 2021
EDB
 
Is There Anything PgBouncer Can’t Do?
Is There Anything PgBouncer Can’t Do?Is There Anything PgBouncer Can’t Do?
Is There Anything PgBouncer Can’t Do?
EDB
 
A Deeper Dive into EXPLAIN
A Deeper Dive into EXPLAINA Deeper Dive into EXPLAIN
A Deeper Dive into EXPLAIN
EDB
 

More from EDB (20)

Cloud Migration Paths: Kubernetes, IaaS, or DBaaS
Cloud Migration Paths: Kubernetes, IaaS, or DBaaSCloud Migration Paths: Kubernetes, IaaS, or DBaaS
Cloud Migration Paths: Kubernetes, IaaS, or DBaaS
 
Die 10 besten PostgreSQL-Replikationsstrategien für Ihr Unternehmen
Die 10 besten PostgreSQL-Replikationsstrategien für Ihr UnternehmenDie 10 besten PostgreSQL-Replikationsstrategien für Ihr Unternehmen
Die 10 besten PostgreSQL-Replikationsstrategien für Ihr Unternehmen
 
Migre sus bases de datos Oracle a la nube
Migre sus bases de datos Oracle a la nube Migre sus bases de datos Oracle a la nube
Migre sus bases de datos Oracle a la nube
 
EFM Office Hours - APJ - July 29, 2021
EFM Office Hours - APJ - July 29, 2021EFM Office Hours - APJ - July 29, 2021
EFM Office Hours - APJ - July 29, 2021
 
Benchmarking Cloud Native PostgreSQL
Benchmarking Cloud Native PostgreSQLBenchmarking Cloud Native PostgreSQL
Benchmarking Cloud Native PostgreSQL
 
Las Variaciones de la Replicación de PostgreSQL
Las Variaciones de la Replicación de PostgreSQLLas Variaciones de la Replicación de PostgreSQL
Las Variaciones de la Replicación de PostgreSQL
 
NoSQL and Spatial Database Capabilities using PostgreSQL
NoSQL and Spatial Database Capabilities using PostgreSQLNoSQL and Spatial Database Capabilities using PostgreSQL
NoSQL and Spatial Database Capabilities using PostgreSQL
 
Is There Anything PgBouncer Can’t Do?
Is There Anything PgBouncer Can’t Do?Is There Anything PgBouncer Can’t Do?
Is There Anything PgBouncer Can’t Do?
 
Data Analysis with TensorFlow in PostgreSQL
Data Analysis with TensorFlow in PostgreSQLData Analysis with TensorFlow in PostgreSQL
Data Analysis with TensorFlow in PostgreSQL
 
Practical Partitioning in Production with Postgres
Practical Partitioning in Production with PostgresPractical Partitioning in Production with Postgres
Practical Partitioning in Production with Postgres
 
A Deeper Dive into EXPLAIN
A Deeper Dive into EXPLAINA Deeper Dive into EXPLAIN
A Deeper Dive into EXPLAIN
 
IOT with PostgreSQL
IOT with PostgreSQLIOT with PostgreSQL
IOT with PostgreSQL
 
A Journey from Oracle to PostgreSQL
A Journey from Oracle to PostgreSQLA Journey from Oracle to PostgreSQL
A Journey from Oracle to PostgreSQL
 
Psql is awesome!
Psql is awesome!Psql is awesome!
Psql is awesome!
 
EDB 13 - New Enhancements for Security and Usability - APJ
EDB 13 - New Enhancements for Security and Usability - APJEDB 13 - New Enhancements for Security and Usability - APJ
EDB 13 - New Enhancements for Security and Usability - APJ
 
Comment sauvegarder correctement vos données
Comment sauvegarder correctement vos donnéesComment sauvegarder correctement vos données
Comment sauvegarder correctement vos données
 
Cloud Native PostgreSQL - Italiano
Cloud Native PostgreSQL - ItalianoCloud Native PostgreSQL - Italiano
Cloud Native PostgreSQL - Italiano
 
New enhancements for security and usability in EDB 13
New enhancements for security and usability in EDB 13New enhancements for security and usability in EDB 13
New enhancements for security and usability in EDB 13
 
Best Practices in Security with PostgreSQL
Best Practices in Security with PostgreSQLBest Practices in Security with PostgreSQL
Best Practices in Security with PostgreSQL
 
Cloud Native PostgreSQL - APJ
Cloud Native PostgreSQL - APJCloud Native PostgreSQL - APJ
Cloud Native PostgreSQL - APJ
 

Recently uploaded

Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire business
panagenda
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Safe Software
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native Applications
WSO2
 

Recently uploaded (20)

Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
ICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesICT role in 21st century education and its challenges
ICT role in 21st century education and its challenges
 
FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWEREMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
EMPOWERMENT TECHNOLOGY GRADE 11 QUARTER 2 REVIEWER
 
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
 
Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
Why Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire businessWhy Teams call analytics are critical to your entire business
Why Teams call analytics are critical to your entire business
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor Presentation
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of Terraform
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
Real Time Object Detection Using Open CV
Real Time Object Detection Using Open CVReal Time Object Detection Using Open CV
Real Time Object Detection Using Open CV
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native Applications
 

Explaining the Postgres Query Optimizer - PGCon 2014

  • 1. Explaining the Postgres Query Optimizer BRUCE MOMJIAN January, 2012 The optimizer is the "brain" of the database, interpreting SQL queries and determining the fastest method of execution. This talk uses the EXPLAIN command to show how the optimizer interprets queries and determines optimal execution. Creative Commons Attribution License http://momjian.us/presentations 1 / 56
  • 3. Postgres Query Execution utility Plan Optimal Path Query Postmaster Postgres Postgres Libpq Main Generate Plan Traffic Cop Generate Paths Execute Plan e.g. CREATE TABLE, COPY SELECT, INSERT, UPDATE, DELETE Rewrite Query Parse Statement Utility Command Storage ManagersCatalogUtilities Access Methods Nodes / Lists Explaining the Postgres Query Optimizer 3 / 56
  • 4. Postgres Query Execution utility Plan Optimal Path Query Generate Plan Traffic Cop Generate Paths Execute Plan e.g. CREATE TABLE, COPY SELECT, INSERT, UPDATE, DELETE Rewrite Query Parse Statement Utility Command Explaining the Postgres Query Optimizer 4 / 56
  • 5. The Optimizer Is the Brain http://www.wsmanaging.com/ Explaining the Postgres Query Optimizer 5 / 56
  • 6. What Decisions Does the Optimizer Have to Make? ◮ Scan Method ◮ Join Method ◮ Join Order Explaining the Postgres Query Optimizer 6 / 56
  • 7. Which Scan Method? ◮ Sequential Scan ◮ Bitmap Index Scan ◮ Index Scan Explaining the Postgres Query Optimizer 7 / 56
  • 8. A Simple Example Using pg_class.relname SELECT relname FROM pg_class ORDER BY 1 LIMIT 8; relname ----------------------------------- _pg_foreign_data_wrappers _pg_foreign_servers _pg_user_mappings administrable_role_authorizations applicable_roles attributes check_constraint_routine_usage check_constraints (8 rows) Explaining the Postgres Query Optimizer 8 / 56
  • 9. Let’s Use Just the First Letter of pg_class.relname SELECT substring(relname, 1, 1) FROM pg_class ORDER BY 1 LIMIT 8; substring ----------- _ _ _ a a a c c (8 rows) Explaining the Postgres Query Optimizer 9 / 56
  • 10. Create a Temporary Table with an Index CREATE TEMPORARY TABLE sample (letter, junk) AS SELECT substring(relname, 1, 1), repeat(’x’, 250) FROM pg_class ORDER BY random(); -- add rows in random order SELECT 253 CREATE INDEX i_sample on sample (letter); CREATE INDEX All the queries used in this presentation are available at http://momjian.us/main/writings/pgsql/optimizer.sql. Explaining the Postgres Query Optimizer 10 / 56
  • 11. Create an EXPLAIN Function CREATE OR REPLACE FUNCTION lookup_letter(text) RETURNS SETOF text AS $$ BEGIN RETURN QUERY EXECUTE ’ EXPLAIN SELECT letter FROM sample WHERE letter = ’’’ || $1 || ’’’’; END $$ LANGUAGE plpgsql; CREATE FUNCTION Explaining the Postgres Query Optimizer 11 / 56
  • 12. What is the Distribution of the sample Table? WITH letters (letter, count) AS ( SELECT letter, COUNT(*) FROM sample GROUP BY 1 ) SELECT letter, count, (count * 100.0 / (SUM(count) OVER ()))::numeric(4,1) AS "%" FROM letters ORDER BY 2 DESC; Explaining the Postgres Query Optimizer 12 / 56
  • 13. What is the Distribution of the sample Table? letter | count | % --------+-------+------ p | 199 | 78.7 s | 9 | 3.6 c | 8 | 3.2 r | 7 | 2.8 t | 5 | 2.0 v | 4 | 1.6 f | 4 | 1.6 d | 4 | 1.6 u | 3 | 1.2 a | 3 | 1.2 _ | 3 | 1.2 e | 2 | 0.8 i | 1 | 0.4 k | 1 | 0.4 (14 rows) Explaining the Postgres Query Optimizer 13 / 56
  • 14. Is the Distribution Important? EXPLAIN SELECT letter FROM sample WHERE letter = ’p’; QUERY PLAN ------------------------------------------------------------------------ Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=32) Index Cond: (letter = ’p’::text) (2 rows) Explaining the Postgres Query Optimizer 14 / 56
  • 15. Is the Distribution Important? EXPLAIN SELECT letter FROM sample WHERE letter = ’d’; QUERY PLAN ------------------------------------------------------------------------ Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=32) Index Cond: (letter = ’d’::text) (2 rows) Explaining the Postgres Query Optimizer 15 / 56
  • 16. Is the Distribution Important? EXPLAIN SELECT letter FROM sample WHERE letter = ’k’; QUERY PLAN ------------------------------------------------------------------------ Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=32) Index Cond: (letter = ’k’::text) (2 rows) Explaining the Postgres Query Optimizer 16 / 56
  • 17. Running ANALYZE Causes a Sequential Scan for a Common Value ANALYZE sample; ANALYZE EXPLAIN SELECT letter FROM sample WHERE letter = ’p’; QUERY PLAN --------------------------------------------------------- Seq Scan on sample (cost=0.00..13.16 rows=199 width=2) Filter: (letter = ’p’::text) (2 rows) Autovacuum cannot ANALYZE (or VACUUM) temporary tables because these tables are only visible to the creating session. Explaining the Postgres Query Optimizer 17 / 56
  • 19. A Less Common Value Causes a Bitmap Heap Scan EXPLAIN SELECT letter FROM sample WHERE letter = ’d’; QUERY PLAN ----------------------------------------------------------------------- Bitmap Heap Scan on sample (cost=4.28..12.74 rows=4 width=2) Recheck Cond: (letter = ’d’::text) -> Bitmap Index Scan on i_sample (cost=0.00..4.28 rows=4 width=0) Index Cond: (letter = ’d’::text) (4 rows) Explaining the Postgres Query Optimizer 19 / 56
  • 20. Bitmap Index Scan =& Combined ’A’ AND ’NS’ 1 0 1 0 TableIndex 1 col1 = ’A’ Index 2 1 0 0 col2 = ’NS’ 1 0 1 0 0 Index Explaining the Postgres Query Optimizer 20 / 56
  • 21. An Even Rarer Value Causes an Index Scan EXPLAIN SELECT letter FROM sample WHERE letter = ’k’; QUERY PLAN ----------------------------------------------------------------------- Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2) Index Cond: (letter = ’k’::text) (2 rows) Explaining the Postgres Query Optimizer 21 / 56
  • 22. Index Scan A D A T A D A T A D A T A D A T A D A T A D A T A D < >=Key < >=Key Index Heap < >=Key A T A D A T A D A T A D A T A D A T A D A T Explaining the Postgres Query Optimizer 22 / 56
  • 23. Let’s Look at All Values and their Effects WITH letter (letter, count) AS ( SELECT letter, COUNT(*) FROM sample GROUP BY 1 ) SELECT letter AS l, count, lookup_letter(letter) FROM letter ORDER BY 2 DESC; l | count | lookup_letter ---+-------+----------------------------------------------------------------------- p | 199 | Seq Scan on sample (cost=0.00..13.16 rows=199 width=2) p | 199 | Filter: (letter = ’p’::text) s | 9 | Seq Scan on sample (cost=0.00..13.16 rows=9 width=2) s | 9 | Filter: (letter = ’s’::text) c | 8 | Seq Scan on sample (cost=0.00..13.16 rows=8 width=2) c | 8 | Filter: (letter = ’c’::text) r | 7 | Seq Scan on sample (cost=0.00..13.16 rows=7 width=2) r | 7 | Filter: (letter = ’r’::text) … Explaining the Postgres Query Optimizer 23 / 56
  • 24. OK, Just the First Lines WITH letter (letter, count) AS ( SELECT letter, COUNT(*) FROM sample GROUP BY 1 ) SELECT letter AS l, count, (SELECT * FROM lookup_letter(letter) AS l2 LIMIT 1) AS lookup_letter FROM letter ORDER BY 2 DESC; Explaining the Postgres Query Optimizer 24 / 56
  • 25. Just the First EXPLAIN Lines l | count | lookup_letter ---+-------+----------------------------------------------------------------------- p | 199 | Seq Scan on sample (cost=0.00..13.16 rows=199 width=2) s | 9 | Seq Scan on sample (cost=0.00..13.16 rows=9 width=2) c | 8 | Seq Scan on sample (cost=0.00..13.16 rows=8 width=2) r | 7 | Seq Scan on sample (cost=0.00..13.16 rows=7 width=2) t | 5 | Bitmap Heap Scan on sample (cost=4.29..12.76 rows=5 width=2) f | 4 | Bitmap Heap Scan on sample (cost=4.28..12.74 rows=4 width=2) v | 4 | Bitmap Heap Scan on sample (cost=4.28..12.74 rows=4 width=2) d | 4 | Bitmap Heap Scan on sample (cost=4.28..12.74 rows=4 width=2) a | 3 | Bitmap Heap Scan on sample (cost=4.27..11.38 rows=3 width=2) _ | 3 | Bitmap Heap Scan on sample (cost=4.27..11.38 rows=3 width=2) u | 3 | Bitmap Heap Scan on sample (cost=4.27..11.38 rows=3 width=2) e | 2 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2) i | 1 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2) k | 1 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2) (14 rows) Explaining the Postgres Query Optimizer 25 / 56
  • 26. We Can Force an Index Scan SET enable_seqscan = false; SET enable_bitmapscan = false; WITH letter (letter, count) AS ( SELECT letter, COUNT(*) FROM sample GROUP BY 1 ) SELECT letter AS l, count, (SELECT * FROM lookup_letter(letter) AS l2 LIMIT 1) AS lookup_letter FROM letter ORDER BY 2 DESC; Explaining the Postgres Query Optimizer 26 / 56
  • 27. Notice the High Cost for Common Values l | count | lookup_letter ---+-------+----------------------------------------------------------------------- p | 199 | Index Scan using i_sample on sample (cost=0.00..39.33 rows=199 width= s | 9 | Index Scan using i_sample on sample (cost=0.00..22.14 rows=9 width=2) c | 8 | Index Scan using i_sample on sample (cost=0.00..19.84 rows=8 width=2) r | 7 | Index Scan using i_sample on sample (cost=0.00..19.82 rows=7 width=2) t | 5 | Index Scan using i_sample on sample (cost=0.00..15.21 rows=5 width=2) d | 4 | Index Scan using i_sample on sample (cost=0.00..15.19 rows=4 width=2) v | 4 | Index Scan using i_sample on sample (cost=0.00..15.19 rows=4 width=2) f | 4 | Index Scan using i_sample on sample (cost=0.00..15.19 rows=4 width=2) _ | 3 | Index Scan using i_sample on sample (cost=0.00..12.88 rows=3 width=2) a | 3 | Index Scan using i_sample on sample (cost=0.00..12.88 rows=3 width=2) u | 3 | Index Scan using i_sample on sample (cost=0.00..12.88 rows=3 width=2) e | 2 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2) i | 1 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2) k | 1 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2) (14 rows) RESET ALL; RESET Explaining the Postgres Query Optimizer 27 / 56
  • 28. This Was the Optimizer’s Preference l | count | lookup_letter ---+-------+----------------------------------------------------------------------- p | 199 | Seq Scan on sample (cost=0.00..13.16 rows=199 width=2) s | 9 | Seq Scan on sample (cost=0.00..13.16 rows=9 width=2) c | 8 | Seq Scan on sample (cost=0.00..13.16 rows=8 width=2) r | 7 | Seq Scan on sample (cost=0.00..13.16 rows=7 width=2) t | 5 | Bitmap Heap Scan on sample (cost=4.29..12.76 rows=5 width=2) f | 4 | Bitmap Heap Scan on sample (cost=4.28..12.74 rows=4 width=2) v | 4 | Bitmap Heap Scan on sample (cost=4.28..12.74 rows=4 width=2) d | 4 | Bitmap Heap Scan on sample (cost=4.28..12.74 rows=4 width=2) a | 3 | Bitmap Heap Scan on sample (cost=4.27..11.38 rows=3 width=2) _ | 3 | Bitmap Heap Scan on sample (cost=4.27..11.38 rows=3 width=2) u | 3 | Bitmap Heap Scan on sample (cost=4.27..11.38 rows=3 width=2) e | 2 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2) i | 1 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2) k | 1 | Index Scan using i_sample on sample (cost=0.00..8.27 rows=1 width=2) (14 rows) Explaining the Postgres Query Optimizer 28 / 56
  • 29. Which Join Method? ◮ Nested Loop ◮ With Inner Sequential Scan ◮ With Inner Index Scan ◮ Hash Join ◮ Merge Join Explaining the Postgres Query Optimizer 29 / 56
  • 30. What Is in pg_proc.oid? SELECT oid FROM pg_proc ORDER BY 1 LIMIT 8; oid ----- 31 33 34 35 38 39 40 41 (8 rows) Explaining the Postgres Query Optimizer 30 / 56
  • 31. Create Temporary Tables from pg_proc and pg_class CREATE TEMPORARY TABLE sample1 (id, junk) AS SELECT oid, repeat(’x’, 250) FROM pg_proc ORDER BY random(); -- add rows in random order SELECT 2256 CREATE TEMPORARY TABLE sample2 (id, junk) AS SELECT oid, repeat(’x’, 250) FROM pg_class ORDER BY random(); -- add rows in random order SELECT 260 These tables have no indexes and no optimizer statistics. Explaining the Postgres Query Optimizer 31 / 56
  • 32. Join the Two Tables with a Tight Restriction EXPLAIN SELECT sample2.junk FROM sample1 JOIN sample2 ON (sample1.id = sample2.id) WHERE sample1.id = 33; QUERY PLAN --------------------------------------------------------------------- Nested Loop (cost=0.00..234.68 rows=300 width=32) -> Seq Scan on sample1 (cost=0.00..205.54 rows=50 width=4) Filter: (id = 33::oid) -> Materialize (cost=0.00..25.41 rows=6 width=36) -> Seq Scan on sample2 (cost=0.00..25.38 rows=6 width=36) Filter: (id = 33::oid) (6 rows) Explaining the Postgres Query Optimizer 32 / 56
  • 33. Nested Loop Join with Inner Sequential Scan aag aar aay aag aas aar aaa aay aai aag No Setup Required aai Used For Small Tables Outer Inner Explaining the Postgres Query Optimizer 33 / 56
  • 34. Pseudocode for Nested Loop Join with Inner Sequential Scan for (i = 0; i < length(outer); i++) for (j = 0; j < length(inner); j++) if (outer[i] == inner[j]) output(outer[i], inner[j]); Explaining the Postgres Query Optimizer 34 / 56
  • 35. Join the Two Tables with a Looser Restriction EXPLAIN SELECT sample1.junk FROM sample1 JOIN sample2 ON (sample1.id = sample2.id) WHERE sample2.id > 33; QUERY PLAN ---------------------------------------------------------------------- Hash Join (cost=30.50..950.88 rows=20424 width=32) Hash Cond: (sample1.id = sample2.id) -> Seq Scan on sample1 (cost=0.00..180.63 rows=9963 width=36) -> Hash (cost=25.38..25.38 rows=410 width=4) -> Seq Scan on sample2 (cost=0.00..25.38 rows=410 width=4) Filter: (id > 33::oid) (6 rows) Explaining the Postgres Query Optimizer 35 / 56
  • 36. Hash Join Hashed Must fit in Main Memory aak aar aak aay aaraam aao aaw aay aag aas Outer Inner Explaining the Postgres Query Optimizer 36 / 56
  • 37. Pseudocode for Hash Join for (j = 0; j < length(inner); j++) hash_key = hash(inner[j]); append(hash_store[hash_key], inner[j]); for (i = 0; i < length(outer); i++) hash_key = hash(outer[i]); for (j = 0; j < length(hash_store[hash_key]); j++) if (outer[i] == hash_store[hash_key][j]) output(outer[i], inner[j]); Explaining the Postgres Query Optimizer 37 / 56
  • 38. Join the Two Tables with No Restriction EXPLAIN SELECT sample1.junk FROM sample1 JOIN sample2 ON (sample1.id = sample2.id); QUERY PLAN ------------------------------------------------------------------------- Merge Join (cost=927.72..1852.95 rows=61272 width=32) Merge Cond: (sample2.id = sample1.id) -> Sort (cost=85.43..88.50 rows=1230 width=4) Sort Key: sample2.id -> Seq Scan on sample2 (cost=0.00..22.30 rows=1230 width=4) -> Sort (cost=842.29..867.20 rows=9963 width=36) Sort Key: sample1.id -> Seq Scan on sample1 (cost=0.00..180.63 rows=9963 width=36) (8 rows) Explaining the Postgres Query Optimizer 38 / 56
  • 39. Merge Join Sorted Sorted Ideal for Large Tables An Index Can Be Used to Eliminate the Sort aaa aab aac aad aaa aab aab aaf aaf aac aae Outer Inner Explaining the Postgres Query Optimizer 39 / 56
  • 40. Pseudocode for Merge Join sort(outer); sort(inner); i = 0; j = 0; save_j = 0; while (i < length(outer)) if (outer[i] == inner[j]) output(outer[i], inner[j]); if (outer[i] <= inner[j] && j < length(inner)) j++; if (outer[i] < inner[j]) save_j = j; else i++; j = save_j; Explaining the Postgres Query Optimizer 40 / 56
  • 41. Order of Joined Relations Is Insignificant EXPLAIN SELECT sample2.junk FROM sample2 JOIN sample1 ON (sample2.id = sample1.id); QUERY PLAN ------------------------------------------------------------------------ Merge Join (cost=927.72..1852.95 rows=61272 width=32) Merge Cond: (sample2.id = sample1.id) -> Sort (cost=85.43..88.50 rows=1230 width=36) Sort Key: sample2.id -> Seq Scan on sample2 (cost=0.00..22.30 rows=1230 width=36) -> Sort (cost=842.29..867.20 rows=9963 width=4) Sort Key: sample1.id -> Seq Scan on sample1 (cost=0.00..180.63 rows=9963 width=4) (8 rows) The most restrictive relation, e.g. sample2, is always on the outer side of merge joins. All previous merge joins also had sample2 in outer position. Explaining the Postgres Query Optimizer 41 / 56
  • 42. Add Optimizer Statistics ANALYZE sample1; ANALYZE sample2; Explaining the Postgres Query Optimizer 42 / 56
  • 43. This Was a Merge Join without Optimizer Statistics EXPLAIN SELECT sample2.junk FROM sample1 JOIN sample2 ON (sample1.id = sample2.id); QUERY PLAN ------------------------------------------------------------------------ Hash Join (cost=15.85..130.47 rows=260 width=254) Hash Cond: (sample1.id = sample2.id) -> Seq Scan on sample1 (cost=0.00..103.56 rows=2256 width=4) -> Hash (cost=12.60..12.60 rows=260 width=258) -> Seq Scan on sample2 (cost=0.00..12.60 rows=260 width=258) (5 rows) Explaining the Postgres Query Optimizer 43 / 56
  • 44. Outer Joins Can Affect Optimizer Join Usage EXPLAIN SELECT sample1.junk FROM sample1 RIGHT OUTER JOIN sample2 ON (sample1.id = sample2.id); QUERY PLAN -------------------------------------------------------------------------- Hash Left Join (cost=131.76..148.26 rows=260 width=254) Hash Cond: (sample2.id = sample1.id) -> Seq Scan on sample2 (cost=0.00..12.60 rows=260 width=4) -> Hash (cost=103.56..103.56 rows=2256 width=258) -> Seq Scan on sample1 (cost=0.00..103.56 rows=2256 width=258) (5 rows) Use of hashes for outer joins was added in Postgres 9.1. Explaining the Postgres Query Optimizer 44 / 56
  • 45. Cross Joins Are Nested Loop Joins without Join Restriction EXPLAIN SELECT sample1.junk FROM sample1 CROSS JOIN sample2; QUERY PLAN ---------------------------------------------------------------------- Nested Loop (cost=0.00..7448.81 rows=586560 width=254) -> Seq Scan on sample1 (cost=0.00..103.56 rows=2256 width=254) -> Materialize (cost=0.00..13.90 rows=260 width=0) -> Seq Scan on sample2 (cost=0.00..12.60 rows=260 width=0) (4 rows) Explaining the Postgres Query Optimizer 45 / 56
  • 46. Create Indexes CREATE INDEX i_sample1 on sample1 (id); CREATE INDEX i_sample2 on sample2 (id); Explaining the Postgres Query Optimizer 46 / 56
  • 47. Nested Loop with Inner Index Scan Now Possible EXPLAIN SELECT sample2.junk FROM sample1 JOIN sample2 ON (sample1.id = sample2.id) WHERE sample1.id = 33; QUERY PLAN --------------------------------------------------------------------------------- Nested Loop (cost=0.00..16.55 rows=1 width=254) -> Index Scan using i_sample1 on sample1 (cost=0.00..8.27 rows=1 width=4) Index Cond: (id = 33::oid) -> Index Scan using i_sample2 on sample2 (cost=0.00..8.27 rows=1 width=258) Index Cond: (sample2.id = 33::oid) (5 rows) Explaining the Postgres Query Optimizer 47 / 56
  • 48. Nested Loop Join with Inner Index Scan aag aar aai aay aag aas aar aaa aay aai aag No Setup Required Index Lookup Index Must Already Exist Outer Inner Explaining the Postgres Query Optimizer 48 / 56
  • 49. Pseudocode for Nested Loop Join with Inner Index Scan for (i = 0; i < length(outer); i++) index_entry = get_first_match(outer[j]) while (index_entry) output(outer[i], inner[index_entry]); index_entry = get_next_match(index_entry); Explaining the Postgres Query Optimizer 49 / 56
  • 50. Query Restrictions Affect Join Usage EXPLAIN SELECT sample2.junk FROM sample1 JOIN sample2 ON (sample1.id = sample2.id) WHERE sample2.junk ˜ ’^aaa’; QUERY PLAN ------------------------------------------------------------------------------- Nested Loop (cost=0.00..21.53 rows=1 width=254) -> Seq Scan on sample2 (cost=0.00..13.25 rows=1 width=258) Filter: (junk ˜ ’^aaa’::text) -> Index Scan using i_sample1 on sample1 (cost=0.00..8.27 rows=1 width=4) Index Cond: (sample1.id = sample2.id) (5 rows) No junk rows begin with ’aaa’. Explaining the Postgres Query Optimizer 50 / 56
  • 51. All ’junk’ Columns Begin with ’xxx’ EXPLAIN SELECT sample2.junk FROM sample1 JOIN sample2 ON (sample1.id = sample2.id) WHERE sample2.junk ˜ ’^xxx’; QUERY PLAN ------------------------------------------------------------------------ Hash Join (cost=16.50..131.12 rows=260 width=254) Hash Cond: (sample1.id = sample2.id) -> Seq Scan on sample1 (cost=0.00..103.56 rows=2256 width=4) -> Hash (cost=13.25..13.25 rows=260 width=258) -> Seq Scan on sample2 (cost=0.00..13.25 rows=260 width=258) Filter: (junk ˜ ’^xxx’::text) (6 rows) Hash join was chosen because many more rows are expected. The smaller table, e.g. sample2, is always hashed. Explaining the Postgres Query Optimizer 51 / 56
  • 52. Without LIMIT, Hash Is Used for this Unrestricted Join EXPLAIN SELECT sample2.junk FROM sample1 JOIN sample2 ON (sample1.id = sample2.id); QUERY PLAN ------------------------------------------------------------------------ Hash Join (cost=15.85..130.47 rows=260 width=254) Hash Cond: (sample1.id = sample2.id) -> Seq Scan on sample1 (cost=0.00..103.56 rows=2256 width=4) -> Hash (cost=12.60..12.60 rows=260 width=258) -> Seq Scan on sample2 (cost=0.00..12.60 rows=260 width=258) (5 rows) Explaining the Postgres Query Optimizer 52 / 56
  • 53. LIMIT Can Affect Join Usage EXPLAIN SELECT sample2.id, sample2.junk FROM sample1 JOIN sample2 ON (sample1.id = sample2.id) ORDER BY 1 LIMIT 1; QUERY PLAN ------------------------------------------------------------------------------------------ Limit (cost=0.00..1.83 rows=1 width=258) -> Nested Loop (cost=0.00..477.02 rows=260 width=258) -> Index Scan using i_sample2 on sample2 (cost=0.00..52.15 rows=260 width=258) -> Index Scan using i_sample1 on sample1 (cost=0.00..1.62 rows=1 width=4) Index Cond: (sample1.id = sample2.id) (5 rows) Explaining the Postgres Query Optimizer 53 / 56
  • 54. LIMIT 10 EXPLAIN SELECT sample2.id, sample2.junk FROM sample1 JOIN sample2 ON (sample1.id = sample2.id) ORDER BY 1 LIMIT 10; QUERY PLAN ------------------------------------------------------------------------------------------ Limit (cost=0.00..18.35 rows=10 width=258) -> Nested Loop (cost=0.00..477.02 rows=260 width=258) -> Index Scan using i_sample2 on sample2 (cost=0.00..52.15 rows=260 width=258) -> Index Scan using i_sample1 on sample1 (cost=0.00..1.62 rows=1 width=4) Index Cond: (sample1.id = sample2.id) (5 rows) Explaining the Postgres Query Optimizer 54 / 56
  • 55. LIMIT 100 Switches to Hash Join EXPLAIN SELECT sample2.id, sample2.junk FROM sample1 JOIN sample2 ON (sample1.id = sample2.id) ORDER BY 1 LIMIT 100; QUERY PLAN ------------------------------------------------------------------------------------ Limit (cost=140.41..140.66 rows=100 width=258) -> Sort (cost=140.41..141.06 rows=260 width=258) Sort Key: sample2.id -> Hash Join (cost=15.85..130.47 rows=260 width=258) Hash Cond: (sample1.id = sample2.id) -> Seq Scan on sample1 (cost=0.00..103.56 rows=2256 width=4) -> Hash (cost=12.60..12.60 rows=260 width=258) -> Seq Scan on sample2 (cost=0.00..12.60 rows=260 width=258) (8 rows) Explaining the Postgres Query Optimizer 55 / 56