SlideShare ist ein Scribd-Unternehmen logo
1 von 40
Downloaden Sie, um offline zu lesen
Cabrera Cano, Enrique
May 2014
Assignment Project
M.Sc. Energy Systems, FH Aachen
6/11/2014 7:27 PM 1
 Introduction
 Objectives
 Theoretical Background
 Experimental Settings
◦ In-plane resistivity measurement
◦ Through-plane resistivity measurement
 Results
◦ In-plane resistivity measurement
◦ Through-plane resistivity measurement
 Conclusions
 Appendix
26/11/2014 7:27 PM
 Membrane electrode assembly (MEA)
 Gaskets and End plates
 Bipolar Plates
6/11/2014 7:27 PM 3
1. Bendzulla, Anne: Von der Komponente zum Stack: Entwicklung und Auslegung von HT-PEFC-Stacks der 5 kW-Klassen; Forschungszentrum Jülich
GmbH Zentralbibliothek (2010); ISBN: 978-3-89336-634-7
 Distribution of gases,
 Prevention of gas leakage,
 Separation of the fuel and oxygen/air,
 Collection of electrical current produced
 Chemical, mechanical and thermal stability
46/11/2014 7:27 PM
1. Bendzulla, Anne: Von der Komponente zum Stack: Entwicklung und Auslegung von HT-PEFC-Stacks der 5 kW-Klassen; Forschungszentrum Jülich
GmbH Zentralbibliothek (2010); ISBN: 978-3-89336-634-7
5
Nr. Requirement Target Unit
1 Electrical resistivity ˂ 0.01 Ω cm
2 Corrosion resistance ˂ 16 µA/cm²
3 Thermal conductivity ˃ 10 W/mK
4 Compression strength 42 bar
5 Density (Weight/Volume) ˂ 5 g/cm3
6 Costs ˂ 0.0045 US$/cm²
6/11/2014 7:27 PM
1. Bendzulla, Anne: Von der Komponente zum Stack: Entwicklung und Auslegung von HT-PEFC-Stacks der 5 kW-Klassen; Forschungszentrum Jülich GmbH
Zentralbibliothek (2010); ISBN: 978-3-89336-634-7
2. Methta, Vial; Smith, Joyce: Review and analysis of PEM fuel cell design and manufacturing; Journal of Power Sources 114 (2003) 32-53
 Introduction
 Objectives
 Theoretical Background
 Experimental Settings
◦ In-plane resistivity measurement
◦ Through-plane resistivity measurement
 Results
◦ In-plane resistivity measurement
◦ Through-plane resistivity measurement
 Conclusions
 Appendix
66/11/2014 7:27 PM
1. Analysis of Electrical properties of three different
Bipolar plate materials
◦ 70%, 75%, 80% weight percentage of graphite, rest of
polypropylene
2. Influence of the manufacturing process on the
measured material
3. Influence of applied pressure on the total
resistance
76/11/2014 7:27 PM
 Introduction
 Objectives
 Theoretical Background
 Experimental Settings
◦ In-plane resistivity measurement
◦ Through-plane resistivity measurement
 Results
◦ In-plane resistivity measurement
◦ Through-plane resistivity measurement
 Conclusions
 Appendix
86/11/2014 7:27 PM
 Resistance depends on:
I. The type of material
II. The length
III. The thickness
IV. The temperature
 For a given material at
constant temperature
6/11/2014 7:27 PM 9
3. Mc Tavish, J.P.: Foundation Electrical Engineering; Prentice Hall International (UK) Ltd. (1996); ISBN: 0-13-309931-8
𝑹 ∼
𝒍
𝑨
 Constant of resistivity (ρ) takes into account the
type of material:
𝑹 = 𝝆
𝒍
𝑨
 Conductivity (σ ) reciprocal of resistivity
𝑮 =
𝟏
𝑹[𝜴]
= 𝑺 𝑮 = 𝝈
𝑨
𝒍
106/11/2014 7:27 PM
3. Mc Tavish, J.P.: Foundation Electrical Engineering; Prentice Hall International (UK) Ltd. (1996); ISBN: 0-13-309931-8
4. Maxfield, Clive: Electrical Engineering, Elsevier Inc.,United States of America (2008); ISBN: 978-1-85617-528-9
 Pure Graphite 6
◦ Electrical conductivity
◦ Thermal conductivity
◦ sophisticated & costly
processing
◦ unsuitable for reasons of
stability
1. Electro graphite
2. Carbon – carbon composite
3. Sheet Metal
4. Flexible graphite foil
5. Graphite polymer composite 6
6/11/2014 7:27 PM 11
 Proportion between graphite
and polymer 1:
◦ 75% - 80% of graphite
◦ Balance: electrical conductivity and
mechanical stability
1. Bendzulla, Anne: Von der Komponente zum Stack: Entwicklung und Auslegung von HT-PEFC-Stacks der 5 kW-Klassen; Forschungszentrum
Jülich GmbH Zentralbibliothek (2010); ISBN: 978-3-89336-634-7
6. Middelman, E.;Kout, W.; Vogelaar, B.;Lenssen, J.; de Waal, E.: Bipolar plates for PEM fuel cells; Journal of Power Sources 118 (2003) 44 – 46
 Compression molding
 Injection molding
 Two-component
injection molding
 Preform molding
 Advantages
◦ Automated production,
◦ Short cycle time and
◦ Accurate size
 Disadvantages
◦ Excessive mold wear
◦ Limited size of thickness
ratio and
◦ Could affect conductivity
6/11/2014 7:27 PM 12
6. Middelman, E.;Kout, W.; Vogelaar, B.;Lenssen, J.; de Waal, E.: Bipolar plates for PEM fuel cells; Journal of Power Sources 118 (2003) 44 – 46
 Bulk resistance
◦ Ohmic resistance of the
component or material
 Contact resistance
◦ Resistance at the interface of
two different surfaces in contact
with each other
 Total resistance:
◦ Contact resistance + bulk
resistance of the individual
components
6/11/2014 7:27 PM 13
5. Prakash, C. Ghosh; Dey Tapobrata; Singdeo, Debanand: Contact resistance between bipolar plate and gas diffusion layer in high temperature
polymer electrolyte fuel cells; International Journal of Hydrogen Energy 39 (2014) 987-995
𝑹 𝐓𝐎𝐓 = 𝑹 𝟏/𝟐 + 𝑹 𝟐/𝟑 + 𝑹 𝟑 + 𝑹 𝟐 + 𝑹 𝟏
 Introduction
 Objectives
 Theoretical Background
 Experimental Settings
◦ In-plane resistivity measurement
◦ Through-plane resistivity measurement
 Results
◦ In-plane resistivity measurement
◦ Through-plane resistivity measurement
 Conclusions
 Appendix
146/11/2014 7:27 PM
25mm
38mm
2.1mm
Thirty samples made from
three different materials
each in equal number
156/11/2014 7:27 PM
Two different configurations were designed:
• in-plane and
• through-plane
 Two different orientations:
1. in the injection direction
2. perpendicular to the injection direction
6/11/2014 7:27 PM 16
Parameter Value Unit
Current flow area of
injection direction
orientation
0.525 𝑐𝑚2
Current flow area of
perpendicular to injection
direction orientation
0.798 𝑐𝑚2
Electrical Current 0.85 A
Sample
Multimiter
Multimiter
Power supply
176/11/2014 7:27 PM
VR
I
ΔX=2cm
I
a
b
c
I
1 2 3
a = 6.25 mm
b= 12.5 mm
c= 18.75 mm
186/11/2014 7:27 PM
ΔX=2cm
I
a
b
c
I
4 5 6
a = 9.50 mm
b= 19.00 mm
c= 28.50 mm
196/11/2014 7:27 PM
Voltage measurement
Current measurement
Beam
Weight
Power supply
206/11/2014 7:27 PM
 Pressure distribution
analysis
 Parameters
6/11/2014 7:27 PM 21
Parameter Value Unit
Reference measurement
area (45mm*45mm)
20.25 𝑐𝑚2
Sample measurement area
(38mm*25mm)
9.50 𝑐𝑚2
Current 1.00 A
 Determination of total force ‘F2’
and pressure from a 5.13kg mass
6/11/2014 7:27 PM 22
𝐹2 = 𝐹0 + 𝑖 ∗ 𝑚 ∗ 𝑔
𝐹2 = 410𝑁 + 32 ∗ 5,13𝑘𝑔 ∗
9.81𝑚
𝑠2
= 2,020.41𝑁
𝑃 =
𝐹
𝐴
=
2,020.41𝑁
0.00095𝑚2
= 2126747.37𝑃𝑎 = 21.27𝑏𝑎𝑟
𝑀1 = 𝑀2
𝐹1 ∗ 𝑥 + 𝑦 = 𝐹2 ∗ 𝑥
𝑖 =
𝐹2
𝐹1
=
𝑥+𝑦
𝑥
=
484𝑚𝑚
15𝑚𝑚
= 32.26
 Ratio of the output force
to the input force (i)
𝑅 𝑇𝑂𝑇 = 𝑅 𝐶𝑃/𝑆𝐹 + 𝑅 𝑆𝐹 + 𝑅 𝑆𝐹/𝐺𝐷𝐿 + 𝑅 𝐺𝐷𝐿 +𝑅 𝐺𝐷𝐿/𝑆 +𝑅 𝑆 +𝑅 𝐺𝐷𝐿/𝑆 +𝑅 𝐺𝐷𝐿 +𝑅 𝑆𝐹/𝐺𝐷𝐿 +𝑅 𝑆𝐹 +𝑅 𝐶𝑃/𝑆𝐹
𝑅 𝑇𝑂𝑇 = 2𝑅 𝐶𝑃/𝑆𝐹 + 2𝑅 𝑆𝐹 + 2𝑅 𝑆𝐹/𝐺𝐷𝐿 + 2𝑅 𝐺𝐷𝐿 +2𝑅 𝐺𝐷𝐿/𝑆 +𝑅 𝑆
As 𝑅 𝐺𝐷𝐿 ≈ 0, it is negligible and hence,
𝑅 𝑇𝑂𝑇 = 2𝑅 𝐶𝑃/𝑆𝐹 + 2𝑅 𝑆𝐹 + 2𝑅 𝑆𝐹/𝐺𝐷𝐿 +2𝑅 𝐺𝐷𝐿/𝑆 +𝑅 𝑆
The following total resistance was determined:
236/11/2014 7:27 PM
For the reference measurement, the total resistance was determined:
𝑅 𝑇𝑂𝑇,𝑅𝑒𝑓. = 𝑅 𝐶𝑃/𝑆𝐹 + 𝑅 𝑆𝐹 + 𝑅 𝑆𝐹/𝐺𝐷𝐿 + 𝑅 𝐺𝐷𝐿 +𝑅 𝑆𝐹/𝐺𝐷𝐿 +𝑅 𝑆𝐹 +𝑅 𝐶𝑃/𝑆𝐹
𝑅 𝑇𝑂𝑇,𝑅𝑒𝑓. = 2𝑅 𝐶𝑃/𝑆𝐹 + 2𝑅 𝑆𝐹 + 2𝑅 𝑆𝐹/𝐺𝐷𝐿 + 𝑅 𝐺𝐷𝐿
As 𝑅 𝐺𝐷𝐿 ≈ 0, it is negligible and hence,
𝑅 𝑇𝑂𝑇,𝑅𝑒𝑓. = 2𝑅 𝐶𝑃/𝑆𝐹 + 2𝑅 𝑆𝐹 + 2𝑅 𝑆𝐹/𝐺𝐷𝐿
246/11/2014 7:27 PM
𝑅 𝑇𝑂𝑇 − 𝑅 𝑇𝑂𝑇,𝑅𝑒𝑓. = 2𝑅 𝐶𝑃/𝑆𝐹 + 2𝑅 𝑆𝐹 + 2𝑅 𝑆𝐹/𝐺𝐷𝐿 +2𝑅 𝐺𝐷𝐿/𝑆 +𝑅 𝑆 − (2𝑅 𝐶𝑃/𝑆𝐹 + 2𝑅 𝑆𝐹 + 2𝑅 𝑆𝐹/𝐺𝐷𝐿)
𝑅 𝑇𝑂𝑇 − 𝑅 𝑇𝑂𝑇,𝑅𝑒𝑓. = 2𝑅 𝐺𝐷𝐿/𝑆 + 𝑅 𝑆
Sample resistance:
 Introduction
 Objectives
 Theoretical Background
 Experimental Settings
◦ In-plane resistivity measurement
◦ Through-plane resistivity measurement
 Results
◦ In-plane resistivity measurement
◦ Through-plane resistivity measurement
 Conclusions
 Appendix
256/11/2014 7:27 PM
0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
30% PP 25% PP 20% PP
InplaneResistivity/Ωcm
Material
Perpendicular to injection
direction
Injection Direction
266/11/2014 7:27 PM
0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00
30% PP 25% PP 20% PP
InplaneConductivity/S/cm
Material
Perpendicular to injection direction
Injection Direction
276/11/2014 7:27 PM
 Introduction
 Objectives
 Theoretical Background
 Experimental Settings
◦ In-plane resistivity measurement
◦ Through-plane resistivity measurement
 Results
◦ In-plane resistivity measurement
◦ Through-plane resistivity measurement
 Conclusions
 Appendix
286/11/2014 7:27 PM
0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
70% graphite-30%PP 75% graphite-25%PP 80% graphite-20%PP
Through-planeResistivity/Ωcm
Materials
4,32
6,44
13,07
21,27
30,02
38,26
[bar]
296/11/2014 7:27 PM
0.0000
0.0500
0.1000
0.1500
0.2000
0.2500
0.3000
0.3500
0.4000
70% graphite-30%PP 75% graphite-25%PP 80% graphite-20%PP
Through-planeConductivity/S/cm
Materials
4,32
6,44
13,07
21,27
30,02
38,26
[bar]
306/11/2014 7:27 PM
 Introduction
 Objectives
 Theoretical Background
 Experimental Settings
◦ In-plane resistivity measurement
◦ Through-plane resistivity measurement
 Results
◦ In-plane resistivity measurement
◦ Through-plane resistivity measurement
 Conclusions
 Appendix
316/11/2014 7:27 PM
1. A change from 70% graphite to 80% graphite
increases all conductivities measured by a factor of
7 approximately
◦ The mechanical properties were not analyzed in this measurement
2. The injection direction orientation shows 18 to
29% higher electrical conductivity than the
perpendicular to injection direction orientation
3. An increase of pressure from 4.32 bar to 38.26 bar
shows an improvement on the total conductivity by
a factor of 2.2 – 2.5
◦ Due to the reduction of contact resistance
326/11/2014 7:27 PM
336/11/2014 7:27 PM
1. Bendzulla, Anne: Von der Komponente zum
Stack: Entwicklung und Auslegung von HT-PEFC-
Stacks der 5 kW-Klassen; Forschungszentrum
Jülich GmbH Zentralbibliothek (2010); ISBN: 978-
3-89336-634-7
2. Methta, Vial; Smith, Joyce: Review and analysis of
PEM fuel cell design and manufacturing; Journal
of Power Sources 114 (2003) 32-53
3. Mc Tavish, J.P.: Foundation Electrical Engineering;
Prentice Hall International (UK) Ltd. (1996); ISBN:
0-13-309931-8
6/11/2014 7:27 PM 34
356/11/2014 7:27 PM
4. Maxfield, Clive: Electrical Engineering, Elsevier
Inc.,United States of America (2008); ISBN: 978-
1-85617-528-9
5. Prakash, C. Ghosh; Dey Tapobrata; Singdeo,
Debanand: Contact resistance between bipolar
plate and gas diffusion layer in high temperature
polymer electrolyte fuel cells; International
Journal of Hydrogen Energy 39 (2014) 987-995
6. Middelman, E.;Kout, W.; Vogelaar, B.;Lenssen, J.;
de Waal, E.: Bipolar plates for PEM fuel cells;
Journal of Power Sources 118 (2003) 44 – 46
 Introduction
 Objectives
 Theoretical Background
 Experimental Settings
◦ In-plane resistivity measurement
◦ Through-plane resistivity measurement
 Results
◦ In-plane resistivity measurement
◦ Through-plane resistivity measurement
 Conclusions
 Appendix
366/11/2014 7:27 PM
Nr. Name Weights (kg)
Total Weight
(kg)
Force
“F2” (N)
Pressure Reference
Measurement (bar)
Pressure at
sample surface
(bar)
1. 0 0 0 410.00 2.02 4.32
2. 1 0.643 0.643 611.85 3.02 6.44
3. 2 2.648 2.648 1241.26 6.13 13.07
4. 4 5.13 5.13 2020.41 9.98 21.27
5. 4+2 5.13+2.648 7.778 2851.67 14.08 30.02
6. 4+3 5.13+5.143 10.273 3634.90 17.95 38.26
376/11/2014 7:27 PM
Injection Direction Perpendicular to injection direction
Material / Data
Resistivity
(Ωcm)
St.
Dev.
Conductivi
ty (S/cm)
St.
Dev.
Resistivit
y (Ωcm)
St.
Dev.
Conductivi
ty (S/cm)
St.
Dev.
70% graphite-
30%PP 0.901 0.121 1.134 0.188 1.168 0.176 0.880 0.162
75% graphite-
25%PP 0.299 0.040 3.404 0.481 0.385 0.052 2.647 0.388
80% graphite-
20%PP 0.130 0.013 7.742 0.751 0.155 0.022 6.579 0.974
386/11/2014 7:27 PM
Material 70% graphite-30%PP 75% graphite-25%PP 80% graphite-20%PP
Pressure
(Bar)/Data
Resistivity
(Ωcm) St. Dev.
Resistivity
(Ωcm) St. Dev.
Resistivity
(Ωcm) St. Dev.
4.32 55.18 18.73 30.53 4.64 8.3623 1.3562
6.44 48.10 16.72 26.50 4.27 7.1594 1.0763
13.07 36.21 13.05 19.13 3.10 5.1281 0.6734
21.27 29.93 10.48 15.01 2.21 4.1027 0.5338
30.02 26.91 9.30 13.14 1.84 3.5917 0.4168
38.26 25.04 8.71 12.08 1.65 3.3262 0.3812
396/11/2014 7:27 PM
Material 70% graphite-30%PP 75% graphite-25%PP 80% graphite-20%PP
Pressure
(Bar)/Data Conductivity (S/cm)
St.
Dev.
Conductivity
(S/cm) St. Dev.
Conductivity
(S/cm)
St.
Dev.
4.32 0.0194 0.0042 0.0335 0.0053 0.1229 0.0217
6.44 0.0224 0.0050 0.0387 0.0063 0.1429 0.0228
13.07 0.0299 0.0070 0.0536 0.0084 0.1983 0.0265
21.27 0.0360 0.0084 0.0680 0.0096 0.2480 0.0347
30.02 0.0400 0.0092 0.0775 0.0104 0.2826 0.0383
38.26 0.0430 0.0098 0.0842 0.0111 0.3045 0.0357
406/11/2014 7:27 PM

Weitere ähnliche Inhalte

Ähnlich wie Assignment Presentation Final

Research Vision
Research VisionResearch Vision
Research Visionbahadori
 
6 structural analysis of pipeline spans oti 93 613
6 structural analysis of pipeline spans oti 93 6136 structural analysis of pipeline spans oti 93 613
6 structural analysis of pipeline spans oti 93 613Dither Gutiérrez
 
A Statistical Approach to Optimize Parameters for Electrodeposition of Indium...
A Statistical Approach to Optimize Parameters for Electrodeposition of Indium...A Statistical Approach to Optimize Parameters for Electrodeposition of Indium...
A Statistical Approach to Optimize Parameters for Electrodeposition of Indium...Arkansas State University
 
Static Strain Measurement (Over Hanging Beam).pptx
Static Strain Measurement (Over Hanging Beam).pptxStatic Strain Measurement (Over Hanging Beam).pptx
Static Strain Measurement (Over Hanging Beam).pptxAshok Banagar
 
TENSILE TEST REPORT
TENSILE TEST REPORTTENSILE TEST REPORT
TENSILE TEST REPORTmusadoto
 
Research Vision
Research VisionResearch Vision
Research Visionbahadori
 
Research Vision for Soft-ware Development
Research Vision for Soft-ware DevelopmentResearch Vision for Soft-ware Development
Research Vision for Soft-ware Developmentbahadori
 
To study various factors on which the internal resistance/EMF depends
To study various factors on which the internal resistance/EMF dependsTo study various factors on which the internal resistance/EMF depends
To study various factors on which the internal resistance/EMF dependsaslipranay
 
Masters project atmoshperic turbulence
Masters project   atmoshperic turbulenceMasters project   atmoshperic turbulence
Masters project atmoshperic turbulenceJohnaton McAdam
 
The Effect Of Testing Parameters On The Functional Impact Resistance Of UPVC ...
The Effect Of Testing Parameters On The Functional Impact Resistance Of UPVC ...The Effect Of Testing Parameters On The Functional Impact Resistance Of UPVC ...
The Effect Of Testing Parameters On The Functional Impact Resistance Of UPVC ...LDriscoll11
 
Final Presentation
Final PresentationFinal Presentation
Final PresentationAsh Abel
 
Experimental evaluation of strain in concrete elements
Experimental evaluation of strain in concrete elementsExperimental evaluation of strain in concrete elements
Experimental evaluation of strain in concrete elementsnisarg gandhi
 
Final Presentation_25 May
Final Presentation_25 MayFinal Presentation_25 May
Final Presentation_25 MayKallol Barua
 
IRJET- Parametric Optimization of Co2 Welding on Fe410 using Taguchi Tech...
IRJET-  	  Parametric Optimization of Co2 Welding on Fe410 using Taguchi Tech...IRJET-  	  Parametric Optimization of Co2 Welding on Fe410 using Taguchi Tech...
IRJET- Parametric Optimization of Co2 Welding on Fe410 using Taguchi Tech...IRJET Journal
 
Photovoltaic thermal (PV/T) collectors with nanofluids and nano-Phase Change ...
Photovoltaic thermal (PV/T) collectors with nanofluids and nano-Phase Change ...Photovoltaic thermal (PV/T) collectors with nanofluids and nano-Phase Change ...
Photovoltaic thermal (PV/T) collectors with nanofluids and nano-Phase Change ...Ali Al-Waeli
 
EPS 2011 - 05. Seismic Isolation of Earth Retaining Walls Using EPS Compressi...
EPS 2011 - 05. Seismic Isolation of Earth Retaining Walls Using EPS Compressi...EPS 2011 - 05. Seismic Isolation of Earth Retaining Walls Using EPS Compressi...
EPS 2011 - 05. Seismic Isolation of Earth Retaining Walls Using EPS Compressi...EPS HELLAS
 
A Review Paper on Improving the Efficiency of Solar Panel
A Review Paper on Improving the Efficiency of Solar PanelA Review Paper on Improving the Efficiency of Solar Panel
A Review Paper on Improving the Efficiency of Solar PanelIRJET Journal
 
Shielding calculation
Shielding calculationShielding calculation
Shielding calculationBBAdhikari
 
Thermophysical properties of Single Wall Carbon Nanotubes and its effect on e...
Thermophysical properties of Single Wall Carbon Nanotubes and its effect on e...Thermophysical properties of Single Wall Carbon Nanotubes and its effect on e...
Thermophysical properties of Single Wall Carbon Nanotubes and its effect on e...Sabiha Akter Monny
 

Ähnlich wie Assignment Presentation Final (20)

Research Vision
Research VisionResearch Vision
Research Vision
 
6 structural analysis of pipeline spans oti 93 613
6 structural analysis of pipeline spans oti 93 6136 structural analysis of pipeline spans oti 93 613
6 structural analysis of pipeline spans oti 93 613
 
A Statistical Approach to Optimize Parameters for Electrodeposition of Indium...
A Statistical Approach to Optimize Parameters for Electrodeposition of Indium...A Statistical Approach to Optimize Parameters for Electrodeposition of Indium...
A Statistical Approach to Optimize Parameters for Electrodeposition of Indium...
 
Static Strain Measurement (Over Hanging Beam).pptx
Static Strain Measurement (Over Hanging Beam).pptxStatic Strain Measurement (Over Hanging Beam).pptx
Static Strain Measurement (Over Hanging Beam).pptx
 
TENSILE TEST REPORT
TENSILE TEST REPORTTENSILE TEST REPORT
TENSILE TEST REPORT
 
Research Vision
Research VisionResearch Vision
Research Vision
 
Research Vision for Soft-ware Development
Research Vision for Soft-ware DevelopmentResearch Vision for Soft-ware Development
Research Vision for Soft-ware Development
 
To study various factors on which the internal resistance/EMF depends
To study various factors on which the internal resistance/EMF dependsTo study various factors on which the internal resistance/EMF depends
To study various factors on which the internal resistance/EMF depends
 
Masters project atmoshperic turbulence
Masters project   atmoshperic turbulenceMasters project   atmoshperic turbulence
Masters project atmoshperic turbulence
 
The Effect Of Testing Parameters On The Functional Impact Resistance Of UPVC ...
The Effect Of Testing Parameters On The Functional Impact Resistance Of UPVC ...The Effect Of Testing Parameters On The Functional Impact Resistance Of UPVC ...
The Effect Of Testing Parameters On The Functional Impact Resistance Of UPVC ...
 
Final Presentation
Final PresentationFinal Presentation
Final Presentation
 
Experimental evaluation of strain in concrete elements
Experimental evaluation of strain in concrete elementsExperimental evaluation of strain in concrete elements
Experimental evaluation of strain in concrete elements
 
Final Presentation_25 May
Final Presentation_25 MayFinal Presentation_25 May
Final Presentation_25 May
 
IRJET- Parametric Optimization of Co2 Welding on Fe410 using Taguchi Tech...
IRJET-  	  Parametric Optimization of Co2 Welding on Fe410 using Taguchi Tech...IRJET-  	  Parametric Optimization of Co2 Welding on Fe410 using Taguchi Tech...
IRJET- Parametric Optimization of Co2 Welding on Fe410 using Taguchi Tech...
 
Photovoltaic thermal (PV/T) collectors with nanofluids and nano-Phase Change ...
Photovoltaic thermal (PV/T) collectors with nanofluids and nano-Phase Change ...Photovoltaic thermal (PV/T) collectors with nanofluids and nano-Phase Change ...
Photovoltaic thermal (PV/T) collectors with nanofluids and nano-Phase Change ...
 
EPS 2011 - 05. Seismic Isolation of Earth Retaining Walls Using EPS Compressi...
EPS 2011 - 05. Seismic Isolation of Earth Retaining Walls Using EPS Compressi...EPS 2011 - 05. Seismic Isolation of Earth Retaining Walls Using EPS Compressi...
EPS 2011 - 05. Seismic Isolation of Earth Retaining Walls Using EPS Compressi...
 
A Review Paper on Improving the Efficiency of Solar Panel
A Review Paper on Improving the Efficiency of Solar PanelA Review Paper on Improving the Efficiency of Solar Panel
A Review Paper on Improving the Efficiency of Solar Panel
 
Shielding calculation
Shielding calculationShielding calculation
Shielding calculation
 
ADI DAYS - Andrew Ruggiero
ADI DAYS - Andrew RuggieroADI DAYS - Andrew Ruggiero
ADI DAYS - Andrew Ruggiero
 
Thermophysical properties of Single Wall Carbon Nanotubes and its effect on e...
Thermophysical properties of Single Wall Carbon Nanotubes and its effect on e...Thermophysical properties of Single Wall Carbon Nanotubes and its effect on e...
Thermophysical properties of Single Wall Carbon Nanotubes and its effect on e...
 

Assignment Presentation Final

  • 1. Cabrera Cano, Enrique May 2014 Assignment Project M.Sc. Energy Systems, FH Aachen 6/11/2014 7:27 PM 1
  • 2.  Introduction  Objectives  Theoretical Background  Experimental Settings ◦ In-plane resistivity measurement ◦ Through-plane resistivity measurement  Results ◦ In-plane resistivity measurement ◦ Through-plane resistivity measurement  Conclusions  Appendix 26/11/2014 7:27 PM
  • 3.  Membrane electrode assembly (MEA)  Gaskets and End plates  Bipolar Plates 6/11/2014 7:27 PM 3 1. Bendzulla, Anne: Von der Komponente zum Stack: Entwicklung und Auslegung von HT-PEFC-Stacks der 5 kW-Klassen; Forschungszentrum Jülich GmbH Zentralbibliothek (2010); ISBN: 978-3-89336-634-7
  • 4.  Distribution of gases,  Prevention of gas leakage,  Separation of the fuel and oxygen/air,  Collection of electrical current produced  Chemical, mechanical and thermal stability 46/11/2014 7:27 PM 1. Bendzulla, Anne: Von der Komponente zum Stack: Entwicklung und Auslegung von HT-PEFC-Stacks der 5 kW-Klassen; Forschungszentrum Jülich GmbH Zentralbibliothek (2010); ISBN: 978-3-89336-634-7
  • 5. 5 Nr. Requirement Target Unit 1 Electrical resistivity ˂ 0.01 Ω cm 2 Corrosion resistance ˂ 16 µA/cm² 3 Thermal conductivity ˃ 10 W/mK 4 Compression strength 42 bar 5 Density (Weight/Volume) ˂ 5 g/cm3 6 Costs ˂ 0.0045 US$/cm² 6/11/2014 7:27 PM 1. Bendzulla, Anne: Von der Komponente zum Stack: Entwicklung und Auslegung von HT-PEFC-Stacks der 5 kW-Klassen; Forschungszentrum Jülich GmbH Zentralbibliothek (2010); ISBN: 978-3-89336-634-7 2. Methta, Vial; Smith, Joyce: Review and analysis of PEM fuel cell design and manufacturing; Journal of Power Sources 114 (2003) 32-53
  • 6.  Introduction  Objectives  Theoretical Background  Experimental Settings ◦ In-plane resistivity measurement ◦ Through-plane resistivity measurement  Results ◦ In-plane resistivity measurement ◦ Through-plane resistivity measurement  Conclusions  Appendix 66/11/2014 7:27 PM
  • 7. 1. Analysis of Electrical properties of three different Bipolar plate materials ◦ 70%, 75%, 80% weight percentage of graphite, rest of polypropylene 2. Influence of the manufacturing process on the measured material 3. Influence of applied pressure on the total resistance 76/11/2014 7:27 PM
  • 8.  Introduction  Objectives  Theoretical Background  Experimental Settings ◦ In-plane resistivity measurement ◦ Through-plane resistivity measurement  Results ◦ In-plane resistivity measurement ◦ Through-plane resistivity measurement  Conclusions  Appendix 86/11/2014 7:27 PM
  • 9.  Resistance depends on: I. The type of material II. The length III. The thickness IV. The temperature  For a given material at constant temperature 6/11/2014 7:27 PM 9 3. Mc Tavish, J.P.: Foundation Electrical Engineering; Prentice Hall International (UK) Ltd. (1996); ISBN: 0-13-309931-8 𝑹 ∼ 𝒍 𝑨
  • 10.  Constant of resistivity (ρ) takes into account the type of material: 𝑹 = 𝝆 𝒍 𝑨  Conductivity (σ ) reciprocal of resistivity 𝑮 = 𝟏 𝑹[𝜴] = 𝑺 𝑮 = 𝝈 𝑨 𝒍 106/11/2014 7:27 PM 3. Mc Tavish, J.P.: Foundation Electrical Engineering; Prentice Hall International (UK) Ltd. (1996); ISBN: 0-13-309931-8 4. Maxfield, Clive: Electrical Engineering, Elsevier Inc.,United States of America (2008); ISBN: 978-1-85617-528-9
  • 11.  Pure Graphite 6 ◦ Electrical conductivity ◦ Thermal conductivity ◦ sophisticated & costly processing ◦ unsuitable for reasons of stability 1. Electro graphite 2. Carbon – carbon composite 3. Sheet Metal 4. Flexible graphite foil 5. Graphite polymer composite 6 6/11/2014 7:27 PM 11  Proportion between graphite and polymer 1: ◦ 75% - 80% of graphite ◦ Balance: electrical conductivity and mechanical stability 1. Bendzulla, Anne: Von der Komponente zum Stack: Entwicklung und Auslegung von HT-PEFC-Stacks der 5 kW-Klassen; Forschungszentrum Jülich GmbH Zentralbibliothek (2010); ISBN: 978-3-89336-634-7 6. Middelman, E.;Kout, W.; Vogelaar, B.;Lenssen, J.; de Waal, E.: Bipolar plates for PEM fuel cells; Journal of Power Sources 118 (2003) 44 – 46
  • 12.  Compression molding  Injection molding  Two-component injection molding  Preform molding  Advantages ◦ Automated production, ◦ Short cycle time and ◦ Accurate size  Disadvantages ◦ Excessive mold wear ◦ Limited size of thickness ratio and ◦ Could affect conductivity 6/11/2014 7:27 PM 12 6. Middelman, E.;Kout, W.; Vogelaar, B.;Lenssen, J.; de Waal, E.: Bipolar plates for PEM fuel cells; Journal of Power Sources 118 (2003) 44 – 46
  • 13.  Bulk resistance ◦ Ohmic resistance of the component or material  Contact resistance ◦ Resistance at the interface of two different surfaces in contact with each other  Total resistance: ◦ Contact resistance + bulk resistance of the individual components 6/11/2014 7:27 PM 13 5. Prakash, C. Ghosh; Dey Tapobrata; Singdeo, Debanand: Contact resistance between bipolar plate and gas diffusion layer in high temperature polymer electrolyte fuel cells; International Journal of Hydrogen Energy 39 (2014) 987-995 𝑹 𝐓𝐎𝐓 = 𝑹 𝟏/𝟐 + 𝑹 𝟐/𝟑 + 𝑹 𝟑 + 𝑹 𝟐 + 𝑹 𝟏
  • 14.  Introduction  Objectives  Theoretical Background  Experimental Settings ◦ In-plane resistivity measurement ◦ Through-plane resistivity measurement  Results ◦ In-plane resistivity measurement ◦ Through-plane resistivity measurement  Conclusions  Appendix 146/11/2014 7:27 PM
  • 15. 25mm 38mm 2.1mm Thirty samples made from three different materials each in equal number 156/11/2014 7:27 PM Two different configurations were designed: • in-plane and • through-plane
  • 16.  Two different orientations: 1. in the injection direction 2. perpendicular to the injection direction 6/11/2014 7:27 PM 16 Parameter Value Unit Current flow area of injection direction orientation 0.525 𝑐𝑚2 Current flow area of perpendicular to injection direction orientation 0.798 𝑐𝑚2 Electrical Current 0.85 A
  • 18. ΔX=2cm I a b c I 1 2 3 a = 6.25 mm b= 12.5 mm c= 18.75 mm 186/11/2014 7:27 PM
  • 19. ΔX=2cm I a b c I 4 5 6 a = 9.50 mm b= 19.00 mm c= 28.50 mm 196/11/2014 7:27 PM
  • 21.  Pressure distribution analysis  Parameters 6/11/2014 7:27 PM 21 Parameter Value Unit Reference measurement area (45mm*45mm) 20.25 𝑐𝑚2 Sample measurement area (38mm*25mm) 9.50 𝑐𝑚2 Current 1.00 A
  • 22.  Determination of total force ‘F2’ and pressure from a 5.13kg mass 6/11/2014 7:27 PM 22 𝐹2 = 𝐹0 + 𝑖 ∗ 𝑚 ∗ 𝑔 𝐹2 = 410𝑁 + 32 ∗ 5,13𝑘𝑔 ∗ 9.81𝑚 𝑠2 = 2,020.41𝑁 𝑃 = 𝐹 𝐴 = 2,020.41𝑁 0.00095𝑚2 = 2126747.37𝑃𝑎 = 21.27𝑏𝑎𝑟 𝑀1 = 𝑀2 𝐹1 ∗ 𝑥 + 𝑦 = 𝐹2 ∗ 𝑥 𝑖 = 𝐹2 𝐹1 = 𝑥+𝑦 𝑥 = 484𝑚𝑚 15𝑚𝑚 = 32.26  Ratio of the output force to the input force (i)
  • 23. 𝑅 𝑇𝑂𝑇 = 𝑅 𝐶𝑃/𝑆𝐹 + 𝑅 𝑆𝐹 + 𝑅 𝑆𝐹/𝐺𝐷𝐿 + 𝑅 𝐺𝐷𝐿 +𝑅 𝐺𝐷𝐿/𝑆 +𝑅 𝑆 +𝑅 𝐺𝐷𝐿/𝑆 +𝑅 𝐺𝐷𝐿 +𝑅 𝑆𝐹/𝐺𝐷𝐿 +𝑅 𝑆𝐹 +𝑅 𝐶𝑃/𝑆𝐹 𝑅 𝑇𝑂𝑇 = 2𝑅 𝐶𝑃/𝑆𝐹 + 2𝑅 𝑆𝐹 + 2𝑅 𝑆𝐹/𝐺𝐷𝐿 + 2𝑅 𝐺𝐷𝐿 +2𝑅 𝐺𝐷𝐿/𝑆 +𝑅 𝑆 As 𝑅 𝐺𝐷𝐿 ≈ 0, it is negligible and hence, 𝑅 𝑇𝑂𝑇 = 2𝑅 𝐶𝑃/𝑆𝐹 + 2𝑅 𝑆𝐹 + 2𝑅 𝑆𝐹/𝐺𝐷𝐿 +2𝑅 𝐺𝐷𝐿/𝑆 +𝑅 𝑆 The following total resistance was determined: 236/11/2014 7:27 PM
  • 24. For the reference measurement, the total resistance was determined: 𝑅 𝑇𝑂𝑇,𝑅𝑒𝑓. = 𝑅 𝐶𝑃/𝑆𝐹 + 𝑅 𝑆𝐹 + 𝑅 𝑆𝐹/𝐺𝐷𝐿 + 𝑅 𝐺𝐷𝐿 +𝑅 𝑆𝐹/𝐺𝐷𝐿 +𝑅 𝑆𝐹 +𝑅 𝐶𝑃/𝑆𝐹 𝑅 𝑇𝑂𝑇,𝑅𝑒𝑓. = 2𝑅 𝐶𝑃/𝑆𝐹 + 2𝑅 𝑆𝐹 + 2𝑅 𝑆𝐹/𝐺𝐷𝐿 + 𝑅 𝐺𝐷𝐿 As 𝑅 𝐺𝐷𝐿 ≈ 0, it is negligible and hence, 𝑅 𝑇𝑂𝑇,𝑅𝑒𝑓. = 2𝑅 𝐶𝑃/𝑆𝐹 + 2𝑅 𝑆𝐹 + 2𝑅 𝑆𝐹/𝐺𝐷𝐿 246/11/2014 7:27 PM 𝑅 𝑇𝑂𝑇 − 𝑅 𝑇𝑂𝑇,𝑅𝑒𝑓. = 2𝑅 𝐶𝑃/𝑆𝐹 + 2𝑅 𝑆𝐹 + 2𝑅 𝑆𝐹/𝐺𝐷𝐿 +2𝑅 𝐺𝐷𝐿/𝑆 +𝑅 𝑆 − (2𝑅 𝐶𝑃/𝑆𝐹 + 2𝑅 𝑆𝐹 + 2𝑅 𝑆𝐹/𝐺𝐷𝐿) 𝑅 𝑇𝑂𝑇 − 𝑅 𝑇𝑂𝑇,𝑅𝑒𝑓. = 2𝑅 𝐺𝐷𝐿/𝑆 + 𝑅 𝑆 Sample resistance:
  • 25.  Introduction  Objectives  Theoretical Background  Experimental Settings ◦ In-plane resistivity measurement ◦ Through-plane resistivity measurement  Results ◦ In-plane resistivity measurement ◦ Through-plane resistivity measurement  Conclusions  Appendix 256/11/2014 7:27 PM
  • 26. 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 30% PP 25% PP 20% PP InplaneResistivity/Ωcm Material Perpendicular to injection direction Injection Direction 266/11/2014 7:27 PM
  • 27. 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 30% PP 25% PP 20% PP InplaneConductivity/S/cm Material Perpendicular to injection direction Injection Direction 276/11/2014 7:27 PM
  • 28.  Introduction  Objectives  Theoretical Background  Experimental Settings ◦ In-plane resistivity measurement ◦ Through-plane resistivity measurement  Results ◦ In-plane resistivity measurement ◦ Through-plane resistivity measurement  Conclusions  Appendix 286/11/2014 7:27 PM
  • 29. 0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 70% graphite-30%PP 75% graphite-25%PP 80% graphite-20%PP Through-planeResistivity/Ωcm Materials 4,32 6,44 13,07 21,27 30,02 38,26 [bar] 296/11/2014 7:27 PM
  • 30. 0.0000 0.0500 0.1000 0.1500 0.2000 0.2500 0.3000 0.3500 0.4000 70% graphite-30%PP 75% graphite-25%PP 80% graphite-20%PP Through-planeConductivity/S/cm Materials 4,32 6,44 13,07 21,27 30,02 38,26 [bar] 306/11/2014 7:27 PM
  • 31.  Introduction  Objectives  Theoretical Background  Experimental Settings ◦ In-plane resistivity measurement ◦ Through-plane resistivity measurement  Results ◦ In-plane resistivity measurement ◦ Through-plane resistivity measurement  Conclusions  Appendix 316/11/2014 7:27 PM
  • 32. 1. A change from 70% graphite to 80% graphite increases all conductivities measured by a factor of 7 approximately ◦ The mechanical properties were not analyzed in this measurement 2. The injection direction orientation shows 18 to 29% higher electrical conductivity than the perpendicular to injection direction orientation 3. An increase of pressure from 4.32 bar to 38.26 bar shows an improvement on the total conductivity by a factor of 2.2 – 2.5 ◦ Due to the reduction of contact resistance 326/11/2014 7:27 PM
  • 34. 1. Bendzulla, Anne: Von der Komponente zum Stack: Entwicklung und Auslegung von HT-PEFC- Stacks der 5 kW-Klassen; Forschungszentrum Jülich GmbH Zentralbibliothek (2010); ISBN: 978- 3-89336-634-7 2. Methta, Vial; Smith, Joyce: Review and analysis of PEM fuel cell design and manufacturing; Journal of Power Sources 114 (2003) 32-53 3. Mc Tavish, J.P.: Foundation Electrical Engineering; Prentice Hall International (UK) Ltd. (1996); ISBN: 0-13-309931-8 6/11/2014 7:27 PM 34
  • 35. 356/11/2014 7:27 PM 4. Maxfield, Clive: Electrical Engineering, Elsevier Inc.,United States of America (2008); ISBN: 978- 1-85617-528-9 5. Prakash, C. Ghosh; Dey Tapobrata; Singdeo, Debanand: Contact resistance between bipolar plate and gas diffusion layer in high temperature polymer electrolyte fuel cells; International Journal of Hydrogen Energy 39 (2014) 987-995 6. Middelman, E.;Kout, W.; Vogelaar, B.;Lenssen, J.; de Waal, E.: Bipolar plates for PEM fuel cells; Journal of Power Sources 118 (2003) 44 – 46
  • 36.  Introduction  Objectives  Theoretical Background  Experimental Settings ◦ In-plane resistivity measurement ◦ Through-plane resistivity measurement  Results ◦ In-plane resistivity measurement ◦ Through-plane resistivity measurement  Conclusions  Appendix 366/11/2014 7:27 PM
  • 37. Nr. Name Weights (kg) Total Weight (kg) Force “F2” (N) Pressure Reference Measurement (bar) Pressure at sample surface (bar) 1. 0 0 0 410.00 2.02 4.32 2. 1 0.643 0.643 611.85 3.02 6.44 3. 2 2.648 2.648 1241.26 6.13 13.07 4. 4 5.13 5.13 2020.41 9.98 21.27 5. 4+2 5.13+2.648 7.778 2851.67 14.08 30.02 6. 4+3 5.13+5.143 10.273 3634.90 17.95 38.26 376/11/2014 7:27 PM
  • 38. Injection Direction Perpendicular to injection direction Material / Data Resistivity (Ωcm) St. Dev. Conductivi ty (S/cm) St. Dev. Resistivit y (Ωcm) St. Dev. Conductivi ty (S/cm) St. Dev. 70% graphite- 30%PP 0.901 0.121 1.134 0.188 1.168 0.176 0.880 0.162 75% graphite- 25%PP 0.299 0.040 3.404 0.481 0.385 0.052 2.647 0.388 80% graphite- 20%PP 0.130 0.013 7.742 0.751 0.155 0.022 6.579 0.974 386/11/2014 7:27 PM
  • 39. Material 70% graphite-30%PP 75% graphite-25%PP 80% graphite-20%PP Pressure (Bar)/Data Resistivity (Ωcm) St. Dev. Resistivity (Ωcm) St. Dev. Resistivity (Ωcm) St. Dev. 4.32 55.18 18.73 30.53 4.64 8.3623 1.3562 6.44 48.10 16.72 26.50 4.27 7.1594 1.0763 13.07 36.21 13.05 19.13 3.10 5.1281 0.6734 21.27 29.93 10.48 15.01 2.21 4.1027 0.5338 30.02 26.91 9.30 13.14 1.84 3.5917 0.4168 38.26 25.04 8.71 12.08 1.65 3.3262 0.3812 396/11/2014 7:27 PM
  • 40. Material 70% graphite-30%PP 75% graphite-25%PP 80% graphite-20%PP Pressure (Bar)/Data Conductivity (S/cm) St. Dev. Conductivity (S/cm) St. Dev. Conductivity (S/cm) St. Dev. 4.32 0.0194 0.0042 0.0335 0.0053 0.1229 0.0217 6.44 0.0224 0.0050 0.0387 0.0063 0.1429 0.0228 13.07 0.0299 0.0070 0.0536 0.0084 0.1983 0.0265 21.27 0.0360 0.0084 0.0680 0.0096 0.2480 0.0347 30.02 0.0400 0.0092 0.0775 0.0104 0.2826 0.0383 38.26 0.0430 0.0098 0.0842 0.0111 0.3045 0.0357 406/11/2014 7:27 PM