SlideShare una empresa de Scribd logo
1 de 24
Descargar para leer sin conexión
www.disepro.com
MODELO, ANALISIS Y DISEÑO DE ESTRUCTURA
METALICA DE DOS NIVELES – USO OFICINA
CSi CARIBE - DISEPRO EIRL
www.disepro.com
DISEÑO ESTRUCTURA METALICA CON LOSA COLABORANTE 2 NIVELES
En este capítulo vamos a diseñar una estructura cuyo material predominante es el acero A-36, para este fin
usáremos el software ETABS 2013, las cargas impuesta será por el peso propio de las secciones computadas
desde los materiales; la sobrecarga distribuida será según norma E-020 del Reglamento Nacional de
Edificaciones.
La geometría en planta, y elevación es como se muestra a continuación
Usando la herramienta de ETABS 2013 se procede a realizar este proyecto en tres etapas:
1.- Modelo Matemático
2.- Cargas 3.-Análisis
4.- Diseño de elementos que conforman la estructura
1.- MODELO MATEMATICO
En esta primera sección se tiene que fijar la disposición y tamaño inicial de los elementos que configuran la
estructura principal, de tal manera que después de incluir las cargas nos permita iniciar un análisis interactivo
hasta la optimización de los elementos en el proceso de Diseño.
Seleccionar las unidades en el sistema internacional S.I.; luego generar las grillas de dibujo según la
geometría en planos de distribución en planta y elevación; así tenemos:
Selección de Unidades (S.I.) Selección solo grillas y edición de texto
www.disepro.com
1.1 Definir Materiales.- Después de guardar el archivo con un nombre vamos a la definición de materiales a
usar; en el menú desplegable con la opción Define/Materials ingresaremos los siguientes datos:
Concreto:
√
Coeficiente de deformación transversal (coef. poisson)
Cuadro de dialogo para definir el material Concreto
Acero A-36:
Coeficiente de deformación transversal (coef. poisson)
www.disepro.com
Cuadro de dialogo para definir el material Acero A-36
1.2 Propiedades de Secciones.- vamos a definir las secciones que usaremos en este proyecto; vamos importar
de la base de data del programa las secciones I/Wide Flange; la encontraremos en el archivo Secion.pro
Auto select list para secciones de columnas W10x17 a W12x65
www.disepro.com
Auto select list para secciones de columnas W10x17 a W12x35
Los arriostres concéntricos serán de W8x18 /2 compacta, esta sección la definimos en como sección Tee
Arriostre en sección Tee a partir de las dimensiones de la sección W8x18
Se define las correas (list W6x12 – W8x48)
Auto select list para secciones de correas W6x12 a W8x48
www.disepro.com
1.3 Draw/ frame.- Modelo con todos los elementos Frame
Generamos el modelo de la estructura completa con los elementos frame; y asignamos la liberación a mto en las vigas
cuando conectan a la columna en el eje menor.
1.4 Elementos Area.- Definimos la losa colaborante como elementos de área tipo membrana
Modelo matemático final con diafragma rígido en los dos niveles, se ha incluido la escalera
www.disepro.com
2.0 CARGAS
Se tiene que pensar, ante todo, que la determinación de las Cargas que actúan no pueden ser exactas en
magnitud y en ubicación, aun cuando se conozca la exacta posición de las mismas y su magnitud, la
interrogante es como se trasmiten las cargas a los apoyos de los elementos; muchas veces son necesarias las
suposiciones que ponen en duda el sentido de la exactitud buscada, de esta manera vamos a definir solo
algunas de las cargas mas conocidas.
2.1 Carga Muerta, es una carga de gravedad cuya magnitud y ubicación podemos considerarlas fijas; se
usara en este proyecto las cargas permanentes tomadas desde los pesos de los elementos que conforman la
estructura definida como DEAD y para las cargas que se encuentran adheridas a ellas como tuberías,
conductos de aire, luminarias, acabados, cielo raso suspendido, etc será definida como SUPERDEAD.
En la práctica los Reglamentos vigentes proporcionan tablas que ayudan al diseñador a cuantificar estas
magnitudes.
Para la Súper Carga Permanente SUPERDEAD usaremos = 100kg/m2 y será aplicada a la cobertura tipo
membrana
Definición de cargas impuestas en el sistema
Seleccionar la cobertura y asignar la súper carga muerta aprox. 100kg/m2; otra alternativa es distribuir la
carga super muerta directamente a los elementos de manera distribuida.
www.disepro.com
2.2 Carga Viva, es aquella carga de gravedad que actúa sobre la estructura cuando esta se encuentra en
servicio; puede variar en ubicación como en magnitud a lo largo de la vida útil.
Live = 250kg/m2
Seleccionar la cobertura y asignar la carga viva 250kg/m2 - Oficina
2.4 Carga de Sismo, los terremotos producen movimientos horizontales y verticales; los movimientos
horizontales son los que generan en las estructuras los efectos más significativos; cuando la interacción suelo
estructura se activa, la inercia de la masa de la estructura tiende a resistir este movimiento; la filosofía de este
análisis sísmico tiende a estimar la fuerza a partir de un porcentaje del peso de la estructura; este porcentaje es
llamado coeficiente basal y la fuerza dependerá de la ductilidad o liberación de energía que se estime o se
asigne a este tipo de estructura; en este proyecto solo vamos a estimar la fuerza sísmica lateral para
determinar si es mandatorio en el diseño; los pórticos en X-X serán con uniones dúctiles a momentos (R=9.5)
y en el eje Y-Y arriostrado en cruz (R=6.0); evaluaremos desplazamiento lateral relativo (Dritf).
Coeficiente Basal
Z=0.4g
U=1.0
S=1.4 Tp=0.90 seg
T fundamental X-X = 0.32 seg y T fundamental Y-Y = 0.92 seg
Cx-x= 2.5 y Cy-y= 2.44
= 9.5
= 6.0
Por lo tanto la fuerza por carga de sismo será y
www.disepro.com
Espectro de respuesta para evaluar sismo en X-X
Espectro de respuesta para evaluar sismo en Y-Y
www.disepro.com
Caso de carga por sismo dinámico – dirección pre escrita X-X
Caso de carga por sismo dinámico – dirección pre escrita Y-Y
Para evaluar el peso de la estructura y determinar la fuerza cortante haremos una combinación lineal PESO =
100% las cargas muertas y 25% las cargas vivas
Comb. para evaluar el peso de la estructura
www.disepro.com
Para evaluar los desplazamientos relativos (Drift) tomaremos las respuestas de la envolvente de los casos
sísmicos dinámicos Espectral X-X y Espectral Y-Y, al 75% de R en cada dirección.
Comb. para evaluar el drift o desplazamiento lateral relativo
3.0 ANALISIS DE LA ESTRUCTURA
Para determinar las acciones internas en los miembros de las estructuras se tiene que analizar las mismas para
todos los casos de cargas aplicadas; la estructura debe comportarse de acuerdo a las leyes de la Mecánica.
El análisis será elástico, sabiendo que la misma puede incursionar en deformaciones inelásticas.
3.1 Opciones de Análisis y los casos de carga a evaluar
El Peso de la estructura es 88.27Tn; el cortante por sismo es: y , al 100%
www.disepro.com
Cortante X-X =11.32 Tn y Cortante Y-Y=18.43 Tn OK
Drift o desplazamientos relativos <10/1000 todos OK, controlamos los desplazamientos por sismo
4.0 DISEÑO DE LOS ELEMENTOS ESTRUCTURALES
4.1 Miembros a Tracción.- para asegurar un buen comportamiento de los miembros a tracción en
sus conexiones debemos de aplicar un Factor de Resistencia ɸ =0.75 por la inseguridad del comportamiento
de las conexiones.
Se puede expresar la Resistencia Nominal de Miembros en Tracción: presentándose 2 casos:
a) Limite de fluencia (f) en la sección total donde: punto de fluencia del acero y
área total de la sección transversal.
b) Limite de fractura (r) en la sección efectiva donde: esfuerzo de fractura en la
sección neta o efectiva área neta o efectiva (quitando las aberturas de los pernos) en la
sección transversal.
Considerando el Factor de Resistencia el diseño en cada caso (a) y (b) será:
Caso (a)
Caso (b)
c) Relación de esbeltez de Miembros a tracción: L/r; aunque estos no están sujetos a pandeos, las
especificaciones establecen que L/r no deben exceder 300. (excepto para varillas), la razón es
para facilitar la fabricación y montaje, así como evitar las ondas por calor, se requiere incluso
una relación de esbeltez menor en miembros que estarán expuestos al viento o a que su propio
peso le ocasione flexión o a vibración externa.
4.2 Miembros en Compresión Axial.- la Resistencia de estos miembros no solo depende se las
cargas aplicadas, también depende de su longitud efectiva y de la forma de la sección transversal.
La longitud efectiva depende a su vez de los tipos de conexiones (a momento o corte), del
desplazamiento relativo de sus nudos y del arriostre existente.
www.disepro.com
Si la carga axial a compresión aplicada a un miembro crece; este puede sufrir deformación
transversal llamada PANDEO, la carga crítica se denomina Carga de Pandeo.
a) Excesiva Flexión.- alrededor de uno de los ejes de su sección transversal, llamado eje critico;
llamado Pandeo Flexional (Pandeo de Euler )
b) Rotación.- alrededor del centro de corte de la sección transversal; llamado Pandeo Torsional.
c) Combinado.- la que combina ambos casos denominado Pandeo Flexo-torsional.
d) Pandeo Local.- los elementos placas que componen la sección transversal (alma) sufren
deformaciones excesivas causando perdida en la resistencia de los miembros en compresión
axial, luego de un pandeo global se observa que ha ocurrido pandeos locales a lo largo del
miembro, por lo que se intuye que el pandeo local siempre acompaña al paneo global.
También existe influencia en el comportamiento de miembros en compresión axial los esfuerzos
residuales, el punto de fluencia del material, las condiciones de borde y la linealidad inicial de los
elementos.
4.2.1 Pandeo Flexo-Torsional.- cuando los miembros están sujetos a compresión axial, éste puede
pandear en tres formas diferentes: 1) Pandeo alrededor de alguno de sus ejes principales (pandeo
puro), 2) Pandeo torsional y 3) Pandeo Flexo-Torsional.
Nota.- para secciones con doble simetría (secciones W, HB, IPE, etc) solo pueden tener pandeos
flexionales (llamado de Euler) o pandeos torsionales; si los apoyos o conexión lateral intermedia
impide la rotación trasversal entonces el pandeo flexional será controlado.
Se recomienda consultar las especificaciones del AISC-LRFD para pandeo Flexo-Torsional, en
elementos de doble simetría, unisimétricas y no simétricas.
4.2.2 Factor de Longitud Efectiva.- este factor toma en cuenta la longitud real de pandeo de un
miembro y está influenciada por el grado de restricción o desplazamiento de sus extremos.
Por ejemplo en elementos articulados el factor de longitud efectiva K =1 (tomara toda la longitud);
en elementos cuyo extremo esta empotrado o restringido y el otro articulado el factor de longitud
efectiva K=0.7 (tomara 0.7L de la longitud); si fuera ambas empotradas K=0.5; miembros con un
extremo empotrado y otro completamente libre K=2.0.
Ahora si consideramos un sistema estructural tenemos:
Un pórtico que sus extremos se pueden desplazar unos con respecto a otros, pórtico con
desplazamiento lateral y otro pórtico sin desplazamientos, con arriostres en cruz por ejemplo.
El primero la estabilidad dependerá enteramente de la rigidez flexionante de la columna, viga y
nodos; siendo su longitud de pandeo K≥1.0, mientras que en el segundo caso debido al
arriostramiento que impide el desplazamiento la longitud efectiva será menor o igual a la longitud
real K≤1.0.
4.2.3 Relación de Esbeltez Máximas.- para miembros cuyo diseño se basa en esfuerzos de
compresión, la relación de esbeltez KL/r debe ser menor a 200; esta relación se introdujo antes que
apareciera el factor de longitud (K) lo cual hiso confusa su interpretación; ya que los valores de K
daba especial cuidado a la estabilidad de las columna; sin embargo los elementos en compresión no
deben sobrepasar la relación
www.disepro.com
4.3 Incluir a los elementos que están liberados de Momentos en ambos ejes; estos solo se conectaran a corte;
los miembros seleccionados serán: correas, arriostres y tensores.
Liberación de momentos en las vigas que conectan a la columna en los ejes menores
4.4 En las correas sobre su eje menor el ratio por arriostramiento será K=0.5(a flexión y a torsión), asumiendo
que estas tendrán arriostres a la mitad de su longitud, (esto no modelado).
Las correas en el span de 5.75m en el eje 2-2 debido a la conexión en el centro impide el desplazamiento
longitudinal su longitud efectiva en el eje menor será K=0.5; seleccionando estos miembros asignamos con el
comando Steel Frame Desing / View / Revise Overwrites
También debemos indicar que estos miembros no están diseñados a Momento (OMF)
Unbraced Length Ratios (Major): Program Determined longitud no arriostrada, es el factor de longitud
efectiva sin soporte lateral (arriostre o braced) para pandeo sobre el eje principal o eje mayor. En este ítem
podemos especificar en % la longitud arriostrada no modelada que será multiplicada por la longitud del
elemento sin arriostre; un valor = 0 especifica que el programa lo determinara.
Para secciones simétricas el pandeo sobre el eje mayor debido a la flexión es alrededor del local axes 3
(revisar centro de corte en elementos de doble simetría donde se puede experimentar pandeo flexional o flexo
torsional)
www.disepro.com
Para secciones unisimetricas como ángulos, doble ángulos, canales, perfiles T, etc. el pandeo sobre el eje
mayor debido a la flexión es alrededor del eje principal de dicha sección con mayor momento de inercia.
Unbraced Length Ratios (Minor):0.5 longitud no arriostrada; es el factor de longitud de pandeo alrededor
del eje menor del elemento. En este ítem podemos especificar en % la longitud arriostrada no modelada que
será multiplicada por la longitud del elemento sin arriostre; un valor = 0 especifica que el programa lo
determinara.
Para secciones simétricas el pandeo sobre el eje menor debido a la flexión es alrededor del local axes 2. Para
las secciones asimétricas (por ejemplo, ángulos) el pandeo sobre el eje menor debido a la flexión se da
alrededor del eje principal de la sección con el menor momento de inercia.
Unbraced Length Ratios (LTB Length-Bending-Torsional):0.5 factor de longitud no arriostrada para
pandeo flexo-torsional debido a la compresión axial. Este item se especifica como una fracción (%) de la
longitud total; este factor multiplica a la longitud del elemento sin arriostre (longitud total).
4.5 Steel Frame Design / View Revise Preferences, seleccionamos el código de diseño y parámetros a usar:
Framing Type especifica las consideraciones de ductilidad que se usara en el diseño (ya se especifico cuales
son los miembros que no será mandatorio el sismo correas, arriostres, tensores.) Para el diseño del Pórtico en
dirección X-X usaremos la opción SMF (Pórtico con uniones dúctiles Especial a Momentos); los demás
elementos serán OMF (Ordinary Moment Frame).
Un Sistema tipo “SMF” “Special Moment Frames” el ETABS hace las siguientes verificaciones:
1) Los perfiles para las Vigas y Columnas son Compactos Sísmicos
2) Las vigas posean adecuado soporte lateral
3) El criterio Columna Fuerte-Viga Débil en cada junta, de una manera simplificada considerando un valor de
sobreresistencia (Ry).
4) Las planchas de refuerzo en la Zona del Panel.
4.6 Método de Análisis Directo (DAM), El DAM elimina la confusión y la falta de coherencia en la
aplicación de los factores K en el diseño convencional, y puede dar lugar a un diseño más económico. Las
www.disepro.com
longitudes equivalentes se basan en el supuesto a menudo excesivamente conservador para desplazamiento
lateral por pandeo en una estructura elástica simplificada, que comúnmente resultan en factores K de 2 a 3 o
mayor.
Criterios:
1. Considere la posibilidad de deformaciones debido a la flexión, cortante y axial en los
elementos. Estos requisitos se contabilizan automáticamente en todos los software de análisis de
CSi: ETABS, SAP2000 y CSiBridge.
2. Reducir la rigidez del elemento debido a la falta de elasticidad, incluyendo la tensión
residual, e incluir el efecto de esta reducción de la rigidez en el análisis de la estructura.
Esto se completa automáticamente en SAP2000 ETABS, y CSiBridge.
3. Computa las imperfecciones geométricas, como la verticalidad (alineamiento vertical), que
SAP2000 ETABS, y CSiBridge se han automatizado a través de su notación: lateral load
case/load pattern definition.
4. Realiza un riguroso análisis de P-delta no lineal que considera los efectos de la influencia
(efectos de carga en una estructura que ya se ha desplazado lateralmente) y los efectos P-
delta locales de cargas en la forma deformada de los miembros individuales. Ambos
requisitos se consideran automáticamente en SAP2000 ETABS, y CSiBridge.
a) Design Code, especifica el código de diseño y parámetros que se usaran en el mismo se activo
en menú > Preferences > Steel Frame Design. especifique AISC360-05/IBC2006.- código y
método de reducción de rigidez con el fin de garantizar que las combinaciones de carga
automáticos son adecuados.
b) Reduction factors, a la sección IE y EA se aplican de forma automática por el programa si se
selecciona la opción DAM (Direct Analysis) Tau-b variable o Tau-b fixed.
www.disepro.com
Para el análisis inicial (Analyze Run), no se utilizan los factores de reducción. Sin embargo, tan
pronto como un diseño se ejecuta (Star Steel Frame Design) los factores de reducción se utilizan
y se mantienen en el modelo. Esto significa que la primera vez que el modelo es analizado y
diseñado, el usuario debe iterar entre el diseño y el análisis al menos una vez adicional.
Posteriormente, tanto el análisis y diseño tendrán factores de reducción aplicados
automáticamente.
4.7 Steel Frame Design / Select Design Combos, en opción seleccionamos el estado límite para generar las
combinaciones de diseño; será por Resistencia y Deflexión, puede generarse de manera automática o se puede
generar de manera particular (si desea editar o generar las combinaciones para diseño use la opción Define/
Load Combinations / Add Default Design Combos o Add New Combo …
4.8 Design / Steel Frame Design / Star Design, primera iteración sobre el diseño de secciones en acero.
4.9 Verify Analysis vs Design Sections, el diseño y la optimización de las secciones se realice de manera
iterativa; esto es seleccionando los miembros a optimizar se vuelve a analizar la estructura y posterior al
diseño.
www.disepro.com
En la tercera iteración en mensaje refiere a que el análisis y diseño de secciones coincide y no hay mas
secciones a optimizar (del auto list seleccionado)
4.10 Revisión de secciones diseñadas, si bien hemos logrado optimizar las secciones definidas como
auto list, los braced (arriostres) no fueron consideradas con esta característica, nos tocara mejorar la sección
con otra opción llamada overwrite, (sobre escribir otra sección).
Veamos algunas secciones diseñadas:
1.- Columna W10x39 : Sección de Análisis y Sección de Diseño.
www.disepro.com
2.- Viga de Pórtico: Sección W10X39 en el span de 5.75m (con arriostre medio) las demás W10x22
3.- Correas W8x31 con conexión a corte y arriostre a la mitad de la sección en el eje menor, las demás
sin arriostre (paralela al eje X-X)
www.disepro.com
4.- Vigas W10x17 con conexión a corte en las columnas (paralela al eje Y-Y), alternativamente puede
usar W10x45
5.- Arriostres: sección TEE
www.disepro.com
CONEXIONES .-
VIGAS –VIGAS A CORTE
VIGAS – COLUMNA A MOMENTO EJE MAYOR
VIGA – COLUMNA A CORTE EJE MENOR
COLUMNA – PLANCHA BASE
Revisión de la conexión viga-viga a corte plancha llena soldada - empernada
Revisión de la conexión viga-columna a corte eje mayor de la columna
www.disepro.com
Revisión de la conexión viga-columna a corte eje menor de la columna
Revisión de la conexión viga-columna a momento eje mayor de la columna
www.disepro.com
Revisión de la conexión plancha base
Revisión de conexión a Momento en el eje mayor de la columna
www.disepro.com
Revisión de conexión a Corte, viga – viga
Revisión de conexión a Corte, viga - correa

Más contenido relacionado

La actualidad más candente

Muros de Contencion y Muros de Sotano - calavera 1989
Muros de Contencion y Muros de Sotano - calavera 1989Muros de Contencion y Muros de Sotano - calavera 1989
Muros de Contencion y Muros de Sotano - calavera 1989
Eric Llanos
 
Analisis de puentes
Analisis de puentesAnalisis de puentes
Analisis de puentes
cerz2005
 
Diseño biaxial de columnas
Diseño biaxial de columnasDiseño biaxial de columnas
Diseño biaxial de columnas
Arcesio Ortiz
 
Tesina analisis y diseño estructural de una vivienda de dos plantas
Tesina analisis y diseño estructural de una vivienda de dos plantasTesina analisis y diseño estructural de una vivienda de dos plantas
Tesina analisis y diseño estructural de una vivienda de dos plantas
Edu Esteba
 

La actualidad más candente (20)

Fuerzas en muros estructurales
Fuerzas en muros estructuralesFuerzas en muros estructurales
Fuerzas en muros estructurales
 
ACI 350_ESPAÑOL.pdf
ACI 350_ESPAÑOL.pdfACI 350_ESPAÑOL.pdf
ACI 350_ESPAÑOL.pdf
 
Resumen diseño por capacidad
Resumen diseño por capacidadResumen diseño por capacidad
Resumen diseño por capacidad
 
Manual sap2000 numero 1
Manual sap2000 numero 1Manual sap2000 numero 1
Manual sap2000 numero 1
 
Muros de Contencion y Muros de Sotano - calavera 1989
Muros de Contencion y Muros de Sotano - calavera 1989Muros de Contencion y Muros de Sotano - calavera 1989
Muros de Contencion y Muros de Sotano - calavera 1989
 
Analisis de puentes
Analisis de puentesAnalisis de puentes
Analisis de puentes
 
Diseño biaxial de columnas
Diseño biaxial de columnasDiseño biaxial de columnas
Diseño biaxial de columnas
 
Análisis de vigas de concreto armado
Análisis de vigas de concreto armadoAnálisis de vigas de concreto armado
Análisis de vigas de concreto armado
 
Modelo de mander
Modelo de manderModelo de mander
Modelo de mander
 
Metrados carga
Metrados cargaMetrados carga
Metrados carga
 
Tesis de concreto armado
Tesis de concreto armadoTesis de concreto armado
Tesis de concreto armado
 
Tesina analisis y diseño estructural de una vivienda de dos plantas
Tesina analisis y diseño estructural de una vivienda de dos plantasTesina analisis y diseño estructural de una vivienda de dos plantas
Tesina analisis y diseño estructural de una vivienda de dos plantas
 
Curva de capacidad pushover
Curva de capacidad pushoverCurva de capacidad pushover
Curva de capacidad pushover
 
DISEÑO DE PERFILES HSS RECTANGULARES. AISC 360 10
DISEÑO DE PERFILES HSS RECTANGULARES. AISC 360 10DISEÑO DE PERFILES HSS RECTANGULARES. AISC 360 10
DISEÑO DE PERFILES HSS RECTANGULARES. AISC 360 10
 
Modelos de histeresis Dr.Otani (traducción personal)
Modelos de histeresis Dr.Otani (traducción personal)Modelos de histeresis Dr.Otani (traducción personal)
Modelos de histeresis Dr.Otani (traducción personal)
 
Memoria calculo techo autosoportado
Memoria calculo techo autosoportadoMemoria calculo techo autosoportado
Memoria calculo techo autosoportado
 
Analisis tridimensional 2012 fcp005 ordenando
Analisis tridimensional 2012 fcp005 ordenandoAnalisis tridimensional 2012 fcp005 ordenando
Analisis tridimensional 2012 fcp005 ordenando
 
Analisis sismo resistente (nec se-ds) dinamico
Analisis sismo resistente (nec se-ds) dinamicoAnalisis sismo resistente (nec se-ds) dinamico
Analisis sismo resistente (nec se-ds) dinamico
 
Viga de-concreto-armado
Viga de-concreto-armadoViga de-concreto-armado
Viga de-concreto-armado
 
Evaluacion y reforzamiento de estructuras
Evaluacion y reforzamiento de estructurasEvaluacion y reforzamiento de estructuras
Evaluacion y reforzamiento de estructuras
 

Similar a Memoria-de-calculo DISEPRO

DISEÑO DEFINITIVO COMPARATIVO DEL PUENTE-parte3.pdf
DISEÑO DEFINITIVO COMPARATIVO DEL PUENTE-parte3.pdfDISEÑO DEFINITIVO COMPARATIVO DEL PUENTE-parte3.pdf
DISEÑO DEFINITIVO COMPARATIVO DEL PUENTE-parte3.pdf
JuanMan20
 
estructuración y predimensionamiento
estructuración y predimensionamientoestructuración y predimensionamiento
estructuración y predimensionamiento
patrick_amb
 

Similar a Memoria-de-calculo DISEPRO (20)

Diseño concreto sap2000
Diseño concreto sap2000Diseño concreto sap2000
Diseño concreto sap2000
 
Apoyos
ApoyosApoyos
Apoyos
 
Informe de acero
Informe de aceroInforme de acero
Informe de acero
 
Trabajo de resistencia de materiales
Trabajo de resistencia de materialesTrabajo de resistencia de materiales
Trabajo de resistencia de materiales
 
Memoria descriptiva estructuras
Memoria descriptiva   estructurasMemoria descriptiva   estructuras
Memoria descriptiva estructuras
 
Memoria de calculo estrutura lpdf02. memoria de calculo estrutural (1)
Memoria de calculo estrutura lpdf02.  memoria de calculo estrutural (1)Memoria de calculo estrutura lpdf02.  memoria de calculo estrutural (1)
Memoria de calculo estrutura lpdf02. memoria de calculo estrutural (1)
 
Deformacion en yugo izaje
Deformacion  en  yugo izajeDeformacion  en  yugo izaje
Deformacion en yugo izaje
 
Viga con acero en tracción
Viga con acero en tracciónViga con acero en tracción
Viga con acero en tracción
 
PC-PROY-EST-MEMDESC-REV01.pdf
PC-PROY-EST-MEMDESC-REV01.pdfPC-PROY-EST-MEMDESC-REV01.pdf
PC-PROY-EST-MEMDESC-REV01.pdf
 
Memoria de calculo_tanque_elevado_v_25m3
Memoria de calculo_tanque_elevado_v_25m3Memoria de calculo_tanque_elevado_v_25m3
Memoria de calculo_tanque_elevado_v_25m3
 
1 156 179_107_1479
1 156 179_107_14791 156 179_107_1479
1 156 179_107_1479
 
Esfuerzos
EsfuerzosEsfuerzos
Esfuerzos
 
CAP8_REQUISITOS_GENERALES_PARA_EL_ANALISIS_Y_DISEÑO.pdf
CAP8_REQUISITOS_GENERALES_PARA_EL_ANALISIS_Y_DISEÑO.pdfCAP8_REQUISITOS_GENERALES_PARA_EL_ANALISIS_Y_DISEÑO.pdf
CAP8_REQUISITOS_GENERALES_PARA_EL_ANALISIS_Y_DISEÑO.pdf
 
Acero y-madera
Acero y-maderaAcero y-madera
Acero y-madera
 
Diseño a carga muerta y viva de cercha
Diseño a carga muerta y viva de cerchaDiseño a carga muerta y viva de cercha
Diseño a carga muerta y viva de cercha
 
Criterios de diseño y flexion
Criterios de diseño y flexionCriterios de diseño y flexion
Criterios de diseño y flexion
 
DISEÑO DEFINITIVO COMPARATIVO DEL PUENTE-parte3.pdf
DISEÑO DEFINITIVO COMPARATIVO DEL PUENTE-parte3.pdfDISEÑO DEFINITIVO COMPARATIVO DEL PUENTE-parte3.pdf
DISEÑO DEFINITIVO COMPARATIVO DEL PUENTE-parte3.pdf
 
estructuración y predimensionamiento
estructuración y predimensionamientoestructuración y predimensionamiento
estructuración y predimensionamiento
 
Calculo estructural
Calculo estructuralCalculo estructural
Calculo estructural
 
domos geodésicos Quintay - Laguna Verde
domos geodésicos Quintay - Laguna Verdedomos geodésicos Quintay - Laguna Verde
domos geodésicos Quintay - Laguna Verde
 

Último

analisis tecnologico( diagnostico tecnologico, herramienta de toma de deciones)
analisis tecnologico( diagnostico tecnologico, herramienta de toma de deciones)analisis tecnologico( diagnostico tecnologico, herramienta de toma de deciones)
analisis tecnologico( diagnostico tecnologico, herramienta de toma de deciones)
Ricardo705519
 
INSUMOS QUIMICOS Y BIENES FISCALIZADOS POR LA SUNAT
INSUMOS QUIMICOS Y BIENES FISCALIZADOS POR LA SUNATINSUMOS QUIMICOS Y BIENES FISCALIZADOS POR LA SUNAT
INSUMOS QUIMICOS Y BIENES FISCALIZADOS POR LA SUNAT
evercoyla
 

Último (20)

Determinación de espacios en la instalación
Determinación de espacios en la instalaciónDeterminación de espacios en la instalación
Determinación de espacios en la instalación
 
PRESENTACION DE LAS PLAGAS Y ENFERMEDADES DEL PALTO
PRESENTACION DE LAS PLAGAS Y ENFERMEDADES DEL PALTOPRESENTACION DE LAS PLAGAS Y ENFERMEDADES DEL PALTO
PRESENTACION DE LAS PLAGAS Y ENFERMEDADES DEL PALTO
 
PostgreSQL on Kubernetes Using GitOps and ArgoCD
PostgreSQL on Kubernetes Using GitOps and ArgoCDPostgreSQL on Kubernetes Using GitOps and ArgoCD
PostgreSQL on Kubernetes Using GitOps and ArgoCD
 
Análisis_y_Diseño_de_Estructuras_con_SAP_2000,_5ta_Edición_ICG.pdf
Análisis_y_Diseño_de_Estructuras_con_SAP_2000,_5ta_Edición_ICG.pdfAnálisis_y_Diseño_de_Estructuras_con_SAP_2000,_5ta_Edición_ICG.pdf
Análisis_y_Diseño_de_Estructuras_con_SAP_2000,_5ta_Edición_ICG.pdf
 
FUNCION DE ESTADO EN LA TERMODINAMICA.pdf
FUNCION DE ESTADO EN LA TERMODINAMICA.pdfFUNCION DE ESTADO EN LA TERMODINAMICA.pdf
FUNCION DE ESTADO EN LA TERMODINAMICA.pdf
 
Lineamientos del Plan Oferta y Demanda sesión 5
Lineamientos del Plan Oferta y Demanda sesión 5Lineamientos del Plan Oferta y Demanda sesión 5
Lineamientos del Plan Oferta y Demanda sesión 5
 
Tippens fisica 7eDIAPOSITIVAS TIPENS Tippens_fisica_7e_diapositivas_33.ppt
Tippens fisica 7eDIAPOSITIVAS TIPENS Tippens_fisica_7e_diapositivas_33.pptTippens fisica 7eDIAPOSITIVAS TIPENS Tippens_fisica_7e_diapositivas_33.ppt
Tippens fisica 7eDIAPOSITIVAS TIPENS Tippens_fisica_7e_diapositivas_33.ppt
 
Resistencia-a-los-antimicrobianos--laboratorio-al-cuidado-del-paciente_Marcel...
Resistencia-a-los-antimicrobianos--laboratorio-al-cuidado-del-paciente_Marcel...Resistencia-a-los-antimicrobianos--laboratorio-al-cuidado-del-paciente_Marcel...
Resistencia-a-los-antimicrobianos--laboratorio-al-cuidado-del-paciente_Marcel...
 
ATS-FORMATO cara.pdf PARA TRABAJO SEGURO
ATS-FORMATO cara.pdf  PARA TRABAJO SEGUROATS-FORMATO cara.pdf  PARA TRABAJO SEGURO
ATS-FORMATO cara.pdf PARA TRABAJO SEGURO
 
[1LLF] UNIDADES, MAGNITUDES FÍSICAS Y VECTORES.pdf
[1LLF] UNIDADES, MAGNITUDES FÍSICAS Y VECTORES.pdf[1LLF] UNIDADES, MAGNITUDES FÍSICAS Y VECTORES.pdf
[1LLF] UNIDADES, MAGNITUDES FÍSICAS Y VECTORES.pdf
 
Presentación de Redes de alcantarillado y agua potable
Presentación de Redes de alcantarillado y agua potablePresentación de Redes de alcantarillado y agua potable
Presentación de Redes de alcantarillado y agua potable
 
analisis tecnologico( diagnostico tecnologico, herramienta de toma de deciones)
analisis tecnologico( diagnostico tecnologico, herramienta de toma de deciones)analisis tecnologico( diagnostico tecnologico, herramienta de toma de deciones)
analisis tecnologico( diagnostico tecnologico, herramienta de toma de deciones)
 
Aportes a la Arquitectura de Le Corbusier y Mies Van der Rohe
Aportes a la Arquitectura de Le Corbusier y Mies Van der RoheAportes a la Arquitectura de Le Corbusier y Mies Van der Rohe
Aportes a la Arquitectura de Le Corbusier y Mies Van der Rohe
 
Quimica Raymond Chang 12va Edicion___pdf
Quimica Raymond Chang 12va Edicion___pdfQuimica Raymond Chang 12va Edicion___pdf
Quimica Raymond Chang 12va Edicion___pdf
 
2024 GUIA PRACTICAS MICROBIOLOGIA- UNA 2017 (1).pdf
2024 GUIA PRACTICAS MICROBIOLOGIA- UNA 2017 (1).pdf2024 GUIA PRACTICAS MICROBIOLOGIA- UNA 2017 (1).pdf
2024 GUIA PRACTICAS MICROBIOLOGIA- UNA 2017 (1).pdf
 
Maquinaria Agricola utilizada en la produccion de Piña.pdf
Maquinaria Agricola utilizada en la produccion de Piña.pdfMaquinaria Agricola utilizada en la produccion de Piña.pdf
Maquinaria Agricola utilizada en la produccion de Piña.pdf
 
Trazos paileros para realizar trazos, cortes y calculos.pptx
Trazos paileros para realizar trazos, cortes y calculos.pptxTrazos paileros para realizar trazos, cortes y calculos.pptx
Trazos paileros para realizar trazos, cortes y calculos.pptx
 
INSUMOS QUIMICOS Y BIENES FISCALIZADOS POR LA SUNAT
INSUMOS QUIMICOS Y BIENES FISCALIZADOS POR LA SUNATINSUMOS QUIMICOS Y BIENES FISCALIZADOS POR LA SUNAT
INSUMOS QUIMICOS Y BIENES FISCALIZADOS POR LA SUNAT
 
Sistemas de Ecuaciones no lineales-1.pptx
Sistemas de Ecuaciones no lineales-1.pptxSistemas de Ecuaciones no lineales-1.pptx
Sistemas de Ecuaciones no lineales-1.pptx
 
DIAPOSITIVAS DE SEGURIDAD Y SALUD EN EL TRABAJO
DIAPOSITIVAS DE SEGURIDAD Y SALUD EN EL TRABAJODIAPOSITIVAS DE SEGURIDAD Y SALUD EN EL TRABAJO
DIAPOSITIVAS DE SEGURIDAD Y SALUD EN EL TRABAJO
 

Memoria-de-calculo DISEPRO

  • 1. www.disepro.com MODELO, ANALISIS Y DISEÑO DE ESTRUCTURA METALICA DE DOS NIVELES – USO OFICINA CSi CARIBE - DISEPRO EIRL
  • 2. www.disepro.com DISEÑO ESTRUCTURA METALICA CON LOSA COLABORANTE 2 NIVELES En este capítulo vamos a diseñar una estructura cuyo material predominante es el acero A-36, para este fin usáremos el software ETABS 2013, las cargas impuesta será por el peso propio de las secciones computadas desde los materiales; la sobrecarga distribuida será según norma E-020 del Reglamento Nacional de Edificaciones. La geometría en planta, y elevación es como se muestra a continuación Usando la herramienta de ETABS 2013 se procede a realizar este proyecto en tres etapas: 1.- Modelo Matemático 2.- Cargas 3.-Análisis 4.- Diseño de elementos que conforman la estructura 1.- MODELO MATEMATICO En esta primera sección se tiene que fijar la disposición y tamaño inicial de los elementos que configuran la estructura principal, de tal manera que después de incluir las cargas nos permita iniciar un análisis interactivo hasta la optimización de los elementos en el proceso de Diseño. Seleccionar las unidades en el sistema internacional S.I.; luego generar las grillas de dibujo según la geometría en planos de distribución en planta y elevación; así tenemos: Selección de Unidades (S.I.) Selección solo grillas y edición de texto
  • 3. www.disepro.com 1.1 Definir Materiales.- Después de guardar el archivo con un nombre vamos a la definición de materiales a usar; en el menú desplegable con la opción Define/Materials ingresaremos los siguientes datos: Concreto: √ Coeficiente de deformación transversal (coef. poisson) Cuadro de dialogo para definir el material Concreto Acero A-36: Coeficiente de deformación transversal (coef. poisson)
  • 4. www.disepro.com Cuadro de dialogo para definir el material Acero A-36 1.2 Propiedades de Secciones.- vamos a definir las secciones que usaremos en este proyecto; vamos importar de la base de data del programa las secciones I/Wide Flange; la encontraremos en el archivo Secion.pro Auto select list para secciones de columnas W10x17 a W12x65
  • 5. www.disepro.com Auto select list para secciones de columnas W10x17 a W12x35 Los arriostres concéntricos serán de W8x18 /2 compacta, esta sección la definimos en como sección Tee Arriostre en sección Tee a partir de las dimensiones de la sección W8x18 Se define las correas (list W6x12 – W8x48) Auto select list para secciones de correas W6x12 a W8x48
  • 6. www.disepro.com 1.3 Draw/ frame.- Modelo con todos los elementos Frame Generamos el modelo de la estructura completa con los elementos frame; y asignamos la liberación a mto en las vigas cuando conectan a la columna en el eje menor. 1.4 Elementos Area.- Definimos la losa colaborante como elementos de área tipo membrana Modelo matemático final con diafragma rígido en los dos niveles, se ha incluido la escalera
  • 7. www.disepro.com 2.0 CARGAS Se tiene que pensar, ante todo, que la determinación de las Cargas que actúan no pueden ser exactas en magnitud y en ubicación, aun cuando se conozca la exacta posición de las mismas y su magnitud, la interrogante es como se trasmiten las cargas a los apoyos de los elementos; muchas veces son necesarias las suposiciones que ponen en duda el sentido de la exactitud buscada, de esta manera vamos a definir solo algunas de las cargas mas conocidas. 2.1 Carga Muerta, es una carga de gravedad cuya magnitud y ubicación podemos considerarlas fijas; se usara en este proyecto las cargas permanentes tomadas desde los pesos de los elementos que conforman la estructura definida como DEAD y para las cargas que se encuentran adheridas a ellas como tuberías, conductos de aire, luminarias, acabados, cielo raso suspendido, etc será definida como SUPERDEAD. En la práctica los Reglamentos vigentes proporcionan tablas que ayudan al diseñador a cuantificar estas magnitudes. Para la Súper Carga Permanente SUPERDEAD usaremos = 100kg/m2 y será aplicada a la cobertura tipo membrana Definición de cargas impuestas en el sistema Seleccionar la cobertura y asignar la súper carga muerta aprox. 100kg/m2; otra alternativa es distribuir la carga super muerta directamente a los elementos de manera distribuida.
  • 8. www.disepro.com 2.2 Carga Viva, es aquella carga de gravedad que actúa sobre la estructura cuando esta se encuentra en servicio; puede variar en ubicación como en magnitud a lo largo de la vida útil. Live = 250kg/m2 Seleccionar la cobertura y asignar la carga viva 250kg/m2 - Oficina 2.4 Carga de Sismo, los terremotos producen movimientos horizontales y verticales; los movimientos horizontales son los que generan en las estructuras los efectos más significativos; cuando la interacción suelo estructura se activa, la inercia de la masa de la estructura tiende a resistir este movimiento; la filosofía de este análisis sísmico tiende a estimar la fuerza a partir de un porcentaje del peso de la estructura; este porcentaje es llamado coeficiente basal y la fuerza dependerá de la ductilidad o liberación de energía que se estime o se asigne a este tipo de estructura; en este proyecto solo vamos a estimar la fuerza sísmica lateral para determinar si es mandatorio en el diseño; los pórticos en X-X serán con uniones dúctiles a momentos (R=9.5) y en el eje Y-Y arriostrado en cruz (R=6.0); evaluaremos desplazamiento lateral relativo (Dritf). Coeficiente Basal Z=0.4g U=1.0 S=1.4 Tp=0.90 seg T fundamental X-X = 0.32 seg y T fundamental Y-Y = 0.92 seg Cx-x= 2.5 y Cy-y= 2.44 = 9.5 = 6.0 Por lo tanto la fuerza por carga de sismo será y
  • 9. www.disepro.com Espectro de respuesta para evaluar sismo en X-X Espectro de respuesta para evaluar sismo en Y-Y
  • 10. www.disepro.com Caso de carga por sismo dinámico – dirección pre escrita X-X Caso de carga por sismo dinámico – dirección pre escrita Y-Y Para evaluar el peso de la estructura y determinar la fuerza cortante haremos una combinación lineal PESO = 100% las cargas muertas y 25% las cargas vivas Comb. para evaluar el peso de la estructura
  • 11. www.disepro.com Para evaluar los desplazamientos relativos (Drift) tomaremos las respuestas de la envolvente de los casos sísmicos dinámicos Espectral X-X y Espectral Y-Y, al 75% de R en cada dirección. Comb. para evaluar el drift o desplazamiento lateral relativo 3.0 ANALISIS DE LA ESTRUCTURA Para determinar las acciones internas en los miembros de las estructuras se tiene que analizar las mismas para todos los casos de cargas aplicadas; la estructura debe comportarse de acuerdo a las leyes de la Mecánica. El análisis será elástico, sabiendo que la misma puede incursionar en deformaciones inelásticas. 3.1 Opciones de Análisis y los casos de carga a evaluar El Peso de la estructura es 88.27Tn; el cortante por sismo es: y , al 100%
  • 12. www.disepro.com Cortante X-X =11.32 Tn y Cortante Y-Y=18.43 Tn OK Drift o desplazamientos relativos <10/1000 todos OK, controlamos los desplazamientos por sismo 4.0 DISEÑO DE LOS ELEMENTOS ESTRUCTURALES 4.1 Miembros a Tracción.- para asegurar un buen comportamiento de los miembros a tracción en sus conexiones debemos de aplicar un Factor de Resistencia ɸ =0.75 por la inseguridad del comportamiento de las conexiones. Se puede expresar la Resistencia Nominal de Miembros en Tracción: presentándose 2 casos: a) Limite de fluencia (f) en la sección total donde: punto de fluencia del acero y área total de la sección transversal. b) Limite de fractura (r) en la sección efectiva donde: esfuerzo de fractura en la sección neta o efectiva área neta o efectiva (quitando las aberturas de los pernos) en la sección transversal. Considerando el Factor de Resistencia el diseño en cada caso (a) y (b) será: Caso (a) Caso (b) c) Relación de esbeltez de Miembros a tracción: L/r; aunque estos no están sujetos a pandeos, las especificaciones establecen que L/r no deben exceder 300. (excepto para varillas), la razón es para facilitar la fabricación y montaje, así como evitar las ondas por calor, se requiere incluso una relación de esbeltez menor en miembros que estarán expuestos al viento o a que su propio peso le ocasione flexión o a vibración externa. 4.2 Miembros en Compresión Axial.- la Resistencia de estos miembros no solo depende se las cargas aplicadas, también depende de su longitud efectiva y de la forma de la sección transversal. La longitud efectiva depende a su vez de los tipos de conexiones (a momento o corte), del desplazamiento relativo de sus nudos y del arriostre existente.
  • 13. www.disepro.com Si la carga axial a compresión aplicada a un miembro crece; este puede sufrir deformación transversal llamada PANDEO, la carga crítica se denomina Carga de Pandeo. a) Excesiva Flexión.- alrededor de uno de los ejes de su sección transversal, llamado eje critico; llamado Pandeo Flexional (Pandeo de Euler ) b) Rotación.- alrededor del centro de corte de la sección transversal; llamado Pandeo Torsional. c) Combinado.- la que combina ambos casos denominado Pandeo Flexo-torsional. d) Pandeo Local.- los elementos placas que componen la sección transversal (alma) sufren deformaciones excesivas causando perdida en la resistencia de los miembros en compresión axial, luego de un pandeo global se observa que ha ocurrido pandeos locales a lo largo del miembro, por lo que se intuye que el pandeo local siempre acompaña al paneo global. También existe influencia en el comportamiento de miembros en compresión axial los esfuerzos residuales, el punto de fluencia del material, las condiciones de borde y la linealidad inicial de los elementos. 4.2.1 Pandeo Flexo-Torsional.- cuando los miembros están sujetos a compresión axial, éste puede pandear en tres formas diferentes: 1) Pandeo alrededor de alguno de sus ejes principales (pandeo puro), 2) Pandeo torsional y 3) Pandeo Flexo-Torsional. Nota.- para secciones con doble simetría (secciones W, HB, IPE, etc) solo pueden tener pandeos flexionales (llamado de Euler) o pandeos torsionales; si los apoyos o conexión lateral intermedia impide la rotación trasversal entonces el pandeo flexional será controlado. Se recomienda consultar las especificaciones del AISC-LRFD para pandeo Flexo-Torsional, en elementos de doble simetría, unisimétricas y no simétricas. 4.2.2 Factor de Longitud Efectiva.- este factor toma en cuenta la longitud real de pandeo de un miembro y está influenciada por el grado de restricción o desplazamiento de sus extremos. Por ejemplo en elementos articulados el factor de longitud efectiva K =1 (tomara toda la longitud); en elementos cuyo extremo esta empotrado o restringido y el otro articulado el factor de longitud efectiva K=0.7 (tomara 0.7L de la longitud); si fuera ambas empotradas K=0.5; miembros con un extremo empotrado y otro completamente libre K=2.0. Ahora si consideramos un sistema estructural tenemos: Un pórtico que sus extremos se pueden desplazar unos con respecto a otros, pórtico con desplazamiento lateral y otro pórtico sin desplazamientos, con arriostres en cruz por ejemplo. El primero la estabilidad dependerá enteramente de la rigidez flexionante de la columna, viga y nodos; siendo su longitud de pandeo K≥1.0, mientras que en el segundo caso debido al arriostramiento que impide el desplazamiento la longitud efectiva será menor o igual a la longitud real K≤1.0. 4.2.3 Relación de Esbeltez Máximas.- para miembros cuyo diseño se basa en esfuerzos de compresión, la relación de esbeltez KL/r debe ser menor a 200; esta relación se introdujo antes que apareciera el factor de longitud (K) lo cual hiso confusa su interpretación; ya que los valores de K daba especial cuidado a la estabilidad de las columna; sin embargo los elementos en compresión no deben sobrepasar la relación
  • 14. www.disepro.com 4.3 Incluir a los elementos que están liberados de Momentos en ambos ejes; estos solo se conectaran a corte; los miembros seleccionados serán: correas, arriostres y tensores. Liberación de momentos en las vigas que conectan a la columna en los ejes menores 4.4 En las correas sobre su eje menor el ratio por arriostramiento será K=0.5(a flexión y a torsión), asumiendo que estas tendrán arriostres a la mitad de su longitud, (esto no modelado). Las correas en el span de 5.75m en el eje 2-2 debido a la conexión en el centro impide el desplazamiento longitudinal su longitud efectiva en el eje menor será K=0.5; seleccionando estos miembros asignamos con el comando Steel Frame Desing / View / Revise Overwrites También debemos indicar que estos miembros no están diseñados a Momento (OMF) Unbraced Length Ratios (Major): Program Determined longitud no arriostrada, es el factor de longitud efectiva sin soporte lateral (arriostre o braced) para pandeo sobre el eje principal o eje mayor. En este ítem podemos especificar en % la longitud arriostrada no modelada que será multiplicada por la longitud del elemento sin arriostre; un valor = 0 especifica que el programa lo determinara. Para secciones simétricas el pandeo sobre el eje mayor debido a la flexión es alrededor del local axes 3 (revisar centro de corte en elementos de doble simetría donde se puede experimentar pandeo flexional o flexo torsional)
  • 15. www.disepro.com Para secciones unisimetricas como ángulos, doble ángulos, canales, perfiles T, etc. el pandeo sobre el eje mayor debido a la flexión es alrededor del eje principal de dicha sección con mayor momento de inercia. Unbraced Length Ratios (Minor):0.5 longitud no arriostrada; es el factor de longitud de pandeo alrededor del eje menor del elemento. En este ítem podemos especificar en % la longitud arriostrada no modelada que será multiplicada por la longitud del elemento sin arriostre; un valor = 0 especifica que el programa lo determinara. Para secciones simétricas el pandeo sobre el eje menor debido a la flexión es alrededor del local axes 2. Para las secciones asimétricas (por ejemplo, ángulos) el pandeo sobre el eje menor debido a la flexión se da alrededor del eje principal de la sección con el menor momento de inercia. Unbraced Length Ratios (LTB Length-Bending-Torsional):0.5 factor de longitud no arriostrada para pandeo flexo-torsional debido a la compresión axial. Este item se especifica como una fracción (%) de la longitud total; este factor multiplica a la longitud del elemento sin arriostre (longitud total). 4.5 Steel Frame Design / View Revise Preferences, seleccionamos el código de diseño y parámetros a usar: Framing Type especifica las consideraciones de ductilidad que se usara en el diseño (ya se especifico cuales son los miembros que no será mandatorio el sismo correas, arriostres, tensores.) Para el diseño del Pórtico en dirección X-X usaremos la opción SMF (Pórtico con uniones dúctiles Especial a Momentos); los demás elementos serán OMF (Ordinary Moment Frame). Un Sistema tipo “SMF” “Special Moment Frames” el ETABS hace las siguientes verificaciones: 1) Los perfiles para las Vigas y Columnas son Compactos Sísmicos 2) Las vigas posean adecuado soporte lateral 3) El criterio Columna Fuerte-Viga Débil en cada junta, de una manera simplificada considerando un valor de sobreresistencia (Ry). 4) Las planchas de refuerzo en la Zona del Panel. 4.6 Método de Análisis Directo (DAM), El DAM elimina la confusión y la falta de coherencia en la aplicación de los factores K en el diseño convencional, y puede dar lugar a un diseño más económico. Las
  • 16. www.disepro.com longitudes equivalentes se basan en el supuesto a menudo excesivamente conservador para desplazamiento lateral por pandeo en una estructura elástica simplificada, que comúnmente resultan en factores K de 2 a 3 o mayor. Criterios: 1. Considere la posibilidad de deformaciones debido a la flexión, cortante y axial en los elementos. Estos requisitos se contabilizan automáticamente en todos los software de análisis de CSi: ETABS, SAP2000 y CSiBridge. 2. Reducir la rigidez del elemento debido a la falta de elasticidad, incluyendo la tensión residual, e incluir el efecto de esta reducción de la rigidez en el análisis de la estructura. Esto se completa automáticamente en SAP2000 ETABS, y CSiBridge. 3. Computa las imperfecciones geométricas, como la verticalidad (alineamiento vertical), que SAP2000 ETABS, y CSiBridge se han automatizado a través de su notación: lateral load case/load pattern definition. 4. Realiza un riguroso análisis de P-delta no lineal que considera los efectos de la influencia (efectos de carga en una estructura que ya se ha desplazado lateralmente) y los efectos P- delta locales de cargas en la forma deformada de los miembros individuales. Ambos requisitos se consideran automáticamente en SAP2000 ETABS, y CSiBridge. a) Design Code, especifica el código de diseño y parámetros que se usaran en el mismo se activo en menú > Preferences > Steel Frame Design. especifique AISC360-05/IBC2006.- código y método de reducción de rigidez con el fin de garantizar que las combinaciones de carga automáticos son adecuados. b) Reduction factors, a la sección IE y EA se aplican de forma automática por el programa si se selecciona la opción DAM (Direct Analysis) Tau-b variable o Tau-b fixed.
  • 17. www.disepro.com Para el análisis inicial (Analyze Run), no se utilizan los factores de reducción. Sin embargo, tan pronto como un diseño se ejecuta (Star Steel Frame Design) los factores de reducción se utilizan y se mantienen en el modelo. Esto significa que la primera vez que el modelo es analizado y diseñado, el usuario debe iterar entre el diseño y el análisis al menos una vez adicional. Posteriormente, tanto el análisis y diseño tendrán factores de reducción aplicados automáticamente. 4.7 Steel Frame Design / Select Design Combos, en opción seleccionamos el estado límite para generar las combinaciones de diseño; será por Resistencia y Deflexión, puede generarse de manera automática o se puede generar de manera particular (si desea editar o generar las combinaciones para diseño use la opción Define/ Load Combinations / Add Default Design Combos o Add New Combo … 4.8 Design / Steel Frame Design / Star Design, primera iteración sobre el diseño de secciones en acero. 4.9 Verify Analysis vs Design Sections, el diseño y la optimización de las secciones se realice de manera iterativa; esto es seleccionando los miembros a optimizar se vuelve a analizar la estructura y posterior al diseño.
  • 18. www.disepro.com En la tercera iteración en mensaje refiere a que el análisis y diseño de secciones coincide y no hay mas secciones a optimizar (del auto list seleccionado) 4.10 Revisión de secciones diseñadas, si bien hemos logrado optimizar las secciones definidas como auto list, los braced (arriostres) no fueron consideradas con esta característica, nos tocara mejorar la sección con otra opción llamada overwrite, (sobre escribir otra sección). Veamos algunas secciones diseñadas: 1.- Columna W10x39 : Sección de Análisis y Sección de Diseño.
  • 19. www.disepro.com 2.- Viga de Pórtico: Sección W10X39 en el span de 5.75m (con arriostre medio) las demás W10x22 3.- Correas W8x31 con conexión a corte y arriostre a la mitad de la sección en el eje menor, las demás sin arriostre (paralela al eje X-X)
  • 20. www.disepro.com 4.- Vigas W10x17 con conexión a corte en las columnas (paralela al eje Y-Y), alternativamente puede usar W10x45 5.- Arriostres: sección TEE
  • 21. www.disepro.com CONEXIONES .- VIGAS –VIGAS A CORTE VIGAS – COLUMNA A MOMENTO EJE MAYOR VIGA – COLUMNA A CORTE EJE MENOR COLUMNA – PLANCHA BASE Revisión de la conexión viga-viga a corte plancha llena soldada - empernada Revisión de la conexión viga-columna a corte eje mayor de la columna
  • 22. www.disepro.com Revisión de la conexión viga-columna a corte eje menor de la columna Revisión de la conexión viga-columna a momento eje mayor de la columna
  • 23. www.disepro.com Revisión de la conexión plancha base Revisión de conexión a Momento en el eje mayor de la columna
  • 24. www.disepro.com Revisión de conexión a Corte, viga – viga Revisión de conexión a Corte, viga - correa