Section 2 part 1 coordinate transformation

E
Section 1: Introduction to
Tensor Notation and Analysis
Part 1: Coordinate transformation
2
COORDINATE TRANSFORMATION
ik
j
ai +bj+ck
A vector‟s direction only makes
sense when it is compared to a
defined frame of reference or
coordinate system.
3
COORDINATE TRANSFORMATION
ik
j
ai +bj+ck While we usually see these
systems defined as orthogonal to
the paper we are using, it is truly
arbitrary where we place the
coordinate system, and
sometimes it is advantageous to
put it somewhere else or in
another orientation.
4
COORDINATE TRANSFORMATION
iA
j
What if we defined the coordinate
system somewhere else? For
instance, what if we translated the
“origin” from Frame A (0,0) to
Frame B (h,k)?
We know P in frame A ((x,y)
positions). What is P in B ((x‟, y‟)
positions)?
x
y
x‟
y‟
P(x,y)
B
kykPABPy
hxhPABPx
yxP
yyyy
xxxx
)0()(
)0()(
:),(
(0,0)
(h,k)
5
COORDINATE TRANSFORMATION
iA
j
What if we defined the coordinate
system somewhere else? For
instance, what if we translated the
“origin” from Frame A (0,0) to
Frame B (h,k)?
We know P in frame A ((x,y)
positions). What is P in B ((x‟, y‟)
positions)?
x
y
x‟
y‟
P(x,y)
B
)(
)(
)0()(
)0()(
:),(
yy
xx
yyyy
xxxx
BAyy
BAxx
kykPABPy
hxhPABPx
yxP
(0,0)
(h,k)
If you know P(x‟,y‟) and want to find P(x,y):
6
COORDINATE TRANSFORMATION
What if we rotate the
coordinate frame from A to
B?
iA
j
x
y
P(x,y)
B
(0,0)
iA
j
x
y
P(x,y)
B
(0,0)
What is P(x‟,y‟)?
For x‟, there is a component of x
that contributes (cos =cos(x‟,x))
and a component of y
(cos(90- )=sin =cos (x‟,y)
Px
Py
7
COORDINATE TRANSFORMATION
A point on the x axis would have
a contribution of cos to the x‟
axis.
A point on the y axis would have
a contribution of cos (90- ) = sin
to the x‟ axis.
A point on the x axis would have a
contribution of -sin (or cos
(y‟,x)=cos 90+ ) to the y‟ coordinate.
A point on the y axis would have a
contribution of cos to the y‟
coordinate.
To find x’ value:
To find y’ value:
8
Coordinate Transformation
iA
j
x
y
P(x,y)
B
(0,0)
So point P moves a net:
sincos
sincos
xy
yx
In the x‟ direction, and a net:
In the y‟ direction.
sincos
sincos
xyy
yxx
9
Coordinate Transformation
Similarly, to go from (x‟,y‟) to (x,y)
A point on the x‟ axis contributes +cos
to the x coordinate.
A point on the y‟ axis contributes –sin
to the x coordinate.
A point on the x‟ axis contributes sin
to the y coordinate.
A point of the y‟ axis contributes cos
to the y coordinate.
10
Coordinate Transformation
Similarly, to go from (x‟,y‟) to (x,y)
iA
j
x
y
P(x,y)
B
(0,0)
sincos
sincos
xyy
yxx
11
General Coordinate Transformation
(rotation)
axes.b''anda''ebetween thangletheofcostheisb)cos(a,Where
),cos(),cos(),cos(
),cos(),cos(),cos(
),cos(),cos(),cos(
),cos(),cos(
),cos(),cos(
cossin
sincos
cossin
sincos
z
y
x
zzyzxz
zyyyxy
zxyxxx
z
y
x
y
x
yyxy
yxxx
y
x
y
x
y
x
y
x
y
x
12
13
Example problem
iA
j
x
y H(7,7)
B
(0,0)
= 30 deg
P(2,0)
What is position vector of P in H frame?
14
First translate
iA
j
x
y H(7,7)
B
(0,0)
P(2,0)
7
5
7
7
0
2
:PpointFor
7
7
A
A
OH
OH
A
A
y
x
yy
xx
y
x
y
x
y
x
You must perform the translation first,
so that when you rotate, the arc length
a point travels is correct.
15
Then rotate…
iA
j
x
y H(7,7)
B
(0,0)
P(2,0)
Then rotate:
= 30 deg
83.7
56.3
7
5
5.0867.0
867.05.0
120cos120sin
120sin120cos
5.0120cos3090cos),cos(
)120sin(867.0210cos30180cos),cos(
)120sin(867.030cos),cos(
5.0120cos3090cos),cos(
000
0000
00
000
A
A
B
B
y
x
y
x
yy
xy
yx
xx
How can you check your work?
1) User a ruler!
2) Rotate the paper / image so that your „new‟ frame is in a traditional position
and estimate the new values for the point
3) Recognize that while the positions of the points are vectors, the distance
between points is a scalar, and therefore independent of the coordinate
frame:
What is position vector from P-H in O frame? 5i+7j
And in the H frame? -3.56i + 7.83j
The magnitude of these position vectors (ie distance to (0,0)) is a scalar and
must be the same!
Sqrt(5*5 + 7*7)=sqrt(74)
Sqrt(3.56*3.56+7.83*7.83)=sqrt(74)
Check!
1 von 16

Recomendados

Coordinate transformation von
Coordinate transformationCoordinate transformation
Coordinate transformationMohd Arif
15.7K views13 Folien
Two dimensional geometric transformations von
Two dimensional geometric transformationsTwo dimensional geometric transformations
Two dimensional geometric transformationsMohammad Sadiq
34.7K views27 Folien
2d-transformation von
2d-transformation2d-transformation
2d-transformationPooja Dixit
5.4K views15 Folien
3D TRANSFORMATION: MATRIX REPRESENTATION von
3D TRANSFORMATION: MATRIX REPRESENTATION3D TRANSFORMATION: MATRIX REPRESENTATION
3D TRANSFORMATION: MATRIX REPRESENTATIONAhtesham Ullah khan
1K views12 Folien
Transforms UNIt 2 von
Transforms UNIt 2 Transforms UNIt 2
Transforms UNIt 2 sandeep kumbhkar
1.4K views34 Folien
2 d transformations by amit kumar (maimt) von
2 d transformations by amit kumar (maimt)2 d transformations by amit kumar (maimt)
2 d transformations by amit kumar (maimt)Amit Kapoor
33.5K views35 Folien

Más contenido relacionado

Was ist angesagt?

2 d geometric transformations von
2 d geometric transformations2 d geometric transformations
2 d geometric transformationsMohd Arif
28.5K views20 Folien
Two dimensionaltransformations von
Two dimensionaltransformationsTwo dimensionaltransformations
Two dimensionaltransformationsNareek
8.7K views51 Folien
3d transformation von
3d transformation3d transformation
3d transformationSehrish Asif
4.4K views5 Folien
3D Transformation von
3D Transformation 3D Transformation
3D Transformation Mahmudul Hasan
7.1K views23 Folien
Mid point circle algorithm von
Mid point circle algorithmMid point circle algorithm
Mid point circle algorithmMani Kanth
3.3K views8 Folien
seminar on 2D transformation von
seminar on 2D transformationseminar on 2D transformation
seminar on 2D transformation9784
1.8K views23 Folien

Was ist angesagt?(20)

2 d geometric transformations von Mohd Arif
2 d geometric transformations2 d geometric transformations
2 d geometric transformations
Mohd Arif28.5K views
Two dimensionaltransformations von Nareek
Two dimensionaltransformationsTwo dimensionaltransformations
Two dimensionaltransformations
Nareek8.7K views
Mid point circle algorithm von Mani Kanth
Mid point circle algorithmMid point circle algorithm
Mid point circle algorithm
Mani Kanth3.3K views
seminar on 2D transformation von 9784
seminar on 2D transformationseminar on 2D transformation
seminar on 2D transformation
97841.8K views
2D Transformations(Computer Graphics) von AditiPatni3
2D Transformations(Computer Graphics)2D Transformations(Computer Graphics)
2D Transformations(Computer Graphics)
AditiPatni3701 views
GATE Engineering Maths : Vector Calculus von ParthDave57
GATE Engineering Maths : Vector CalculusGATE Engineering Maths : Vector Calculus
GATE Engineering Maths : Vector Calculus
ParthDave572.5K views
Pre-Cal 40S Trigonometric Identities Math Dictionary von Darren Kuropatwa
Pre-Cal 40S Trigonometric Identities Math DictionaryPre-Cal 40S Trigonometric Identities Math Dictionary
Pre-Cal 40S Trigonometric Identities Math Dictionary
Darren Kuropatwa4.6K views
9 determinant and cross product von math267
9 determinant and cross product9 determinant and cross product
9 determinant and cross product
math267443 views
Viewing transformation von Udayan Gupta
Viewing transformationViewing transformation
Viewing transformation
Udayan Gupta12.9K views
Multiple ppt von Manish Mor
Multiple pptMultiple ppt
Multiple ppt
Manish Mor6.1K views
Homogeneous Representation: rotating, shearing von Manthan Kanani
Homogeneous Representation: rotating, shearingHomogeneous Representation: rotating, shearing
Homogeneous Representation: rotating, shearing
Manthan Kanani3.6K views

Destacado

Coordinate system & transformation von
Coordinate system & transformationCoordinate system & transformation
Coordinate system & transformationParamjeet Singh Jamwal
1.4K views5 Folien
Numerical and experimental demonstration of a coordinate transformation-based... von
Numerical and experimental demonstration of a coordinate transformation-based...Numerical and experimental demonstration of a coordinate transformation-based...
Numerical and experimental demonstration of a coordinate transformation-based...Xinying Wu
237 views6 Folien
Coordinate system transformation von
Coordinate system transformationCoordinate system transformation
Coordinate system transformationTarun Gehlot
4.5K views17 Folien
Coordinate-transformation von
Coordinate-transformationCoordinate-transformation
Coordinate-transformationKutubuddin ANSARI
308 views18 Folien
Finite elements : basis functions von
Finite elements : basis functionsFinite elements : basis functions
Finite elements : basis functionsTarun Gehlot
3.4K views20 Folien
Three dimensional transformations von
Three dimensional transformationsThree dimensional transformations
Three dimensional transformationsNareek
9.4K views63 Folien

Destacado(14)

Numerical and experimental demonstration of a coordinate transformation-based... von Xinying Wu
Numerical and experimental demonstration of a coordinate transformation-based...Numerical and experimental demonstration of a coordinate transformation-based...
Numerical and experimental demonstration of a coordinate transformation-based...
Xinying Wu237 views
Coordinate system transformation von Tarun Gehlot
Coordinate system transformationCoordinate system transformation
Coordinate system transformation
Tarun Gehlot4.5K views
Finite elements : basis functions von Tarun Gehlot
Finite elements : basis functionsFinite elements : basis functions
Finite elements : basis functions
Tarun Gehlot3.4K views
Three dimensional transformations von Nareek
Three dimensional transformationsThree dimensional transformations
Three dimensional transformations
Nareek9.4K views
Introduction to MAPS,Coordinate System and Projection System von NAXA-Developers
Introduction to MAPS,Coordinate System and Projection SystemIntroduction to MAPS,Coordinate System and Projection System
Introduction to MAPS,Coordinate System and Projection System
NAXA-Developers8.9K views
Geographic coordinate system & map projection von vishalkedia119
Geographic coordinate system & map projectionGeographic coordinate system & map projection
Geographic coordinate system & map projection
vishalkedia11911.5K views
Coordinate systems von Saad Raja
Coordinate systemsCoordinate systems
Coordinate systems
Saad Raja10.6K views
Geodetic systems (earth, ellipsoid) von Md. Tamim Haider
Geodetic systems (earth, ellipsoid)Geodetic systems (earth, ellipsoid)
Geodetic systems (earth, ellipsoid)
Md. Tamim Haider9.4K views
Understanding Coordinate Systems and Projections for ArcGIS von John Schaeffer
Understanding Coordinate Systems and Projections for ArcGISUnderstanding Coordinate Systems and Projections for ArcGIS
Understanding Coordinate Systems and Projections for ArcGIS
John Schaeffer19.3K views
Composite transformations von Mohd Arif
Composite transformationsComposite transformations
Composite transformations
Mohd Arif61.8K views
Geodesy, Map Projections - Introduction von Dean Mikkelsen
Geodesy, Map Projections - IntroductionGeodesy, Map Projections - Introduction
Geodesy, Map Projections - Introduction
Dean Mikkelsen10.1K views

Similar a Section 2 part 1 coordinate transformation

2d transformation von
2d transformation2d transformation
2d transformationSarkunavathi Aribal
195 views46 Folien
06.Transformation.ppt von
06.Transformation.ppt06.Transformation.ppt
06.Transformation.pptRobinAhmedSaikat
22 views56 Folien
Unit 3 notes von
Unit 3 notesUnit 3 notes
Unit 3 notesBalamurugan M
147 views14 Folien
2D-transformation-1.pdf von
2D-transformation-1.pdf2D-transformation-1.pdf
2D-transformation-1.pdfbcanawakadalcollege
13 views29 Folien
2D transformation (Computer Graphics) von
2D transformation (Computer Graphics)2D transformation (Computer Graphics)
2D transformation (Computer Graphics)Timbal Mayank
19.3K views29 Folien
Area Under Curves Basic Concepts - JEE Main 2015 von
Area Under Curves Basic Concepts - JEE Main 2015 Area Under Curves Basic Concepts - JEE Main 2015
Area Under Curves Basic Concepts - JEE Main 2015 Ednexa
351 views4 Folien

Similar a Section 2 part 1 coordinate transformation(20)

2D transformation (Computer Graphics) von Timbal Mayank
2D transformation (Computer Graphics)2D transformation (Computer Graphics)
2D transformation (Computer Graphics)
Timbal Mayank19.3K views
Area Under Curves Basic Concepts - JEE Main 2015 von Ednexa
Area Under Curves Basic Concepts - JEE Main 2015 Area Under Curves Basic Concepts - JEE Main 2015
Area Under Curves Basic Concepts - JEE Main 2015
Ednexa 351 views
Beginning direct3d gameprogrammingmath06_transformations_20161019_jintaeks von JinTaek Seo
Beginning direct3d gameprogrammingmath06_transformations_20161019_jintaeksBeginning direct3d gameprogrammingmath06_transformations_20161019_jintaeks
Beginning direct3d gameprogrammingmath06_transformations_20161019_jintaeks
JinTaek Seo205 views
Cs8092 computer graphics and multimedia unit 2 von SIMONTHOMAS S
Cs8092 computer graphics and multimedia unit 2Cs8092 computer graphics and multimedia unit 2
Cs8092 computer graphics and multimedia unit 2
SIMONTHOMAS S144 views
09transformation3d von Ketan Jani
09transformation3d09transformation3d
09transformation3d
Ketan Jani594 views
Unit-3 overview of transformations von Amol Gaikwad
Unit-3 overview of transformationsUnit-3 overview of transformations
Unit-3 overview of transformations
Amol Gaikwad134 views
Computer Graphics & linear Algebra von Xad Kuain
Computer Graphics & linear Algebra Computer Graphics & linear Algebra
Computer Graphics & linear Algebra
Xad Kuain2K views
3-D Transformation in Computer Graphics von SanthiNivas
3-D Transformation in Computer Graphics3-D Transformation in Computer Graphics
3-D Transformation in Computer Graphics
SanthiNivas22 views
Chapter 3 Image Processing: Basic Transformation von Varun Ojha
Chapter 3 Image Processing:  Basic TransformationChapter 3 Image Processing:  Basic Transformation
Chapter 3 Image Processing: Basic Transformation
Varun Ojha2.3K views
2 d transformation von Ankit Garg
2 d transformation2 d transformation
2 d transformation
Ankit Garg22K views
Two dimentional transform von Patel Punit
Two dimentional transformTwo dimentional transform
Two dimentional transform
Patel Punit10K views
Chapter 17 definite integrals and-area under curves- part 2 von STUDY INNOVATIONS
Chapter 17 definite integrals and-area under curves- part 2Chapter 17 definite integrals and-area under curves- part 2
Chapter 17 definite integrals and-area under curves- part 2
Computer graphics basic transformation von Selvakumar Gna
Computer graphics basic transformationComputer graphics basic transformation
Computer graphics basic transformation
Selvakumar Gna24.1K views

Último

Retail Store Scavenger Hunt.pdf von
Retail Store Scavenger Hunt.pdfRetail Store Scavenger Hunt.pdf
Retail Store Scavenger Hunt.pdfRoxanneReed
38 views10 Folien
Mann-Mayal-Novel-By-Aileen-Noor-Episode2.pdf von
Mann-Mayal-Novel-By-Aileen-Noor-Episode2.pdfMann-Mayal-Novel-By-Aileen-Noor-Episode2.pdf
Mann-Mayal-Novel-By-Aileen-Noor-Episode2.pdfnovelsmag
12 views17 Folien
Mann-Mayal-Novel-By-Aileen-Noor-Episode2.pdf von
Mann-Mayal-Novel-By-Aileen-Noor-Episode2.pdfMann-Mayal-Novel-By-Aileen-Noor-Episode2.pdf
Mann-Mayal-Novel-By-Aileen-Noor-Episode2.pdfnovelsmag
8 views17 Folien
RESUME von
RESUMERESUME
RESUMEbvtp649ry8
10 views1 Folie
IRL - Screenplay von
IRL - ScreenplayIRL - Screenplay
IRL - Screenplaymediastudiesf1n34rts
12 views9 Folien
FA kala Ilam specialist in Pakistan , sifli jadu expert +92-3217066670 #amilb... von
FA kala Ilam specialist in Pakistan , sifli jadu expert +92-3217066670 #amilb...FA kala Ilam specialist in Pakistan , sifli jadu expert +92-3217066670 #amilb...
FA kala Ilam specialist in Pakistan , sifli jadu expert +92-3217066670 #amilb...#Astrologer
5 views29 Folien

Último(14)

Retail Store Scavenger Hunt.pdf von RoxanneReed
Retail Store Scavenger Hunt.pdfRetail Store Scavenger Hunt.pdf
Retail Store Scavenger Hunt.pdf
RoxanneReed38 views
Mann-Mayal-Novel-By-Aileen-Noor-Episode2.pdf von novelsmag
Mann-Mayal-Novel-By-Aileen-Noor-Episode2.pdfMann-Mayal-Novel-By-Aileen-Noor-Episode2.pdf
Mann-Mayal-Novel-By-Aileen-Noor-Episode2.pdf
novelsmag12 views
Mann-Mayal-Novel-By-Aileen-Noor-Episode2.pdf von novelsmag
Mann-Mayal-Novel-By-Aileen-Noor-Episode2.pdfMann-Mayal-Novel-By-Aileen-Noor-Episode2.pdf
Mann-Mayal-Novel-By-Aileen-Noor-Episode2.pdf
novelsmag8 views
FA kala Ilam specialist in Pakistan , sifli jadu expert +92-3217066670 #amilb... von #Astrologer
FA kala Ilam specialist in Pakistan , sifli jadu expert +92-3217066670 #amilb...FA kala Ilam specialist in Pakistan , sifli jadu expert +92-3217066670 #amilb...
FA kala Ilam specialist in Pakistan , sifli jadu expert +92-3217066670 #amilb...
#Astrologer5 views
Fun Session 3 Movie Quiz.pptx von ssuserd156e61
Fun Session 3 Movie Quiz.pptxFun Session 3 Movie Quiz.pptx
Fun Session 3 Movie Quiz.pptx
ssuserd156e6120 views
Gwyneth Paltrow rejects Nepo Baby as her name reason von danealbwp228
Gwyneth Paltrow rejects Nepo Baby as her name reasonGwyneth Paltrow rejects Nepo Baby as her name reason
Gwyneth Paltrow rejects Nepo Baby as her name reason
danealbwp2288 views
Who Is Jon Batiste’s Wife All About Suleika Jaouad.pdf von MianHamidAyub
Who Is Jon Batiste’s Wife All About Suleika Jaouad.pdfWho Is Jon Batiste’s Wife All About Suleika Jaouad.pdf
Who Is Jon Batiste’s Wife All About Suleika Jaouad.pdf
MianHamidAyub7 views
Perfect Wedding Hub Magazine Nov Edition von rakhiraajan
Perfect Wedding Hub Magazine Nov EditionPerfect Wedding Hub Magazine Nov Edition
Perfect Wedding Hub Magazine Nov Edition
rakhiraajan9 views

Section 2 part 1 coordinate transformation

  • 1. Section 1: Introduction to Tensor Notation and Analysis Part 1: Coordinate transformation
  • 2. 2 COORDINATE TRANSFORMATION ik j ai +bj+ck A vector‟s direction only makes sense when it is compared to a defined frame of reference or coordinate system.
  • 3. 3 COORDINATE TRANSFORMATION ik j ai +bj+ck While we usually see these systems defined as orthogonal to the paper we are using, it is truly arbitrary where we place the coordinate system, and sometimes it is advantageous to put it somewhere else or in another orientation.
  • 4. 4 COORDINATE TRANSFORMATION iA j What if we defined the coordinate system somewhere else? For instance, what if we translated the “origin” from Frame A (0,0) to Frame B (h,k)? We know P in frame A ((x,y) positions). What is P in B ((x‟, y‟) positions)? x y x‟ y‟ P(x,y) B kykPABPy hxhPABPx yxP yyyy xxxx )0()( )0()( :),( (0,0) (h,k)
  • 5. 5 COORDINATE TRANSFORMATION iA j What if we defined the coordinate system somewhere else? For instance, what if we translated the “origin” from Frame A (0,0) to Frame B (h,k)? We know P in frame A ((x,y) positions). What is P in B ((x‟, y‟) positions)? x y x‟ y‟ P(x,y) B )( )( )0()( )0()( :),( yy xx yyyy xxxx BAyy BAxx kykPABPy hxhPABPx yxP (0,0) (h,k) If you know P(x‟,y‟) and want to find P(x,y):
  • 6. 6 COORDINATE TRANSFORMATION What if we rotate the coordinate frame from A to B? iA j x y P(x,y) B (0,0) iA j x y P(x,y) B (0,0) What is P(x‟,y‟)? For x‟, there is a component of x that contributes (cos =cos(x‟,x)) and a component of y (cos(90- )=sin =cos (x‟,y) Px Py
  • 7. 7 COORDINATE TRANSFORMATION A point on the x axis would have a contribution of cos to the x‟ axis. A point on the y axis would have a contribution of cos (90- ) = sin to the x‟ axis. A point on the x axis would have a contribution of -sin (or cos (y‟,x)=cos 90+ ) to the y‟ coordinate. A point on the y axis would have a contribution of cos to the y‟ coordinate. To find x’ value: To find y’ value:
  • 8. 8 Coordinate Transformation iA j x y P(x,y) B (0,0) So point P moves a net: sincos sincos xy yx In the x‟ direction, and a net: In the y‟ direction. sincos sincos xyy yxx
  • 9. 9 Coordinate Transformation Similarly, to go from (x‟,y‟) to (x,y) A point on the x‟ axis contributes +cos to the x coordinate. A point on the y‟ axis contributes –sin to the x coordinate. A point on the x‟ axis contributes sin to the y coordinate. A point of the y‟ axis contributes cos to the y coordinate.
  • 10. 10 Coordinate Transformation Similarly, to go from (x‟,y‟) to (x,y) iA j x y P(x,y) B (0,0) sincos sincos xyy yxx
  • 11. 11 General Coordinate Transformation (rotation) axes.b''anda''ebetween thangletheofcostheisb)cos(a,Where ),cos(),cos(),cos( ),cos(),cos(),cos( ),cos(),cos(),cos( ),cos(),cos( ),cos(),cos( cossin sincos cossin sincos z y x zzyzxz zyyyxy zxyxxx z y x y x yyxy yxxx y x y x y x y x y x
  • 12. 12
  • 13. 13 Example problem iA j x y H(7,7) B (0,0) = 30 deg P(2,0) What is position vector of P in H frame?
  • 14. 14 First translate iA j x y H(7,7) B (0,0) P(2,0) 7 5 7 7 0 2 :PpointFor 7 7 A A OH OH A A y x yy xx y x y x y x You must perform the translation first, so that when you rotate, the arc length a point travels is correct.
  • 15. 15 Then rotate… iA j x y H(7,7) B (0,0) P(2,0) Then rotate: = 30 deg 83.7 56.3 7 5 5.0867.0 867.05.0 120cos120sin 120sin120cos 5.0120cos3090cos),cos( )120sin(867.0210cos30180cos),cos( )120sin(867.030cos),cos( 5.0120cos3090cos),cos( 000 0000 00 000 A A B B y x y x yy xy yx xx
  • 16. How can you check your work? 1) User a ruler! 2) Rotate the paper / image so that your „new‟ frame is in a traditional position and estimate the new values for the point 3) Recognize that while the positions of the points are vectors, the distance between points is a scalar, and therefore independent of the coordinate frame: What is position vector from P-H in O frame? 5i+7j And in the H frame? -3.56i + 7.83j The magnitude of these position vectors (ie distance to (0,0)) is a scalar and must be the same! Sqrt(5*5 + 7*7)=sqrt(74) Sqrt(3.56*3.56+7.83*7.83)=sqrt(74) Check!