Ph-1,2,3 & Binomial(F).pdf

STUDY  INNOVATIONS
STUDY INNOVATIONSEducator um Study Innovations

(n – 2)2 = n (n – 1) – 4n + 10 n2 – 4n + 4 = n2 – 5n + 10 n = 6 Ans ] Q.138107/bin The sum of the series aC0 + (a + b)C1 + (a + 2b)C2 + + (a + nb)Cn is where Cr's denotes combinatorial coefficient in the expansion of (1 + x)n, n  N (A) (a + 2nb)2n (B) (2a + nb)2n (C) (a +nb)2n – 1 (D*) (2a + nb)2n – 1 Q.139109/bin The coefficient of the middle term in the binomial expansion in powers of x of (1 + x)4 and of (1 – x)6 is the same if  equals 5 (A) – 3 10 (B) 3 3 (C*) – 10 3 (D) 5 Q.14029/bin (2n + 1) (2n + 3) (2n + 5) ....... (4n  1) is equal to : (A) (4n) ! 2n . (2n) ! (2n) ! (B*) (4n) ! n ! 2n . (2n) ! (2n) ! (C) (4n) ! n ! (2n) ! (2n) ! (D) (4n) ! n ! 2n ! (2n) ! [Hint: E = (2 n + 1) (2 n + 3) (2 n + 5) ......(4 n  1) Multiply numerator and denominator by (2 n + 2) (2 n + 4) ...... (4 n) & also by (2 n ) ! . E = (2 n) ! (2 n  1) (2 n  2) (2 n  3) (4 n 1) . 4 n (2 n) ! (2 n 2) (2 n  4) (2 n  2 n) = (4 n) !  (n) ! = (n !) . (4 n) !  B ] (2 n) ! 2n (n  1) (n  2) (2 n)  n ! 2n . (2 n) !2 Q.141 110/bin If Sn n =  n r0 Cr and Tn n =  n r0 Cr Tn then n is equal to (A*) n 2 (B) n 1 2 (C) n – 1 (D) 2n 1 2 Q.14211/bin The coefficient of xr (0  r  n 1) in the expression : (x + 2)n1 + (x + 2)n2. (x + 1) + (x + 2)n3 . (x + 1)² + ...... + (x + 1)n1 is : (A) nCr (2r  1) (B*) nCr (2nr  1) (C) nCr (2r + 1) (D) nCr (2nr + 1)  x1  x1 2  x1 n1  [Hint : E = (x + 2)n  1 1   x2 x2 ......   x2       1   x  1 n   n  1  x  2  n (x  2)n  (x  1)n  n n = (x + 2)    x  1  x  2  = (x + 2)   (x  2)n  = (x + 2)   (x + 1) Now co-efficient of xr in  (2  x)n  (1  x)n  = nCr 2n  r  nCr = nCr (2n  r  1) ]  x  1 x  1  10 Q.12663/bin In the expansion of  x2/ 3  x1/3  1  x  x1/ 2  , the term which does not contain x is :   (A) 10C0 (B) 10C7 (C*) 10C4 (D) none x1/3 3  1 [Hint : x2/3  x1/3  1 = x1/3 + 1  (x1/3  x1/2)10 ]  1 8 Q.127 65/bin If the 6th term in the expansion of the binomial  x8/3  x2 log10 x is 5600, then x equals to (A) 5 (B) 8 (C*) 10 (D) 100  1  8 5 [Hint : T6 = 8C5  x8/3 . (x2 log10 x)5 = 100  x = 10 ] Q.12868/bin Co-efficient of t in the expansion of, ( + p)m  1 + ( + p)m  2 ( + q) + ( + p)m  3 ( + q)2 + ( + q)m  1 where    q and p  q is : (A) (C) m Ct pt  qt  p  q m Ct pt  qt  p  q (B*) (D) m Ct pm t  qm t  p  q m Ct pm t  qm t  p  q    q    q 2    q m1  [Hint : E = ( + p)m  1 1        ......        p    p    p   co-efficient of t =   pm    qm p  q p  m  q m or p  q = m t pm t  qm t  p q ] Q.12970/bin (1 + x) (1 + x + x2) (1 + x + x2 + x3) ...... (1 + x + x2 + ...... + x100) when

(n – 2)2 = n (n – 1) – 4n + 10
n2 – 4n + 4 = n2 – 5n + 10
n = 6 Ans ]
Q.138107/bin The sum of the series aC0 + (a + b)C1 + (a + 2b)C2 + ..... + (a + nb)Cn is
where Cr's denotes combinatorialcoefficient in the expansion of (1 + x)n, n N
(A) (a + 2nb)2n (B) (2a + nb)2n (C) (a +nb)2n – 1 (D*) (2a + nb)2n – 1
Q.139109/bin The coefficient ofthe middle term in the binomialexpansion in powers of x of(1 + x)4 and of
(1 – x)6 is the same if  equals
(A) –
3
5
(B)
3
10
(C*) –
10
3
(D)
5
3
Q.14029/bin (2n+1) (2n+3) (2n+5) ....... (4n 1) is equal to :
(A)
( ) !
. ( ) ! ( )!
4
2 2 2
n
n n
n (B*)
( ) ! !
. ( ) ! ( )!
4
2 2 2
n n
n n
n (C)
( ) ! !
( ) ! ( ) !
4
2 2
n n
n n
(D)
( ) ! !
! ( ) !
4
2 2
n n
n
n
[Hint: E = (2 n + 1) (2 n + 3) (2 n + 5) ......(4 n  1)
Multiply numerator and denominator by (2n + 2) (2n + 4) ...... (4n) & also by (2n )!.
E =
( ) ! ( ) ( ) ( ) ........ ( ) .
( ) ! ( ) ( ) ........ ( )
2 2 1 2 2 2 3 4 1 4
2 2 2 2 4 2 2
n n n n n n
n n n n n
   
  
=
 
( ) ! ( ) !
( ) ! ( ) ( ) ...... ( ) !
4
2 2 1 2 2
n n
n n n n n
n

 
=
 
( !) . ( )!
. ( ) !
n n
n
n
4
2 2
2
 B ]
Q.141110/bin If Sn = 

n
0
r r
n
C
1
and Tn = 

n
0
r r
n
C
r
then
n
n
S
T
is equal to
(A*)
2
n
(B) 1
2
n
 (C) n – 1 (D)
2
1
n
2 
Q.14211/bin The coefficient of xr (0  r  n1) in the expression :
(x+ 2)n1 + (x+ 2)n2. (x+ 1) + (x+ 2)n3 . (x+ 1)² + ...... + (x+ 1)n1 is :
(A) nCr (2r  1) (B*) nCr (2nr  1) (C) nCr (2r + 1) (D) nCr (2nr + 1)
[Hint: E = (x + 2)n  1


































1
n
2
2
x
1
x
......
2
x
1
x
2
x
1
x
1
= (x + 2)n  1
1
1
2
1
1
2





 

















x
x
x
x
n
= (x + 2)n ( ) ( )
( )
x x
x
n n
n
  







2 1
2
= (x + 2)n  (x + 1)n
Now co-efficient of xr in  
( ) ( )
2 1
  
x x
n n
= nCr 2n  r  nCr = nCr (2n  r
 1) ]
Q.12663/bin In the expansionof
x
x x
x
x x

 









1
1
1
2 3 1 3 1 2
10
/ / / , the term which does not contain x is :
(A) 10C0 (B) 10C7 (C*) 10C4 (D) none
[Hint:
 
x
x x
1 3
3
2 3 1 3
1
1
/
/ /

 
= x1/3 + 1  (x1/3  x1/2)10 ]
Q.12765/bin Ifthe 6th termin the expansion of the binomial
1
8 3
2
10
8
x
x x
/
log






 is 5600, then xequals to
(A) 5 (B) 8 (C*) 10 (D) 100
[Hint: T6 = 8C5
1
8 3
8 5
x /







. (x2 log10 x)5 = 100  x = 10 ]
Q.12868/bin Co-efficient of t in the expansion of,
( + p)m  1 + ( + p)m  2 ( + q) + ( + p)m  3 ( + q)2 + ...... ( + q)m  1
where  q and p  q is :
(A)
 
m
t
t t
C p q
p q


(B*)
 
m
t
m t m t
C p q
p q
 


(C)
 
m
t
t t
C p q
p q


(D)
 
m
t
m t m t
C p q
p q
 


[Hint: E = ( + p)m  1 1
2 1











  























q
p
q
p
q
p
m
......
 co-efficient of t =
   
 
  

p q
p q
m m
or
   
p q
p q
m m
  

 
=
 
m
t
m t m t
C p q
p q
 


]
Q.12970/bin (1 + x) (1 + x + x2) (1 + x + x2 + x3) ...... (1 + x + x2 + ...... + x100) when written in the ascending
power of x then the highest exponent of x is ______ .
(A) 4950 (B*) 5050 (C) 5150 (D) none
[Hint: Highest exponent inthe product offirst two is 3 = 1 + 2
Highest exponent inthe product offirst three is 6 = 1 + 2 + 3
Similarly, Highest exponent inthe product offirst hundred
= 1 + 2 + ...... + 100 = 5050 ]
Q.13073/bin Let  
5 2 6

n
= p + f where n  N and p  N and 0 < f < 1 then the value of, f2  f + pf 
p is
(A) a naturalnumber (B*) a negative integer
(C) a prime number (D) are irrationalnumber
[Hint: value =  1 ]
Q.13175/bin Number ofrational terms inthe expansion of  
2 3
4
100
 is :
(A) 25 (B*) 26 (C) 27 (D) 28
Q.11219/bin Let n
)
3
4
7
(  = p +  when n and p are positive integers and   (0, 1) then (1 – ) (p + ) is
(A) rationalwhichis not aninteger (B) a prime
(C) a composite (D*) none ofthese
[Hint: (1 – ) (p + ) = 1  (D) ]
Q.11324/bin If(11)27 + (21)27 when divided by 16 leaves the remainder
(A*) 0 (B) 1 (C) 2 (D) 14
[Hint: an + bn = (a + b) (Q (a, b) ) if n is odd
alternatively : interpret from (16 – 5)27 + (16 + 5)27 ]
Q.11425/bin Last three digits ofthe number N = 7100 – 3100 are
(A) 100 (B) 300 (C) 500 (D*) 000
[Hint: consider (5 + 2)100 – (5 – 2)100
= 2 [100C1 599 · 2 + 100C3 597 · 23 + ....... + 100C995 · 299]
= 2 [1000 · 598 + 100C3 594 + ....... + 1000 · 298]
 minimum 000 as last three digits.  (D) ]
Q.11527/bin The last two digits of the number 3400 are :
(A) 81 (B) 43 (C) 29 (D*) 01
[Hint : 3400 = 81100 = (1 + 80)100 = 100C0 + 100C1 80 + ....... + 100C100 80100
 Last two digits are 01 ]
Q.11628/bin If (1 + x + x²)25 = a0 + a1x + a2x² + ..... + a50 . x50 then a0 + a2 + a4 + ..... + a50 is :
(A*) even (B) odd & ofthe form 3n
(C) odd & of the form (3n1) (D) odd & ofthe form (3n+1)
[Hint: putting x = 1 and 1 and adding
a0 + a2 + ...... + a50 =
3 1
2
25

=
 
1 2 1
2
25
 
(
2
even
2
1
odd


)
=
25 2 2 2 1
2
0
25
1
25
2
2 25
25
25
C C C C
   
. . .
=
 
2 1 2 2
2
25
1
25
2
25
25
24
   
C C C
. ...... .
= 2 [13 + 25C2 + ...... + 25C25 . 223]
 even ]
Q.11731/bin The sum of the series (1² + 1).1! + (2² +1).2! + (3² +1). 3! + ..... + (n²+ 1). n! is :
(A) (n+1). (n+2)! (B*) n.(n+1)! (C) (n+1). (n+1)! (D) none of these
[Hint: Tn = [n (n + 1)  (n  1) ] n! = n. (n+1)!  (n  1). n!
Now put n = 1, 2, 3, ...... , n and add ]
Q.11835/bin Let Pm stand for nPm . Then the expression 1 . P1 + 2 . P2 + 3 . P3 + ..... + n. Pn =
(A*) (n+ 1) !  1 (B) (n+ 1) ! + 1 (C) (n+ 1)! (D) none of these
[Hint: Tn = n . n ! = n! [(n + 1)  1 ] = (n + 1) !  n!
Now put n = 1, 2, 3 , ....... and add ]
y =
)
2
/
cos(
)
2
/
sin(
2
2
/
cos
2
sin
cos
1 2







= cot /2
x =
2
/
tan
1
2
/
tan
1




= 1
y
1
y
1
2
/
cot
1
2
/
cot







 (C)
Applying C/D y
1
y
1
y
1
y
1
y
1
x
1
x










 (B)
Also , y = 


x
1
1
x
y – xy – x–1 = 0  (D) ]
Q.102 If2 cos + sin = 1, then the value of 4 cos + 3sin is equalto
(A*) 3 (B) –5 (C*)
7
5
(D) –4
[Hint: (2cos)2 = (1 – sin)2  5sin2 – 2sin– 3 = 0  sin = 1 or 
3
5
, now proceed
If sin = 1  cos = 0  E = 3; if sin = –
3
5
 cos =
4
5
or –
4
5
but cos –
4
5
(think!)
hence E =
7
5
]
Q.103 Ifsint + cost =
1
5
then tan
t
2
is equal to :
(A) 1 (*B) –
1
3
(C*) 2 (D) 
1
6
[Hint: sint & cost in tangent of half the angle  (3y+ 1)(y  2) = 0  y = 2 or 1/3 where y= tan(t/2) ]
BINOMIAL
There are 39 questions in this question bank.
Q.1042/bin Given that the termofthe expansion(x1/3  x1/2)15 whichdoes not contain xis 5mwhere m
 N , then m =
(A) 1100 (B) 1010 (C*) 1001 (D) none
[Hint: Tr + 1 = 15Cr (x1/3)15  r (–x 1/2) r 
15
3
 r

r
2
= 0  r = 6
Hence T7 is independent of x and T7 = 15C6 = 5005 = 5m  m = 1001 ]
Q.1053/bin In the binomial (21/3 + 31/3)n, if the ratio of the seventh term from the beginning of the
expansion to the seventh term fromits end is 1/6, then n =
(A) 6 (B*) 9 (C) 12 (D) 15
[Hint: Tr + 1 = nCr an  r . br where a = 21/3 and b = 3 1/3
T7 from beginning = nC6 an  6 b6 and T7 from end = nC6 bn  6 a6

a
b
n
n


12
12 =
1
6
 3
12
n
3
12
n
3
.
2


= 6 1  n – 12 =  3  n = 9 ]
[Sol. sin = sin
 = n +(–1)n
n = 0  =  sin/3 = sin/3  (A)
n = 1  = – sin/3 = sin(/3–/3)  (B)
n = –1  = –– sin/3 = sin(–/3–/3) = –sin(/3+/3)  (D) ]
Q.95 Choose the INCORRECT statement(s).
(A)iii sin 82
1
2

. cos 37
1
2

and sin 127
1
2

. sin 97
1
2

have the same value.
(B*)v If tanA=
3
4 3

& tanB =
3
4 3

then tan(A B) must be irrational.
(C*)viii The sign ofthe product sin2 . sin3 . sin5 is positive.
(D*)xiv There exists a value of  between 0 & 2 which satisfies the equation ;
sin4  – sin2  – 1 = 0.
[Sol. (A) A=
0
0
2
1
37
cos
.
2
1
82
sin =
0
0
2
75
cos
.
2
165
sin =  
0
0
45
sin
120
sin
2
1
 =
2
4
1
6 
B=
0
0
2
1
97
sin
.
2
1
127
sin =  
0
0
225
cos
30
cos
2
1
 = 






2
1
2
3
2
1
=
2
4
2
6 
=
4
2
3 
 A= B  True ]
(B) tan(A–B) = B
tan
A
tan
1
B
tan
A
tan


=
  
3
4
3
4
3
.
3
1
3
4
3
3
4
3






=
 
3
3
16
3
4
3
4
3





= 3/8  rational ]
(C) [Sol. sin2 = + ; sin3 = + ; sin5 = – ]
(D) [Sol. sin2 =
2
5
1
 sin2 =
2
5
1
(not possible)
sin2 = 1
2
5
1


 not possible ]
Q.96 Whichofthefollowing functions have the maximumvalueunity?
(A*) sin2 x  cos2 x (B*)
sin cos
2 2
2
x x

(C*) 
sin cos
2 2
2
x x

(D*)
6
5
1
2
1
3
sin cos
x x







Q.85 Minimum value of 8cos2x + 18sec2x  x  R wherever it is defined, is :
(A) 24 (B) 25 (C*) 26 (D) 18
[Sol. y = 8 cos2x + 18 sec2x
= 8 (cos2x + sec2x) + 10 sec2x
= 8 [ (cos x – sec x )2 + 2 ] + 10 sec2x
where cosx = secx  x = 0
ymin = 16 + 10 = 26 Ans ]
Q.86 In a ABC 









C
sin
c
B
sin
b
A
sin
a 2
2
2
. sin
2
A
sin
2
B
sin
2
C
simplifies to
(A) 2 (B*)  (C)
2

(D)
4

where  is the area ofthe triangle
[Hint: 2R (a + b + c)  (sin
2
A
)
4 R s ·
R
4
r
= r s = ]
Q.87 If  is eliminated fromthe equations x = a cos( – ) and y = b cos ( – ) then
)
cos(
ab
xy
2
b
y
a
x
2
2
2
2




 is equalto
(A) cos2 (  – ) (B*) sin2 ( – ) (C) sec2 (  – ) (D) cosec2 ( – )
[Sol. ( – ) = ( – ) – ( – )
cos( – ) = cos ( – ) cos ( – ) + sin ( – ) sin( – )
cos( – ) = 2
2
2
2
b
y
1
.
a
x
1
a
x
.
b
y



 



























 2
2
2
2
2
b
y
1
a
x
1
)
cos(
ab
xy
 )
cos(
ab
xy
2
)
(
cos
b
a
y
x 2
2
2
2
2







 = 2
2
2
2
2
2
2
2
b
a
y
x
a
x
b
y
1 


 )
cos(
ab
xy
2
b
y
a
x
2
2
2
2




 = sin2 ( – ) ]
Q.88 Thegeneralsolutionofthetrigonometric equation
tan x + tan 2x + tan 3x = tan x · tan 2x · tan 3x is
(A) x = n (B) n ±
3

(C) x = 2n (D*) x =
3
n
where n  I
[Hint: tan x + tan 2x + tan 3x = tan 3x – tan 2x – tan x
 tan x + tan 2x = 0
 tan 2x = tan (– x)
 2b2 = a2 + c2 Þ a2, b2, c2 are in A.P. ]
Q.75 The number ofsolution ofthe equation, 

5
1
r
)
x
r
cos( = 0 lying in (0, p) is :
(A) 2 (B) 3 (C*) 5 (D) more than 5
[Hint: cos x + cos 2x + cos 3x + cos 4x + cos 5 x = 0
2 cos 3x cos 2x + 2 cos 3x cos x + cos 3x = 0
cos 3x [2 cos 2x + 2 cos x – 1] = 0
x = (2n – 1)
6


6

,
6
3
,
6
5
= 3





= 5
2nd equation gives cos x =
4
2
1
= 2
Q.76 If  = 3  and sin  =
a
a b
2 2

. The value of the expression, a cosec  b sec  is
(A)
1
2 2
a b

(B*) 2 a b
2 2
 (C) a + b (D) none
[Sol. a cosec – bsec =


 cos
b
sin
a
















sin
b
a
b
cos
b
a
a
cos
sin
b
a
2
2
2
2
2
2
Now sin3 = 2
2
b
a
a

gives















cos
sin
sin
3
cos
cos
3
sin
b
a 2
2
= 2
2
b
a
2  Ans ]
Q.78 The value ofcot 7
1
2
0
+ tan 67
1
2
0
– cot 67
1
2
0
– tan7
1
2
0
is :
(A) arationalnumber (B*)irrationalnumber (C) 2(3 + 2 3 ) (D) 2 (3 – 3 )
Q.79 If in a triangle ABC
2 2
cos cos cos
A
a
B
b
C
c
a
bc
b
ca
    then the value of the angle Ais :
(A)
8

(B)
4

(C)
3

(D*)
2

Q.80 The value ofthe expression (sinx + cosecx)2 + (cosx + secx)2 – ( tanx+ cotx)2 wherever defined is
equalto
(A) 0 (B*) 5 (C) 7 (D) 9
[Hint: C
sin
b
a
2
1
b
r
2
1
a
r
2
1





r (a + b) = 2 
r =
b
a
2


]
Q.66 For eachnatural number k , let Ck denotes the circle withradius k centimeters and centre at the origin.
Onthe circle Ck , a particle moves kcentimeters inthecounter- clockwise direction.Aftercompleting its
motion on Ck , the particle moves to Ck+1 inthe radialdirection. Themotion ofthe particle continues in
this manner .The particle starts at (1, 0).Ifthe particlecrosses the positive directionofthe x- axisfor the
first time onthe circle Cn thenn equalto
(A) 6 (B*) 7 (C) 8 (D) 9
[Hint: Totaldistance travelled = 35 cm;displacement at the instant it crosses the +ve x-axis first timeis 6cm
Angular displacement oneachcircle is 1 radian.]
Q.67 If in a ABC,
cos cos cos
A
a
B
b
C
c
  then the triangle is
(A)right angled (B) isosceles (C*) equilateral (D) obtuse
[Hint:
cos
sin
cos
sin
cos
sin
A
R A
B
R B
C
R C
2 2 2
   tanA = tanB = tanC  A = B = C  (C) ]
Q.68 If cos A+ cosB + 2cosC = 2 then the sides of the ABC are in
(A*)A.P. (B) G.P (C) H.P. (D) none
[Hint: cosA + cosB = 2(1-cosC) = 4 sin2
C
2
or 2cos
A B

2
cos
A B

2
= 4sin2
C
2
or cos
A B

2
= 2sin
C
2
or 2cos
C
2
cos
A -B
2
= 4sin
C
2
cos
C
2
= 2sinC
2sin
A + B
2
cos
A -B
2
= 2sinC or sinA+ sinB = 2sinC  a, c, b are inA.P.
. ]
Q.69 IfAand B are complimentaryangles, then :
(A*) 1
2
1
2






 






tan tan
A B
= 2 (B) 1
2
1
2






 






cot cot
A B
= 2
(C) 1
2
1
2






 






sec cos
A
ec
B
= 2 (D) 1
2
1
2






 






tan tan
A B
= 2
[Sol. A = /2 – B   
A B
2 4 2

Hence 1 + tanA/2 = 1 +
1 2
1 2


tan /
tan /
B
B
=
2
1
2
 tan
B HenceAis correct ]
ymax =
2
625
2
252
 ]
Q.59 4 sin50 sin550 sin650 has the values equalto
(A)
3 1
2 2

(B*)
3 1
2 2

(C)
3 1
2

(D)
3 3 1
2 2

d i
[Sol. 2[2sin50 sin550] sin650
 2[cos500 – cos600]sin650
 2cos500 sin650 – sin650
 sin(1150) + sin150 – sin650 =
2
2
1
3 
Ans]
Q.60 If x, y and z are the distances of incentre from the vertices of the triangle ABC respectively then
z
y
x
c
b
a
is equalto
(A)  2
A
tan (B*)  2
A
cot (C)  2
A
tan (D)  2
A
sin
[Similar to 48]
[Sol. x = r cosec
2
A
a = r 






2
C
cot
2
B
cot
2
A
sin
.
2
C
cot
2
B
cot
x
a







 =
2
C
sin
.
2
B
sin
2
A
cos
.
2
A
sin

2
C
sin
.
2
B
sin
2
A
sin
2
C
cos
.
2
B
cos
.
2
A
cos
xyz
abc

=
2
C
cot
.
2
B
cot
.
2
A
cot
In a triangle  2
A
cot =  2
A
cot ]
Q.61 The medians ofa ABC are 9 cm, 12 cm and 15 cm respectively . Thenthe area of the triangle is
(A) 96 sq cm (B) 84 sq cm (C*) 72 sq cm (D) 60 sq cm
[Hint: Produce the medianAM to D such that
GM = MD . Join D to B and C . Now GBDC
is a parallelogram. Note that the sides ofthe
 GDC are 6, 8, 10 GDC = 90º
Q.49 Number of roots of the equation cos sin
2 3 1
2
3
4
1 0
x x


   which lie in the interval
[] is
(A) 2 (B*) 4 (C) 6 (D) 8
[Sol. 1 – sin2x +
2
1
3 
sinx –
4
3
– 1 = 0
sin2x –
2
1
3 
sinx +
4
3
= 0
4sin2x – 2 3 sinx – 2sinx + 3 = 0
On solvingwe get
sinx = 1/2 ;
2
3
= (/6 , 5/6 ; /3 , 2/3 ]
Q.50
sec
sec
8 1
4 1



 is equal to
(A) tan 2 cot 8 (B) tan 8 tan 2 (C) cot 8 cot 2 (D*) tan 8 cot 2
Q.51 In a ABC if b = a  
1
3  and C = 300 then the measure of the angle A is
(A) 150 (B) 450 (C) 750 (D*) 1050
[Hint: use tan
2
B
A 
=
b
a
b
a


cot
2
C
to get A– B and A+ B = 1500 (given) ]
Q.52 Number ofvalues of  
[ , ]
0 2 satisfying the equation cotx – cosx = 1 – cotx. cosx
(A) 1 (B*) 2 (C) 3 (D) 4
Q.53 The exact value of cos273º + cos247º + (cos73º . cos47º)is
(A) 1/4 (B) 1/2 (C*)3/4 (D) 1
[Sol.
2
146
cos
1 0

+
2
94
cos
1 0

+
2
26
cos
120
cos 0
0

= 1 + 2
26
cos
4
1
2
94
cos
146
cos 0
0
0







 
= 3/4 Ans ]
Q.54 In a ABC, a = a1 = 2 , b = a2 , c = a3 such that ap+1 = 




 


 p
p
p
2
p
p
2
p
a
5
2
p
4
2
a
3
5
where p = 1,2 then
(A) r1 = r2 (B) r3 = 2r1 (C) r2 = 2r1 (D*) r2 = 3r1
[Hint: put p = 1 , we get a2 = 4  b = 4
put p = 2 , we get a3 = 4  c = 4
Hence the ABC is isosceles
=
9
sin
18
sin
6
cos
18
cos
6
sin
4






 




= 4 Ans ]
Q.41 In a ABC if b + c = 3a then cot
B
2
· cot
C
2
has the value equal to :
(A) 4 (B) 3 (C*) 2 (D) 1
[Hint: cot
B
2
· cot
C
2
=
 
s s b


.
 
s s c


.
 
s a
s a


=
s
s a

=
2
2 2
s
s a

but given that a + b + c = 4a  2s = 4a Hence cot
B
2
· cot
C
2
=
4
2
a
a
= 2 ]
Q.42 The set of values of ‘a’for which the equation, cos 2x + a sin x = 2a  7 possess a solution is :
(A) (, 2) (B*) [2, 6] (C) (6, ) (D) ()
[Sol. cos2x + a sinx = 2a – 7
i.e. 2sin2x – a sinx + 2a – 8 = 0
sinx =
a a a a a
  

 
2
8 2 8
4
8
4
( ) ( )
sinx =
a
or
 4
2
2
Hence –1 < (a– 4)/ 2 < 1  the range of a ]
Q.43 Inaright angled trianglethehypotenuse is2 2 timesthe perpendicular drawnfromthe oppositevertex.
Thentheother acute angles ofthe triangle are
(A)

3
&

6
(B*)

8
&
3
8

(C)

4
&

4
(D)

5
&
3
10

[Sol. p2sec2 + p2cosec2 =  2
2
2 p2
 8
cos
sin
1
2
2



sin22 = 1/2 =
2
2
1






2 = n + /4
 = n/2 + /8
for n = 0   = /8
for n=1   = 3/8 ]
Q.44 Let f, g, h bethe lengths oftheperpendiculars fromthe circumcentreoftheABC onthe sides a, band
c respectively . If
a
f
b
g
c
h
  = 
a b c
f g h
then the value of  is :
(A*) 1/4 (B) 1/2 (C) 1 (D) 2
[Hint: Note that thegiven expressionsimplifies to 3 cot3x ]
[Sol. cotx +
)
60
x
sin(
)
60
x
cos(
)
x
60
sin(
)
x
60
cos(





= )
60
x
sin(
)
60
x
sin(
)
x
2
sin(
x
sin
x
cos



= 3
x
sin
4
x
cos
x
sin
8
x
sin
x
cos
2

 =
x
sin
3
x
sin
4
x
cos
x
sin
8
x
cos
3
x
cos
x
sin
4
3
2
2



=
x
sin
]
x
cos
4
x
cos
3
[
3
3
3

= 3 cot3x 
x
tan
x
tan
3
]
x
tan
3
1
[
3
3
2


Ans ]
Q.34 In a  ABC, cos 3A+ cos 3B + cos 3C = 1 then :
(A) ABC is right angled
(B) ABC is acute angled
(C*) ABC is obtuse angled
(D) nothing definite can be said about the nature ofthe .
[Hint:  cos 3A = 1 + 4 sin
3
2
A
sin
3
2
B
sin
3
2
C
= 1  A =
=
2
3

or B =
2
3

or C =
2
3

]
Q.35 The value of
3 76 16
76 16
  
  
cot cot
cot cot
is :
(A*) cot44º (B) tan44º (C) tan2º (D) cot46º
[Sol. Using 0
0
0
0
0
0
0
0
16
cos
76
sin
16
sin
76
cos
16
cos
76
cos
16
sin
.
76
sin
3


= 0
0
0
0
0
0
0
92
sin
]
16
cos
76
cos
16
sin
76
[sin
16
sin
76
sin
2 

=






92
sin
60
cos
92
cos
60
cos
= 0
0
92
sin
92
cos
1
= 0
0
0
2
46
cos
46
sin
2
46
sin
2
= tan460 = cot440 Ans ]
Q.36 Ifthe incircle ofthe ABC touches its sides respectivelyat L, M and N and ifx, y, zbe the circumradii
ofthe triangles MIN, NIL and LIM where I is the incentre then theproduct xyz is equalto :
(A) Rr2 (B) rR2 (C*)
1
2
R r2 (D)
1
2
rR2
[Hint: note thatANIM is a cyclic quandrilateral.
 cosec
A
2
=
2x
r
 2x = r cosec
A
2
x =
r
A
2
2
sin
 xyz =
2
R
r
r
.
2
R
.
r
2
A
sin
4
.
2
r 2
3
3



]
Q.25 With usual notation in a  ABC
1 1 1 1 1 1
1 2 2 3 3 1
r r r r r r






 





 





 =
K R
a b c
3
2 2 2
where K has the value
equalto :
(A) 1 (B) 16 (C*) 64 (D) 128
[Hint: 1st term = )
b
s
a
s
(
1




=
c

 L H S =
a bc
3 . Use  =
a bc
R
4
to get the result ]
Q.26 If
5
2
3


 
x , then the value ofthe expression
1 1
1 1
  
  
sin sin
sin sin
x x
x x
is
(A) –cot
x
2
(B) cot
x
2
(C) tan
x
2
(D*) –tan
x
2
[Hint: Onrationalizing;we get
x
sin
1
x
sin
1
|
x
cos
|
2
x
sin
1
x
sin
1







=
 
)
x
(sin
2
|
x
cos
|
1
2


=
)
x
(sin
x
cos
1


 (D) ]
Q.27 If x sin = y sin 








2
3
= z sin 








4
3
then :
(A) x + y + z = 0 (B*) xy + yz + zx = 0 (C) xyz + x + y + z = 1 (D) none
[Hint:







sin
sin
.
3
/
2
cos
cos
.
3
/
2
sin
y
x
= 









sin
sin
cos
3
2
1
=
2
1
cot
2
3

 ....(1)
|||ly







sin
3
/
4
sin
.
cos
3
/
4
cos
.
sin
z
x
= 

 cot
2
3
2
1
....(2)
1
z
x
y
x


  xz + xy + yz = 0 ]
Q.28 In a ABC, the value of
a A b B c C
a b c
cos cos cos
 
 
is equal to :
(A*)
r
R
(B)
R
r
2
(C)
R
r
(D)
2r
R
[Hint: LHS
 
 
R A B C
R A B C
sin sin sin
sin sin sin
2 2 2
2
 
 
=
4
2 4 2 2 2
sin sin sin
. cos cos cos
A B C
A B C
= 4 sin
A
2
sin
B
2
sin
C
2
=
r
R
]
Q.29 The value of cos

10
cos
2
10

cos
4
10

cos
8
10

cos
16
10

is :
(A)
1
32
(B)
1
16
(C)
 
cos /
 10
16
(D*) 
10 2 5
64

Q.17 With usualnotations, in a triangleABC, a cos(B – C) + b cos(C –A) + c cos(A– B) is equal to
(A*) 2
R
abc
(B) 2
R
4
abc
(C) 2
R
abc
4
(D) 2
R
2
abc
[Sol. Here a(cosB cosC + sinB sinC) + ........
using
C
sin
c
B
sin
b
A
sin
a

 = 2R
a (cosB cosC + 2
R
4
bc
) + ......
= 2
R
4
abc
3
+ a cosB cosC + b cosC cosA + c cosA cosB
= 2
R
4
abc
3
+ c cosC + c cosA cosB
= 2
R
4
abc
3
+ c [cosA cosB – cos(A + B)]
= 2
R
4
abc
3
+ c sinA sinB
= 2
R
4
abc
3
+ 2
R
4
abc
= 2
R
abc
 (A) ]
Q.18
sin cos
sin cos
3 3
 
 



cos
cot


1 2

 2 tan cot  =  1 if :
(A)  0
2
,






 (B*) 


2
,





 (C)  

,
3
2





 (D) 
3
2
2


,






[Hint: simplifies to –cos |sin| + sin cos = 0 provided sin  cos 
Q.19 With usual notations in a triangleABC, ( I I1 ) · ( I I2 ) · ( I I3 ) has the value equalto
(A) R2r (B) 2R2r (C) 4R2r (D*) 16R2r
[Hint: BICI1 is a cyclic quadrilateral with I I1 as the diameter
also  BI1C =
2
A
2


applying sine law in BCI1
1
I
I
2
A
cos
a

 I I1 =
2
A
cos
2
A
cos
·
2
A
sin
2
·
R
2
= 4R sin
2
A
  1
I
I = 64R3 sin
2
A
sin
2
B
sin
2
C
= 16R2 r ]
Q.8
     
   
tan . cos sin
cos . tan
x x x
x x
   
 
  
 
2
3
2
7
2
2
3
2
3
whensimplified reduces to :
(A) sinx cosx (B) sin2 x (C) sinx cosx (D*) sin2x
[Sol.
     
   
tan . cos sin
cos . tan
x x x
x x
   
 
  
 
2
3
2
7
2
2
3
2
3
=
x
cot
.
x
sin
x
cos
x
sin
.
x
cot 3



=
x
sin
x
cos
.
x
sin
x
sin
x
cos
.
x
sin
x
cos3


= sin2x Ans ]
Q.9 If in a ABC, sin3A+ sin3B + sin3C = 3 sinA· sinB · sinC then
(A) ABC may be a scalene triangle (B) ABC isa right triangle
(C) ABC is anobtuse angled triangle (D*) ABC isan equilateraltriangle
[Hint: Use : a3+b3+c3–3abc = (1/2) (a+b+c) [(a–b)2+(b–c)2+(c–a)2 ]
[Hint: either sinA + sinB + sin C = 0 (which isnot possible)
or sinA = sinB = sinC  equilateral ]
Q.10 In a triangleABC, CH and CM are the lengths of the altitude and median to the base AB. If a = 10,
b = 26, c = 32 then length (HM)
(A) 5 (B) 7 (C*) 9 (D) none
[Hint: cos B =
32 10 26
2 3210
7
10
7
2 2 2
 
  
. .
BH
 MH = BM  BH = 16  7 = 9 ]
Q.11 The value of
1
tan
cos
sin
cos
sin
sin
2
2










for allpermissible vlaues of
(A) is less than – 1 (B) is greater than 1
(C) lies between – 1 and 1 including both (D*) lies between – 2 and 2
Q.12 sin 3 = 4 sin  sin 2 sin 4 in 0  has :
(A) 2 realsolutions (B) 4 realsolutions
(C) 6 realsolutions (D*) 8 realsolutions.
[Sol. given equation canbe written as
3 sin  - 4sin3 = 4sin sin 2 sin4
hence either sin  = 0   = n
or 3 – 4sin2 = 4 sin 2 sin 4
3 – 2 (1 – cos 2) = 2 (cos 2 – cos 6)
or 1 = – 2 cos 6
cos 6 = –
2
1
= cos
3
2
6 = 2n ±
3
2
Question bank on Compound angles, Trigonometric eqn and ineqn, Solutions of Triangle & Binomial
There are 142 questions in this question bank.
Select the correct alternative : (Only one is correct)
Q.1 If x + y = 3 – cos4 and x – y = 4 sin2 then
(A) x4 + y4 = 9 (B) 16
y
x 

(C) x3 + y3 = 2(x2 + y2) (D*) 2
y
x 

[Sol. On addingand subtracting
x =
2
2
sin
4
4
cos
3 



; y =
2
2
sin
4
4
cos
3 



x =
2
)
4
cos
1
(
)
2
sin
1
(
4 




; y =
2
)
4
cos
1
(
)
2
sin
1
(
4 




x = 2 (1 + sin2 ) – cos22 ; y = 2 (1 – sin2) – cos22
x = 1 + 2 sin2 + sin22 ; y = 1 – 2 sin2 + sin22
x = (1 + sin2)2 ; y = (1 – sin2)2  2
y
x 
 ]
[Alternate : Or put  =
4

and verify ]
Q.2 If in a triangle ABC, b cos2
A
2
+ a cos2
B
2
=
3
2
c then a, b, c are :
(A) inA.P. (B) in G.P. (C) in H.P. (D*) None
[Hint:
b
2
(1 + cos A) +
a
2
(1 + cos B) =
3
2
c
 a + b + c = 3c  a + b = 2c  a,c,b are in A.P. ]
Q.3 If tanB =
A
cos
n
1
A
cos
A
sin
n
2

then tan(A + B) equals
(A*)
A
cos
)
n
1
(
A
sin

(B)
A
sin
A
cos
)
1
n
( 
(C)
A
cos
)
1
n
(
A
sin

(D)
A
cos
)
1
n
(
A
sin

[Sol. tan(A + B) =
B
tan
A
tan
1
B
tan
A
tan


=
A
cos
n
1
A
cos
A
sin
n
·
A
tan
1
A
cos
n
1
A
cos
A
sin
n
A
tan
2
2




=
A
cos
A
sin
n
)
A
cos
n
1
(
A
cos
A
cos
A
sin
n
)
A
cos
n
1
(
A
sin
2
2
2
2




=
)
A
sin
n
A
cos
n
1
(
A
cos
0
A
sin
2
2



=
A
cos
)
n
1
(
A
sin

]
Q.4 Given a2 + 2a + cosec2

2
( )
a x

F
H
G I
K
J= 0 then, which ofthe following holds good?
(A) a = 1 ;
x
I
2
 (B*) a = –1 ;
x
I
2

(C) a  R ; x  (D) a , x are finite but not possible to find

Recomendados

Dpp (10-12) 11th J-Batch Maths.pdf von
Dpp (10-12) 11th J-Batch Maths.pdfDpp (10-12) 11th J-Batch Maths.pdf
Dpp (10-12) 11th J-Batch Maths.pdfSTUDY INNOVATIONS
9 views7 Folien
Dpp (31-35) 11th J-Batch Maths.pdf von
Dpp (31-35) 11th J-Batch Maths.pdfDpp (31-35) 11th J-Batch Maths.pdf
Dpp (31-35) 11th J-Batch Maths.pdfSTUDY INNOVATIONS
20 views20 Folien
Dpp (25-30) 11th J-Batch Maths.pdf von
Dpp (25-30) 11th J-Batch Maths.pdfDpp (25-30) 11th J-Batch Maths.pdf
Dpp (25-30) 11th J-Batch Maths.pdfSTUDY INNOVATIONS
20 views19 Folien
Definite & Indefinite Integration Q.B..pdf von
Definite & Indefinite Integration Q.B..pdfDefinite & Indefinite Integration Q.B..pdf
Definite & Indefinite Integration Q.B..pdfSTUDY INNOVATIONS
11 views41 Folien
Log_Ph-1-2-3_QE_S&P (PQRS & J-Batch).pdf von
Log_Ph-1-2-3_QE_S&P (PQRS & J-Batch).pdfLog_Ph-1-2-3_QE_S&P (PQRS & J-Batch).pdf
Log_Ph-1-2-3_QE_S&P (PQRS & J-Batch).pdfSTUDY INNOVATIONS
35 views22 Folien
Binomial Theorem-02-EXERCISE - 1 - 5 von
Binomial Theorem-02-EXERCISE - 1 - 5Binomial Theorem-02-EXERCISE - 1 - 5
Binomial Theorem-02-EXERCISE - 1 - 5STUDY INNOVATIONS
22 views4 Folien

Más contenido relacionado

Similar a Ph-1,2,3 & Binomial(F).pdf

Ph-1,2,3 and Seq. & prog(13th).pdf von
Ph-1,2,3 and Seq. & prog(13th).pdfPh-1,2,3 and Seq. & prog(13th).pdf
Ph-1,2,3 and Seq. & prog(13th).pdfSTUDY INNOVATIONS
3 views34 Folien
Class 9 von
Class 9Class 9
Class 9Richa Varshneya
9.7K views24 Folien
MATHS- 13th Objective.pdf von
MATHS- 13th Objective.pdfMATHS- 13th Objective.pdf
MATHS- 13th Objective.pdfSTUDY INNOVATIONS
6 views7 Folien
MATHS - Paper-2.pdf von
MATHS - Paper-2.pdfMATHS - Paper-2.pdf
MATHS - Paper-2.pdfSTUDY INNOVATIONS
12 views7 Folien
Dpp (16-18) 11th J-Batch Maths.pdf von
Dpp (16-18) 11th J-Batch Maths.pdfDpp (16-18) 11th J-Batch Maths.pdf
Dpp (16-18) 11th J-Batch Maths.pdfSTUDY INNOVATIONS
12 views11 Folien
FLCD-MOD-ITF.pdf von
FLCD-MOD-ITF.pdfFLCD-MOD-ITF.pdf
FLCD-MOD-ITF.pdfSTUDY INNOVATIONS
11 views42 Folien

Similar a Ph-1,2,3 & Binomial(F).pdf(20)

(Www.entrance exam.net)-sail placement sample paper 5 von SAMEER NAIK
(Www.entrance exam.net)-sail placement sample paper 5(Www.entrance exam.net)-sail placement sample paper 5
(Www.entrance exam.net)-sail placement sample paper 5
SAMEER NAIK500 views

Más de STUDY INNOVATIONS

Physics-31.Rotational Mechanics von
Physics-31.Rotational MechanicsPhysics-31.Rotational Mechanics
Physics-31.Rotational MechanicsSTUDY INNOVATIONS
3 views14 Folien
Physics-30.24-Physics-Solids and Semiconductors von
Physics-30.24-Physics-Solids and SemiconductorsPhysics-30.24-Physics-Solids and Semiconductors
Physics-30.24-Physics-Solids and SemiconductorsSTUDY INNOVATIONS
2 views40 Folien
Physics-29.Atoms-Molecules & nuclei von
Physics-29.Atoms-Molecules & nucleiPhysics-29.Atoms-Molecules & nuclei
Physics-29.Atoms-Molecules & nucleiSTUDY INNOVATIONS
2 views19 Folien
Physics-28..22-Electron & Photon von
Physics-28..22-Electron & PhotonPhysics-28..22-Electron & Photon
Physics-28..22-Electron & PhotonSTUDY INNOVATIONS
2 views30 Folien
Physics-27.21-Electromagnetic waves von
Physics-27.21-Electromagnetic wavesPhysics-27.21-Electromagnetic waves
Physics-27.21-Electromagnetic wavesSTUDY INNOVATIONS
2 views17 Folien
Physics-26.20-Wave Optics von
Physics-26.20-Wave OpticsPhysics-26.20-Wave Optics
Physics-26.20-Wave OpticsSTUDY INNOVATIONS
2 views27 Folien

Más de STUDY INNOVATIONS(20)

Physics-24.18-Electromagnetic induction & Alternating current von STUDY INNOVATIONS
Physics-24.18-Electromagnetic induction & Alternating currentPhysics-24.18-Electromagnetic induction & Alternating current
Physics-24.18-Electromagnetic induction & Alternating current
Physics-22.15-THERMAL & CHEMICAL EFFECTS OF CURRENT & THERMOELECTRICITY von STUDY INNOVATIONS
Physics-22.15-THERMAL & CHEMICAL EFFECTS OF CURRENT & THERMOELECTRICITYPhysics-22.15-THERMAL & CHEMICAL EFFECTS OF CURRENT & THERMOELECTRICITY
Physics-22.15-THERMAL & CHEMICAL EFFECTS OF CURRENT & THERMOELECTRICITY
Physics-14.7-NEWTON'S LAW OF UNIVERSAL GRAVITATION von STUDY INNOVATIONS
Physics-14.7-NEWTON'S LAW OF UNIVERSAL GRAVITATIONPhysics-14.7-NEWTON'S LAW OF UNIVERSAL GRAVITATION
Physics-14.7-NEWTON'S LAW OF UNIVERSAL GRAVITATION

Último

STRATEGIC MANAGEMENT MODULE 1_UNIT1 _UNIT2.pdf von
STRATEGIC MANAGEMENT MODULE 1_UNIT1 _UNIT2.pdfSTRATEGIC MANAGEMENT MODULE 1_UNIT1 _UNIT2.pdf
STRATEGIC MANAGEMENT MODULE 1_UNIT1 _UNIT2.pdfDr Vijay Vishwakarma
134 views68 Folien
Retail Store Scavenger Hunt.pptx von
Retail Store Scavenger Hunt.pptxRetail Store Scavenger Hunt.pptx
Retail Store Scavenger Hunt.pptxjmurphy154
53 views10 Folien
StudioX.pptx von
StudioX.pptxStudioX.pptx
StudioX.pptxNikhileshSathyavarap
106 views18 Folien
Thanksgiving!.pdf von
Thanksgiving!.pdfThanksgiving!.pdf
Thanksgiving!.pdfEnglishCEIPdeSigeiro
568 views17 Folien
Papal.pdf von
Papal.pdfPapal.pdf
Papal.pdfMariaKenney3
73 views24 Folien
UNIDAD 3 6º C.MEDIO.pptx von
UNIDAD 3 6º C.MEDIO.pptxUNIDAD 3 6º C.MEDIO.pptx
UNIDAD 3 6º C.MEDIO.pptxMarcosRodriguezUcedo
150 views32 Folien

Último(20)

Retail Store Scavenger Hunt.pptx von jmurphy154
Retail Store Scavenger Hunt.pptxRetail Store Scavenger Hunt.pptx
Retail Store Scavenger Hunt.pptx
jmurphy15453 views
Monthly Information Session for MV Asterix (November) von Esquimalt MFRC
Monthly Information Session for MV Asterix (November)Monthly Information Session for MV Asterix (November)
Monthly Information Session for MV Asterix (November)
Esquimalt MFRC213 views
EILO EXCURSION PROGRAMME 2023 von info33492
EILO EXCURSION PROGRAMME 2023EILO EXCURSION PROGRAMME 2023
EILO EXCURSION PROGRAMME 2023
info33492208 views
Six Sigma Concept by Sahil Srivastava.pptx von Sahil Srivastava
Six Sigma Concept by Sahil Srivastava.pptxSix Sigma Concept by Sahil Srivastava.pptx
Six Sigma Concept by Sahil Srivastava.pptx
Sahil Srivastava51 views
Guidelines & Identification of Early Sepsis DR. NN CHAVAN 02122023.pptx von Niranjan Chavan
Guidelines & Identification of Early Sepsis DR. NN CHAVAN 02122023.pptxGuidelines & Identification of Early Sepsis DR. NN CHAVAN 02122023.pptx
Guidelines & Identification of Early Sepsis DR. NN CHAVAN 02122023.pptx
Niranjan Chavan42 views
JRN 362 - Lecture Twenty-Three (Epilogue) von Rich Hanley
JRN 362 - Lecture Twenty-Three (Epilogue)JRN 362 - Lecture Twenty-Three (Epilogue)
JRN 362 - Lecture Twenty-Three (Epilogue)
Rich Hanley43 views
11.30.23A Poverty and Inequality in America.pptx von mary850239
11.30.23A Poverty and Inequality in America.pptx11.30.23A Poverty and Inequality in America.pptx
11.30.23A Poverty and Inequality in America.pptx
mary850239181 views
NodeJS and ExpressJS.pdf von ArthyR3
NodeJS and ExpressJS.pdfNodeJS and ExpressJS.pdf
NodeJS and ExpressJS.pdf
ArthyR350 views
Introduction to AERO Supply Chain - #BEAERO Trainning program von Guennoun Wajih
Introduction to AERO Supply Chain  - #BEAERO Trainning programIntroduction to AERO Supply Chain  - #BEAERO Trainning program
Introduction to AERO Supply Chain - #BEAERO Trainning program
Guennoun Wajih123 views
Education of marginalized and socially disadvantages segments.pptx von GarimaBhati5
Education of marginalized and socially disadvantages segments.pptxEducation of marginalized and socially disadvantages segments.pptx
Education of marginalized and socially disadvantages segments.pptx
GarimaBhati547 views

Ph-1,2,3 & Binomial(F).pdf

  • 1. (n – 2)2 = n (n – 1) – 4n + 10 n2 – 4n + 4 = n2 – 5n + 10 n = 6 Ans ] Q.138107/bin The sum of the series aC0 + (a + b)C1 + (a + 2b)C2 + ..... + (a + nb)Cn is where Cr's denotes combinatorialcoefficient in the expansion of (1 + x)n, n N (A) (a + 2nb)2n (B) (2a + nb)2n (C) (a +nb)2n – 1 (D*) (2a + nb)2n – 1 Q.139109/bin The coefficient ofthe middle term in the binomialexpansion in powers of x of(1 + x)4 and of (1 – x)6 is the same if  equals (A) – 3 5 (B) 3 10 (C*) – 10 3 (D) 5 3 Q.14029/bin (2n+1) (2n+3) (2n+5) ....... (4n 1) is equal to : (A) ( ) ! . ( ) ! ( )! 4 2 2 2 n n n n (B*) ( ) ! ! . ( ) ! ( )! 4 2 2 2 n n n n n (C) ( ) ! ! ( ) ! ( ) ! 4 2 2 n n n n (D) ( ) ! ! ! ( ) ! 4 2 2 n n n n [Hint: E = (2 n + 1) (2 n + 3) (2 n + 5) ......(4 n  1) Multiply numerator and denominator by (2n + 2) (2n + 4) ...... (4n) & also by (2n )!. E = ( ) ! ( ) ( ) ( ) ........ ( ) . ( ) ! ( ) ( ) ........ ( ) 2 2 1 2 2 2 3 4 1 4 2 2 2 2 4 2 2 n n n n n n n n n n n        =   ( ) ! ( ) ! ( ) ! ( ) ( ) ...... ( ) ! 4 2 2 1 2 2 n n n n n n n n    =   ( !) . ( )! . ( ) ! n n n n 4 2 2 2  B ] Q.141110/bin If Sn =   n 0 r r n C 1 and Tn =   n 0 r r n C r then n n S T is equal to (A*) 2 n (B) 1 2 n  (C) n – 1 (D) 2 1 n 2  Q.14211/bin The coefficient of xr (0  r  n1) in the expression : (x+ 2)n1 + (x+ 2)n2. (x+ 1) + (x+ 2)n3 . (x+ 1)² + ...... + (x+ 1)n1 is : (A) nCr (2r  1) (B*) nCr (2nr  1) (C) nCr (2r + 1) (D) nCr (2nr + 1) [Hint: E = (x + 2)n  1                                   1 n 2 2 x 1 x ...... 2 x 1 x 2 x 1 x 1 = (x + 2)n  1 1 1 2 1 1 2                         x x x x n = (x + 2)n ( ) ( ) ( ) x x x n n n           2 1 2 = (x + 2)n  (x + 1)n Now co-efficient of xr in   ( ) ( ) 2 1    x x n n = nCr 2n  r  nCr = nCr (2n  r  1) ]
  • 2. Q.12663/bin In the expansionof x x x x x x             1 1 1 2 3 1 3 1 2 10 / / / , the term which does not contain x is : (A) 10C0 (B) 10C7 (C*) 10C4 (D) none [Hint:   x x x 1 3 3 2 3 1 3 1 1 / / /    = x1/3 + 1  (x1/3  x1/2)10 ] Q.12765/bin Ifthe 6th termin the expansion of the binomial 1 8 3 2 10 8 x x x / log        is 5600, then xequals to (A) 5 (B) 8 (C*) 10 (D) 100 [Hint: T6 = 8C5 1 8 3 8 5 x /        . (x2 log10 x)5 = 100  x = 10 ] Q.12868/bin Co-efficient of t in the expansion of, ( + p)m  1 + ( + p)m  2 ( + q) + ( + p)m  3 ( + q)2 + ...... ( + q)m  1 where  q and p  q is : (A)   m t t t C p q p q   (B*)   m t m t m t C p q p q     (C)   m t t t C p q p q   (D)   m t m t m t C p q p q     [Hint: E = ( + p)m  1 1 2 1                                      q p q p q p m ......  co-efficient of t =           p q p q m m or     p q p q m m       =   m t m t m t C p q p q     ] Q.12970/bin (1 + x) (1 + x + x2) (1 + x + x2 + x3) ...... (1 + x + x2 + ...... + x100) when written in the ascending power of x then the highest exponent of x is ______ . (A) 4950 (B*) 5050 (C) 5150 (D) none [Hint: Highest exponent inthe product offirst two is 3 = 1 + 2 Highest exponent inthe product offirst three is 6 = 1 + 2 + 3 Similarly, Highest exponent inthe product offirst hundred = 1 + 2 + ...... + 100 = 5050 ] Q.13073/bin Let   5 2 6  n = p + f where n  N and p  N and 0 < f < 1 then the value of, f2  f + pf  p is (A) a naturalnumber (B*) a negative integer (C) a prime number (D) are irrationalnumber [Hint: value =  1 ] Q.13175/bin Number ofrational terms inthe expansion of   2 3 4 100  is : (A) 25 (B*) 26 (C) 27 (D) 28
  • 3. Q.11219/bin Let n ) 3 4 7 (  = p +  when n and p are positive integers and   (0, 1) then (1 – ) (p + ) is (A) rationalwhichis not aninteger (B) a prime (C) a composite (D*) none ofthese [Hint: (1 – ) (p + ) = 1  (D) ] Q.11324/bin If(11)27 + (21)27 when divided by 16 leaves the remainder (A*) 0 (B) 1 (C) 2 (D) 14 [Hint: an + bn = (a + b) (Q (a, b) ) if n is odd alternatively : interpret from (16 – 5)27 + (16 + 5)27 ] Q.11425/bin Last three digits ofthe number N = 7100 – 3100 are (A) 100 (B) 300 (C) 500 (D*) 000 [Hint: consider (5 + 2)100 – (5 – 2)100 = 2 [100C1 599 · 2 + 100C3 597 · 23 + ....... + 100C995 · 299] = 2 [1000 · 598 + 100C3 594 + ....... + 1000 · 298]  minimum 000 as last three digits.  (D) ] Q.11527/bin The last two digits of the number 3400 are : (A) 81 (B) 43 (C) 29 (D*) 01 [Hint : 3400 = 81100 = (1 + 80)100 = 100C0 + 100C1 80 + ....... + 100C100 80100  Last two digits are 01 ] Q.11628/bin If (1 + x + x²)25 = a0 + a1x + a2x² + ..... + a50 . x50 then a0 + a2 + a4 + ..... + a50 is : (A*) even (B) odd & ofthe form 3n (C) odd & of the form (3n1) (D) odd & ofthe form (3n+1) [Hint: putting x = 1 and 1 and adding a0 + a2 + ...... + a50 = 3 1 2 25  =   1 2 1 2 25   ( 2 even 2 1 odd   ) = 25 2 2 2 1 2 0 25 1 25 2 2 25 25 25 C C C C     . . . =   2 1 2 2 2 25 1 25 2 25 25 24     C C C . ...... . = 2 [13 + 25C2 + ...... + 25C25 . 223]  even ] Q.11731/bin The sum of the series (1² + 1).1! + (2² +1).2! + (3² +1). 3! + ..... + (n²+ 1). n! is : (A) (n+1). (n+2)! (B*) n.(n+1)! (C) (n+1). (n+1)! (D) none of these [Hint: Tn = [n (n + 1)  (n  1) ] n! = n. (n+1)!  (n  1). n! Now put n = 1, 2, 3, ...... , n and add ] Q.11835/bin Let Pm stand for nPm . Then the expression 1 . P1 + 2 . P2 + 3 . P3 + ..... + n. Pn = (A*) (n+ 1) !  1 (B) (n+ 1) ! + 1 (C) (n+ 1)! (D) none of these [Hint: Tn = n . n ! = n! [(n + 1)  1 ] = (n + 1) !  n! Now put n = 1, 2, 3 , ....... and add ]
  • 4. y = ) 2 / cos( ) 2 / sin( 2 2 / cos 2 sin cos 1 2        = cot /2 x = 2 / tan 1 2 / tan 1     = 1 y 1 y 1 2 / cot 1 2 / cot         (C) Applying C/D y 1 y 1 y 1 y 1 y 1 x 1 x            (B) Also , y =    x 1 1 x y – xy – x–1 = 0  (D) ] Q.102 If2 cos + sin = 1, then the value of 4 cos + 3sin is equalto (A*) 3 (B) –5 (C*) 7 5 (D) –4 [Hint: (2cos)2 = (1 – sin)2  5sin2 – 2sin– 3 = 0  sin = 1 or  3 5 , now proceed If sin = 1  cos = 0  E = 3; if sin = – 3 5  cos = 4 5 or – 4 5 but cos – 4 5 (think!) hence E = 7 5 ] Q.103 Ifsint + cost = 1 5 then tan t 2 is equal to : (A) 1 (*B) – 1 3 (C*) 2 (D)  1 6 [Hint: sint & cost in tangent of half the angle  (3y+ 1)(y  2) = 0  y = 2 or 1/3 where y= tan(t/2) ] BINOMIAL There are 39 questions in this question bank. Q.1042/bin Given that the termofthe expansion(x1/3  x1/2)15 whichdoes not contain xis 5mwhere m  N , then m = (A) 1100 (B) 1010 (C*) 1001 (D) none [Hint: Tr + 1 = 15Cr (x1/3)15  r (–x 1/2) r  15 3  r  r 2 = 0  r = 6 Hence T7 is independent of x and T7 = 15C6 = 5005 = 5m  m = 1001 ] Q.1053/bin In the binomial (21/3 + 31/3)n, if the ratio of the seventh term from the beginning of the expansion to the seventh term fromits end is 1/6, then n = (A) 6 (B*) 9 (C) 12 (D) 15 [Hint: Tr + 1 = nCr an  r . br where a = 21/3 and b = 3 1/3 T7 from beginning = nC6 an  6 b6 and T7 from end = nC6 bn  6 a6  a b n n   12 12 = 1 6  3 12 n 3 12 n 3 . 2   = 6 1  n – 12 =  3  n = 9 ]
  • 5. [Sol. sin = sin  = n +(–1)n n = 0  =  sin/3 = sin/3  (A) n = 1  = – sin/3 = sin(/3–/3)  (B) n = –1  = –– sin/3 = sin(–/3–/3) = –sin(/3+/3)  (D) ] Q.95 Choose the INCORRECT statement(s). (A)iii sin 82 1 2  . cos 37 1 2  and sin 127 1 2  . sin 97 1 2  have the same value. (B*)v If tanA= 3 4 3  & tanB = 3 4 3  then tan(A B) must be irrational. (C*)viii The sign ofthe product sin2 . sin3 . sin5 is positive. (D*)xiv There exists a value of  between 0 & 2 which satisfies the equation ; sin4  – sin2  – 1 = 0. [Sol. (A) A= 0 0 2 1 37 cos . 2 1 82 sin = 0 0 2 75 cos . 2 165 sin =   0 0 45 sin 120 sin 2 1  = 2 4 1 6  B= 0 0 2 1 97 sin . 2 1 127 sin =   0 0 225 cos 30 cos 2 1  =        2 1 2 3 2 1 = 2 4 2 6  = 4 2 3   A= B  True ] (B) tan(A–B) = B tan A tan 1 B tan A tan   =    3 4 3 4 3 . 3 1 3 4 3 3 4 3       =   3 3 16 3 4 3 4 3      = 3/8  rational ] (C) [Sol. sin2 = + ; sin3 = + ; sin5 = – ] (D) [Sol. sin2 = 2 5 1  sin2 = 2 5 1 (not possible) sin2 = 1 2 5 1    not possible ] Q.96 Whichofthefollowing functions have the maximumvalueunity? (A*) sin2 x  cos2 x (B*) sin cos 2 2 2 x x  (C*)  sin cos 2 2 2 x x  (D*) 6 5 1 2 1 3 sin cos x x       
  • 6. Q.85 Minimum value of 8cos2x + 18sec2x  x  R wherever it is defined, is : (A) 24 (B) 25 (C*) 26 (D) 18 [Sol. y = 8 cos2x + 18 sec2x = 8 (cos2x + sec2x) + 10 sec2x = 8 [ (cos x – sec x )2 + 2 ] + 10 sec2x where cosx = secx  x = 0 ymin = 16 + 10 = 26 Ans ] Q.86 In a ABC           C sin c B sin b A sin a 2 2 2 . sin 2 A sin 2 B sin 2 C simplifies to (A) 2 (B*)  (C) 2  (D) 4  where  is the area ofthe triangle [Hint: 2R (a + b + c)  (sin 2 A ) 4 R s · R 4 r = r s = ] Q.87 If  is eliminated fromthe equations x = a cos( – ) and y = b cos ( – ) then ) cos( ab xy 2 b y a x 2 2 2 2      is equalto (A) cos2 (  – ) (B*) sin2 ( – ) (C) sec2 (  – ) (D) cosec2 ( – ) [Sol. ( – ) = ( – ) – ( – ) cos( – ) = cos ( – ) cos ( – ) + sin ( – ) sin( – ) cos( – ) = 2 2 2 2 b y 1 . a x 1 a x . b y                                  2 2 2 2 2 b y 1 a x 1 ) cos( ab xy  ) cos( ab xy 2 ) ( cos b a y x 2 2 2 2 2         = 2 2 2 2 2 2 2 2 b a y x a x b y 1     ) cos( ab xy 2 b y a x 2 2 2 2      = sin2 ( – ) ] Q.88 Thegeneralsolutionofthetrigonometric equation tan x + tan 2x + tan 3x = tan x · tan 2x · tan 3x is (A) x = n (B) n ± 3  (C) x = 2n (D*) x = 3 n where n  I [Hint: tan x + tan 2x + tan 3x = tan 3x – tan 2x – tan x  tan x + tan 2x = 0  tan 2x = tan (– x)
  • 7.  2b2 = a2 + c2 Þ a2, b2, c2 are in A.P. ] Q.75 The number ofsolution ofthe equation,   5 1 r ) x r cos( = 0 lying in (0, p) is : (A) 2 (B) 3 (C*) 5 (D) more than 5 [Hint: cos x + cos 2x + cos 3x + cos 4x + cos 5 x = 0 2 cos 3x cos 2x + 2 cos 3x cos x + cos 3x = 0 cos 3x [2 cos 2x + 2 cos x – 1] = 0 x = (2n – 1) 6   6  , 6 3 , 6 5 = 3      = 5 2nd equation gives cos x = 4 2 1 = 2 Q.76 If  = 3  and sin  = a a b 2 2  . The value of the expression, a cosec  b sec  is (A) 1 2 2 a b  (B*) 2 a b 2 2  (C) a + b (D) none [Sol. a cosec – bsec =    cos b sin a                 sin b a b cos b a a cos sin b a 2 2 2 2 2 2 Now sin3 = 2 2 b a a  gives                cos sin sin 3 cos cos 3 sin b a 2 2 = 2 2 b a 2  Ans ] Q.78 The value ofcot 7 1 2 0 + tan 67 1 2 0 – cot 67 1 2 0 – tan7 1 2 0 is : (A) arationalnumber (B*)irrationalnumber (C) 2(3 + 2 3 ) (D) 2 (3 – 3 ) Q.79 If in a triangle ABC 2 2 cos cos cos A a B b C c a bc b ca     then the value of the angle Ais : (A) 8  (B) 4  (C) 3  (D*) 2  Q.80 The value ofthe expression (sinx + cosecx)2 + (cosx + secx)2 – ( tanx+ cotx)2 wherever defined is equalto (A) 0 (B*) 5 (C) 7 (D) 9
  • 8. [Hint: C sin b a 2 1 b r 2 1 a r 2 1      r (a + b) = 2  r = b a 2   ] Q.66 For eachnatural number k , let Ck denotes the circle withradius k centimeters and centre at the origin. Onthe circle Ck , a particle moves kcentimeters inthecounter- clockwise direction.Aftercompleting its motion on Ck , the particle moves to Ck+1 inthe radialdirection. Themotion ofthe particle continues in this manner .The particle starts at (1, 0).Ifthe particlecrosses the positive directionofthe x- axisfor the first time onthe circle Cn thenn equalto (A) 6 (B*) 7 (C) 8 (D) 9 [Hint: Totaldistance travelled = 35 cm;displacement at the instant it crosses the +ve x-axis first timeis 6cm Angular displacement oneachcircle is 1 radian.] Q.67 If in a ABC, cos cos cos A a B b C c   then the triangle is (A)right angled (B) isosceles (C*) equilateral (D) obtuse [Hint: cos sin cos sin cos sin A R A B R B C R C 2 2 2    tanA = tanB = tanC  A = B = C  (C) ] Q.68 If cos A+ cosB + 2cosC = 2 then the sides of the ABC are in (A*)A.P. (B) G.P (C) H.P. (D) none [Hint: cosA + cosB = 2(1-cosC) = 4 sin2 C 2 or 2cos A B  2 cos A B  2 = 4sin2 C 2 or cos A B  2 = 2sin C 2 or 2cos C 2 cos A -B 2 = 4sin C 2 cos C 2 = 2sinC 2sin A + B 2 cos A -B 2 = 2sinC or sinA+ sinB = 2sinC  a, c, b are inA.P. . ] Q.69 IfAand B are complimentaryangles, then : (A*) 1 2 1 2               tan tan A B = 2 (B) 1 2 1 2               cot cot A B = 2 (C) 1 2 1 2               sec cos A ec B = 2 (D) 1 2 1 2               tan tan A B = 2 [Sol. A = /2 – B    A B 2 4 2  Hence 1 + tanA/2 = 1 + 1 2 1 2   tan / tan / B B = 2 1 2  tan B HenceAis correct ]
  • 9. ymax = 2 625 2 252  ] Q.59 4 sin50 sin550 sin650 has the values equalto (A) 3 1 2 2  (B*) 3 1 2 2  (C) 3 1 2  (D) 3 3 1 2 2  d i [Sol. 2[2sin50 sin550] sin650  2[cos500 – cos600]sin650  2cos500 sin650 – sin650  sin(1150) + sin150 – sin650 = 2 2 1 3  Ans] Q.60 If x, y and z are the distances of incentre from the vertices of the triangle ABC respectively then z y x c b a is equalto (A)  2 A tan (B*)  2 A cot (C)  2 A tan (D)  2 A sin [Similar to 48] [Sol. x = r cosec 2 A a = r        2 C cot 2 B cot 2 A sin . 2 C cot 2 B cot x a         = 2 C sin . 2 B sin 2 A cos . 2 A sin  2 C sin . 2 B sin 2 A sin 2 C cos . 2 B cos . 2 A cos xyz abc  = 2 C cot . 2 B cot . 2 A cot In a triangle  2 A cot =  2 A cot ] Q.61 The medians ofa ABC are 9 cm, 12 cm and 15 cm respectively . Thenthe area of the triangle is (A) 96 sq cm (B) 84 sq cm (C*) 72 sq cm (D) 60 sq cm [Hint: Produce the medianAM to D such that GM = MD . Join D to B and C . Now GBDC is a parallelogram. Note that the sides ofthe  GDC are 6, 8, 10 GDC = 90º
  • 10. Q.49 Number of roots of the equation cos sin 2 3 1 2 3 4 1 0 x x      which lie in the interval [] is (A) 2 (B*) 4 (C) 6 (D) 8 [Sol. 1 – sin2x + 2 1 3  sinx – 4 3 – 1 = 0 sin2x – 2 1 3  sinx + 4 3 = 0 4sin2x – 2 3 sinx – 2sinx + 3 = 0 On solvingwe get sinx = 1/2 ; 2 3 = (/6 , 5/6 ; /3 , 2/3 ] Q.50 sec sec 8 1 4 1     is equal to (A) tan 2 cot 8 (B) tan 8 tan 2 (C) cot 8 cot 2 (D*) tan 8 cot 2 Q.51 In a ABC if b = a   1 3  and C = 300 then the measure of the angle A is (A) 150 (B) 450 (C) 750 (D*) 1050 [Hint: use tan 2 B A  = b a b a   cot 2 C to get A– B and A+ B = 1500 (given) ] Q.52 Number ofvalues of   [ , ] 0 2 satisfying the equation cotx – cosx = 1 – cotx. cosx (A) 1 (B*) 2 (C) 3 (D) 4 Q.53 The exact value of cos273º + cos247º + (cos73º . cos47º)is (A) 1/4 (B) 1/2 (C*)3/4 (D) 1 [Sol. 2 146 cos 1 0  + 2 94 cos 1 0  + 2 26 cos 120 cos 0 0  = 1 + 2 26 cos 4 1 2 94 cos 146 cos 0 0 0          = 3/4 Ans ] Q.54 In a ABC, a = a1 = 2 , b = a2 , c = a3 such that ap+1 =           p p p 2 p p 2 p a 5 2 p 4 2 a 3 5 where p = 1,2 then (A) r1 = r2 (B) r3 = 2r1 (C) r2 = 2r1 (D*) r2 = 3r1 [Hint: put p = 1 , we get a2 = 4  b = 4 put p = 2 , we get a3 = 4  c = 4 Hence the ABC is isosceles
  • 11. = 9 sin 18 sin 6 cos 18 cos 6 sin 4             = 4 Ans ] Q.41 In a ABC if b + c = 3a then cot B 2 · cot C 2 has the value equal to : (A) 4 (B) 3 (C*) 2 (D) 1 [Hint: cot B 2 · cot C 2 =   s s b   .   s s c   .   s a s a   = s s a  = 2 2 2 s s a  but given that a + b + c = 4a  2s = 4a Hence cot B 2 · cot C 2 = 4 2 a a = 2 ] Q.42 The set of values of ‘a’for which the equation, cos 2x + a sin x = 2a  7 possess a solution is : (A) (, 2) (B*) [2, 6] (C) (6, ) (D) () [Sol. cos2x + a sinx = 2a – 7 i.e. 2sin2x – a sinx + 2a – 8 = 0 sinx = a a a a a       2 8 2 8 4 8 4 ( ) ( ) sinx = a or  4 2 2 Hence –1 < (a– 4)/ 2 < 1  the range of a ] Q.43 Inaright angled trianglethehypotenuse is2 2 timesthe perpendicular drawnfromthe oppositevertex. Thentheother acute angles ofthe triangle are (A)  3 &  6 (B*)  8 & 3 8  (C)  4 &  4 (D)  5 & 3 10  [Sol. p2sec2 + p2cosec2 =  2 2 2 p2  8 cos sin 1 2 2    sin22 = 1/2 = 2 2 1       2 = n + /4  = n/2 + /8 for n = 0   = /8 for n=1   = 3/8 ] Q.44 Let f, g, h bethe lengths oftheperpendiculars fromthe circumcentreoftheABC onthe sides a, band c respectively . If a f b g c h   =  a b c f g h then the value of  is : (A*) 1/4 (B) 1/2 (C) 1 (D) 2
  • 12. [Hint: Note that thegiven expressionsimplifies to 3 cot3x ] [Sol. cotx + ) 60 x sin( ) 60 x cos( ) x 60 sin( ) x 60 cos(      = ) 60 x sin( ) 60 x sin( ) x 2 sin( x sin x cos    = 3 x sin 4 x cos x sin 8 x sin x cos 2   = x sin 3 x sin 4 x cos x sin 8 x cos 3 x cos x sin 4 3 2 2    = x sin ] x cos 4 x cos 3 [ 3 3 3  = 3 cot3x  x tan x tan 3 ] x tan 3 1 [ 3 3 2   Ans ] Q.34 In a  ABC, cos 3A+ cos 3B + cos 3C = 1 then : (A) ABC is right angled (B) ABC is acute angled (C*) ABC is obtuse angled (D) nothing definite can be said about the nature ofthe . [Hint:  cos 3A = 1 + 4 sin 3 2 A sin 3 2 B sin 3 2 C = 1  A = = 2 3  or B = 2 3  or C = 2 3  ] Q.35 The value of 3 76 16 76 16       cot cot cot cot is : (A*) cot44º (B) tan44º (C) tan2º (D) cot46º [Sol. Using 0 0 0 0 0 0 0 0 16 cos 76 sin 16 sin 76 cos 16 cos 76 cos 16 sin . 76 sin 3   = 0 0 0 0 0 0 0 92 sin ] 16 cos 76 cos 16 sin 76 [sin 16 sin 76 sin 2   =       92 sin 60 cos 92 cos 60 cos = 0 0 92 sin 92 cos 1 = 0 0 0 2 46 cos 46 sin 2 46 sin 2 = tan460 = cot440 Ans ] Q.36 Ifthe incircle ofthe ABC touches its sides respectivelyat L, M and N and ifx, y, zbe the circumradii ofthe triangles MIN, NIL and LIM where I is the incentre then theproduct xyz is equalto : (A) Rr2 (B) rR2 (C*) 1 2 R r2 (D) 1 2 rR2 [Hint: note thatANIM is a cyclic quandrilateral.  cosec A 2 = 2x r  2x = r cosec A 2 x = r A 2 2 sin  xyz = 2 R r r . 2 R . r 2 A sin 4 . 2 r 2 3 3    ]
  • 13. Q.25 With usual notation in a  ABC 1 1 1 1 1 1 1 2 2 3 3 1 r r r r r r                      = K R a b c 3 2 2 2 where K has the value equalto : (A) 1 (B) 16 (C*) 64 (D) 128 [Hint: 1st term = ) b s a s ( 1     = c   L H S = a bc 3 . Use  = a bc R 4 to get the result ] Q.26 If 5 2 3     x , then the value ofthe expression 1 1 1 1       sin sin sin sin x x x x is (A) –cot x 2 (B) cot x 2 (C) tan x 2 (D*) –tan x 2 [Hint: Onrationalizing;we get x sin 1 x sin 1 | x cos | 2 x sin 1 x sin 1        =   ) x (sin 2 | x cos | 1 2   = ) x (sin x cos 1    (D) ] Q.27 If x sin = y sin          2 3 = z sin          4 3 then : (A) x + y + z = 0 (B*) xy + yz + zx = 0 (C) xyz + x + y + z = 1 (D) none [Hint:        sin sin . 3 / 2 cos cos . 3 / 2 sin y x =           sin sin cos 3 2 1 = 2 1 cot 2 3   ....(1) |||ly        sin 3 / 4 sin . cos 3 / 4 cos . sin z x =    cot 2 3 2 1 ....(2) 1 z x y x     xz + xy + yz = 0 ] Q.28 In a ABC, the value of a A b B c C a b c cos cos cos     is equal to : (A*) r R (B) R r 2 (C) R r (D) 2r R [Hint: LHS     R A B C R A B C sin sin sin sin sin sin 2 2 2 2     = 4 2 4 2 2 2 sin sin sin . cos cos cos A B C A B C = 4 sin A 2 sin B 2 sin C 2 = r R ] Q.29 The value of cos  10 cos 2 10  cos 4 10  cos 8 10  cos 16 10  is : (A) 1 32 (B) 1 16 (C)   cos /  10 16 (D*)  10 2 5 64 
  • 14. Q.17 With usualnotations, in a triangleABC, a cos(B – C) + b cos(C –A) + c cos(A– B) is equal to (A*) 2 R abc (B) 2 R 4 abc (C) 2 R abc 4 (D) 2 R 2 abc [Sol. Here a(cosB cosC + sinB sinC) + ........ using C sin c B sin b A sin a   = 2R a (cosB cosC + 2 R 4 bc ) + ...... = 2 R 4 abc 3 + a cosB cosC + b cosC cosA + c cosA cosB = 2 R 4 abc 3 + c cosC + c cosA cosB = 2 R 4 abc 3 + c [cosA cosB – cos(A + B)] = 2 R 4 abc 3 + c sinA sinB = 2 R 4 abc 3 + 2 R 4 abc = 2 R abc  (A) ] Q.18 sin cos sin cos 3 3        cos cot   1 2   2 tan cot  =  1 if : (A)  0 2 ,        (B*)    2 ,       (C)    , 3 2       (D)  3 2 2   ,       [Hint: simplifies to –cos |sin| + sin cos = 0 provided sin  cos  Q.19 With usual notations in a triangleABC, ( I I1 ) · ( I I2 ) · ( I I3 ) has the value equalto (A) R2r (B) 2R2r (C) 4R2r (D*) 16R2r [Hint: BICI1 is a cyclic quadrilateral with I I1 as the diameter also  BI1C = 2 A 2   applying sine law in BCI1 1 I I 2 A cos a   I I1 = 2 A cos 2 A cos · 2 A sin 2 · R 2 = 4R sin 2 A   1 I I = 64R3 sin 2 A sin 2 B sin 2 C = 16R2 r ]
  • 15. Q.8           tan . cos sin cos . tan x x x x x            2 3 2 7 2 2 3 2 3 whensimplified reduces to : (A) sinx cosx (B) sin2 x (C) sinx cosx (D*) sin2x [Sol.           tan . cos sin cos . tan x x x x x            2 3 2 7 2 2 3 2 3 = x cot . x sin x cos x sin . x cot 3    = x sin x cos . x sin x sin x cos . x sin x cos3   = sin2x Ans ] Q.9 If in a ABC, sin3A+ sin3B + sin3C = 3 sinA· sinB · sinC then (A) ABC may be a scalene triangle (B) ABC isa right triangle (C) ABC is anobtuse angled triangle (D*) ABC isan equilateraltriangle [Hint: Use : a3+b3+c3–3abc = (1/2) (a+b+c) [(a–b)2+(b–c)2+(c–a)2 ] [Hint: either sinA + sinB + sin C = 0 (which isnot possible) or sinA = sinB = sinC  equilateral ] Q.10 In a triangleABC, CH and CM are the lengths of the altitude and median to the base AB. If a = 10, b = 26, c = 32 then length (HM) (A) 5 (B) 7 (C*) 9 (D) none [Hint: cos B = 32 10 26 2 3210 7 10 7 2 2 2      . . BH  MH = BM  BH = 16  7 = 9 ] Q.11 The value of 1 tan cos sin cos sin sin 2 2           for allpermissible vlaues of (A) is less than – 1 (B) is greater than 1 (C) lies between – 1 and 1 including both (D*) lies between – 2 and 2 Q.12 sin 3 = 4 sin  sin 2 sin 4 in 0  has : (A) 2 realsolutions (B) 4 realsolutions (C) 6 realsolutions (D*) 8 realsolutions. [Sol. given equation canbe written as 3 sin  - 4sin3 = 4sin sin 2 sin4 hence either sin  = 0   = n or 3 – 4sin2 = 4 sin 2 sin 4 3 – 2 (1 – cos 2) = 2 (cos 2 – cos 6) or 1 = – 2 cos 6 cos 6 = – 2 1 = cos 3 2 6 = 2n ± 3 2
  • 16. Question bank on Compound angles, Trigonometric eqn and ineqn, Solutions of Triangle & Binomial There are 142 questions in this question bank. Select the correct alternative : (Only one is correct) Q.1 If x + y = 3 – cos4 and x – y = 4 sin2 then (A) x4 + y4 = 9 (B) 16 y x   (C) x3 + y3 = 2(x2 + y2) (D*) 2 y x   [Sol. On addingand subtracting x = 2 2 sin 4 4 cos 3     ; y = 2 2 sin 4 4 cos 3     x = 2 ) 4 cos 1 ( ) 2 sin 1 ( 4      ; y = 2 ) 4 cos 1 ( ) 2 sin 1 ( 4      x = 2 (1 + sin2 ) – cos22 ; y = 2 (1 – sin2) – cos22 x = 1 + 2 sin2 + sin22 ; y = 1 – 2 sin2 + sin22 x = (1 + sin2)2 ; y = (1 – sin2)2  2 y x   ] [Alternate : Or put  = 4  and verify ] Q.2 If in a triangle ABC, b cos2 A 2 + a cos2 B 2 = 3 2 c then a, b, c are : (A) inA.P. (B) in G.P. (C) in H.P. (D*) None [Hint: b 2 (1 + cos A) + a 2 (1 + cos B) = 3 2 c  a + b + c = 3c  a + b = 2c  a,c,b are in A.P. ] Q.3 If tanB = A cos n 1 A cos A sin n 2  then tan(A + B) equals (A*) A cos ) n 1 ( A sin  (B) A sin A cos ) 1 n (  (C) A cos ) 1 n ( A sin  (D) A cos ) 1 n ( A sin  [Sol. tan(A + B) = B tan A tan 1 B tan A tan   = A cos n 1 A cos A sin n · A tan 1 A cos n 1 A cos A sin n A tan 2 2     = A cos A sin n ) A cos n 1 ( A cos A cos A sin n ) A cos n 1 ( A sin 2 2 2 2     = ) A sin n A cos n 1 ( A cos 0 A sin 2 2    = A cos ) n 1 ( A sin  ] Q.4 Given a2 + 2a + cosec2  2 ( ) a x  F H G I K J= 0 then, which ofthe following holds good? (A) a = 1 ; x I 2  (B*) a = –1 ; x I 2  (C) a  R ; x  (D) a , x are finite but not possible to find