(n – 2)2 = n (n – 1) – 4n + 10 n2 – 4n + 4 = n2 – 5n + 10 n = 6 Ans ] Q.138107/bin The sum of the series aC0 + (a + b)C1 + (a + 2b)C2 + + (a + nb)Cn is where Cr's denotes combinatorial coefficient in the expansion of (1 + x)n, n N (A) (a + 2nb)2n (B) (2a + nb)2n (C) (a +nb)2n – 1 (D*) (2a + nb)2n – 1 Q.139109/bin The coefficient of the middle term in the binomial expansion in powers of x of (1 + x)4 and of (1 – x)6 is the same if equals 5 (A) – 3 10 (B) 3 3 (C*) – 10 3 (D) 5 Q.14029/bin (2n + 1) (2n + 3) (2n + 5) ....... (4n 1) is equal to : (A) (4n) ! 2n . (2n) ! (2n) ! (B*) (4n) ! n ! 2n . (2n) ! (2n) ! (C) (4n) ! n ! (2n) ! (2n) ! (D) (4n) ! n ! 2n ! (2n) ! [Hint: E = (2 n + 1) (2 n + 3) (2 n + 5) ......(4 n 1) Multiply numerator and denominator by (2 n + 2) (2 n + 4) ...... (4 n) & also by (2 n ) ! . E = (2 n) ! (2 n 1) (2 n 2) (2 n 3) (4 n 1) . 4 n (2 n) ! (2 n 2) (2 n 4) (2 n 2 n) = (4 n) ! (n) ! = (n !) . (4 n) ! B ] (2 n) ! 2n (n 1) (n 2) (2 n) n ! 2n . (2 n) !2 Q.141 110/bin If Sn n = n r0 Cr and Tn n = n r0 Cr Tn then n is equal to (A*) n 2 (B) n 1 2 (C) n – 1 (D) 2n 1 2 Q.14211/bin The coefficient of xr (0 r n 1) in the expression : (x + 2)n1 + (x + 2)n2. (x + 1) + (x + 2)n3 . (x + 1)² + ...... + (x + 1)n1 is : (A) nCr (2r 1) (B*) nCr (2nr 1) (C) nCr (2r + 1) (D) nCr (2nr + 1) x1 x1 2 x1 n1 [Hint : E = (x + 2)n 1 1 x2 x2 ...... x2 1 x 1 n n 1 x 2 n (x 2)n (x 1)n n n = (x + 2) x 1 x 2 = (x + 2) (x 2)n = (x + 2) (x + 1) Now co-efficient of xr in (2 x)n (1 x)n = nCr 2n r nCr = nCr (2n r 1) ] x 1 x 1 10 Q.12663/bin In the expansion of x2/ 3 x1/3 1 x x1/ 2 , the term which does not contain x is : (A) 10C0 (B) 10C7 (C*) 10C4 (D) none x1/3 3 1 [Hint : x2/3 x1/3 1 = x1/3 + 1 (x1/3 x1/2)10 ] 1 8 Q.127 65/bin If the 6th term in the expansion of the binomial x8/3 x2 log10 x is 5600, then x equals to (A) 5 (B) 8 (C*) 10 (D) 100 1 8 5 [Hint : T6 = 8C5 x8/3 . (x2 log10 x)5 = 100 x = 10 ] Q.12868/bin Co-efficient of t in the expansion of, ( + p)m 1 + ( + p)m 2 ( + q) + ( + p)m 3 ( + q)2 + ( + q)m 1 where q and p q is : (A) (C) m Ct pt qt p q m Ct pt qt p q (B*) (D) m Ct pm t qm t p q m Ct pm t qm t p q q q 2 q m1 [Hint : E = ( + p)m 1 1 ...... p p p co-efficient of t = pm qm p q p m q m or p q = m t pm t qm t p q ] Q.12970/bin (1 + x) (1 + x + x2) (1 + x + x2 + x3) ...... (1 + x + x2 + ...... + x100) when
(n – 2)2 = n (n – 1) – 4n + 10 n2 – 4n + 4 = n2 – 5n + 10 n = 6 Ans ] Q.138107/bin The sum of the series aC0 + (a + b)C1 + (a + 2b)C2 + + (a + nb)Cn is where Cr's denotes combinatorial coefficient in the expansion of (1 + x)n, n N (A) (a + 2nb)2n (B) (2a + nb)2n (C) (a +nb)2n – 1 (D*) (2a + nb)2n – 1 Q.139109/bin The coefficient of the middle term in the binomial expansion in powers of x of (1 + x)4 and of (1 – x)6 is the same if equals 5 (A) – 3 10 (B) 3 3 (C*) – 10 3 (D) 5 Q.14029/bin (2n + 1) (2n + 3) (2n + 5) ....... (4n 1) is equal to : (A) (4n) ! 2n . (2n) ! (2n) ! (B*) (4n) ! n ! 2n . (2n) ! (2n) ! (C) (4n) ! n ! (2n) ! (2n) ! (D) (4n) ! n ! 2n ! (2n) ! [Hint: E = (2 n + 1) (2 n + 3) (2 n + 5) ......(4 n 1) Multiply numerator and denominator by (2 n + 2) (2 n + 4) ...... (4 n) & also by (2 n ) ! . E = (2 n) ! (2 n 1) (2 n 2) (2 n 3) (4 n 1) . 4 n (2 n) ! (2 n 2) (2 n 4) (2 n 2 n) = (4 n) ! (n) ! = (n !) . (4 n) ! B ] (2 n) ! 2n (n 1) (n 2) (2 n) n ! 2n . (2 n) !2 Q.141 110/bin If Sn n = n r0 Cr and Tn n = n r0 Cr Tn then n is equal to (A*) n 2 (B) n 1 2 (C) n – 1 (D) 2n 1 2 Q.14211/bin The coefficient of xr (0 r n 1) in the expression : (x + 2)n1 + (x + 2)n2. (x + 1) + (x + 2)n3 . (x + 1)² + ...... + (x + 1)n1 is : (A) nCr (2r 1) (B*) nCr (2nr 1) (C) nCr (2r + 1) (D) nCr (2nr + 1) x1 x1 2 x1 n1 [Hint : E = (x + 2)n 1 1 x2 x2 ...... x2 1 x 1 n n 1 x 2 n (x 2)n (x 1)n n n = (x + 2) x 1 x 2 = (x + 2) (x 2)n = (x + 2) (x + 1) Now co-efficient of xr in (2 x)n (1 x)n = nCr 2n r nCr = nCr (2n r 1) ] x 1 x 1 10 Q.12663/bin In the expansion of x2/ 3 x1/3 1 x x1/ 2 , the term which does not contain x is : (A) 10C0 (B) 10C7 (C*) 10C4 (D) none x1/3 3 1 [Hint : x2/3 x1/3 1 = x1/3 + 1 (x1/3 x1/2)10 ] 1 8 Q.127 65/bin If the 6th term in the expansion of the binomial x8/3 x2 log10 x is 5600, then x equals to (A) 5 (B) 8 (C*) 10 (D) 100 1 8 5 [Hint : T6 = 8C5 x8/3 . (x2 log10 x)5 = 100 x = 10 ] Q.12868/bin Co-efficient of t in the expansion of, ( + p)m 1 + ( + p)m 2 ( + q) + ( + p)m 3 ( + q)2 + ( + q)m 1 where q and p q is : (A) (C) m Ct pt qt p q m Ct pt qt p q (B*) (D) m Ct pm t qm t p q m Ct pm t qm t p q q q 2 q m1 [Hint : E = ( + p)m 1 1 ...... p p p co-efficient of t = pm qm p q p m q m or p q = m t pm t qm t p q ] Q.12970/bin (1 + x) (1 + x + x2) (1 + x + x2 + x3) ...... (1 + x + x2 + ...... + x100) when