Anzeige
PARTICE TEST PAPER-1.pdf
PARTICE TEST PAPER-1.pdf
Nächste SlideShare
Dpp 12th Maths WA.pdfDpp 12th Maths WA.pdf
Wird geladen in ... 3
1 von 2
Anzeige

Más contenido relacionado

Anzeige

PARTICE TEST PAPER-1.pdf

  1. CLASS : XI (J1 & J2) This paper held on 04.06.07 for Bulls Eye. PART-A Q.1 Findthenumberofreal solution(s)oftheequation logx9 – log3x2 = 3. [3] Q.2 Simplify: cos x · sin(y– z) + cos y· sin(z – x) + cos z · sin (x – y) where x, y, z R. [3] Q.3 If logx–3(2x –3) isameaningful quantitythenfind theinterval inwhich xmust lie. [3] Q.4 If x = 1 and x = 2 are solutions of the equation x3 + ax2 + bx + c = 0 and a + b = 1, then find the value of b. [3] Q.5 tan  =      2 1 2 1 2 1 where   (0, 2), find the possible value of . [3] Q.6 Find the exact value of       12 sin 72 sin 72 cos 12 cos . [3] Q.7 If the tangent of DAB is expressed as a ratioof positive integers b a in lowest term, then find the value of (a+ b). [3] Q.8 If sinA= 13 12 . Find the value of tan 2 A . [3] Q.9 Let x = (0.15)20. Find the characteristic and mantissa in the logarithm of x, to the base 10.Assume log102 = 0.301 and log103 = 0.477. [3] Q.10 The figure (not drawn to scale) shows aregular octagonABCDEFGH withdiagonalAF=1. Findthenumerical valueof the side of the octagon. [3] PART-B Q.11 Simplify ) 2 sin( ) ( tan 2 3 cosec ) 3 sec( ) 3 cot( 2 cos 2 3                               . [4] Q.12 Findthesum ofthesolutionsoftheequation 2e2x – 5ex + 4 = 0. [4]
  2. Q.13 Prove the identity 1 A cosec A cot 1 A cosec A cot     = 2 A cot . [4] Q.14 If   x) log ( log log 3 2 2 =   y) log ( log log 2 3 2 = 0 then find the value of (x + y). [5] Q.15 If log25 = a and log 225 = b, then find the value of               2 9 1 log +       2250 1 log in terms of a and b (base of the logis 10 everywhere). [5] Q.16 Prove that the expression sin2 + sin2(120° + ) + sin2(120° – ) remains constant    R. Find also the valueof theconstant. [5] Q.17 Suppose that x and yare positive numbers for which log9x = log12y= log16(x + y). Ifthe value of x y = 2 cos , where     2 , 0  find . [6] Q.18 If     3 tan tan tan = 3 1 , find the value of     3 cot cot cot . [6] Q.19 Let S = sec 0 + sec 5  + sec 5 2 + sec 5 3 + sec 5 4 and P = 9 tan  · 9 2 tan  · 9 4 tan  then prove S + P = 12 7 sin 2 2  [6]
Anzeige