DPP-58-60-Answer

STUDY  INNOVATIONS
STUDY INNOVATIONSEducator um Study Innovations

Single choice Objective ('–1' negative marking) Q.2, 4, 5, 6 (4 marks 3 min.) [16, 12] Multiple choice objective ('–1' negative marking) Q.3 (6 marks 5 min.) [6, 5] Subjective Questions ('–1' negative marking) Q.1 (4 marks 5 min.) [4, 5] 1. ABCD is a quadrilateral and E the point of intersection of the lines joining the middle points of opposite      sides . Show that the resultant of OA , OB , OC and OD is equal to 4 OE , where O is any point. 2. P, Q have position vectors → a & b  relative to the origin 'O' & X, Y divide PQ internally and externally  respectively in the ratio 2 : 1 . Vector XY = 3 → → 4 → → 5 → → 4 → → (A) b  a (B) a  b (C) b  a (D*) b  a 3. P is a point on the line through the point A whose position vector is a and the line is parallel to the vector b . If PA = 6 , the position vector of P is : → 6 → b 6 (A) a + 6 b (B*) a + → b (C*) b a – 6 → | b | (D) b + → a a → → → → → → → → 4. Let a , b , c be three unit vectors such that a  b  c = 1 and a  b . If c makes angles ,  with → → respectively then cos + cos is equal to a , b (A) 3/2 (B) 1 (C*) – 1 (D) 1/2 5. → ˆ (ˆi  →  → ˆ (ˆj → (→ ˆ)(kˆ  → = (A*) 0 (B) r (C) 2 r (D) 3 r → → → → → 6. If →  ˆi  ˆj, b  2ˆj – kˆ and →  →  b → →  b  →  b r then is equal to a (A*) 1 (ˆi  3ˆj  kˆ) r (B) a a, r a 1 ˆi – 3ˆj  kˆ (C) → r 1 (ˆi – ˆj  kˆ) (D) none of these Single choice Objective ('–1' negative marking) Q.1, 2, 3, 4, 5 (4 marks 3 min.) [20, 15] Match the Following (no negative marking) (2 × 4) Q.6 (8 marks 8 min.) [8, 8] 1. If → → are nonzero and noncollinear vectors then , → → → →  → → → →  → → → → = (A) →  → (B*) →  → (C) →  → (D) →  → 2. A vector → of magnitude 20 parallel to the bisector of the angle between → a  7i  4 j  4k and → ˆ ˆ ˆ is b  2i  j  2k (A) ± 20 2ˆi  7ˆj  kˆ 3 (B) ± 3 ˆi  7ˆj  2kˆ 20 (C) ± 20 ˆi  2ˆj  7kˆ 3 (D*) ± 20 ˆi  7ˆj  2kˆ 3 3. Let the centre of the parallelopiped formed by   PA  ‸i  2 ‸j  2 k‸ ;  PB  4 ‸i  3‸j  k‸ ; PC  3‸i  5 ‸j  k‸ is given by the position vector (7, 6, 2) . Then the position vector of the point P is: (A*) (3, 4, 1) (B) (6, 8, 2) (C) (1, 3, 4) (D) (2, 6, 8) 4. If Lim x  – rx)  2 , then (A*) q = 4r (B) q = 2r (C) q = r (D) q = 6r 5. The number log4 2 + (2000)6 3 log (2000)6 can be written as m where m and n are relatively prime n positive integers, then (m + n) equals (A) 4 (B) 5 (C) 6 (D*) 7 6. Match the column Column - I Column - II (A) If → → → are three mutually perpendicular vectors where (p) 3 a, b, c 4 → → → 1 → → → → → → a  b  2 and c  1 , then [a  b 12 b  c c  a] is (B) If → → are two unit vectors inclined at  , then (q) 0 a, b 3 → → → → →

Subject : Mathematics Date : DPP No. : Class : XIII Course :
DPP No. – 01
Total Marks : 26 Max. Time : 22 min.
Single choice Objective ('–1' negative marking) Q.2, 4, 5, 6 (4 marks 3 min.) [16, 12]
Multiple choice objective ('–1' negative marking) Q.3 (6 marks 5 min.) [6, 5]
Subjective Questions ('–1' negative marking) Q.1 (4 marks 5 min.) [4, 5]
1. ABCD is a quadrilateral and E the point of intersection of the lines joining the middle points of opposite
sides . Show that the resultant of

OA ,

OB ,

OC and

OD is equal to 4

OE , where O is any point.
2. P, Q have position vectors
 
a b
& relative to the origin 'O' & X, Y divide PQ

internally and externally
respectively in the ratio 2 : 1 . Vector XY

=
(A)  
3
2
 
b a
 (B)  
4
3
 
a b
 (C)  
5
6
 
b a
 (D*)  
4
3
 
b a

3. P is a point on the line through the point A whose position vector is a

and the line is parallel to the
vector b

. If PA = 6 , the position vector of P is :
(A) a

+ 6 b

(B*) a

+
b
6
 b

(C*)
|
b
|
b
6
–
a 


(D) b

+
a
6
 a

4. Let c
,
b
,
a



be three unit vectors such that c
b
a




 = 1 and b
a


 . If c

makes angles
,  with b
,
a


respectively then cos + cos is equal to
(A) 3/2 (B) 1 (C*) – 1 (D) 1/2
5. )
r
k̂
(
k̂
.
r
)
ĵ
.
r
(
)
r
î
)
î
.
r
( )
(
)
r
ĵ
(
(




 

 

 =
(A*) 0 (B)

r (C) 2

r (D) 3

r
6. If k̂
–
ĵ
2
b
,
ĵ
î
a 




and b
a
b
r
,
a
b
a
r













 then
r
r


is equal to
(A*) )
k̂
ĵ
3
î
(
11
1

 (B)  
k̂
ĵ
3
–
î
11
1
 (C) )
k̂
ĵ
–
î
(
3
1
 (D) none of these
58
FACULTY
COPY
Subject : Mathematics Date : DPP No. : Class : XIII Course :
DPP No. – 02
Total Marks : 28 Max. Time : 23 min.
Single choice Objective ('–1' negative marking) Q.1, 2, 3, 4, 5 (4 marks 3 min.) [20, 15]
Match the Following (no negative marking) (2 × 4) Q.6 (8 marks 8 min.) [8, 8]
1. If b
,
a


are nonzero and noncollinear vectors then ,      k
k
b
a
j
j
b
a
i
i
b
a













 =
(A) b
a


 (B*) b
a


 (C) b
a


 (D) a
b



2. A vector c

of magnitude 6
20 parallel to the bisector of the angle between k̂
4
ĵ
4
î
7
a 



and
k̂
2
ĵ
î
2
b 




is
(A) ±  
k̂
ĵ
7
î
2
3
20

 (B) ±  
k̂
2
ĵ
7
î
20
3

 (C) ±  
k̂
7
ĵ
2
î
3
20

 (D*) ±  
k̂
2
ĵ
7
î
3
20


3. Let the centre of the parallelopiped formed by PA i j k

  
  
2 2 ; PB i j k

  
4 3
   ;
PC i j k

  
3 5
   is given by the position vector (7, 6, 2) . Then the position vector of the point P is:
(A*) (3, 4, 1) (B) (6, 8, 2) (C) (1, 3, 4) (D) (2, 6, 8)
4. If 

x
Lim
2
)
rx
–
qx
px
( 2

 , then
(A*) q = 4r (B) q = 2r (C) q = r (D) q = 6r
5. The number 6
4 )
2000
(
log
2
+ 6
5 )
2000
(
log
3
can be written as
n
m
where m and n are relatively prime
positive integers, then (m + n) equals
(A) 4 (B) 5 (C) 6 (D*) 7
6. Match the column
Column - I Column - II
(A) If c
,
b
,
a



are three mutually perpendicular vectors where (p)
4
3
–
1
c
and
2
b
a 





, then ]
a
c
c
b
b
a
[
12
1 







 is
(B) If b
,
a


are two unit vectors inclined at
3

, then (q) 0
]
b
b
a
b
a
[






 is
(C) If c
,
b


are orthogonal unit vectors and a
c
b




 , then (r)
3
4
]
c
b
b
a
c
b
a
[










 is
(D) If ]
b
y
x
[
]
a
y
x
[






 = ]
c
b
a
[



= 0 each vector being a (s) 1
non-zero vector, and no two vectors are collinear then ]
c
y
x
[



=
Ans. (A)  (r) ; (B)  (p) ; (C)  (s) ; (D)  (q)
59
FACULTY
COPY
Subject : Mathematics Date : DPP No. : Class : XIII Course :
DPP No. – 03
Total Marks : 24 Max. Time : 20 min.
Comprehension ('–1' negative marking) Q.1 to Q.3 (4 marks 3 min.) [12, 9]
Single choice Objective ('–1' negative marking) Q.4, 6 (4 marks 3 min.) [8, 6]
Subjective Questions ('–1' negative marking) Q.5 (4 marks 5 min.) [4, 5]
Comprehension (Q.no. 1 to 3)
Let a, b, c, d  R. Then the cubic equation of the type ax3 + bx2 + cx + d = 0 has either one root real
or all three roots are real. But in case of trigonometric equations of the type a sin3 x + b sin2 x + c sinx
+ d = 0 can possess several solutions depending upon the domain of x.
To solve an equation of the type a cos + b sin = c. The equation can be written as
cos ( – ) = c/ )
b
a
( 2
2
 .
The solution is  = 2n +  ± , where tan  = b/a, cos  = c/ )
b
a
( 2
2
 .
1. On the domain [–, ] the equation 4sin3 x + 2 sin2 x – 2sinx – 1 = 0 possess
(A) only one real root (B) three real roots
(C) four real roots (D*) six real roots
2. In the interval [–/4, /2], the equation, cos 4x +
x
tan
1
x
tan
10
2

= 3 has
(A) no solution (B) one solution (C*) two solutions (D) three solutions
3. |tan x| = tan x +
x
cos
1
(0  x  2) has
(A) no solution (B*) one solution (C) two solutions (D) three solutions
4. If 5
|
b
|
,
2
|
a
| 



and 0
b
.
a 


, then )))))
b
a
(
a
(
a
(
a
(
a
(
a












 is equal to
(A) a
64

(B) b
64

(C*) – b
64

(D) – a
64

5. Find the exact value of the expression
º
10
tan
º
40
tan
2
º
20
tan
º
70
tan 

.
Ans. 4
6. The matrix A has x rows and (x + 5) columns. The matrix B has y rows and (11 – y) columns. Both
AB and BA exist. The value of x and y is
(A) 8, 3 (B) 3, 4 (C*) 3, 8 (D) 8, 8
60
FACULTY
COPY

Recomendados

DPP-61-63-Answer von
DPP-61-63-AnswerDPP-61-63-Answer
DPP-61-63-AnswerSTUDY INNOVATIONS
3 views3 Folien
DPP-13-15-with Answer von
DPP-13-15-with AnswerDPP-13-15-with Answer
DPP-13-15-with AnswerSTUDY INNOVATIONS
4 views5 Folien
DPP-37-39_Answer von
DPP-37-39_AnswerDPP-37-39_Answer
DPP-37-39_AnswerSTUDY INNOVATIONS
3 views3 Folien
DPP-2-Faculty Copy-57 von
DPP-2-Faculty Copy-57DPP-2-Faculty Copy-57
DPP-2-Faculty Copy-57STUDY INNOVATIONS
13 views55 Folien
DPP-36-38-PC von
DPP-36-38-PCDPP-36-38-PC
DPP-36-38-PCSTUDY INNOVATIONS
2 views3 Folien
DPP-MTest_Revision von
DPP-MTest_RevisionDPP-MTest_Revision
DPP-MTest_RevisionSTUDY INNOVATIONS
3 views4 Folien

Más contenido relacionado

Similar a DPP-58-60-Answer

DPP-MTest Revision von
DPP-MTest RevisionDPP-MTest Revision
DPP-MTest RevisionSTUDY INNOVATIONS
3 views4 Folien
DPP-39-41-Answer von
DPP-39-41-AnswerDPP-39-41-Answer
DPP-39-41-AnswerSTUDY INNOVATIONS
4 views3 Folien
DPP-39-41-PC von
DPP-39-41-PCDPP-39-41-PC
DPP-39-41-PCSTUDY INNOVATIONS
3 views3 Folien
DPP-1-3-PC von
DPP-1-3-PCDPP-1-3-PC
DPP-1-3-PCSTUDY INNOVATIONS
5 views4 Folien
DPP-16-18-with Answer von
DPP-16-18-with AnswerDPP-16-18-with Answer
DPP-16-18-with AnswerSTUDY INNOVATIONS
3 views4 Folien
DPP-28-30-Answer von
DPP-28-30-AnswerDPP-28-30-Answer
DPP-28-30-AnswerSTUDY INNOVATIONS
2 views4 Folien

Similar a DPP-58-60-Answer(20)

Más de STUDY INNOVATIONS

Science-Class-12 Physics and Chemistry DPP Talent Search Examinations von
Science-Class-12 Physics and Chemistry DPP Talent Search ExaminationsScience-Class-12 Physics and Chemistry DPP Talent Search Examinations
Science-Class-12 Physics and Chemistry DPP Talent Search ExaminationsSTUDY INNOVATIONS
5 views15 Folien
Science-Class-12 Maths DPP Talent Search Examinations von
Science-Class-12 Maths DPP Talent Search ExaminationsScience-Class-12 Maths DPP Talent Search Examinations
Science-Class-12 Maths DPP Talent Search ExaminationsSTUDY INNOVATIONS
6 views3 Folien
Science-Class-11 Physics and Chemistry DPP Talent Search Examinations von
Science-Class-11 Physics and Chemistry DPP Talent Search ExaminationsScience-Class-11 Physics and Chemistry DPP Talent Search Examinations
Science-Class-11 Physics and Chemistry DPP Talent Search ExaminationsSTUDY INNOVATIONS
12 views14 Folien
Science-Class-11 Maths DPP Talent Search Examinations von
Science-Class-11 Maths DPP Talent Search ExaminationsScience-Class-11 Maths DPP Talent Search Examinations
Science-Class-11 Maths DPP Talent Search ExaminationsSTUDY INNOVATIONS
5 views3 Folien
Science-Class-11 Biology DPP Talent Search Examinations von
Science-Class-11 Biology DPP Talent Search ExaminationsScience-Class-11 Biology DPP Talent Search Examinations
Science-Class-11 Biology DPP Talent Search ExaminationsSTUDY INNOVATIONS
6 views9 Folien
Science-Class-10 DPP Talent Search Examinations von
Science-Class-10 DPP Talent Search ExaminationsScience-Class-10 DPP Talent Search Examinations
Science-Class-10 DPP Talent Search ExaminationsSTUDY INNOVATIONS
8 views12 Folien

Más de STUDY INNOVATIONS(20)

Science-Class-12 Physics and Chemistry DPP Talent Search Examinations von STUDY INNOVATIONS
Science-Class-12 Physics and Chemistry DPP Talent Search ExaminationsScience-Class-12 Physics and Chemistry DPP Talent Search Examinations
Science-Class-12 Physics and Chemistry DPP Talent Search Examinations
Science-Class-12 Maths DPP Talent Search Examinations von STUDY INNOVATIONS
Science-Class-12 Maths DPP Talent Search ExaminationsScience-Class-12 Maths DPP Talent Search Examinations
Science-Class-12 Maths DPP Talent Search Examinations
Science-Class-11 Physics and Chemistry DPP Talent Search Examinations von STUDY INNOVATIONS
Science-Class-11 Physics and Chemistry DPP Talent Search ExaminationsScience-Class-11 Physics and Chemistry DPP Talent Search Examinations
Science-Class-11 Physics and Chemistry DPP Talent Search Examinations
Science-Class-11 Maths DPP Talent Search Examinations von STUDY INNOVATIONS
Science-Class-11 Maths DPP Talent Search ExaminationsScience-Class-11 Maths DPP Talent Search Examinations
Science-Class-11 Maths DPP Talent Search Examinations
Science-Class-11 Biology DPP Talent Search Examinations von STUDY INNOVATIONS
Science-Class-11 Biology DPP Talent Search ExaminationsScience-Class-11 Biology DPP Talent Search Examinations
Science-Class-11 Biology DPP Talent Search Examinations
Science-Class-9 DPP Talent Search Examinations von STUDY INNOVATIONS
Science-Class-9 DPP Talent Search ExaminationsScience-Class-9 DPP Talent Search Examinations
Science-Class-9 DPP Talent Search Examinations
Mathematics-Class-10 DPP Talent Search Examinations von STUDY INNOVATIONS
Mathematics-Class-10 DPP Talent Search ExaminationsMathematics-Class-10 DPP Talent Search Examinations
Mathematics-Class-10 DPP Talent Search Examinations
Mathematics-Class-8 DPP Talent Search Examinations von STUDY INNOVATIONS
Mathematics-Class-8 DPP Talent Search ExaminationsMathematics-Class-8 DPP Talent Search Examinations
Mathematics-Class-8 DPP Talent Search Examinations
Mathematics-Class-7 DPP Talent Search Examinations von STUDY INNOVATIONS
Mathematics-Class-7 DPP Talent Search ExaminationsMathematics-Class-7 DPP Talent Search Examinations
Mathematics-Class-7 DPP Talent Search Examinations
Mathematics-Class-6 DPP Talent Search Examinations von STUDY INNOVATIONS
Mathematics-Class-6 DPP Talent Search ExaminationsMathematics-Class-6 DPP Talent Search Examinations
Mathematics-Class-6 DPP Talent Search Examinations
Mathematics-Class-4 DPP Talent Search Examinations von STUDY INNOVATIONS
Mathematics-Class-4 DPP Talent Search ExaminationsMathematics-Class-4 DPP Talent Search Examinations
Mathematics-Class-4 DPP Talent Search Examinations
Mathematics-Class-3 DPP Talent Search Examinations von STUDY INNOVATIONS
Mathematics-Class-3 DPP Talent Search ExaminationsMathematics-Class-3 DPP Talent Search Examinations
Mathematics-Class-3 DPP Talent Search Examinations
Mathematics-Class-2 DPP Talent Search Examinations von STUDY INNOVATIONS
Mathematics-Class-2 DPP Talent Search ExaminationsMathematics-Class-2 DPP Talent Search Examinations
Mathematics-Class-2 DPP Talent Search Examinations
Mathematics-Class-1 DPP Talent Search Examinations von STUDY INNOVATIONS
Mathematics-Class-1 DPP Talent Search ExaminationsMathematics-Class-1 DPP Talent Search Examinations
Mathematics-Class-1 DPP Talent Search Examinations

Último

Use of Probiotics in Aquaculture.pptx von
Use of Probiotics in Aquaculture.pptxUse of Probiotics in Aquaculture.pptx
Use of Probiotics in Aquaculture.pptxAKSHAY MANDAL
100 views15 Folien
ISO/IEC 27001 and ISO/IEC 27005: Managing AI Risks Effectively von
ISO/IEC 27001 and ISO/IEC 27005: Managing AI Risks EffectivelyISO/IEC 27001 and ISO/IEC 27005: Managing AI Risks Effectively
ISO/IEC 27001 and ISO/IEC 27005: Managing AI Risks EffectivelyPECB
585 views18 Folien
AI Tools for Business and Startups von
AI Tools for Business and StartupsAI Tools for Business and Startups
AI Tools for Business and StartupsSvetlin Nakov
107 views39 Folien
Are we onboard yet University of Sussex.pptx von
Are we onboard yet University of Sussex.pptxAre we onboard yet University of Sussex.pptx
Are we onboard yet University of Sussex.pptxJisc
96 views7 Folien
ICS3211_lecture 08_2023.pdf von
ICS3211_lecture 08_2023.pdfICS3211_lecture 08_2023.pdf
ICS3211_lecture 08_2023.pdfVanessa Camilleri
149 views30 Folien
PLASMA PROTEIN (2).pptx von
PLASMA PROTEIN (2).pptxPLASMA PROTEIN (2).pptx
PLASMA PROTEIN (2).pptxMEGHANA C
68 views34 Folien

Último(20)

Use of Probiotics in Aquaculture.pptx von AKSHAY MANDAL
Use of Probiotics in Aquaculture.pptxUse of Probiotics in Aquaculture.pptx
Use of Probiotics in Aquaculture.pptx
AKSHAY MANDAL100 views
ISO/IEC 27001 and ISO/IEC 27005: Managing AI Risks Effectively von PECB
ISO/IEC 27001 and ISO/IEC 27005: Managing AI Risks EffectivelyISO/IEC 27001 and ISO/IEC 27005: Managing AI Risks Effectively
ISO/IEC 27001 and ISO/IEC 27005: Managing AI Risks Effectively
PECB 585 views
AI Tools for Business and Startups von Svetlin Nakov
AI Tools for Business and StartupsAI Tools for Business and Startups
AI Tools for Business and Startups
Svetlin Nakov107 views
Are we onboard yet University of Sussex.pptx von Jisc
Are we onboard yet University of Sussex.pptxAre we onboard yet University of Sussex.pptx
Are we onboard yet University of Sussex.pptx
Jisc96 views
PLASMA PROTEIN (2).pptx von MEGHANA C
PLASMA PROTEIN (2).pptxPLASMA PROTEIN (2).pptx
PLASMA PROTEIN (2).pptx
MEGHANA C68 views
Solar System and Galaxies.pptx von DrHafizKosar
Solar System and Galaxies.pptxSolar System and Galaxies.pptx
Solar System and Galaxies.pptx
DrHafizKosar91 views
UWP OA Week Presentation (1).pptx von Jisc
UWP OA Week Presentation (1).pptxUWP OA Week Presentation (1).pptx
UWP OA Week Presentation (1).pptx
Jisc88 views
Create a Structure in VBNet.pptx von Breach_P
Create a Structure in VBNet.pptxCreate a Structure in VBNet.pptx
Create a Structure in VBNet.pptx
Breach_P75 views
Pharmaceutical Inorganic Chemistry Unit IVMiscellaneous compounds Expectorant... von Ms. Pooja Bhandare
Pharmaceutical Inorganic Chemistry Unit IVMiscellaneous compounds Expectorant...Pharmaceutical Inorganic Chemistry Unit IVMiscellaneous compounds Expectorant...
Pharmaceutical Inorganic Chemistry Unit IVMiscellaneous compounds Expectorant...
Community-led Open Access Publishing webinar.pptx von Jisc
Community-led Open Access Publishing webinar.pptxCommunity-led Open Access Publishing webinar.pptx
Community-led Open Access Publishing webinar.pptx
Jisc93 views
JiscOAWeek_LAIR_slides_October2023.pptx von Jisc
JiscOAWeek_LAIR_slides_October2023.pptxJiscOAWeek_LAIR_slides_October2023.pptx
JiscOAWeek_LAIR_slides_October2023.pptx
Jisc96 views
EIT-Digital_Spohrer_AI_Intro 20231128 v1.pptx von ISSIP
EIT-Digital_Spohrer_AI_Intro 20231128 v1.pptxEIT-Digital_Spohrer_AI_Intro 20231128 v1.pptx
EIT-Digital_Spohrer_AI_Intro 20231128 v1.pptx
ISSIP369 views
REPRESENTATION - GAUNTLET.pptx von iammrhaywood
REPRESENTATION - GAUNTLET.pptxREPRESENTATION - GAUNTLET.pptx
REPRESENTATION - GAUNTLET.pptx
iammrhaywood100 views
The Open Access Community Framework (OACF) 2023 (1).pptx von Jisc
The Open Access Community Framework (OACF) 2023 (1).pptxThe Open Access Community Framework (OACF) 2023 (1).pptx
The Open Access Community Framework (OACF) 2023 (1).pptx
Jisc110 views
Scope of Biochemistry.pptx von shoba shoba
Scope of Biochemistry.pptxScope of Biochemistry.pptx
Scope of Biochemistry.pptx
shoba shoba133 views

DPP-58-60-Answer

  • 1. Subject : Mathematics Date : DPP No. : Class : XIII Course : DPP No. – 01 Total Marks : 26 Max. Time : 22 min. Single choice Objective ('–1' negative marking) Q.2, 4, 5, 6 (4 marks 3 min.) [16, 12] Multiple choice objective ('–1' negative marking) Q.3 (6 marks 5 min.) [6, 5] Subjective Questions ('–1' negative marking) Q.1 (4 marks 5 min.) [4, 5] 1. ABCD is a quadrilateral and E the point of intersection of the lines joining the middle points of opposite sides . Show that the resultant of  OA ,  OB ,  OC and  OD is equal to 4  OE , where O is any point. 2. P, Q have position vectors   a b & relative to the origin 'O' & X, Y divide PQ  internally and externally respectively in the ratio 2 : 1 . Vector XY  = (A)   3 2   b a  (B)   4 3   a b  (C)   5 6   b a  (D*)   4 3   b a  3. P is a point on the line through the point A whose position vector is a  and the line is parallel to the vector b  . If PA = 6 , the position vector of P is : (A) a  + 6 b  (B*) a  + b 6  b  (C*) | b | b 6 – a    (D) b  + a 6  a  4. Let c , b , a    be three unit vectors such that c b a      = 1 and b a    . If c  makes angles ,  with b , a   respectively then cos + cos is equal to (A) 3/2 (B) 1 (C*) – 1 (D) 1/2 5. ) r k̂ ( k̂ . r ) ĵ . r ( ) r î ) î . r ( ) ( ) r ĵ ( (            = (A*) 0 (B)  r (C) 2  r (D) 3  r 6. If k̂ – ĵ 2 b , ĵ î a      and b a b r , a b a r               then r r   is equal to (A*) ) k̂ ĵ 3 î ( 11 1   (B)   k̂ ĵ 3 – î 11 1  (C) ) k̂ ĵ – î ( 3 1  (D) none of these 58 FACULTY COPY
  • 2. Subject : Mathematics Date : DPP No. : Class : XIII Course : DPP No. – 02 Total Marks : 28 Max. Time : 23 min. Single choice Objective ('–1' negative marking) Q.1, 2, 3, 4, 5 (4 marks 3 min.) [20, 15] Match the Following (no negative marking) (2 × 4) Q.6 (8 marks 8 min.) [8, 8] 1. If b , a   are nonzero and noncollinear vectors then ,      k k b a j j b a i i b a               = (A) b a    (B*) b a    (C) b a    (D) a b    2. A vector c  of magnitude 6 20 parallel to the bisector of the angle between k̂ 4 ĵ 4 î 7 a     and k̂ 2 ĵ î 2 b      is (A) ±   k̂ ĵ 7 î 2 3 20   (B) ±   k̂ 2 ĵ 7 î 20 3   (C) ±   k̂ 7 ĵ 2 î 3 20   (D*) ±   k̂ 2 ĵ 7 î 3 20   3. Let the centre of the parallelopiped formed by PA i j k        2 2 ; PB i j k     4 3    ; PC i j k     3 5    is given by the position vector (7, 6, 2) . Then the position vector of the point P is: (A*) (3, 4, 1) (B) (6, 8, 2) (C) (1, 3, 4) (D) (2, 6, 8) 4. If   x Lim 2 ) rx – qx px ( 2   , then (A*) q = 4r (B) q = 2r (C) q = r (D) q = 6r 5. The number 6 4 ) 2000 ( log 2 + 6 5 ) 2000 ( log 3 can be written as n m where m and n are relatively prime positive integers, then (m + n) equals (A) 4 (B) 5 (C) 6 (D*) 7 6. Match the column Column - I Column - II (A) If c , b , a    are three mutually perpendicular vectors where (p) 4 3 – 1 c and 2 b a       , then ] a c c b b a [ 12 1          is (B) If b , a   are two unit vectors inclined at 3  , then (q) 0 ] b b a b a [        is (C) If c , b   are orthogonal unit vectors and a c b      , then (r) 3 4 ] c b b a c b a [            is (D) If ] b y x [ ] a y x [        = ] c b a [    = 0 each vector being a (s) 1 non-zero vector, and no two vectors are collinear then ] c y x [    = Ans. (A)  (r) ; (B)  (p) ; (C)  (s) ; (D)  (q) 59 FACULTY COPY
  • 3. Subject : Mathematics Date : DPP No. : Class : XIII Course : DPP No. – 03 Total Marks : 24 Max. Time : 20 min. Comprehension ('–1' negative marking) Q.1 to Q.3 (4 marks 3 min.) [12, 9] Single choice Objective ('–1' negative marking) Q.4, 6 (4 marks 3 min.) [8, 6] Subjective Questions ('–1' negative marking) Q.5 (4 marks 5 min.) [4, 5] Comprehension (Q.no. 1 to 3) Let a, b, c, d  R. Then the cubic equation of the type ax3 + bx2 + cx + d = 0 has either one root real or all three roots are real. But in case of trigonometric equations of the type a sin3 x + b sin2 x + c sinx + d = 0 can possess several solutions depending upon the domain of x. To solve an equation of the type a cos + b sin = c. The equation can be written as cos ( – ) = c/ ) b a ( 2 2  . The solution is  = 2n +  ± , where tan  = b/a, cos  = c/ ) b a ( 2 2  . 1. On the domain [–, ] the equation 4sin3 x + 2 sin2 x – 2sinx – 1 = 0 possess (A) only one real root (B) three real roots (C) four real roots (D*) six real roots 2. In the interval [–/4, /2], the equation, cos 4x + x tan 1 x tan 10 2  = 3 has (A) no solution (B) one solution (C*) two solutions (D) three solutions 3. |tan x| = tan x + x cos 1 (0  x  2) has (A) no solution (B*) one solution (C) two solutions (D) three solutions 4. If 5 | b | , 2 | a |     and 0 b . a    , then ))))) b a ( a ( a ( a ( a ( a              is equal to (A) a 64  (B) b 64  (C*) – b 64  (D) – a 64  5. Find the exact value of the expression º 10 tan º 40 tan 2 º 20 tan º 70 tan   . Ans. 4 6. The matrix A has x rows and (x + 5) columns. The matrix B has y rows and (11 – y) columns. Both AB and BA exist. The value of x and y is (A) 8, 3 (B) 3, 4 (C*) 3, 8 (D) 8, 8 60 FACULTY COPY