DPP-48-50-Ans

STUDY  INNOVATIONS
STUDY INNOVATIONSEducator um Study Innovations

Subject : Mathematics Date : DPP No. : 48 DPP No. – 01 Class : XI Course : Total Marks : 29 Max. Time : 27 min. Single choice Objective ('–1' negative marking) Q.3, 4 (3 marks 3 min.) [6, 6] Multiple choice objective ('–1' negative marking) Q.2, 5, 7 (5 marks 4 min.) [15, 12] Subjective Questions ('–1' negative marking) Q.6 (4 marks 5 min.) [4, 5] Fill in the Blanks ('–1' negative marking) Q.1 (4 marks 4 min.) [4, 4] Ques. No. 1 2 3 4 5 6 7 Total Mark obtained 1. The midpoint of the chord on the line 3x + 4y – 25 = 0 intercepted by the circle x2 + y2 = 81 is ....... Ans. (3,4) 2. The centre of a circle S = 0 lies on 2x – 2y + 9 = 0 and S = 0 cuts orthogonally the circle x2 + y2 = 4. Then the circle must pass through the point (A) (1, 1) (B*) (– 1/2, 1/2) (C) (5, 5) (D*) (– 4, 4)a 3. Let AB be any chord of the circle x² + y² – 2x – 6y – 6 = 0 which subtends right angle at the point (2, 4), then the locus of the mid point of AB is (A) x² + y² – 3x – 7y –16 = 0 (B*) x² + y² – 3x – 7y + 7 = 0 (C) x² + y² + 3x + 7y – 16 = 0 (D) x² + y² + 3x + 7y – 7 = 0 4. Locus of the center of the circle touching the angle bisectors between the pair of lines ax² + ay² + bxy = 0 (Where a, b  R) is (A) x² – y² = 0 (B*) xy = 0 (C) x² – y² = 1 (D) None of these 5. If the angle between the pair of tangent drawn from (a, a) to the circle x² + y² – 2x – 2y – 6 = 0 lies in the   ,  interval    then a may be equal to  (A*) –2 (B*) 4 (C) 3 (D) 1 6. x2 + y2 + ax + by + c = 0 is the equation of a circle that bisects the circumference of the circle, x2 + y2 + 2y – 3 = 0 and touches the bisector of the first and third quadrant at the origin. Find a + b + c. Ans. 0 7. Consider the following statements S1: If a  0, a, b, c  R, then roots of equation ax2 + bx + c = 0 are complex numbers S2 : The equation of the circle passing through the point of intersection of the circle x2 + y2 = 4 and the line 2x + y – 1 = 0 and having minimum possible radius is 5x2 + 5y2 + 4x + 9y – 5 = 0. S3 : Vertices of a variable triangle are (3, 4), (5 cos, 5sin) and (5 sin , – 5cos). The locus of its orthocentre is (x + y – 7)2 + (x – y + 1)2 = 100 (A*) S1 is true (B*) S2 is false (C*) S3 is true (D) S1 and S2 both are true. Subject : Mathematics Date : DPP No. : 49 Class : XI Course : DPP No. – 02 Total Marks : 26 Max. Time : 26 min. Single choice Objective ('–1' negative marking) Q.1, 3, 4, 5, 6 (3 marks 3 min.) [15, 15] Assertion and Reason (no negative marking) Q.2 (3 marks 3 min.) [3, 3] Match the Following (no negative marking) (2 × 4) Q.7 (8 marks 8 min.) [8, 8] Ques. No. 1 2 3 4 5 6 7 Total Mark obtained 1. If two chords of the circle x2 + y2  ax  by = 0, drawn from the point P(a, b) is divided by the x  axis in the ratio 2 : 1 in the direction from the point P to the other end of the chord, then (A*) a2 > 3 b2 (B) a2 < 3 b2 (C) a2 > 4 b2 (D) a2 < 4 b2 2. Statement-1 : Perpendicular fr

DAILY PRACTICE PROBLEMS
Subject : Mathematics Date : DPP No. : Class : XI Course :
DPP No. – 01
1. In B-Phase complete Binomial theorem and P & C with discussion upto
27/10/10.
2. In C-Phase complete Binomial theorem and P & C with discussion upto
27/10/10 and this week Dpp no. 47 to 50.
Total Marks : 29 Max. Time : 27 min.
Single choice Objective ('–1' negative marking) Q.3, 4 (3 marks 3 min.) [6, 6]
Multiple choice objective ('–1' negative marking) Q.2, 5, 7 (5 marks 4 min.) [15, 12]
Subjective Questions ('–1' negative marking) Q.6 (4 marks 5 min.) [4, 5]
Fill in the Blanks ('–1' negative marking) Q.1 (4 marks 4 min.) [4, 4]
Ques. No. 1 2 3 4 5 6 7 Total
Mark obtained
1. The midpoint of the chord on the line 3x + 4y – 25 = 0 intercepted by the circle x2
+ y2
= 81 is .......
Ans. (3,4)
2. The centre of a circle S = 0 lies on 2x – 2y + 9 = 0 and S = 0 cuts orthogonally the circle x2
+ y2
= 4. Then
the circle must pass through the point
(A) (1, 1) (B*) (– 1/2, 1/2)
(C) (5, 5) (D*)(–4,4)a
3. Let AB be any chord of the circle x² + y² – 2x – 6y – 6 = 0 which subtends right angle at the point (2, 4), then
the locus of the mid point of AB is
(A) x² + y² – 3x – 7y –16 = 0 (B*) x² + y² – 3x – 7y + 7 = 0
(C) x² + y² + 3x + 7y – 16 = 0 (D) x² + y² + 3x + 7y – 7 = 0
4. Locus of the center of the circle touching the angle bisectors between the pair of lines ax² + ay² + bxy = 0
(Where a, b  R) is
(A) x² – y² = 0 (B*) xy = 0 (C) x² – y² = 1 (D) None of these
5. If the angle between the pair of tangent drawn from (a, a) to the circle x² + y² – 2x – 2y – 6 = 0 lies in the
interval 







,
3
then a may be equal to
(A*) –2 (B*) 4 (C) 3 (D) 1
6. x2 + y2 + ax + by + c = 0 is the equation of a circle that bisects the circumference of the circle,
x2 + y2 + 2y – 3 = 0 and touches the bisector of the first and third quadrant at the origin. Find a + b + c.
Ans. 0
7. Consider the following statements
S1: If a  0, a, b, c  R, then roots of equation ax2
+ bx + c = 0 are complex numbers
S2 : The equation of the circle passing through the point of intersection of the circle x2 + y2 = 4 and the line
2x + y – 1 = 0 and having minimum possible radius is 5x2 + 5y2 + 4x + 9y – 5 = 0.
S3 : Vertices of a variable triangle are (3, 4), (5 cos, 5sin) and (5 sin , – 5cos). The locus of its
orthocentre is (x + y – 7)2 + (x – y + 1)2 = 100
(A*) S1 is true (B*) S2 is false (C*) S3 is true (D) S1 and S2 both are true.
48
DAILY PRACTICE PROBLEMS
Subject : Mathematics Date : DPP No. : Class : XI Course :
DPP No. – 02 Total Marks : 26 Max. Time : 26 min.
Single choice Objective ('–1' negative marking) Q.1, 3, 4, 5, 6 (3 marks 3 min.) [15, 15]
Assertion and Reason (no negative marking) Q.2 (3 marks 3 min.) [3, 3]
Match the Following (no negative marking) (2 × 4) Q.7 (8 marks 8 min.) [8, 8]
Ques. No. 1 2 3 4 5 6 7 Total
Mark obtained
1. If two chords of the circle x2
+ y2
 ax  by = 0, drawn from the point P(a, b) is divided by the x axis
in the ratio 2 : 1 in the direction from the point P to the other end of the chord, then
(A*) a2
> 3 b2
(B) a2
< 3 b2
(C) a2
> 4 b2
(D) a2
< 4 b2
2. Statement-1 : Perpendicular from origin O to the line joining the points A (c cos, c sin) and
B (c cos, c sin) divides it in the ratio 1 : 1
Statement-2 : Perpendicular from opposite vertex to the base of an isosceles triangle bisects it.
(A*) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
(B) Statement-1 isTrue, Statement-2 isTrue; Statement-2 is NOT a correct explanation for Statement-1
(C) Statement-1 is True, Statement-2 is False
(D) Statement-1 is False, Statement-2 is True
3. Which of the following bisects the circumference of the circle x2
+ y2
 8 x  6 y + 23 = 0 .
(A) x2
+ y2
+ 6 x + 4 y  10 = 0 (B*) x2
+ y2
 6 x  4 y + 9 = 0
(C) x2
+ y2
 6 x + 4 y + 9 = 0 (D) none of these
4. Two circles of radii 4 cms & 1 cm touch each other externally and  is the angle contained by their
direct common tangents . Then sin  equals to
(A*) 24/25 (B) 12/25 (C) 3/4 (D) none
5. Two circles of equal radius ‘ r ‘ cut orthogonally . If their centres are (2 , 3) & (5 , 6), then ‘ r ‘ is equal
to :
(A) 1 (B) 2 (C*) 3 (D) 4
6. If
6

< x <
4

and 3
n
)
..........
x
tan
x
tan
x
(tan 3
2
e 




is a root of the equation y2
– 12y + 27 = 0, then a value of
x
sin
x
cos
x
sin

is
(A)
3
1
(B*)
5
2
(C)
3
2
(D)
2
1
7. Column - I Column - II
(A) A triangle is formed by the lines whose combined (p) 0
equation is given by (x + y –9) (xy – 2y –x + 2) = 0
if the circumcentre of triangle is (h, k), then value of
|h – k| is
(B) A region in the x–y plane is bounded by the curve (q) 1
y = 36 – ²
x and the line y = 0. If the point (a, a + 2) lies
in the interior of the region, then number of possible
integral values of a is
(C) If the tangent at the point P on the x² + y² + 6x + 6y = 2 (r) 2
meets the straight line 5x – 2y + 6 = 0 at the point Q on the
y axis, then length of PQ is
(D) Number of tangent (s) which can be drawn from the point (s) 4






1
,
2
5
to the circumcircle of the triangle with vertices (1 3 )
(1, – 3 ), (3, – 3 ) is (t) 5
Ans. (A)  (q), (B)  (t), (C) (t), (D) (p)
49
DAILY PRACTICE PROBLEMS
Subject : Mathematics Date : DPP No. : Class : XI Course :
DPP No. – 03
Total Marks : 25 Max. Time : 24 min.
Single choice Objective ('–1' negative marking) Q.1, 2, 3, 4, 5, 6 (3 marks 3 min.) [18, 18]
Multiple choice objective ('–1' negative marking) Q.7 (5 marks 4 min.) [5, 4]
True or False (no negative marking) Q.8 (2 marks 2 min.) [2, 2]
Ques. No. 1 2 3 4 5 6 7 8 Total
Mark obtained
1. The complete set of values of ‘x’ for which the expression
















x
log
log
log
4
1
3
2
1
is defined, is :
(A*) 





4
1
,
0 (B) (0, 1) (C) 





1
,
4
1
(D) (1, )
2. n
Cr  1
+ 3 n
Cr
+ 3 n
Cr + 1
+ n
Cr + 2
is equal to:
(A) n + 2
Cr + 1
(B) n + 2
Cr + 2
(C) n + 2
Cr + 3
(D*) n + 3
Cr + 2
3. In the expansion of (1 + x)43
if the coefficients of the (2r + 1)th
and the (r + 2)th
terms are equal, then
value of r is:
(A) 12 (B) 13 (C*) 14 (D) 15
4. If in the expansion of x
x
n
3 2






 a term like x2
exists and ' n ' is a double digit number, then least
value of ' n ' is :
(A*) 10 (B) 11 (C) 12 (D) 13
5. The coefficient of x6 in {(1 + x)6 + (1 + x)7 + .......... + (1 + x)15} is-
(A*) 16c9 (B) 16c5 – 6c5 (C) 16c6 – 1 (D) none of these
6. When 1127 + 2127 is divided by 16, the remainder is
(A) 1 (B) 14 (C*) 0 (D) 2
7. Point(s) on the line x = 3 from which the tangents drawn to the circle x2
+ y2
= 8 are at right angles is/are
(A*) (3, – 7 ) (B) (3, 23 ) (C*) (3, 7 ) (D) (3, – 23 )
8. Integral part of  1997
9
2
7  is even. [True/False]
Ans. True
50

Recomendados

DPP-48-50-PC von
DPP-48-50-PCDPP-48-50-PC
DPP-48-50-PCSTUDY INNOVATIONS
2 views3 Folien
DPP-36-38-Answer von
DPP-36-38-AnswerDPP-36-38-Answer
DPP-36-38-AnswerSTUDY INNOVATIONS
2 views3 Folien
DPP-28-30-Answer von
DPP-28-30-AnswerDPP-28-30-Answer
DPP-28-30-AnswerSTUDY INNOVATIONS
2 views4 Folien
DPP-45-47-Answer von
DPP-45-47-AnswerDPP-45-47-Answer
DPP-45-47-AnswerSTUDY INNOVATIONS
3 views3 Folien
DPP-45-47-Ans-pending-B von
DPP-45-47-Ans-pending-BDPP-45-47-Ans-pending-B
DPP-45-47-Ans-pending-BSTUDY INNOVATIONS
2 views3 Folien
DPP-42-44-Answer von
DPP-42-44-AnswerDPP-42-44-Answer
DPP-42-44-AnswerSTUDY INNOVATIONS
10 views3 Folien

Más contenido relacionado

Similar a DPP-48-50-Ans

DPP-51-53-PC von
DPP-51-53-PCDPP-51-53-PC
DPP-51-53-PCSTUDY INNOVATIONS
3 views3 Folien
DPP-22-24-Answer von
DPP-22-24-AnswerDPP-22-24-Answer
DPP-22-24-AnswerSTUDY INNOVATIONS
3 views3 Folien
DPP - 34-36-Answer von
DPP - 34-36-AnswerDPP - 34-36-Answer
DPP - 34-36-AnswerSTUDY INNOVATIONS
6 views7 Folien
DPP-92-94-Answer von
DPP-92-94-AnswerDPP-92-94-Answer
DPP-92-94-AnswerSTUDY INNOVATIONS
3 views3 Folien
DPP-66-68-PC von
DPP-66-68-PCDPP-66-68-PC
DPP-66-68-PCSTUDY INNOVATIONS
5 views2 Folien
DPP-69-71-Answer von
DPP-69-71-AnswerDPP-69-71-Answer
DPP-69-71-AnswerSTUDY INNOVATIONS
6 views3 Folien

Similar a DPP-48-50-Ans(20)

Más de STUDY INNOVATIONS

Chemistry-12.Part Test-III-Paper-2-Solutions von
Chemistry-12.Part Test-III-Paper-2-SolutionsChemistry-12.Part Test-III-Paper-2-Solutions
Chemistry-12.Part Test-III-Paper-2-SolutionsSTUDY INNOVATIONS
0 views5 Folien
Chemistry-2.Part Test-I-Paper-1-Solutions von
Chemistry-2.Part Test-I-Paper-1-SolutionsChemistry-2.Part Test-I-Paper-1-Solutions
Chemistry-2.Part Test-I-Paper-1-SolutionsSTUDY INNOVATIONS
0 views3 Folien
Chemistry-59.XII-Pass-Test Paper Solutions von
Chemistry-59.XII-Pass-Test Paper SolutionsChemistry-59.XII-Pass-Test Paper Solutions
Chemistry-59.XII-Pass-Test Paper SolutionsSTUDY INNOVATIONS
0 views3 Folien
Chemistry-42.SWCP-Paper-1-Solutions von
Chemistry-42.SWCP-Paper-1-SolutionsChemistry-42.SWCP-Paper-1-Solutions
Chemistry-42.SWCP-Paper-1-SolutionsSTUDY INNOVATIONS
2 views3 Folien
Chemistry-40.CCP-XII-Studying-Questions von
Chemistry-40.CCP-XII-Studying-QuestionsChemistry-40.CCP-XII-Studying-Questions
Chemistry-40.CCP-XII-Studying-QuestionsSTUDY INNOVATIONS
2 views3 Folien
Chemistry-36.SECP-Test Paper-8 von
Chemistry-36.SECP-Test Paper-8Chemistry-36.SECP-Test Paper-8
Chemistry-36.SECP-Test Paper-8STUDY INNOVATIONS
2 views12 Folien

Más de STUDY INNOVATIONS(20)

Chemistry-40.One Year CRP-Test Paper-6-Solutions von STUDY INNOVATIONS
Chemistry-40.One Year CRP-Test Paper-6-SolutionsChemistry-40.One Year CRP-Test Paper-6-Solutions
Chemistry-40.One Year CRP-Test Paper-6-Solutions
Chemistry-11.Test Paper-CRP-XII Studying-3-Screening von STUDY INNOVATIONS
Chemistry-11.Test Paper-CRP-XII Studying-3-ScreeningChemistry-11.Test Paper-CRP-XII Studying-3-Screening
Chemistry-11.Test Paper-CRP-XII Studying-3-Screening
Chemistry-17.Periodic Chart of the Elements-Theory von STUDY INNOVATIONS
Chemistry-17.Periodic Chart of the Elements-TheoryChemistry-17.Periodic Chart of the Elements-Theory
Chemistry-17.Periodic Chart of the Elements-Theory

Último

Thanksgiving!.pdf von
Thanksgiving!.pdfThanksgiving!.pdf
Thanksgiving!.pdfEnglishCEIPdeSigeiro
461 views17 Folien
MercerJesse2.1Doc.pdf von
MercerJesse2.1Doc.pdfMercerJesse2.1Doc.pdf
MercerJesse2.1Doc.pdfjessemercerail
301 views5 Folien
STRATEGIC MANAGEMENT MODULE 1_UNIT1 _UNIT2.pdf von
STRATEGIC MANAGEMENT MODULE 1_UNIT1 _UNIT2.pdfSTRATEGIC MANAGEMENT MODULE 1_UNIT1 _UNIT2.pdf
STRATEGIC MANAGEMENT MODULE 1_UNIT1 _UNIT2.pdfDr Vijay Vishwakarma
90 views68 Folien
NodeJS and ExpressJS.pdf von
NodeJS and ExpressJS.pdfNodeJS and ExpressJS.pdf
NodeJS and ExpressJS.pdfArthyR3
47 views17 Folien
Class 9 lesson plans von
Class 9 lesson plansClass 9 lesson plans
Class 9 lesson plansTARIQ KHAN
68 views34 Folien
12.5.23 Poverty and Precarity.pptx von
12.5.23 Poverty and Precarity.pptx12.5.23 Poverty and Precarity.pptx
12.5.23 Poverty and Precarity.pptxmary850239
162 views30 Folien

Último(20)

NodeJS and ExpressJS.pdf von ArthyR3
NodeJS and ExpressJS.pdfNodeJS and ExpressJS.pdf
NodeJS and ExpressJS.pdf
ArthyR347 views
Class 9 lesson plans von TARIQ KHAN
Class 9 lesson plansClass 9 lesson plans
Class 9 lesson plans
TARIQ KHAN68 views
12.5.23 Poverty and Precarity.pptx von mary850239
12.5.23 Poverty and Precarity.pptx12.5.23 Poverty and Precarity.pptx
12.5.23 Poverty and Precarity.pptx
mary850239162 views
Create a Structure in VBNet.pptx von Breach_P
Create a Structure in VBNet.pptxCreate a Structure in VBNet.pptx
Create a Structure in VBNet.pptx
Breach_P82 views
Creative Restart 2023: Atila Martins - Craft: A Necessity, Not a Choice von Taste
Creative Restart 2023: Atila Martins - Craft: A Necessity, Not a ChoiceCreative Restart 2023: Atila Martins - Craft: A Necessity, Not a Choice
Creative Restart 2023: Atila Martins - Craft: A Necessity, Not a Choice
Taste41 views
Career Building in AI - Technologies, Trends and Opportunities von WebStackAcademy
Career Building in AI - Technologies, Trends and OpportunitiesCareer Building in AI - Technologies, Trends and Opportunities
Career Building in AI - Technologies, Trends and Opportunities
WebStackAcademy41 views
ANGULARJS.pdf von ArthyR3
ANGULARJS.pdfANGULARJS.pdf
ANGULARJS.pdf
ArthyR349 views
EILO EXCURSION PROGRAMME 2023 von info33492
EILO EXCURSION PROGRAMME 2023EILO EXCURSION PROGRAMME 2023
EILO EXCURSION PROGRAMME 2023
info33492181 views
CUNY IT Picciano.pptx von apicciano
CUNY IT Picciano.pptxCUNY IT Picciano.pptx
CUNY IT Picciano.pptx
apicciano60 views
Creative Restart 2023: Leonard Savage - The Permanent Brief: Unearthing unobv... von Taste
Creative Restart 2023: Leonard Savage - The Permanent Brief: Unearthing unobv...Creative Restart 2023: Leonard Savage - The Permanent Brief: Unearthing unobv...
Creative Restart 2023: Leonard Savage - The Permanent Brief: Unearthing unobv...
Taste53 views

DPP-48-50-Ans

  • 1. DAILY PRACTICE PROBLEMS Subject : Mathematics Date : DPP No. : Class : XI Course : DPP No. – 01 1. In B-Phase complete Binomial theorem and P & C with discussion upto 27/10/10. 2. In C-Phase complete Binomial theorem and P & C with discussion upto 27/10/10 and this week Dpp no. 47 to 50. Total Marks : 29 Max. Time : 27 min. Single choice Objective ('–1' negative marking) Q.3, 4 (3 marks 3 min.) [6, 6] Multiple choice objective ('–1' negative marking) Q.2, 5, 7 (5 marks 4 min.) [15, 12] Subjective Questions ('–1' negative marking) Q.6 (4 marks 5 min.) [4, 5] Fill in the Blanks ('–1' negative marking) Q.1 (4 marks 4 min.) [4, 4] Ques. No. 1 2 3 4 5 6 7 Total Mark obtained 1. The midpoint of the chord on the line 3x + 4y – 25 = 0 intercepted by the circle x2 + y2 = 81 is ....... Ans. (3,4) 2. The centre of a circle S = 0 lies on 2x – 2y + 9 = 0 and S = 0 cuts orthogonally the circle x2 + y2 = 4. Then the circle must pass through the point (A) (1, 1) (B*) (– 1/2, 1/2) (C) (5, 5) (D*)(–4,4)a 3. Let AB be any chord of the circle x² + y² – 2x – 6y – 6 = 0 which subtends right angle at the point (2, 4), then the locus of the mid point of AB is (A) x² + y² – 3x – 7y –16 = 0 (B*) x² + y² – 3x – 7y + 7 = 0 (C) x² + y² + 3x + 7y – 16 = 0 (D) x² + y² + 3x + 7y – 7 = 0 4. Locus of the center of the circle touching the angle bisectors between the pair of lines ax² + ay² + bxy = 0 (Where a, b  R) is (A) x² – y² = 0 (B*) xy = 0 (C) x² – y² = 1 (D) None of these 5. If the angle between the pair of tangent drawn from (a, a) to the circle x² + y² – 2x – 2y – 6 = 0 lies in the interval         , 3 then a may be equal to (A*) –2 (B*) 4 (C) 3 (D) 1 6. x2 + y2 + ax + by + c = 0 is the equation of a circle that bisects the circumference of the circle, x2 + y2 + 2y – 3 = 0 and touches the bisector of the first and third quadrant at the origin. Find a + b + c. Ans. 0 7. Consider the following statements S1: If a  0, a, b, c  R, then roots of equation ax2 + bx + c = 0 are complex numbers S2 : The equation of the circle passing through the point of intersection of the circle x2 + y2 = 4 and the line 2x + y – 1 = 0 and having minimum possible radius is 5x2 + 5y2 + 4x + 9y – 5 = 0. S3 : Vertices of a variable triangle are (3, 4), (5 cos, 5sin) and (5 sin , – 5cos). The locus of its orthocentre is (x + y – 7)2 + (x – y + 1)2 = 100 (A*) S1 is true (B*) S2 is false (C*) S3 is true (D) S1 and S2 both are true. 48
  • 2. DAILY PRACTICE PROBLEMS Subject : Mathematics Date : DPP No. : Class : XI Course : DPP No. – 02 Total Marks : 26 Max. Time : 26 min. Single choice Objective ('–1' negative marking) Q.1, 3, 4, 5, 6 (3 marks 3 min.) [15, 15] Assertion and Reason (no negative marking) Q.2 (3 marks 3 min.) [3, 3] Match the Following (no negative marking) (2 × 4) Q.7 (8 marks 8 min.) [8, 8] Ques. No. 1 2 3 4 5 6 7 Total Mark obtained 1. If two chords of the circle x2 + y2  ax  by = 0, drawn from the point P(a, b) is divided by the x axis in the ratio 2 : 1 in the direction from the point P to the other end of the chord, then (A*) a2 > 3 b2 (B) a2 < 3 b2 (C) a2 > 4 b2 (D) a2 < 4 b2 2. Statement-1 : Perpendicular from origin O to the line joining the points A (c cos, c sin) and B (c cos, c sin) divides it in the ratio 1 : 1 Statement-2 : Perpendicular from opposite vertex to the base of an isosceles triangle bisects it. (A*) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1. (B) Statement-1 isTrue, Statement-2 isTrue; Statement-2 is NOT a correct explanation for Statement-1 (C) Statement-1 is True, Statement-2 is False (D) Statement-1 is False, Statement-2 is True 3. Which of the following bisects the circumference of the circle x2 + y2  8 x  6 y + 23 = 0 . (A) x2 + y2 + 6 x + 4 y  10 = 0 (B*) x2 + y2  6 x  4 y + 9 = 0 (C) x2 + y2  6 x + 4 y + 9 = 0 (D) none of these 4. Two circles of radii 4 cms & 1 cm touch each other externally and  is the angle contained by their direct common tangents . Then sin  equals to (A*) 24/25 (B) 12/25 (C) 3/4 (D) none 5. Two circles of equal radius ‘ r ‘ cut orthogonally . If their centres are (2 , 3) & (5 , 6), then ‘ r ‘ is equal to : (A) 1 (B) 2 (C*) 3 (D) 4 6. If 6  < x < 4  and 3 n ) .......... x tan x tan x (tan 3 2 e      is a root of the equation y2 – 12y + 27 = 0, then a value of x sin x cos x sin  is (A) 3 1 (B*) 5 2 (C) 3 2 (D) 2 1 7. Column - I Column - II (A) A triangle is formed by the lines whose combined (p) 0 equation is given by (x + y –9) (xy – 2y –x + 2) = 0 if the circumcentre of triangle is (h, k), then value of |h – k| is (B) A region in the x–y plane is bounded by the curve (q) 1 y = 36 – ² x and the line y = 0. If the point (a, a + 2) lies in the interior of the region, then number of possible integral values of a is (C) If the tangent at the point P on the x² + y² + 6x + 6y = 2 (r) 2 meets the straight line 5x – 2y + 6 = 0 at the point Q on the y axis, then length of PQ is (D) Number of tangent (s) which can be drawn from the point (s) 4       1 , 2 5 to the circumcircle of the triangle with vertices (1 3 ) (1, – 3 ), (3, – 3 ) is (t) 5 Ans. (A)  (q), (B)  (t), (C) (t), (D) (p) 49
  • 3. DAILY PRACTICE PROBLEMS Subject : Mathematics Date : DPP No. : Class : XI Course : DPP No. – 03 Total Marks : 25 Max. Time : 24 min. Single choice Objective ('–1' negative marking) Q.1, 2, 3, 4, 5, 6 (3 marks 3 min.) [18, 18] Multiple choice objective ('–1' negative marking) Q.7 (5 marks 4 min.) [5, 4] True or False (no negative marking) Q.8 (2 marks 2 min.) [2, 2] Ques. No. 1 2 3 4 5 6 7 8 Total Mark obtained 1. The complete set of values of ‘x’ for which the expression                 x log log log 4 1 3 2 1 is defined, is : (A*)       4 1 , 0 (B) (0, 1) (C)       1 , 4 1 (D) (1, ) 2. n Cr  1 + 3 n Cr + 3 n Cr + 1 + n Cr + 2 is equal to: (A) n + 2 Cr + 1 (B) n + 2 Cr + 2 (C) n + 2 Cr + 3 (D*) n + 3 Cr + 2 3. In the expansion of (1 + x)43 if the coefficients of the (2r + 1)th and the (r + 2)th terms are equal, then value of r is: (A) 12 (B) 13 (C*) 14 (D) 15 4. If in the expansion of x x n 3 2        a term like x2 exists and ' n ' is a double digit number, then least value of ' n ' is : (A*) 10 (B) 11 (C) 12 (D) 13 5. The coefficient of x6 in {(1 + x)6 + (1 + x)7 + .......... + (1 + x)15} is- (A*) 16c9 (B) 16c5 – 6c5 (C) 16c6 – 1 (D) none of these 6. When 1127 + 2127 is divided by 16, the remainder is (A) 1 (B) 14 (C*) 0 (D) 2 7. Point(s) on the line x = 3 from which the tangents drawn to the circle x2 + y2 = 8 are at right angles is/are (A*) (3, – 7 ) (B) (3, 23 ) (C*) (3, 7 ) (D) (3, – 23 ) 8. Integral part of  1997 9 2 7  is even. [True/False] Ans. True 50