Dpp (25-30) 11th J-Batch Maths.pdf

STUDY  INNOVATIONS
STUDY INNOVATIONSEducator um Study Innovations

DPP. NO.-25 Select the correct alternative : (Only one is correct) Q.189/QE Number of ordered pair(s) (a, b) for each of which the equality, a (cos x  1) + b2 = cos (ax + b2)  1 holds true for all x  R are : (A) 1 (B*) 2 (C) 3 (D) 4 [Hint : Put x = 0  b2 = cos b2  1  cos b2 = 1 + b2  b = 0 when b = 0 we have a (cos x  1) = cos a x  1  2 a sin2 x 2 = 2 sin2 a x 2  a = 0 or a = 1. Hence a = 0 & b = 0 or a = 1 & b = 0 ] Q.280/QE For every x  R, the polynomial x8  x5 + x2  x + 1 is : (A*) positive (B) never positive (C) positve as well as negative (D) negative [Hint : for x  1 E = x5 (x3  1) + (x  1) + 1 > 0 for 1 < x < 0 , E = (1  x) + x2 (1  x3) + x8 > 0 For x < 0 , all terms are positive  > 0 Hence A ] Q.396/QE Three roots of the equation, x4  px3 + qx2  rx + s = 0 are tan A, tan B & tan C where A, B, C are the angles of a triangle. The fourth root of the biquadratic is : (A*) p  r 1  q + s (B) p  r 1 + q  s (C) p + r 1  q + s (D) p + r 1 + q  s [Hint : Let the fourth root be tan D Now tan ( A) =  tan A   tan A tan B tan C 1   tan A tan B +  tan A tan D = p  r ] 1  q + s Q.4105/QE If the roots of the quadratic equation (4p – p2 – 5)x2 – (2p – 1)x + 3p = 0 lie on either side of unity then the number of integral values of p is (A) 0 (B) 1 (C*) 2 (D) infinite [Sol. note that a < 0 hence f(1) > 0 4p – p2 – 5 – 2p + 1 + 3p > 0 – p2 + 5p – 4 > 0  p2 – 5p + 4 < 0 (p – 4) (p – 1) < 0  1 < p < 4  p  {2, 3}] Q.5119/QE The inequalities y( 1)   4, y(1)  0 & y(3)  5 are known to hold for y = ax2 + bx + c then the least value of 'a' is : (A)  1/4 (B)  1/3 (C) 1/4 (D*) 1/8 [Hint : a - b + c   4 ..... (i) and a + b + c  0   a  b  c  0 (ii) and 9a + 3b + c  5 (iii) (i) + (ii)   2b  4 ..... (iv) ; (ii) + (iii) + (iv)  8a  1  a 1/8 ] F Q.6 4/-1 Given a2 + 2a + cosec2 HG2 (a + x)J= 0 then, which of the following holds good? (A) a = 1 ; x  I 2 (B*) a = –1 ; x  I 2 (C) a  R ; x  (D) a , x are finite but not possible to find [Sol. (a+1)2 + cosec2 GFa + xJ– 1 = 0 H2 2 or (a+1)2 + cot2 GFa + x J= 0 H2 2 from option [B] If a = –1  tan2x/2 = 0  x/2 I ] Q. 8/s&p For an increasing A.P. a1, a2, a3.....,an,.... if a1 + a3 + a5 = – 12 ; a1a3a5 = 80 then which of the following does not hold? (A) a1= – 10 (B*) a2 = – 1 (C) a3 = – 4 (D) a5 = 2 [Hint: a1 = a – 2d, a2 = a – d, a3 = a ; a4 = a + d, a5 = a + 2d a1 + a3 + a5 = a – 2d + a + a + 2d = – 12 3a = – 12  a = – 4 a1a3a5 = (a – 2d)a(a + 2d) = 80 – 4(16 – 4d2) = 80  4d2 – 16 = 20  4d2 = 36  d2 = 9  d = ± 3 d = 3 series is increasing a1 = – 4 – 6 = – 10, a3 = – 4, a5 = – 4 + 6 = 2 ] Q.8 If p & q are distinct reals, then 2 {(x  p) (x  q) + (p  x) (p  q) + (q  x) (q  p)} = (p  q)2 + (x  p)2 + (x  q)2 is satisfied by : (A) no value of x (B) exactly one value of x (C) exactly two values of x (D*) infinite values of x . [Note x = p, q & o  infini

CLASS : XI (J-Batch) TIME : 60 Min. DPP. NO.-25
Select the correct alternative : (Only one is correct)
Q.189/QE Number of ordered pair(s) (a, b) for each of which the equality,
a (cos x  1) + b2 = cos (ax + b2)  1 holds true for all x  R are :
(A) 1 (B*) 2 (C) 3 (D) 4
[Hint: Put x = 0  b2 = cos b2  1  cos b2 = 1 + b2  b = 0
when b = 0 we have a (cos x  1) = cos a x  1  2 a sin2
x
2
= 2 sin2
a x
2
 a = 0 or a = 1. Hence a = 0 & b = 0 or a = 1 & b = 0 ]
Q.280/QE For every x  R, the polynomial x8  x5 + x2  x + 1 is :
(A*) positive (B) never positive (C) positve as well as negative (D) negative
[Hint: for x  1 E = x5 (x3  1) + (x  1) + 1 > 0
for 1 < x < 0 , E = (1  x) + x2 (1  x3) + x8 > 0
For x < 0 , all terms are positive  > 0 Hence A]
Q.396/QE Three roots of the equation, x4  px3 + qx2  rx + s = 0 are tanA, tanB & tanC whereA, B, C are
theanglesof atriangle. Thefourthroot of thebiquadraticis :
(A*)
p r
q s

 
1
(B)
p r
q s

 
1
(C)
p r
q s

 
1
(D)
p r
q s

 
1
[Hint: Let the fourth root be tan D
Now tan ( A) =
 
 
tan tan tan tan
tan tan tan
A A B C
A B A

 
1
tan D =
p r
q s

 
1
]
Q.4105/QE If the roots of the quadratic equation (4p – p2 – 5)x2 – (2p – 1)x + 3p = 0 lie on either side of unity
thenthenumberofintegral valuesofpis
(A) 0 (B) 1 (C*) 2 (D)infinite
[Sol. note that a < 0 hence f(1) > 0
4p – p2 – 5 – 2p + 1 + 3p > 0
– p2 + 5p – 4 > 0  p2 – 5p + 4 < 0
(p – 4) (p – 1) < 0  1 < p < 4  p  {2, 3}]
Q.5119/QE The inequalities y(1) 4, y(1) 0 & y(3) 5 are known to hold for
y = ax2 +bx + c then the least value of 'a' is :
(A)  1/4 (B)  1/3 (C) 1/4 (D*) 1/8
[Hint: a - b + c  4 ..... (i) and a + b + c  0  a  b  c  0 .... (ii)
and 9a + 3b + c  5 .... (iii)
(i) + (ii)   2b 4 ..... (iv) ; (ii) + (iii) + (iv)  8a  1  a 1/8 ]
Q.64/-1 Given a2 + 2a + cosec2

2
( )
a x

F
H
G I
K
J= 0 then, which of the following holds good?
(A) a = 1 ;
x
I
2
 (B*) a = –1 ;
x
I
2

(C) a  R ; x  (D) a , x are finite but not possible to find
[Sol. (a+1)2 + cosec2
 
a x
2 2

F
H
G I
K
J– 1 = 0
or (a+1)2 + cot2
 
a x
2 2

F
H
G I
K
J= 0
fromoption[B] If a = –1  tan2x/2 = 0 x/2 I ]
Q.748/s&p For an increasing A.P. a1, a2, a3.....,an,.... if a1 + a3 + a5 = – 12 ; a1a3a5 = 80 then which of the
followingdoesnothold?
(A) a1= – 10 (B*) a2 = – 1 (C) a3 = – 4 (D) a5 = 2
[Hint: a1 = a – 2d, a2 = a – d, a3 = a ; a4 = a + d, a5 = a + 2d
a1 + a3 + a5 = a – 2d + a + a + 2d = – 12
3a = – 12  a = – 4
a1a3a5 = (a – 2d)a(a + 2d) = 80
– 4(16 – 4d2) = 80  4d2 – 16 = 20  4d2 = 36  d2 = 9
 d = ± 3
d = 3 series is increasing
a1 = – 4 – 6 = – 10, a3 = – 4, a5 = – 4 + 6 = 2 ]
Q.8 If p & q are distinct reals, then
2 {(x  p) (x  q) + (p  x) (p  q) + (q  x) (q  p)} = (p  q)2 + (x  p)2 + (x  q)2
issatisfiedby:
(A) no value of x (B) exactlyone value of x
(C) exactlytwo values of x (D*) infinitevalues of x .
[Note x = p, q & o  infinite solutions ]
Q.9 If the quadratic equation ax2 + bx + 6 = 0 does not have two distinct real roots, then the least value
of 2a + b is
(A) 2 (B*) –3 (C) –6 (D) 1
[Hint: no two distinct roots  f(x) > 0 or f(x) < 0. But f(0) = 6  f(x) > 0 V x  R
hence f (2) > 0  4a + 2b + 6 > 0  2a + b > –3  B ]
Q.1011/QE Let a > 0, b > 0 & c > 0. Then both the roots of the equation ax2 + bx + c = 0.
(A) are real & negative (B*) have negative real parts
(C) are rational numbers (D) none
[Hint:  = –
b
a
2
+
b ac
a
2
4
2

; consider the examples x2 + x + 1 = 0 and x2 + 3x + 2 = 0 ]
SUBJECTIVE:
Q.1123/6 Prove that : 5 sin x = sin(x + 2y)  2 tan(x + y) = 3 tan y.
[Sol. Given
1
5
x
sin
)
y
2
x
sin(


or
1
5
1
5
x
sin
)
y
2
x
sin(
x
sin
)
y
2
x
sin(







=
3
2
3
2
y
cos
)
y
x
sin(
2
y
sin
)
y
x
cos(
2



)
y
x
tan(
y
tan

=
3
2
;  2 tan(x + y) = 3 tan y ]
Q.12 Solve the inequality, log2x (x2  5x + 6) < 1. [ Ans. : (0, 1/2)  (1, 2)  (3, 6)]
CLASS : XI (J-Batch) TIME : 60 Min. DPP. NO.-26
Select the correct alternative : (Only one is correct)
Q.1109/QE If the quadratic polynomial, y= (cot )x2 + 2  
sin  x +
1
2
tan ,   [0, 2] can take negative
values for all x R, then the value of  must in the interval :
(A*) 
5
6


,


 

 (B) 
5
6


,


 

 
11
6
2


,


 


(C)  
6
2
,


(D)  
0 6
,  
5
6


,


 


[Sol. b2 – 4ac < 0 and a < 0
hence cot  < 0 i.e.   2nd and 4th quadrant
and 4sin  – 2 tan  cot  < 0
2 sin  < 1  sin  <
2
1
   2nd and 4th quadrant (Also sin  > 0  ( onlyin 2nd quadrant)
hence   







,
6
5
]
Q.264/QE Numberof integral values of x satisfyingthe inequality
64
27
4
3
2
x
10
x
6









is
(A) 6 (B*) 7 (C) 8 (D)infinite
[Hint: 6x + 10 – x2 > 3
 x2 – 6x – 7 < 0
(x + 1) (x – 7) < 0
 0, 1, 2, 3, 4, 5, 6  B ]
Q.3 The equation a sin x + cos 2x = 2a – 7 has a solution, if
(A) a > 2 (B) a < 2 (C*) 2 < a < 6 (D) a < 2 or a < 6
[Sol. a sin x + 1 – 2 sin2x = 2a – 7
2 sin2x – 9 sin x + (2a – 8) = 0  sin x =
4
)
8
a
2
(
8
a
a 2



]
Q.413 log Numberofpositivesolution whichsatisfythe equation
log2x · log4x · log6x =log2x ·log4x + log2x · log6x + log4x ·log6x?
(A) 0 (B) 1 (C*) 2 (D)infinite
[Hint: log2x · log4x · log6x 







 1
x
log
1
x
log
1
x
log
1
2
4
6
= 0
 either x = 1 or logx48 = 1  x = 48 ]
Q.5 Numberofintegralvaluesofxsatisfyingtheinequality
3
x
1
x



4
x
2
x


(A) 1 (B) – 2 (C) – 1 (D*) 0
Q.6 The quadratic equations 2006 x2 + 2007 x + 1 = 0 and x2 + 2007x + 2006 = 0 have a root in common.
Then theproduct of theuncommonroots is
(A*) 1 (B) – 2 (C) – 1 (D) 0
[Sol. 2006 x2 + 2007 x + 1 = 0
2006 x2 + 2006 x + x + 1 = 0
2006 x(x + 1) + (x + 1) = 0
(x + 1)(2006 x + 1) = 0
 x = – 1 or x = –
2006
1
obviouslyx = – 1 satisfies both the quadratic equations hence it is thecommon root
if ,  are the roots of 1st then
 =
2006
1
(–1) =
2006
1
  = –
2006
1
and |||ly  = 2006 (from 2nd equation)
(–1) = 2006
 = – 2006
 product of uncommon roots is 1 Ans. ]
Q.7 Suppose sin  – cos  = 1 then the value of sin3 – cos3 is ( R)
(A*) 1 (B) – 2 (C) – 1 (D) 0
Q.841/s&p Let an = 16,4, 1, .... be a geometric sequence. Define Pn as the product of the first n terms. The value
of 

1
n
n
n
P
(A) 8 (B) 16 (C*) 32 (D) 64
[Sol. For the G.P. a, ar, ar2, ..........
Pn = a(ar)(ar2) ........(arn–1) = anrn(n – 1)/2
 S = 

1
n
n
n
P = 



1
n
2
/
)
1
n
(
ar
now, 



1
n
2
/
)
1
n
(
ar = a[1 + r + r + r
r + ...... + ] =
r
1
a

Given a = 16 and r = 1/4
 S = )
2
1
(
1
16
 = 32 Ans. ]
Q.9 Consider anA.P. t1, t2, t3, ........ If 5th, 9th and 16th terms of thisA.P. form three consecutive terms of
a G.P. with nonzero common ratio q, then thevalue of q is
(A) 4/7 (B) 2/7 (C*) 7/4 (D) none
[Sol. q =
d
4
a
d
8
a


=
d
8
a
d
15
a


=
d
4
d
7
 q =
4
7
Ans. ]
Q.10 If the mth, nth and pth terms of G.P. form three consecutive terms of another G.P. then m, n and p are in
(A*)A.P. (B) G.P. (C) H.P. (D)A.G.P.
SUBJECTIVE:
Q.11 A quadratic polynomial f (x)= x2 + ax + b is formed with one of its zeros being
3
2
3
3
4


where aand
b are integers. Also g (x) = x4 + 2x3 – 10x2 + 4x – 10 is a biquadratic polynomial such that










3
2
3
3
4
g = d
3
c  where c and d are also integers. Find the value of a, b, c and d.
[Ans. a = 2; b = – 11, c = 4; d = – 1]
[Sol. x2 + ax + b
x =
3
2
3
3
4


; x =   
3
2
3
3
4 

x1 = 8 – 3
4 + 3
6 – 9 = 3
2 – 1  x1 = – 1 + 3
2 ; x2 = – 1 – 3
2
sum = – 2
product = 1 – 12 = – 11
 equation is x2 + 2x – 11 = 0
 a = 2, b = – 11
given g (x) = x4 + 2x3 – 10x2 + 4x – 10










3
2
3
3
4
g = d
3
c  ; x =
3
2
3
3
4


= 3
2 – 1
 (x + 1)2 =  2
3
2  x2 + 1 + 2x = 12  x2 + 2x – 11 = 0
x2(x2 + 2x – 11) + 1(x2 + 2x – 11) + 2x + 1
0 + 0 + 2x + 1
= 2( 3
2 – 1) + 1
= 3
4 – 1]
Q.12 If  and  be the roots of the equation x2 + 3x + 1 = 0 then find the value of
2
2
1
1





















.
[Ans. 18]
[Sol.  +  = – 3;  = 1, also 2 + 3 + 1 = 0 and 2 + 3 + 1 = 0
where 2 = – (3 + 1) & 2 = – (3 + 1)
E = 2
2
2
2
)
1
(
)
1
( 






E = 2
2
2
1 




+ 2
2
2
1 




= 











 )
1
3
(
+ 









 )
3
1
(
y =


 3
1
+


 3
1
= )
3
1
(
)
3
1
( 





 (as  = 1)
= 3(2 + 2) + ( + ) = 3[9 – 2] + (–3) = 21 – 3 = 18 Ans. ]
CLASS : XI (J-Batch) TIME : 60 Min. DPP. NO.-27
Select the correct alternative : (Only one is correct)
Q.153/log Smallest integral x satisfyingthe inequality, x
log
1
x
log
1
2
4



2
1
,is
(A) 2 (B*) 2 (C) 3 (D) 4
[Sol. Let log2x = t (obviouslyx > 0)
 
t
1
2
t
1



2
1

t
1
t
2


 1  1
t
1
t
2



 0 
t
1
t
1
t
2




 0

1
t
t
2
1


 0 
1
t
1
t
2


 0  t 
2
1
or t < – 1
Hence,either log2x 
2
1
 x  2
or log2x < – 1  0 < x <
2
1
0 < x <
2
1
. Hence the solution set is  








,
2
2
1
,
0  smallest integer is 2  (B) ]
Q.2 Consider the ten numbers, ar, ar2, ar3, .......... ar10.
If their sum is 18 and the sum of their reciprocals is 6 then the product of these ten numbers, is
(A) 324 (B) 343 (C*) 243 (D) 729
[Sol. Given
1
r
)
1
r
(
ar 10


= 18 ....(1)
Also
r
1
1
r
1
1
ar
1
10








= 6 
1
r
r
)
1
r
(
·
ar
1 10
11


= 6
1
r
)
1
r
(
ar
·
r
a
1 10
11
2


= 6 ....(2)
from (1) and (2)
11
2
r
a
1
· 18 = 6  a2r11 = 3
now P = a10r55 = (a2r11)5 = 35 = 243 Ans. ]
Q.383/ph-1 IfA= 3400 then 2
2
sin
A
is identical to
(A) 1 1
  
sin sin
A A (B)    
1 1
sin sin
A A
(C) 1 1
  
sin sin
A A (D*)    
1 1
sin sin
A A
[Hint: A/2 = 1700 hence 2sinA/2 > 0 now 3400 lies in IV quadrant. Hence sinA <0.
So 1+ sinA < 1 – sinA. Hence B & C are rejected because theygive – values.
Now we will checkA& D.
A: | sinA/2 + cosA/2 | + | sinA/2 – cosA/2 |
–ve +ve
–sinA/2 – cosA/2 + sinA/2 – cosA/2 = – 2 cosA/2
Hence D is the answer ]
Q.431/s&p If 3 +
1
4
(3 + d) +
1
42 (3 + 2d) +...... + upto  = 8, then the value of d is :
(A*) 9 (B) 5 (C) 1 (D) none of these
[Sol. 8 = 3 +
1
4
(3 + d) +
1
42 (3 + 2d) +...... + upto 




 .......
..........
4
d
3
4
3
4
8
2

8 – 2 = 3 + 


 ......
..........
4
d
4
d
4
d
3
2
6 = 3 +
4
/
1
1
4
/
d

 d = 9 ]
Q.5179/QE The sum of the roots of the equation (x + 1) = 2 log2(2x + 3) – 2 log4(1980 – 2–x) is
(A) 3954 (B*) log211 (C) log23954 (D)indeterminate
Directions for Q.6 to Q.9:
Considertwodifferent infinitegeometricprogressions with theirsums S1 and S2 as
S1 = a + ar + ar2 + ar3 + .......... 
S2 = b + bR + bR2 + bR3 + .......... 
If S1 = S2 = 1, ar = bR and ar2 = 1/8 then answer the following:
Q.693/s&pThe sum oftheircommonratios is
(A)
2
1
(B)
4
3
(C*) 1 (D)
2
3
Q.7 Thesumoftheirfirsttermsis
(A*) 1 (B) 2 (C) 3 (D) none
Q.8 Common ratio ofthefirst G.P. is
(A)
2
1
(B)
4
5
1
(C)
4
1
5 
(D*)
4
1
5 
Q.9 Common ratio of the second G.P. is
(A)
4
5
3
(B*)
4
5
3
(C)
2
1
(D) none
[Sol. Let the two GP's are
a ar ar2 .......... | r | < 1
b br br2 .......... | R | < 1
now
r
1
a

= 1 ;
R
1
b

= 1
a = 1 – r .....(1) and b = 1 – R ....(2)  a + r = b + Q
also ar = bR ....(3) and ar2 =
8
1
....(4)
(1) – (2) a – b = R – r
a + r = b + R
From (1), (2) and (3), ar = bR
(1 – r) r = (1 – R)R (substituting a and b for (1) and (2) in (3))
 (r – R)(r + R) = r – R
 r + R = 1 (as r  R) Ans.
(Note : if r = R then a = b  G.P. will become identical)
hence r + R = 1 ....(5)
hence (1) + (2)  a + b = 2 – (r + R)  a + b = 1
now, from (4)
8ar2 = 1
8(1 – r)r2 = 1
8r2 – 8r3 – 1 = 0  8r3 – 8r2 + 1 = 0
(2r – 1)(4r2 – 2r – 1) = 0 (as r1/2asinthiscaseRwillalsobe1/2whichisnotpossible)
 4r2 – 2r – 1 = 0
r =
8
20
2 
=
4
5
1
or
4
5
1
if r =
4
5
1
then R = 1 –
4
5
1
=
4
5
3
> 1
hence r =
4
5
1
is rejected
 r =
4
5
1
Ans.
and R = 1 –
4
5
1
=
4
5
3
Ans.
a = 1 – r =
4
5
3
; b =
4
5
1
a + b = 1 Ans. ]
More than one alternative are correct.
Q.10124/QE If ax2 + bx + c = 0 , b  1 be an equation with integral co-efficients and  > 0 be its discriminant,
then the equation b2 x2  x  4 ac = 0 has :
(A) twointegral roots (B*) two rational roots
(C) two irrational roots (D*) one integral root independent of a, b, c .
[Hint: a, b, c  I ; b2 > 4ac ;  = b2 – 4ac
 =
 
 
2 2
2
16
2
b ac
b
=
   
( )
b ac b ac
b
2 2 2
2
4 16
2
=
  
( )
b ac
b
2 2
2
4
2
=
( ) ( )
b ac b ac
b
2 2
2
4 4
2
  
with +ve sign,  = 1 (independent of a, b & c)
 = –
4
2
ac
b
which is rational  B & D]
SUBJECTIVE:
Q.11 If mand n arepositive integers satisfying
1 + cos 2 + cos 4 + cos 6 + cos 8 + cos 10 =



sin
n
sin
·
m
cos
then find the value of (m + n). [Ans. 11]
[Sol. Let S = cos 0° + cos 2 + cos 4 + .......... + cos 10
2 sin · S = 2 sin [cos0 + cos 2 + .......... + cos 10]
= sin  + sin 
= sin3 – sin 
= sin5 – sin3
= sin7 – sin5
= sin9 – sin7
= sin11 – sin9
—————————
2 sin · S = sin11 + sin
2 sin · S = 2 sin6 · cos5
S =



sin
2
5
cos
6
sin
2
=



sin
m
cos
n
sin
 n = 6 and m = 5 Ans. ]
Q.12 Suppose a cubic polynomial f (x) = x3 + px2 + qx + 72 is divisible by both x2 + ax + b and
x2 + bx + a (where a, b, p, q are constants and a  b). Find the sum of the squares of the roots of the
cubicpolynomial. [Ans. 146]
[Sol. Sincecubicis divisiblebyboth
x2 + ax + b and x2 + bx + a and
 x2 + ax + b and x2 + bx + a must have a common roots.
x2 + ax + b = 0
– x2 + bx + a = 0
subtract
 x(a – b) = (a – b)
x = 1
 common root is 1
x2 + ax + b = 0 1 ·  = b   = b
x2 + bx + a = 0 1 ·  = a   = a
 roots of cubic be 1, a, b
product of the roots be
1 · a · b = – 72 ....(1)
and a + b + 1 = 0 ....(2) (from x2 + ax + b = 0 put x = 1)
 a –
b
72
= – 1
 a2 + a – 72 = 0
(a + 9)(a – 8) = 0
a = – 9, 8
 roots are 1, – 9, 8
 sum of their squares = 1 + 81 + 64 = 146 Ans.
Note: Iftheydon’thaveacommonrootsthentherewill befourroots ofthecubicwhichis notpossible.Ifthey
have bothcommonroots then a=b which contradicts whichis given]
CLASS : XI (J-Batch) TIME : 60 Min. DPP. NO.-28
Select the correct alternative : (Only one is correct)
Q.1 If the solutions of the equation sin2 = k (0 < k < 1) in (0, 2) are inA.P. then the value of k is
(A*)
2
1
(B)
2
1
(C)
4
3
(D)
4
1
[Hint: The solutions of sin2 = k are
,  – ,  +  and 2 –   – 2 = 2
hence,  = 4   =
4

 solutions are
4

,
4
3
,
7
5
,
4
7
and k =
2
1
]
Q.2106/ph-1 Maximum value of the expression cos · sin 




 


6
   R, is
(A)
2
1
(B)
4
3
(C*)
4
1
(D) 1
[Hint: y = cos · sin 




 


6
=
2
1





 






 


6
sin
6
2
sin  max if 2 –
6

=
2

 2 =
6
4
  =
3

 maximum value = cos
3

sin
6

=
2
1
·
2
1
=
4
1
 (C) ]
Q.355/s&p Consider a decreasing G.P. : g1, g2, g3, ...... gn ....... such that g1 + g2 + g3 = 13 and
2
3
2
2
2
1
g
g
g 
 =91
thenwhichofthefollowingdoesnothold?
(A) The greatest term of the G.P. is 9. (B) 3g4 = g3
(C*) g1 = 1 (D) g2 = 3
[Hint: G.P. :
r
a
, a, ar, .........
a = 3 and r =
3
1
or 3 (rejected)
G.P. is 9, 3, 1,
3
1
, ......  C is not correct.]
Q.4 Supposex,y,z isageometricseries with a commonratio of'r'suchthat x y.Ifx,3y, 5zis anarithmetic
sequence then thevalue of 'r' equals
(A) 1/3 (B*) 1/5 (C) 3/5 (D) 2/3
[Hint: x = a ; y = ar ; z = ar2 (r  1)]
Q.579/s&p Let S1 , S2 , S3 be the sums of the first n , 2n and 3n terms of an A.P. respectively. If
S3 = C (S2 – S1) then , 'C' is equal to
(A) 4 (B*) 3 (C) 2 (D) 1
[Sol. ]
d
)
1
n
(
a
2
[
2
n
S1 

 ; ]
d
)
1
n
(
a
2
[
2
n
2
S2 

 ; ]
d
)
1
n
(
a
2
[
2
n
3
S3 


Now, S3 = C(S2 – S1)
]
d
)
1
n
(
a
2
[
2
n
3

 =  















2
n
2
n
2
d
)
1
n
(
a
2
C  C = 3 ]
Q.6102/QE If the equation a (x – 1)2 + b(x2 – 3x + 2) + x – a2 = 0 is satisfied for all x  R then the number of
ordered pairs of (a, b) can be
(A) 0 (B*) 1 (C) 2 (D)infinite
[Sol. equation is an identity  coefficient of x2 = 0= coefficient of x = constant term
 a + b = 0 ....(1)
– 2a – 3b + 1 = 0 ....(2)
and a + 2b – a2 = 0 ....(3)
from (1) and (2) a = – 1 and b = 1
whichalsosatisfies(3)  (a, b) = (–1, 1)  (B) ]
Q.797/seq&prog Let f (x) = x2 +x4 + x6 + x8 + .......  for all real x such that the sum converges. Number of real
x for which the equation f (x) – x = 0 holds, is
(A) 0 (B) 1 (C*) 2 (D) 3
[Hint: f (x) = 2
2
x
1
x

when | x | < 1
 2
2
x
1
x

= x  x = 0
or x = 1 – x2
x2 + x – 1 = 0  x =
2
5
1

,
2
5
1

is to be rejected ]
Q.812/s&p The sum to n terms of the series,
1
2
+
3
4
+
7
8
+
15
16
+...... is equal to :
(A) 2n  n  1 (B) 1  2n (C*) 2n + n  1 (D) 2n  1
[Sol. S = ....
8
1
1
4
1
1
2
1
1 






















 up to n terms = n – 







 terms
n
to
up
....
2
1
2
1
1
2
1
2  result]
Q.924/log Solution set of the inequality
 
4
log
2
3
x
log
x
log
2
2
1
2
3
3 
 is
(A) [3, 9] (B*)  








,
9
3
1
,
0 (C)  









 ,
9
3
1
, (D)  
9
,
1
1
,
3
1







[Sol. Given:
 
4
log
2
3
x
log
x
log
2
2
1
2
3
3 

2
2
log
4
log
2
3
x
log
x
log
2
2
2
3
3 


2
x
log
x
log 2
3
3 


put log3x = y
y – y2  – 2
y2 – y – 2  0
(y – 2) (y + 1)  0
log3x  2
x  9
x 
3
1
 (B) ]
Q.1089/s&p If abcd = 1 where a, b, c, d are positive reals then the minimum value of
a2 + b2 + c2 + d2 + ab + ac + ad + bc + bd + cd is
(A) 6 (B*) 10 (C) 12 (D) 20
[Hint: Use AM  GM between the given 10 numbers i.e. a2, b2, c2, d2, ab, ac, ad, bc, bd, and cd ]
SUBJECTIVE
Q.11 Solvethe logarithmic inequality, 










)
5
x
)(
1
x
(
)
2
x
(
2
log
x
1
1. [Ans. (1, 2) ] [3]
[Sol. Let
x
1
> 1 i.e. 0 < x < 1











)
5
x
)(
1
x
(
)
2
x
(
2
log
x
1  1 
x
1
)
5
x
)(
1
x
(
)
2
x
(
2




 0
x
1
)
5
x
)(
1
x
(
)
2
x
(
2





0
)
5
x
)(
1
x
(
x
)
5
x
)(
1
x
(
)
2
x
(
x
2







 0
)
5
x
)(
1
x
(
x
5
x2




Hencenosolutioninthis case
nowlet 0 <
x
1
< 1 ; x > 1
in this case 0 < x < 5 ....(1)
its intersection with x > 1 and the domain of the equation gives x  (1, 2) ]
Q.12 We inscribe a square in a circle of unit radius and shade the region between them.Then we inscribe
another circle inthesquare and anothersquare in the new circle and shade the regionbetween the new
circleandthesquare. Iftheprocessis repeated infinitelymanytimes,find the areaoftheshaded region.
[Ans. 2( – 2) sq. units] [4]
[Sol. Area of 1st shaded region = ( – 2)
Area of 2nd shaded region = 







1
2
Area of 3rd shaded region = 







2
1
4
and so on
Hence total area of shaded region =  







 ........
4
1
2
1
1 – 







 ........
2
1
1
2
=    
2
1
1
2
2
1
1 



= 2 – 4 = 2( – 2) Ans. ]
Select the correct alternative : (Only one is correct)
Q.156/s&p The maximum value of the sum of the decreasingA.P. 50 , 48 , 46 , 44 , ............ is
(A) 325 (B) 648 (C*) 650 (D) 652
[Sol. 4
,
2
,
0
.....
,.........
46
,
48
,
50 



 


 

a = 50 , d = 2 , n= 25
]
d
)
1
n
(
a
2
[
2
n
Sn 


25 [50 –24 ]
25 × 26 = 650 Ans ]
Q.2513/ph-1 The roots of the equation 2 + cot x = cosec x always lie in the quadrant number
(A) Ionly (B) I and II (C) II and IV (D*) IIonly
[Hint: Solving cosec x = 5/4 and cot x = – 3/4 ]
Q.374/s&p If Sn =
1
1
1 2
1 2
3 3 3



+...... +
1 2 3
1 2 3
3 3 3 3
   
   
......
......
n
n
, n = 1, 2, 3,...... Then Sn is not greater than
(A) 1/2 (B) 1 (C*) 2 (D) 4
[Sol. Sn = ...
..........
3
2
1
3
2
1
2
1
2
1
1
1
3
3
3
3
3
3









Tn = 3
3
3
3
n
.
..........
3
2
1
n
...
..........
5
4
3
2
1







=
)
1
n
(
n
2
2
)
1
n
(
n
2
)
1
n
(
n
2







 

Sn =  







1
n
1
n
1
2 ]
Q.4103/QE The absolute term in the quadratic expression


















n
1
k 2
k
3
1
x
1
k
3
1
x as n   is
(A) zero (B) 1 (C)
3
2
(D*)
3
1
[Hint: Tn =
)
2
n
3
)(
1
n
3
(
1


; Tn = 







 )
1
n
3
(
1
)
2
n
3
(
1
3
1
]
Q.545/s&p Consider the A.P. a1 , a2 ,..... , an ,....
the G.P. b1 , b2 ,....., bn ,.....
such that a1 = b1 = 1 ; a9 = b9 and 369
a
9
1
r
r 


then
(A) b6 = 27 (B*) b7 = 27 (C) b8 = 81 (D) b9 = 18
CLASS : XI (J-Batch) TIME : 60 Min. DPP. NO.-29
[ Hint: a1 = b1 = 1 ; a9 = 1 + 8d = bn = 1. r8
now )
a
1
(
2
9
a 9
9
1
r
r 



= 3
r
369
)
r
1
(
2
9 8




 b7 = b. r6 = 1 6
3 = 27 ]
Q.692/s&p Startingwithaunit square,asequenceofsquareis generated.Each squarein thesequencehashalfthe
side length of its predecessor and two of its sides bisected byits predecessor's sides as shown. This
process isrepeatedindefinitely.Thetotalareaenclosed byallthe squares in limitingsituation, is
(A*)
4
5
sq. units (B)
64
79
sq. units
(C)
64
75
sq. units (D)
12
1
sq. units
[Hint: Required area = 1 +
4
3









 .......
4
1
4
1
4
1
3
2 = 1 +
4
3
·
4
1
1
4
1

=
4
1
1 =
4
5
 (A) ]
Q.7 The sum 



1
k
k
2
k
3
2
equal to
(A) 12 (B*) 8 (C) 6 (D) 4
[Hint: S = 








1
k
k
3
2
4 =






















 .......
3
2
3
2
3
2
4
3
2
= 





 )
3
2
(
1
3
2
4 = 8 ]
Q.817/ph-1 If A, B, C and D denotes the interior angles of a quadrilateral then
(A) 

  A
tan
A
cot
A
tan
(B*)   


  A
cot
A
tan
A
tan
(C) 

 
 A
tan
A
tan
A
cot (D) 

 
 A
cot
A
tan
A
tan
[Hint: tan(A + B + C + D) =
4
2
3
1
S
S
1
S
S



( A + B + C + D = 360°)
S1 = S3
tanA + tanB + tanC + tanD =  

 A
cot
A
tan  B ]
Q.940/s&p Consider anA.P. with first term 'a'and the common differenced. Let Sk denote the sum of the first K
terms. Let
S
S
kx
x
is independent of x, then
(A*) a = d/2 (B) a = d (C) a = 2d (D) none
[Sol.
]
d
)
1
x
(
a
2
[
2
K
)]
1
Kx
(
a
2
[
2
Kx
S
S
x
Kx





= 









xd
d
a
2
Kxd
d
a
2
K
If 2a – d = 0 then 






xd
Kxd
K
S
S
K
Kx
= K2 which is possible when a = d/2 ]
Q.10104/ph-1 4 sin50 sin550 sin650 has the values equal to
(A)
3 1
2 2

(B*)
3 1
2 2

(C)
3 1
2

(D)
3 3 1
2 2

d i
[Sol. 2[2sin50 sin550] sin650
 2[cos500 – cos600]sin650
 2cos500 sin650 – sin650
 sin(1150) + sin150 – sin650
=
2
2
1
3 
Ans]
SUBJECTIVE:
Q.1135/1 Find all values ofk for which the inequality, 2x2  4k2x  k2 + 1 > 0 is valid for all real x which do not
exceed unityintheabsolutevalue. [ Ans. : 
1
2
< k <
1
2
]
[Hint: Case I: when D < 0 whichgives the result
Case II : f (1)  0 ; D  0 ; 
b
a
2
> 1
or f ( 1)  0 ; D  0 ; 
b
a
2
<  1 ;
No solution in case II ]
Q.12 Find all x such that 

1
k
k
x
·
k = 20. [Ans. x = 4/5] [3]
[Sol. Let S = x + 2x2 + 3x3 + 4x4 + .........+ 
Sx = + x2 + 2x3 + 3x4 + 4x5 + .........+ 
—————————————————
S(1 – x) = x + x2 + x3 + x4 + .........+  =
x
1
x

S = 2
)
x
1
(
x

= 20  20(1 + x2 – 2x) = x  20x2 – 41x + 20 = 0
x =
40
1600
1681
41 

=
40
9
41
=
40
50
or
40
32
=
4
5
or
5
4
x =
4
5
is rejected as | x | < 1;  x =
5
4
Ans. ]
Q.1841/-1 Identifywhether the statement is True or False.
(i)(iii) sin 82
1
2

. cos 37
1
2

and sin 127
1
2

. sin 97
1
2

have the same value. [ Ans. True ;
4
2
3 
]
[Sol. A=
0
0
2
1
37
cos
.
2
1
82
sin =
0
0
2
75
cos
.
2
165
sin =  
0
0
45
sin
120
sin
2
1
 =
2
4
1
6 
B=
0
0
2
1
97
sin
.
2
1
127
sin =  
0
0
225
cos
30
cos
2
1
 = 






2
1
2
3
2
1
=
2
4
2
6 
=
4
2
3 
 A= B  True ]
(ii)(v) If tanA=
3
4 3

& tanB =
3
4 3

then tan(A B) must be irrational. [Ans. False]
[Sol. tan(A–B) = B
tan
A
tan
1
B
tan
A
tan


=
  
3
4
3
4
3
.
3
1
3
4
3
3
4
3






=
 
3
3
16
3
4
3
4
3





= 3/8  rational ]
(iii)(x) If tanA= 1, tanB = 2 and tanC = 3 thenA, B, C can not be the angles of a triangle. [Ans. False]
[Sol. In a  ABC
tanA + tanB + tanC = tanA. tanB. tanC
1 + 2 + 3 = 1 . 2 . 3
6 = 6
Hence theyare angles of atriangle ]
(iv)(xiv) There exists a value of  between 0 & 2 which satisfies the equation ; sin4  – sin2  – 1 = 0.
[Ans. False ]
[Sol. sin2 =
2
5
1
 sin2 =
2
5
1
(not possible)
sin2 = 1
2
5
1


 not possible ]
Select the correct alternative : (Only one is correct)
Q.221/-1 The number of solutions of the equation cos 




 
3
2
x
= x2 + x
3
2 + 4 is
(A) more than 2 (B) 2 (C) 1 (D*) 0
CLASS : XI (J-Batch) TIME : 60 Min. DPP. NO.-30
Q.361/-1 The value of
10
tan
2
10
sec
3
10
cos
4





is equal to
(A) 1 (B) 1
5  (C) 1
5  (D*) zero
[Sol. 4 cos180 – 0
18
cos
3
– 2 tan180
0
0
0
2
18
cos
18
sin
2
3
18
cos
4 

= 0
0
0
18
cos
3
18
sin
2
)
36
cos
1
(
2 


 0
0
0
18
cos
3
)
18
sin
36
cos
1
(
2 


= 0
18
cos
3
2
1
1
2 







= 0 ]
Q.428/s&p The sum of the first 100 terms common to the series 17, 21, 25, ..... and 16, 21, 26, ...... is
(A*) 101100 (B) 111000 (C) 110010 (D) 100101
[Sol. 17 ,21 , 25 , 29 , 33 ,37 ,... A.P. with d = 4
16 , 21 , 26 , 31 , 36 , 41 ,..... A.P. with d = 5
common 21 , 41 , 61 ,............. A.P. with d =20
S = ]
20
)
99
(
)
21
(
2
[
2
100
 = 100 [21 + 990] = 101100 Ans ]
Q.5 If x, y, z  N then the number of ordered triplets of (x, y, z) satisfying the equation x + y+ z = 102 is
(A) 4950 (B*) 5050 (C) 5150 (D) None
[Hint: if x = 1 ; y + z = 101  100 solutions eg. (1, 100) , (2, 99) etc
if x = 2 ; y + z = 100  99 solutions eg. (1, 99) , (2, 98) etc
finally x = 100 ; y + z = 2  1 solution
Hence total = 1 + 2 + 3 + ...... + 100 = 5050 ]
SUBJECTIVE:
Q.655/1 Find all real values of x for which the expression








1
x
x
log 2
2
/
1
is a real number.
.
[Ans. x 
1 5
2

or
1 5
2

 x < 0 ]
Q.76/1 Solve the inequality, 2 log1/2 (x  1) 
1
3

1
8
2
logx x

. [Ans. : [2, ) ]
[Hint: converting on base 2 log2
2 1
1
6
( )
( )
x
x x


 0 note that x > 1
2 1 5
( )
x
x
  1 put x  1 = y  y > 0
2
1
5
y
y 
 1  0
2 1
1
5
y y
y
 

 0
2 2 1
1
5
y y y
y
  

 0
2 1 1
1
4
y y y
y
( )
  

 0
( ) ( )
[ ]
( )
y y y y
y
   

1 2 1 1 1
1
2
 0

y
y


1
1
 0  y  1  x  2 ]
Q.810/06 If  =
2
7

, prove that , sec  + sec2 + sec4 =  4.
[Sol. E = sec + sec2 + sec4, where 7 = 2
=
1 1
2
1
4
cos cos cos
  
  =
cos cos cos cos cos cos
cos cos cos
2 4 4 2
2 4
     
  
 
 
But cos · cos2 · cos4 =
1
8
where =
2
7

hence E = 4 [2cos2cos4 + 2cos4cos + 2coscos2]
= 4 [cos6 + cos2 + cos5 + cos3+ cos3 + cos]
=8 [cos + cos2 + cos3] as cos6 = cos, cos5 = cos2
Now Let S = cos +cos2 + cos3
2sin

2
S = 2sin

2
cos + 2sin

2
cos2+ 2sin

2
cos3
= sin
3
2

– sin

2
+ sin
5
2

– sin
3
2

+ sin
7
2

– sin
5
2

= – sin

2
as sin
7
2

= sin  = 0
 S = –
1
2
; Hence E = – 4 Ans ]
Q.950/1 Find thevalues of 'p'forwhich the inequality,
2
1
2




 








log
p
p
x2+2x 1
1
2




 


log
p
p  2 1
1
2




 


log
p
p > 0
isvalid forall realx.
[Sol. (2  t) x2 + 2 (1 + t) x  2 (1 + t) > 0 when t =
1
p
p
log2 
when t = 2 , 6 x  6 > 0 which is not true  x  R.
Let t  2 ; t < 2  (1) and 4 (1 + t)2 + 8 (1 + t) (2  t) < 0 (for given inequality to be valid)
or (t  5) (t + 1) > 0  t > 5 or t <  1 (2)
From (1) and (2) ; t <  1  0 < log2
p
p  1
<  1
p
p  1
<
1
2
or
p
p


1
1
< 0   1 < p < 1
but
p
p  1
> 0  p > 0 or p <  1. common solution is p  (0, 1) ]

Recomendados

Dpp (31-35) 11th J-Batch Maths.pdf von
Dpp (31-35) 11th J-Batch Maths.pdfDpp (31-35) 11th J-Batch Maths.pdf
Dpp (31-35) 11th J-Batch Maths.pdfSTUDY INNOVATIONS
20 views20 Folien
MATHS- 13th Objective.pdf von
MATHS- 13th Objective.pdfMATHS- 13th Objective.pdf
MATHS- 13th Objective.pdfSTUDY INNOVATIONS
6 views7 Folien
Dpp (19-21) 11th J-Batch Maths.pdf von
Dpp (19-21) 11th J-Batch Maths.pdfDpp (19-21) 11th J-Batch Maths.pdf
Dpp (19-21) 11th J-Batch Maths.pdfSTUDY INNOVATIONS
5 views10 Folien
QE Determinant & Matrices(13th).pdf von
QE Determinant & Matrices(13th).pdfQE Determinant & Matrices(13th).pdf
QE Determinant & Matrices(13th).pdfSTUDY INNOVATIONS
8 views19 Folien
Dpp (10-12) 11th J-Batch Maths.pdf von
Dpp (10-12) 11th J-Batch Maths.pdfDpp (10-12) 11th J-Batch Maths.pdf
Dpp (10-12) 11th J-Batch Maths.pdfSTUDY INNOVATIONS
9 views7 Folien
PHYSICS- (J-Batch) Obj.pdf von
PHYSICS- (J-Batch) Obj.pdfPHYSICS- (J-Batch) Obj.pdf
PHYSICS- (J-Batch) Obj.pdfSTUDY INNOVATIONS
9 views10 Folien

Más contenido relacionado

Similar a Dpp (25-30) 11th J-Batch Maths.pdf

DPP-2-Faculty Copy-57 von
DPP-2-Faculty Copy-57DPP-2-Faculty Copy-57
DPP-2-Faculty Copy-57STUDY INNOVATIONS
13 views55 Folien
Basic von
BasicBasic
BasicSTUDY INNOVATIONS
2 views9 Folien
MATHS- 11th (PQRS) TEST-5/6.pdf von
MATHS- 11th (PQRS) TEST-5/6.pdfMATHS- 11th (PQRS) TEST-5/6.pdf
MATHS- 11th (PQRS) TEST-5/6.pdfSTUDY INNOVATIONS
17 views5 Folien
MATHS - Paper-2.pdf von
MATHS - Paper-2.pdfMATHS - Paper-2.pdf
MATHS - Paper-2.pdfSTUDY INNOVATIONS
12 views7 Folien
DPP-39-41-Answer von
DPP-39-41-AnswerDPP-39-41-Answer
DPP-39-41-AnswerSTUDY INNOVATIONS
4 views3 Folien
MATHS - 13th Paper-1.pdf von
MATHS - 13th Paper-1.pdfMATHS - 13th Paper-1.pdf
MATHS - 13th Paper-1.pdfSTUDY INNOVATIONS
7 views8 Folien

Similar a Dpp (25-30) 11th J-Batch Maths.pdf(20)

Más de STUDY INNOVATIONS

Chemistry-27-8.01-COMPREHENSION-I von
Chemistry-27-8.01-COMPREHENSION-IChemistry-27-8.01-COMPREHENSION-I
Chemistry-27-8.01-COMPREHENSION-ISTUDY INNOVATIONS
2 views5 Folien
Chemistry-25-7.03-COMPREHENSION-I von
Chemistry-25-7.03-COMPREHENSION-IChemistry-25-7.03-COMPREHENSION-I
Chemistry-25-7.03-COMPREHENSION-ISTUDY INNOVATIONS
2 views7 Folien
Chemistry-23-7.01-COMPREHENSION-I von
Chemistry-23-7.01-COMPREHENSION-IChemistry-23-7.01-COMPREHENSION-I
Chemistry-23-7.01-COMPREHENSION-ISTUDY INNOVATIONS
2 views6 Folien
Chemistry-22-6.04-MULTIPLE CHOICE QUESTIONS von
Chemistry-22-6.04-MULTIPLE CHOICE QUESTIONSChemistry-22-6.04-MULTIPLE CHOICE QUESTIONS
Chemistry-22-6.04-MULTIPLE CHOICE QUESTIONSSTUDY INNOVATIONS
2 views6 Folien
Chemistry-21-6.03-COMPREHENSION-I von
Chemistry-21-6.03-COMPREHENSION-IChemistry-21-6.03-COMPREHENSION-I
Chemistry-21-6.03-COMPREHENSION-ISTUDY INNOVATIONS
2 views6 Folien
Chemistry-19-6.01-COMPREHENSION-I von
Chemistry-19-6.01-COMPREHENSION-IChemistry-19-6.01-COMPREHENSION-I
Chemistry-19-6.01-COMPREHENSION-ISTUDY INNOVATIONS
2 views5 Folien

Más de STUDY INNOVATIONS(20)

Chemistry-5-2.01-MULTIPLE CHOICE QUESTIONS and ANSWERS von STUDY INNOVATIONS
Chemistry-5-2.01-MULTIPLE CHOICE QUESTIONS and ANSWERS Chemistry-5-2.01-MULTIPLE CHOICE QUESTIONS and ANSWERS
Chemistry-5-2.01-MULTIPLE CHOICE QUESTIONS and ANSWERS
Science-Class-12 Physics and Chemistry DPP Talent Search Examinations von STUDY INNOVATIONS
Science-Class-12 Physics and Chemistry DPP Talent Search ExaminationsScience-Class-12 Physics and Chemistry DPP Talent Search Examinations
Science-Class-12 Physics and Chemistry DPP Talent Search Examinations
Science-Class-12 Maths DPP Talent Search Examinations von STUDY INNOVATIONS
Science-Class-12 Maths DPP Talent Search ExaminationsScience-Class-12 Maths DPP Talent Search Examinations
Science-Class-12 Maths DPP Talent Search Examinations
Science-Class-11 Physics and Chemistry DPP Talent Search Examinations von STUDY INNOVATIONS
Science-Class-11 Physics and Chemistry DPP Talent Search ExaminationsScience-Class-11 Physics and Chemistry DPP Talent Search Examinations
Science-Class-11 Physics and Chemistry DPP Talent Search Examinations
Science-Class-11 Maths DPP Talent Search Examinations von STUDY INNOVATIONS
Science-Class-11 Maths DPP Talent Search ExaminationsScience-Class-11 Maths DPP Talent Search Examinations
Science-Class-11 Maths DPP Talent Search Examinations

Último

Ch. 7 Political Participation and Elections.pptx von
Ch. 7 Political Participation and Elections.pptxCh. 7 Political Participation and Elections.pptx
Ch. 7 Political Participation and Elections.pptxRommel Regala
111 views11 Folien
MIXING OF PHARMACEUTICALS.pptx von
MIXING OF PHARMACEUTICALS.pptxMIXING OF PHARMACEUTICALS.pptx
MIXING OF PHARMACEUTICALS.pptxAnupkumar Sharma
95 views35 Folien
When Sex Gets Complicated: Porn, Affairs, & Cybersex von
When Sex Gets Complicated: Porn, Affairs, & CybersexWhen Sex Gets Complicated: Porn, Affairs, & Cybersex
When Sex Gets Complicated: Porn, Affairs, & CybersexMarlene Maheu
85 views73 Folien
Psychology KS5 von
Psychology KS5Psychology KS5
Psychology KS5WestHatch
119 views5 Folien
Class 9 lesson plans von
Class 9 lesson plansClass 9 lesson plans
Class 9 lesson plansTARIQ KHAN
51 views34 Folien
Ch. 8 Political Party and Party System.pptx von
Ch. 8 Political Party and Party System.pptxCh. 8 Political Party and Party System.pptx
Ch. 8 Political Party and Party System.pptxRommel Regala
54 views11 Folien

Último(20)

Ch. 7 Political Participation and Elections.pptx von Rommel Regala
Ch. 7 Political Participation and Elections.pptxCh. 7 Political Participation and Elections.pptx
Ch. 7 Political Participation and Elections.pptx
Rommel Regala111 views
When Sex Gets Complicated: Porn, Affairs, & Cybersex von Marlene Maheu
When Sex Gets Complicated: Porn, Affairs, & CybersexWhen Sex Gets Complicated: Porn, Affairs, & Cybersex
When Sex Gets Complicated: Porn, Affairs, & Cybersex
Marlene Maheu85 views
Psychology KS5 von WestHatch
Psychology KS5Psychology KS5
Psychology KS5
WestHatch119 views
Class 9 lesson plans von TARIQ KHAN
Class 9 lesson plansClass 9 lesson plans
Class 9 lesson plans
TARIQ KHAN51 views
Ch. 8 Political Party and Party System.pptx von Rommel Regala
Ch. 8 Political Party and Party System.pptxCh. 8 Political Party and Party System.pptx
Ch. 8 Political Party and Party System.pptx
Rommel Regala54 views
ISO/IEC 27001 and ISO/IEC 27005: Managing AI Risks Effectively von PECB
ISO/IEC 27001 and ISO/IEC 27005: Managing AI Risks EffectivelyISO/IEC 27001 and ISO/IEC 27005: Managing AI Risks Effectively
ISO/IEC 27001 and ISO/IEC 27005: Managing AI Risks Effectively
PECB 623 views
Relationship of psychology with other subjects. von palswagata2003
Relationship of psychology with other subjects.Relationship of psychology with other subjects.
Relationship of psychology with other subjects.
palswagata200352 views
Drama KS5 Breakdown von WestHatch
Drama KS5 BreakdownDrama KS5 Breakdown
Drama KS5 Breakdown
WestHatch98 views
Classification of crude drugs.pptx von GayatriPatra14
Classification of crude drugs.pptxClassification of crude drugs.pptx
Classification of crude drugs.pptx
GayatriPatra14101 views
The Accursed House by Émile Gaboriau von DivyaSheta
The Accursed House  by Émile GaboriauThe Accursed House  by Émile Gaboriau
The Accursed House by Émile Gaboriau
DivyaSheta223 views
Dance KS5 Breakdown von WestHatch
Dance KS5 BreakdownDance KS5 Breakdown
Dance KS5 Breakdown
WestHatch99 views

Dpp (25-30) 11th J-Batch Maths.pdf

  • 1. CLASS : XI (J-Batch) TIME : 60 Min. DPP. NO.-25 Select the correct alternative : (Only one is correct) Q.189/QE Number of ordered pair(s) (a, b) for each of which the equality, a (cos x  1) + b2 = cos (ax + b2)  1 holds true for all x  R are : (A) 1 (B*) 2 (C) 3 (D) 4 [Hint: Put x = 0  b2 = cos b2  1  cos b2 = 1 + b2  b = 0 when b = 0 we have a (cos x  1) = cos a x  1  2 a sin2 x 2 = 2 sin2 a x 2  a = 0 or a = 1. Hence a = 0 & b = 0 or a = 1 & b = 0 ] Q.280/QE For every x  R, the polynomial x8  x5 + x2  x + 1 is : (A*) positive (B) never positive (C) positve as well as negative (D) negative [Hint: for x  1 E = x5 (x3  1) + (x  1) + 1 > 0 for 1 < x < 0 , E = (1  x) + x2 (1  x3) + x8 > 0 For x < 0 , all terms are positive  > 0 Hence A] Q.396/QE Three roots of the equation, x4  px3 + qx2  rx + s = 0 are tanA, tanB & tanC whereA, B, C are theanglesof atriangle. Thefourthroot of thebiquadraticis : (A*) p r q s    1 (B) p r q s    1 (C) p r q s    1 (D) p r q s    1 [Hint: Let the fourth root be tan D Now tan ( A) =     tan tan tan tan tan tan tan A A B C A B A    1 tan D = p r q s    1 ] Q.4105/QE If the roots of the quadratic equation (4p – p2 – 5)x2 – (2p – 1)x + 3p = 0 lie on either side of unity thenthenumberofintegral valuesofpis (A) 0 (B) 1 (C*) 2 (D)infinite [Sol. note that a < 0 hence f(1) > 0 4p – p2 – 5 – 2p + 1 + 3p > 0 – p2 + 5p – 4 > 0  p2 – 5p + 4 < 0 (p – 4) (p – 1) < 0  1 < p < 4  p  {2, 3}] Q.5119/QE The inequalities y(1) 4, y(1) 0 & y(3) 5 are known to hold for y = ax2 +bx + c then the least value of 'a' is : (A)  1/4 (B)  1/3 (C) 1/4 (D*) 1/8 [Hint: a - b + c  4 ..... (i) and a + b + c  0  a  b  c  0 .... (ii) and 9a + 3b + c  5 .... (iii) (i) + (ii)   2b 4 ..... (iv) ; (ii) + (iii) + (iv)  8a  1  a 1/8 ] Q.64/-1 Given a2 + 2a + cosec2  2 ( ) a x  F H G I K J= 0 then, which of the following holds good? (A) a = 1 ; x I 2  (B*) a = –1 ; x I 2  (C) a  R ; x  (D) a , x are finite but not possible to find
  • 2. [Sol. (a+1)2 + cosec2   a x 2 2  F H G I K J– 1 = 0 or (a+1)2 + cot2   a x 2 2  F H G I K J= 0 fromoption[B] If a = –1  tan2x/2 = 0 x/2 I ] Q.748/s&p For an increasing A.P. a1, a2, a3.....,an,.... if a1 + a3 + a5 = – 12 ; a1a3a5 = 80 then which of the followingdoesnothold? (A) a1= – 10 (B*) a2 = – 1 (C) a3 = – 4 (D) a5 = 2 [Hint: a1 = a – 2d, a2 = a – d, a3 = a ; a4 = a + d, a5 = a + 2d a1 + a3 + a5 = a – 2d + a + a + 2d = – 12 3a = – 12  a = – 4 a1a3a5 = (a – 2d)a(a + 2d) = 80 – 4(16 – 4d2) = 80  4d2 – 16 = 20  4d2 = 36  d2 = 9  d = ± 3 d = 3 series is increasing a1 = – 4 – 6 = – 10, a3 = – 4, a5 = – 4 + 6 = 2 ] Q.8 If p & q are distinct reals, then 2 {(x  p) (x  q) + (p  x) (p  q) + (q  x) (q  p)} = (p  q)2 + (x  p)2 + (x  q)2 issatisfiedby: (A) no value of x (B) exactlyone value of x (C) exactlytwo values of x (D*) infinitevalues of x . [Note x = p, q & o  infinite solutions ] Q.9 If the quadratic equation ax2 + bx + 6 = 0 does not have two distinct real roots, then the least value of 2a + b is (A) 2 (B*) –3 (C) –6 (D) 1 [Hint: no two distinct roots  f(x) > 0 or f(x) < 0. But f(0) = 6  f(x) > 0 V x  R hence f (2) > 0  4a + 2b + 6 > 0  2a + b > –3  B ] Q.1011/QE Let a > 0, b > 0 & c > 0. Then both the roots of the equation ax2 + bx + c = 0. (A) are real & negative (B*) have negative real parts (C) are rational numbers (D) none [Hint:  = – b a 2 + b ac a 2 4 2  ; consider the examples x2 + x + 1 = 0 and x2 + 3x + 2 = 0 ] SUBJECTIVE: Q.1123/6 Prove that : 5 sin x = sin(x + 2y)  2 tan(x + y) = 3 tan y. [Sol. Given 1 5 x sin ) y 2 x sin(   or 1 5 1 5 x sin ) y 2 x sin( x sin ) y 2 x sin(        = 3 2 3 2 y cos ) y x sin( 2 y sin ) y x cos( 2    ) y x tan( y tan  = 3 2 ;  2 tan(x + y) = 3 tan y ] Q.12 Solve the inequality, log2x (x2  5x + 6) < 1. [ Ans. : (0, 1/2)  (1, 2)  (3, 6)]
  • 3. CLASS : XI (J-Batch) TIME : 60 Min. DPP. NO.-26 Select the correct alternative : (Only one is correct) Q.1109/QE If the quadratic polynomial, y= (cot )x2 + 2   sin  x + 1 2 tan ,   [0, 2] can take negative values for all x R, then the value of  must in the interval : (A*)  5 6   ,       (B)  5 6   ,        11 6 2   ,       (C)   6 2 ,   (D)   0 6 ,   5 6   ,       [Sol. b2 – 4ac < 0 and a < 0 hence cot  < 0 i.e.   2nd and 4th quadrant and 4sin  – 2 tan  cot  < 0 2 sin  < 1  sin  < 2 1    2nd and 4th quadrant (Also sin  > 0  ( onlyin 2nd quadrant) hence           , 6 5 ] Q.264/QE Numberof integral values of x satisfyingthe inequality 64 27 4 3 2 x 10 x 6          is (A) 6 (B*) 7 (C) 8 (D)infinite [Hint: 6x + 10 – x2 > 3  x2 – 6x – 7 < 0 (x + 1) (x – 7) < 0  0, 1, 2, 3, 4, 5, 6  B ] Q.3 The equation a sin x + cos 2x = 2a – 7 has a solution, if (A) a > 2 (B) a < 2 (C*) 2 < a < 6 (D) a < 2 or a < 6 [Sol. a sin x + 1 – 2 sin2x = 2a – 7 2 sin2x – 9 sin x + (2a – 8) = 0  sin x = 4 ) 8 a 2 ( 8 a a 2    ] Q.413 log Numberofpositivesolution whichsatisfythe equation log2x · log4x · log6x =log2x ·log4x + log2x · log6x + log4x ·log6x? (A) 0 (B) 1 (C*) 2 (D)infinite [Hint: log2x · log4x · log6x          1 x log 1 x log 1 x log 1 2 4 6 = 0  either x = 1 or logx48 = 1  x = 48 ]
  • 4. Q.5 Numberofintegralvaluesofxsatisfyingtheinequality 3 x 1 x    4 x 2 x   (A) 1 (B) – 2 (C) – 1 (D*) 0 Q.6 The quadratic equations 2006 x2 + 2007 x + 1 = 0 and x2 + 2007x + 2006 = 0 have a root in common. Then theproduct of theuncommonroots is (A*) 1 (B) – 2 (C) – 1 (D) 0 [Sol. 2006 x2 + 2007 x + 1 = 0 2006 x2 + 2006 x + x + 1 = 0 2006 x(x + 1) + (x + 1) = 0 (x + 1)(2006 x + 1) = 0  x = – 1 or x = – 2006 1 obviouslyx = – 1 satisfies both the quadratic equations hence it is thecommon root if ,  are the roots of 1st then  = 2006 1 (–1) = 2006 1   = – 2006 1 and |||ly  = 2006 (from 2nd equation) (–1) = 2006  = – 2006  product of uncommon roots is 1 Ans. ] Q.7 Suppose sin  – cos  = 1 then the value of sin3 – cos3 is ( R) (A*) 1 (B) – 2 (C) – 1 (D) 0 Q.841/s&p Let an = 16,4, 1, .... be a geometric sequence. Define Pn as the product of the first n terms. The value of   1 n n n P (A) 8 (B) 16 (C*) 32 (D) 64 [Sol. For the G.P. a, ar, ar2, .......... Pn = a(ar)(ar2) ........(arn–1) = anrn(n – 1)/2  S =   1 n n n P =     1 n 2 / ) 1 n ( ar now,     1 n 2 / ) 1 n ( ar = a[1 + r + r + r r + ...... + ] = r 1 a  Given a = 16 and r = 1/4  S = ) 2 1 ( 1 16  = 32 Ans. ] Q.9 Consider anA.P. t1, t2, t3, ........ If 5th, 9th and 16th terms of thisA.P. form three consecutive terms of a G.P. with nonzero common ratio q, then thevalue of q is (A) 4/7 (B) 2/7 (C*) 7/4 (D) none
  • 5. [Sol. q = d 4 a d 8 a   = d 8 a d 15 a   = d 4 d 7  q = 4 7 Ans. ] Q.10 If the mth, nth and pth terms of G.P. form three consecutive terms of another G.P. then m, n and p are in (A*)A.P. (B) G.P. (C) H.P. (D)A.G.P. SUBJECTIVE: Q.11 A quadratic polynomial f (x)= x2 + ax + b is formed with one of its zeros being 3 2 3 3 4   where aand b are integers. Also g (x) = x4 + 2x3 – 10x2 + 4x – 10 is a biquadratic polynomial such that           3 2 3 3 4 g = d 3 c  where c and d are also integers. Find the value of a, b, c and d. [Ans. a = 2; b = – 11, c = 4; d = – 1] [Sol. x2 + ax + b x = 3 2 3 3 4   ; x =    3 2 3 3 4   x1 = 8 – 3 4 + 3 6 – 9 = 3 2 – 1  x1 = – 1 + 3 2 ; x2 = – 1 – 3 2 sum = – 2 product = 1 – 12 = – 11  equation is x2 + 2x – 11 = 0  a = 2, b = – 11 given g (x) = x4 + 2x3 – 10x2 + 4x – 10           3 2 3 3 4 g = d 3 c  ; x = 3 2 3 3 4   = 3 2 – 1  (x + 1)2 =  2 3 2  x2 + 1 + 2x = 12  x2 + 2x – 11 = 0 x2(x2 + 2x – 11) + 1(x2 + 2x – 11) + 2x + 1 0 + 0 + 2x + 1 = 2( 3 2 – 1) + 1 = 3 4 – 1]
  • 6. Q.12 If  and  be the roots of the equation x2 + 3x + 1 = 0 then find the value of 2 2 1 1                      . [Ans. 18] [Sol.  +  = – 3;  = 1, also 2 + 3 + 1 = 0 and 2 + 3 + 1 = 0 where 2 = – (3 + 1) & 2 = – (3 + 1) E = 2 2 2 2 ) 1 ( ) 1 (        E = 2 2 2 1      + 2 2 2 1      =              ) 1 3 ( +            ) 3 1 ( y =    3 1 +    3 1 = ) 3 1 ( ) 3 1 (        (as  = 1) = 3(2 + 2) + ( + ) = 3[9 – 2] + (–3) = 21 – 3 = 18 Ans. ]
  • 7. CLASS : XI (J-Batch) TIME : 60 Min. DPP. NO.-27 Select the correct alternative : (Only one is correct) Q.153/log Smallest integral x satisfyingthe inequality, x log 1 x log 1 2 4    2 1 ,is (A) 2 (B*) 2 (C) 3 (D) 4 [Sol. Let log2x = t (obviouslyx > 0)   t 1 2 t 1    2 1  t 1 t 2    1  1 t 1 t 2     0  t 1 t 1 t 2      0  1 t t 2 1    0  1 t 1 t 2    0  t  2 1 or t < – 1 Hence,either log2x  2 1  x  2 or log2x < – 1  0 < x < 2 1 0 < x < 2 1 . Hence the solution set is           , 2 2 1 , 0  smallest integer is 2  (B) ] Q.2 Consider the ten numbers, ar, ar2, ar3, .......... ar10. If their sum is 18 and the sum of their reciprocals is 6 then the product of these ten numbers, is (A) 324 (B) 343 (C*) 243 (D) 729 [Sol. Given 1 r ) 1 r ( ar 10   = 18 ....(1) Also r 1 1 r 1 1 ar 1 10         = 6  1 r r ) 1 r ( · ar 1 10 11   = 6 1 r ) 1 r ( ar · r a 1 10 11 2   = 6 ....(2) from (1) and (2) 11 2 r a 1 · 18 = 6  a2r11 = 3 now P = a10r55 = (a2r11)5 = 35 = 243 Ans. ] Q.383/ph-1 IfA= 3400 then 2 2 sin A is identical to (A) 1 1    sin sin A A (B)     1 1 sin sin A A (C) 1 1    sin sin A A (D*)     1 1 sin sin A A [Hint: A/2 = 1700 hence 2sinA/2 > 0 now 3400 lies in IV quadrant. Hence sinA <0. So 1+ sinA < 1 – sinA. Hence B & C are rejected because theygive – values. Now we will checkA& D. A: | sinA/2 + cosA/2 | + | sinA/2 – cosA/2 |
  • 8. –ve +ve –sinA/2 – cosA/2 + sinA/2 – cosA/2 = – 2 cosA/2 Hence D is the answer ] Q.431/s&p If 3 + 1 4 (3 + d) + 1 42 (3 + 2d) +...... + upto  = 8, then the value of d is : (A*) 9 (B) 5 (C) 1 (D) none of these [Sol. 8 = 3 + 1 4 (3 + d) + 1 42 (3 + 2d) +...... + upto       ....... .......... 4 d 3 4 3 4 8 2  8 – 2 = 3 +     ...... .......... 4 d 4 d 4 d 3 2 6 = 3 + 4 / 1 1 4 / d   d = 9 ] Q.5179/QE The sum of the roots of the equation (x + 1) = 2 log2(2x + 3) – 2 log4(1980 – 2–x) is (A) 3954 (B*) log211 (C) log23954 (D)indeterminate Directions for Q.6 to Q.9: Considertwodifferent infinitegeometricprogressions with theirsums S1 and S2 as S1 = a + ar + ar2 + ar3 + ..........  S2 = b + bR + bR2 + bR3 + ..........  If S1 = S2 = 1, ar = bR and ar2 = 1/8 then answer the following: Q.693/s&pThe sum oftheircommonratios is (A) 2 1 (B) 4 3 (C*) 1 (D) 2 3 Q.7 Thesumoftheirfirsttermsis (A*) 1 (B) 2 (C) 3 (D) none Q.8 Common ratio ofthefirst G.P. is (A) 2 1 (B) 4 5 1 (C) 4 1 5  (D*) 4 1 5  Q.9 Common ratio of the second G.P. is (A) 4 5 3 (B*) 4 5 3 (C) 2 1 (D) none [Sol. Let the two GP's are a ar ar2 .......... | r | < 1 b br br2 .......... | R | < 1 now r 1 a  = 1 ; R 1 b  = 1 a = 1 – r .....(1) and b = 1 – R ....(2)  a + r = b + Q also ar = bR ....(3) and ar2 = 8 1 ....(4) (1) – (2) a – b = R – r a + r = b + R
  • 9. From (1), (2) and (3), ar = bR (1 – r) r = (1 – R)R (substituting a and b for (1) and (2) in (3))  (r – R)(r + R) = r – R  r + R = 1 (as r  R) Ans. (Note : if r = R then a = b  G.P. will become identical) hence r + R = 1 ....(5) hence (1) + (2)  a + b = 2 – (r + R)  a + b = 1 now, from (4) 8ar2 = 1 8(1 – r)r2 = 1 8r2 – 8r3 – 1 = 0  8r3 – 8r2 + 1 = 0 (2r – 1)(4r2 – 2r – 1) = 0 (as r1/2asinthiscaseRwillalsobe1/2whichisnotpossible)  4r2 – 2r – 1 = 0 r = 8 20 2  = 4 5 1 or 4 5 1 if r = 4 5 1 then R = 1 – 4 5 1 = 4 5 3 > 1 hence r = 4 5 1 is rejected  r = 4 5 1 Ans. and R = 1 – 4 5 1 = 4 5 3 Ans. a = 1 – r = 4 5 3 ; b = 4 5 1 a + b = 1 Ans. ] More than one alternative are correct. Q.10124/QE If ax2 + bx + c = 0 , b  1 be an equation with integral co-efficients and  > 0 be its discriminant, then the equation b2 x2  x  4 ac = 0 has : (A) twointegral roots (B*) two rational roots (C) two irrational roots (D*) one integral root independent of a, b, c . [Hint: a, b, c  I ; b2 > 4ac ;  = b2 – 4ac  =     2 2 2 16 2 b ac b =     ( ) b ac b ac b 2 2 2 2 4 16 2 =    ( ) b ac b 2 2 2 4 2 = ( ) ( ) b ac b ac b 2 2 2 4 4 2    with +ve sign,  = 1 (independent of a, b & c)  = – 4 2 ac b which is rational  B & D]
  • 10. SUBJECTIVE: Q.11 If mand n arepositive integers satisfying 1 + cos 2 + cos 4 + cos 6 + cos 8 + cos 10 =    sin n sin · m cos then find the value of (m + n). [Ans. 11] [Sol. Let S = cos 0° + cos 2 + cos 4 + .......... + cos 10 2 sin · S = 2 sin [cos0 + cos 2 + .......... + cos 10] = sin  + sin  = sin3 – sin  = sin5 – sin3 = sin7 – sin5 = sin9 – sin7 = sin11 – sin9 ————————— 2 sin · S = sin11 + sin 2 sin · S = 2 sin6 · cos5 S =    sin 2 5 cos 6 sin 2 =    sin m cos n sin  n = 6 and m = 5 Ans. ] Q.12 Suppose a cubic polynomial f (x) = x3 + px2 + qx + 72 is divisible by both x2 + ax + b and x2 + bx + a (where a, b, p, q are constants and a  b). Find the sum of the squares of the roots of the cubicpolynomial. [Ans. 146] [Sol. Sincecubicis divisiblebyboth x2 + ax + b and x2 + bx + a and  x2 + ax + b and x2 + bx + a must have a common roots. x2 + ax + b = 0 – x2 + bx + a = 0 subtract  x(a – b) = (a – b) x = 1  common root is 1 x2 + ax + b = 0 1 ·  = b   = b x2 + bx + a = 0 1 ·  = a   = a  roots of cubic be 1, a, b product of the roots be 1 · a · b = – 72 ....(1) and a + b + 1 = 0 ....(2) (from x2 + ax + b = 0 put x = 1)  a – b 72 = – 1  a2 + a – 72 = 0 (a + 9)(a – 8) = 0 a = – 9, 8  roots are 1, – 9, 8  sum of their squares = 1 + 81 + 64 = 146 Ans. Note: Iftheydon’thaveacommonrootsthentherewill befourroots ofthecubicwhichis notpossible.Ifthey have bothcommonroots then a=b which contradicts whichis given]
  • 11. CLASS : XI (J-Batch) TIME : 60 Min. DPP. NO.-28 Select the correct alternative : (Only one is correct) Q.1 If the solutions of the equation sin2 = k (0 < k < 1) in (0, 2) are inA.P. then the value of k is (A*) 2 1 (B) 2 1 (C) 4 3 (D) 4 1 [Hint: The solutions of sin2 = k are ,  – ,  +  and 2 –   – 2 = 2 hence,  = 4   = 4   solutions are 4  , 4 3 , 7 5 , 4 7 and k = 2 1 ] Q.2106/ph-1 Maximum value of the expression cos · sin          6    R, is (A) 2 1 (B) 4 3 (C*) 4 1 (D) 1 [Hint: y = cos · sin          6 = 2 1                  6 sin 6 2 sin  max if 2 – 6  = 2   2 = 6 4   = 3   maximum value = cos 3  sin 6  = 2 1 · 2 1 = 4 1  (C) ] Q.355/s&p Consider a decreasing G.P. : g1, g2, g3, ...... gn ....... such that g1 + g2 + g3 = 13 and 2 3 2 2 2 1 g g g   =91 thenwhichofthefollowingdoesnothold? (A) The greatest term of the G.P. is 9. (B) 3g4 = g3 (C*) g1 = 1 (D) g2 = 3 [Hint: G.P. : r a , a, ar, ......... a = 3 and r = 3 1 or 3 (rejected) G.P. is 9, 3, 1, 3 1 , ......  C is not correct.] Q.4 Supposex,y,z isageometricseries with a commonratio of'r'suchthat x y.Ifx,3y, 5zis anarithmetic sequence then thevalue of 'r' equals (A) 1/3 (B*) 1/5 (C) 3/5 (D) 2/3 [Hint: x = a ; y = ar ; z = ar2 (r  1)] Q.579/s&p Let S1 , S2 , S3 be the sums of the first n , 2n and 3n terms of an A.P. respectively. If
  • 12. S3 = C (S2 – S1) then , 'C' is equal to (A) 4 (B*) 3 (C) 2 (D) 1 [Sol. ] d ) 1 n ( a 2 [ 2 n S1    ; ] d ) 1 n ( a 2 [ 2 n 2 S2    ; ] d ) 1 n ( a 2 [ 2 n 3 S3    Now, S3 = C(S2 – S1) ] d ) 1 n ( a 2 [ 2 n 3   =                  2 n 2 n 2 d ) 1 n ( a 2 C  C = 3 ] Q.6102/QE If the equation a (x – 1)2 + b(x2 – 3x + 2) + x – a2 = 0 is satisfied for all x  R then the number of ordered pairs of (a, b) can be (A) 0 (B*) 1 (C) 2 (D)infinite [Sol. equation is an identity  coefficient of x2 = 0= coefficient of x = constant term  a + b = 0 ....(1) – 2a – 3b + 1 = 0 ....(2) and a + 2b – a2 = 0 ....(3) from (1) and (2) a = – 1 and b = 1 whichalsosatisfies(3)  (a, b) = (–1, 1)  (B) ] Q.797/seq&prog Let f (x) = x2 +x4 + x6 + x8 + .......  for all real x such that the sum converges. Number of real x for which the equation f (x) – x = 0 holds, is (A) 0 (B) 1 (C*) 2 (D) 3 [Hint: f (x) = 2 2 x 1 x  when | x | < 1  2 2 x 1 x  = x  x = 0 or x = 1 – x2 x2 + x – 1 = 0  x = 2 5 1  , 2 5 1  is to be rejected ] Q.812/s&p The sum to n terms of the series, 1 2 + 3 4 + 7 8 + 15 16 +...... is equal to : (A) 2n  n  1 (B) 1  2n (C*) 2n + n  1 (D) 2n  1 [Sol. S = .... 8 1 1 4 1 1 2 1 1                         up to n terms = n –          terms n to up .... 2 1 2 1 1 2 1 2  result] Q.924/log Solution set of the inequality   4 log 2 3 x log x log 2 2 1 2 3 3   is (A) [3, 9] (B*)           , 9 3 1 , 0 (C)             , 9 3 1 , (D)   9 , 1 1 , 3 1        [Sol. Given:   4 log 2 3 x log x log 2 2 1 2 3 3   2 2 log 4 log 2 3 x log x log 2 2 2 3 3    2 x log x log 2 3 3    put log3x = y
  • 13. y – y2  – 2 y2 – y – 2  0 (y – 2) (y + 1)  0 log3x  2 x  9 x  3 1  (B) ] Q.1089/s&p If abcd = 1 where a, b, c, d are positive reals then the minimum value of a2 + b2 + c2 + d2 + ab + ac + ad + bc + bd + cd is (A) 6 (B*) 10 (C) 12 (D) 20 [Hint: Use AM  GM between the given 10 numbers i.e. a2, b2, c2, d2, ab, ac, ad, bc, bd, and cd ] SUBJECTIVE Q.11 Solvethe logarithmic inequality,            ) 5 x )( 1 x ( ) 2 x ( 2 log x 1 1. [Ans. (1, 2) ] [3] [Sol. Let x 1 > 1 i.e. 0 < x < 1            ) 5 x )( 1 x ( ) 2 x ( 2 log x 1  1  x 1 ) 5 x )( 1 x ( ) 2 x ( 2      0 x 1 ) 5 x )( 1 x ( ) 2 x ( 2      0 ) 5 x )( 1 x ( x ) 5 x )( 1 x ( ) 2 x ( x 2         0 ) 5 x )( 1 x ( x 5 x2     Hencenosolutioninthis case nowlet 0 < x 1 < 1 ; x > 1 in this case 0 < x < 5 ....(1) its intersection with x > 1 and the domain of the equation gives x  (1, 2) ] Q.12 We inscribe a square in a circle of unit radius and shade the region between them.Then we inscribe another circle inthesquare and anothersquare in the new circle and shade the regionbetween the new circleandthesquare. Iftheprocessis repeated infinitelymanytimes,find the areaoftheshaded region. [Ans. 2( – 2) sq. units] [4] [Sol. Area of 1st shaded region = ( – 2) Area of 2nd shaded region =         1 2 Area of 3rd shaded region =         2 1 4 and so on Hence total area of shaded region =           ........ 4 1 2 1 1 –          ........ 2 1 1 2 =     2 1 1 2 2 1 1     = 2 – 4 = 2( – 2) Ans. ]
  • 14. Select the correct alternative : (Only one is correct) Q.156/s&p The maximum value of the sum of the decreasingA.P. 50 , 48 , 46 , 44 , ............ is (A) 325 (B) 648 (C*) 650 (D) 652 [Sol. 4 , 2 , 0 ..... ,......... 46 , 48 , 50            a = 50 , d = 2 , n= 25 ] d ) 1 n ( a 2 [ 2 n Sn    25 [50 –24 ] 25 × 26 = 650 Ans ] Q.2513/ph-1 The roots of the equation 2 + cot x = cosec x always lie in the quadrant number (A) Ionly (B) I and II (C) II and IV (D*) IIonly [Hint: Solving cosec x = 5/4 and cot x = – 3/4 ] Q.374/s&p If Sn = 1 1 1 2 1 2 3 3 3    +...... + 1 2 3 1 2 3 3 3 3 3         ...... ...... n n , n = 1, 2, 3,...... Then Sn is not greater than (A) 1/2 (B) 1 (C*) 2 (D) 4 [Sol. Sn = ... .......... 3 2 1 3 2 1 2 1 2 1 1 1 3 3 3 3 3 3          Tn = 3 3 3 3 n . .......... 3 2 1 n ... .......... 5 4 3 2 1        = ) 1 n ( n 2 2 ) 1 n ( n 2 ) 1 n ( n 2           Sn =          1 n 1 n 1 2 ] Q.4103/QE The absolute term in the quadratic expression                   n 1 k 2 k 3 1 x 1 k 3 1 x as n   is (A) zero (B) 1 (C) 3 2 (D*) 3 1 [Hint: Tn = ) 2 n 3 )( 1 n 3 ( 1   ; Tn =          ) 1 n 3 ( 1 ) 2 n 3 ( 1 3 1 ] Q.545/s&p Consider the A.P. a1 , a2 ,..... , an ,.... the G.P. b1 , b2 ,....., bn ,..... such that a1 = b1 = 1 ; a9 = b9 and 369 a 9 1 r r    then (A) b6 = 27 (B*) b7 = 27 (C) b8 = 81 (D) b9 = 18 CLASS : XI (J-Batch) TIME : 60 Min. DPP. NO.-29
  • 15. [ Hint: a1 = b1 = 1 ; a9 = 1 + 8d = bn = 1. r8 now ) a 1 ( 2 9 a 9 9 1 r r     = 3 r 369 ) r 1 ( 2 9 8      b7 = b. r6 = 1 6 3 = 27 ] Q.692/s&p Startingwithaunit square,asequenceofsquareis generated.Each squarein thesequencehashalfthe side length of its predecessor and two of its sides bisected byits predecessor's sides as shown. This process isrepeatedindefinitely.Thetotalareaenclosed byallthe squares in limitingsituation, is (A*) 4 5 sq. units (B) 64 79 sq. units (C) 64 75 sq. units (D) 12 1 sq. units [Hint: Required area = 1 + 4 3           ....... 4 1 4 1 4 1 3 2 = 1 + 4 3 · 4 1 1 4 1  = 4 1 1 = 4 5  (A) ] Q.7 The sum     1 k k 2 k 3 2 equal to (A) 12 (B*) 8 (C) 6 (D) 4 [Hint: S =          1 k k 3 2 4 =                        ....... 3 2 3 2 3 2 4 3 2 =        ) 3 2 ( 1 3 2 4 = 8 ] Q.817/ph-1 If A, B, C and D denotes the interior angles of a quadrilateral then (A)     A tan A cot A tan (B*)        A cot A tan A tan (C)      A tan A tan A cot (D)      A cot A tan A tan [Hint: tan(A + B + C + D) = 4 2 3 1 S S 1 S S    ( A + B + C + D = 360°) S1 = S3 tanA + tanB + tanC + tanD =     A cot A tan  B ] Q.940/s&p Consider anA.P. with first term 'a'and the common differenced. Let Sk denote the sum of the first K terms. Let S S kx x is independent of x, then (A*) a = d/2 (B) a = d (C) a = 2d (D) none [Sol. ] d ) 1 x ( a 2 [ 2 K )] 1 Kx ( a 2 [ 2 Kx S S x Kx      =           xd d a 2 Kxd d a 2 K If 2a – d = 0 then        xd Kxd K S S K Kx = K2 which is possible when a = d/2 ]
  • 16. Q.10104/ph-1 4 sin50 sin550 sin650 has the values equal to (A) 3 1 2 2  (B*) 3 1 2 2  (C) 3 1 2  (D) 3 3 1 2 2  d i [Sol. 2[2sin50 sin550] sin650  2[cos500 – cos600]sin650  2cos500 sin650 – sin650  sin(1150) + sin150 – sin650 = 2 2 1 3  Ans] SUBJECTIVE: Q.1135/1 Find all values ofk for which the inequality, 2x2  4k2x  k2 + 1 > 0 is valid for all real x which do not exceed unityintheabsolutevalue. [ Ans. :  1 2 < k < 1 2 ] [Hint: Case I: when D < 0 whichgives the result Case II : f (1)  0 ; D  0 ;  b a 2 > 1 or f ( 1)  0 ; D  0 ;  b a 2 <  1 ; No solution in case II ] Q.12 Find all x such that   1 k k x · k = 20. [Ans. x = 4/5] [3] [Sol. Let S = x + 2x2 + 3x3 + 4x4 + .........+  Sx = + x2 + 2x3 + 3x4 + 4x5 + .........+  ————————————————— S(1 – x) = x + x2 + x3 + x4 + .........+  = x 1 x  S = 2 ) x 1 ( x  = 20  20(1 + x2 – 2x) = x  20x2 – 41x + 20 = 0 x = 40 1600 1681 41   = 40 9 41 = 40 50 or 40 32 = 4 5 or 5 4 x = 4 5 is rejected as | x | < 1;  x = 5 4 Ans. ]
  • 17. Q.1841/-1 Identifywhether the statement is True or False. (i)(iii) sin 82 1 2  . cos 37 1 2  and sin 127 1 2  . sin 97 1 2  have the same value. [ Ans. True ; 4 2 3  ] [Sol. A= 0 0 2 1 37 cos . 2 1 82 sin = 0 0 2 75 cos . 2 165 sin =   0 0 45 sin 120 sin 2 1  = 2 4 1 6  B= 0 0 2 1 97 sin . 2 1 127 sin =   0 0 225 cos 30 cos 2 1  =        2 1 2 3 2 1 = 2 4 2 6  = 4 2 3   A= B  True ] (ii)(v) If tanA= 3 4 3  & tanB = 3 4 3  then tan(A B) must be irrational. [Ans. False] [Sol. tan(A–B) = B tan A tan 1 B tan A tan   =    3 4 3 4 3 . 3 1 3 4 3 3 4 3       =   3 3 16 3 4 3 4 3      = 3/8  rational ] (iii)(x) If tanA= 1, tanB = 2 and tanC = 3 thenA, B, C can not be the angles of a triangle. [Ans. False] [Sol. In a  ABC tanA + tanB + tanC = tanA. tanB. tanC 1 + 2 + 3 = 1 . 2 . 3 6 = 6 Hence theyare angles of atriangle ] (iv)(xiv) There exists a value of  between 0 & 2 which satisfies the equation ; sin4  – sin2  – 1 = 0. [Ans. False ] [Sol. sin2 = 2 5 1  sin2 = 2 5 1 (not possible) sin2 = 1 2 5 1    not possible ] Select the correct alternative : (Only one is correct) Q.221/-1 The number of solutions of the equation cos        3 2 x = x2 + x 3 2 + 4 is (A) more than 2 (B) 2 (C) 1 (D*) 0 CLASS : XI (J-Batch) TIME : 60 Min. DPP. NO.-30
  • 18. Q.361/-1 The value of 10 tan 2 10 sec 3 10 cos 4      is equal to (A) 1 (B) 1 5  (C) 1 5  (D*) zero [Sol. 4 cos180 – 0 18 cos 3 – 2 tan180 0 0 0 2 18 cos 18 sin 2 3 18 cos 4   = 0 0 0 18 cos 3 18 sin 2 ) 36 cos 1 ( 2     0 0 0 18 cos 3 ) 18 sin 36 cos 1 ( 2    = 0 18 cos 3 2 1 1 2         = 0 ] Q.428/s&p The sum of the first 100 terms common to the series 17, 21, 25, ..... and 16, 21, 26, ...... is (A*) 101100 (B) 111000 (C) 110010 (D) 100101 [Sol. 17 ,21 , 25 , 29 , 33 ,37 ,... A.P. with d = 4 16 , 21 , 26 , 31 , 36 , 41 ,..... A.P. with d = 5 common 21 , 41 , 61 ,............. A.P. with d =20 S = ] 20 ) 99 ( ) 21 ( 2 [ 2 100  = 100 [21 + 990] = 101100 Ans ] Q.5 If x, y, z  N then the number of ordered triplets of (x, y, z) satisfying the equation x + y+ z = 102 is (A) 4950 (B*) 5050 (C) 5150 (D) None [Hint: if x = 1 ; y + z = 101  100 solutions eg. (1, 100) , (2, 99) etc if x = 2 ; y + z = 100  99 solutions eg. (1, 99) , (2, 98) etc finally x = 100 ; y + z = 2  1 solution Hence total = 1 + 2 + 3 + ...... + 100 = 5050 ] SUBJECTIVE: Q.655/1 Find all real values of x for which the expression         1 x x log 2 2 / 1 is a real number. . [Ans. x  1 5 2  or 1 5 2   x < 0 ] Q.76/1 Solve the inequality, 2 log1/2 (x  1)  1 3  1 8 2 logx x  . [Ans. : [2, ) ] [Hint: converting on base 2 log2 2 1 1 6 ( ) ( ) x x x    0 note that x > 1 2 1 5 ( ) x x   1 put x  1 = y  y > 0 2 1 5 y y   1  0 2 1 1 5 y y y     0 2 2 1 1 5 y y y y      0 2 1 1 1 4 y y y y ( )      0 ( ) ( ) [ ] ( ) y y y y y      1 2 1 1 1 1 2  0  y y   1 1  0  y  1  x  2 ]
  • 19. Q.810/06 If  = 2 7  , prove that , sec  + sec2 + sec4 =  4. [Sol. E = sec + sec2 + sec4, where 7 = 2 = 1 1 2 1 4 cos cos cos      = cos cos cos cos cos cos cos cos cos 2 4 4 2 2 4              But cos · cos2 · cos4 = 1 8 where = 2 7  hence E = 4 [2cos2cos4 + 2cos4cos + 2coscos2] = 4 [cos6 + cos2 + cos5 + cos3+ cos3 + cos] =8 [cos + cos2 + cos3] as cos6 = cos, cos5 = cos2 Now Let S = cos +cos2 + cos3 2sin  2 S = 2sin  2 cos + 2sin  2 cos2+ 2sin  2 cos3 = sin 3 2  – sin  2 + sin 5 2  – sin 3 2  + sin 7 2  – sin 5 2  = – sin  2 as sin 7 2  = sin  = 0  S = – 1 2 ; Hence E = – 4 Ans ] Q.950/1 Find thevalues of 'p'forwhich the inequality, 2 1 2               log p p x2+2x 1 1 2         log p p  2 1 1 2         log p p > 0 isvalid forall realx. [Sol. (2  t) x2 + 2 (1 + t) x  2 (1 + t) > 0 when t = 1 p p log2  when t = 2 , 6 x  6 > 0 which is not true  x  R. Let t  2 ; t < 2  (1) and 4 (1 + t)2 + 8 (1 + t) (2  t) < 0 (for given inequality to be valid) or (t  5) (t + 1) > 0  t > 5 or t <  1 (2) From (1) and (2) ; t <  1  0 < log2 p p  1 <  1 p p  1 < 1 2 or p p   1 1 < 0   1 < p < 1 but p p  1 > 0  p > 0 or p <  1. common solution is p  (0, 1) ]