05-CORRELATION AND REGRESSION (ASSIGNEMNT)

STUDY  INNOVATIONS
STUDY INNOVATIONSEducator um Study Innovations

1. For the bivariate frequency table for x and y x y 0 – 10 10 – 20 20 – 30 30 – 40 Sum 0 – 10 3 2 4 2 11 10 – 20 – 1 3 1 5 20 – 30 3 2 – – 5 30 – 40 – 6 7 – 13 Sum 6 11 14 3 34 Then the marginal frequency distribution for y is given by (a) 0 – 10 6 10 – 20 11 20 – 30 14 30 – 40 3 (b) 0 – 10 11 10 – 20 5 20 – 30 5 30 – 40 13 (c) 0 – 10 10 10 – 20 12 20 – 30 11 30 – 40 1 (d) None of these 2. The variables x and y represent height in cm and weight in gm respectively. The correlation between x and y has the unit (a) gm (b) cm (c) gm.cm (d) None of these 3. The value of is (a) (b) (c) (d) None of these 4. Karl Pearson’s coefficient of correlation is dependent (a) Only on the change of origin and not on the change of scale (b) Only on the change of scale and not on the change of origin (b) On both the change of origin and the change of scale (d) Neither on the change of scale nor on the change of origin 5. If X and Y are independent variable, then correlation coefficient is (a) 1 (b) – 1 (c) (d) 0 6. The value of the correlation coefficient between two variable lies between (a) 0 and 1 (b) – 1 and 1 (c) 0 and (d) – and 0 7. The coefficient of correlation between two variables x and y is given by (a) (b) (c) (d) 8. If r is the correlation coefficient between two variables, then (a) (b) (c) (d) 9. When the correlation between two variables is perfect, then the value of coefficient of correlation r is [Kurukshetra CEE 1993] (a) –1 (b) +1 (c) 0 (d) 10. If correlation between x and y is r, then between y and x correlation will be (a) –r (b) (c) r (d) 1- r 11. If r is the coefficient of correlation and then (a) (b) (c) 1 (d) None of these 12. If coefficient of correlation between the variables x and y is zero, then (a) Variables x and y have no relation (b) y decreases as x increases (c) y increases as x increases (d) There may be a relation between x and y 13. When the origin is changed, then the coefficient of correlation (a) Becomes zero (b) Varies (c) Remains fixed (d) None of these 14. If then (a) Correlation is negative and curved (b) Correlation is linear and negative (c) Correlation is in third and fourth quadrant (d) None of these 15. In a scatter diagram, if plotted points form a straight line running from the lower left to the upper right corner, then there exists a (a) High degree of positive correlation (b) Perfect positive correlation (c) Perfect negative correlation (d) None of these 16. If the two variables x and y of a bivariate distribution have a perfect correlation, they may be connected by (a) (b) (c) (d) None of these 17. If x and y are related as then the nature of correlation between x and y is (a) Perfect positive (b) Perfect negative (c) No correlation (d) None of these 18. If , , then equals (a) (b

74 Correlation and Regression
1. For the bivariate frequency table for x and y
x
y
0 – 10 10 – 20 20 – 30 30 – 40 Sum
0 – 10 3 2 4 2 11
10 – 20 – 1 3 1 5
20 – 30 3 2 – – 5
30 – 40 – 6 7 – 13
Sum 6 11 14 3 34
Then the marginal frequency distribution for y is given by
(a) 0 – 10 6
10 – 20 11
20 – 30 14
30 – 40 3
(b) 0 – 10 11
10 – 20 5
20 – 30 5
30 – 40 13
(c) 0 – 10 10
10 – 20 12
20 – 30 11
30 – 40 1
(d) None of these
2. The variables x and y represent height in cm and weight in gm respectively. The correlation between x and y has the unit
(a) gm (b) cm (c) gm.cm (d) None of these
3. The value of  
 )]
)(
[( y
y
x
x is
(a) y
x
xy
r
n 

.
. (b) 2
2
. y
xy x
r 
 (c) y
x
xy
r 
 (d) None of these
4. Karl Pearson’s coefficient of correlation is dependent
(a) Only on the change of origin and not on the change of scale (b) Only on the change of scale and not on the change of origin
(b) On both the change of origin and the change of scale (d) Neither on the change of scale nor on the change of origin
5. If X and Y are independent variable, then correlation coefficient is
B
Ba
as
si
ic
c L
Le
ev
ve
el
l
Correlation
74
Correlation and Regression 75
(a) 1 (b) – 1 (c)
2
1
(d) 0
6. The value of the correlation coefficient between two variable lies between
(a) 0 and 1 (b) – 1 and 1 (c) 0 and  (d) –  and 0
7. The coefficient of correlation between two variables x and y is given by
(a)
y
x
y
x
y
x
r





2
2
2
2



 (b)
y
x
y
x
y
x
r





2
2
2
2



 (c)
y
x
y
x
y
x
r




 2
2
2



 (d)
y
x
y
x
y
x
r




 2
2
2




8. If r is the correlation coefficient between two variables, then
(a) 1

r (b) 1

r (c) 1
|
| 
r (d) 1
|
| 
r
9. When the correlation between two variables is perfect, then the value of coefficient of correlation r is
(a) –1 (b) +1 (c) 0 (d) 1

10. If correlation between x and y is r, then between y and x correlation will be
(a) –r (b)
r
1
(c) r (d) 1- r
11. If r is the coefficient of correlation and ,
bX
a
Y 
 then 
|
| r
(a)
b
a
(b)
a
b
(c) 1 (d) None of these
12. If coefficient of correlation between the variables x and y is zero, then
(a) Variables x and y have no relation (b) y decreases as x increases
(c) y increases as x increases (d) There may be a relation between x and y
13. When the origin is changed, then the coefficient of correlation
(a) Becomes zero (b) Varies (c) Remains fixed (d) None of these
14. If ,
97
.
0


r then
(a) Correlation is negative and curved (b) Correlation is linear and negative
(c) Correlation is in third and fourth quadrant (d) None of these
15. In a scatter diagram, if plotted points form a straight line running from the lower left to the upper right corner, then there exists a
(a) High degree of positive correlation (b) Perfect positive correlation
(c) Perfect negative correlation (d) None of these
16. If the two variables x and y of a bivariate distribution have a perfect correlation, they may be connected by
(a) 1

xy (b) 1


y
b
x
a
(c) 1


b
y
a
x
(d) None of these
17. If x and y are related as ,
3
4 
 x
y then the nature of correlation between x and y is
(a) Perfect positive (b) Perfect negative (c) No correlation (d) None of these
18. If ,
15
 
x   36
y ,   110
xy , 5

n then )
,
( y
x
Cov equals
(a)
5
1
(b)
5
1

(c)
5
2
(d)
5
2

19. For a bivariable distribution )
,
( y
x , if    



 ,
6
,
5
,
60
,
50
,
350 y
x
y
x
xy then )
,
( y
x
Cov equals
(a) 5 (b) 6 (c) 22 (d) 28
20. For covariance the number of variate values in the two given distribution should be
(a) Unequal (b) Any number in one and any number in the other
(c) Equal (d) None of these
21. If x and y are independent variables, then
76 Correlation and Regression
(a) 1
)
,
( 
y
x
Cov (b) 1
)
,
( 

y
x
Cov (c) 0
)
,
( 
y
x
Cov (d)
2
1
)
,
( 

y
x
Cov
22. If
x : 3 4 8 6 2 1
y : 5 3 9 6 9 2
then the coefficient of correlation will be approximately
(a) 0.49 (b) 0. 40 (c) – 0. 49 (d) – 0. 40
23. The coefficient of correlation for the following data
x 20 25 30 35 40 45
y 16 10 8 20 5 10
will be
(a) 0. 32 (b) – 0.32 (c) 0. 35 (d) None of these
24. Coefficient of correlation from the following data
x : 1 2 3 4 5
y : 2 5 7 8 10
will be
(a) 0. 97 (b) – 0.97 (c) 0. 90 (d) None of these
25. Coefficient of correlation between x and y for the following data
x : 15 16 17 17 18 20 10
y : 12 17 15 16 12 15 11
will be approximately
(a) 0. 50 (b) 0. 53 (c) – 0. 50 (d) – 0. 53
26. Karl Pearson’s coefficient of correlation between x and y for the following data
x : 3 4 8 9 6 2 1
y : 5 3 7 7 6 9 2
(a) 0. 480 (b) – 0. 480 (c) 0. 408 (d) – 0. 408
27. The coefficient of correlation for the following data
x : 1 2 3 4 5 6 7 8 9 10
y : 3 10 5 1 2 9 4 8 7 6
will be
(a) 0. 224 (b) 0. 240 (c) 0. 30 (d) None of these
28. Karl Pearson’s coefficient of correlation between the marks in English and Mathematics by ten students
Marks in English 20 13 18 21 11 12 17 14 19 15
Marks in Maths 17 12 23 25 14 8 19 21 22 19
will be
(a) 0. 75 (b) – 0. 75 (c) 0. 57 (d) None of these
29. Coefficient of correlation between x and y for the following data
x – 4 –3 –2 –1 0 1 2 3 4
y 16 9 4 1 0 1 4 9 16
will be
(a) 1 (b) –1 (c) 0 (d) None of these
30. If the variances of two variables x and y are respectively 9 and 16 and their covariance is 8, then their coefficient of correlation is
Correlation and Regression 77
(a)
3
2
(b)
2
3
8
(c)
2
8
9
(d)
9
2
31. If the co-efficient of correlation between x and y is 0. 28, covariance between x and y is 7.6 and the variance of x is 9, then the S.D. of y
series is
(a) 9.8 (b) 10. 1 (c) 9.05 (d) 10. 05
32. If Cov(x, y) = 0, then )
,
( y
x
 equals
(a) 0 (b) 1 (c) – 1 (d)
2
1

33. Karl Pearson’s coefficient of correlation between the heights (in inches) of teachers and students corresponding to the given data
Height of teachers x : 66 67 68 69 70
Height of students y : 68 66 69 72 70
is
(a)
2
1
(b) 2 (c)
2
1
 (d) 0
34. The coefficient of correlation between x and y is 0.6, then covariance is 16. Standard deviation of x is 4, then the standard deviation of
y is
(a) 5 (b) 10 (c) 20/3 (d) None of these
35. If ,
3
)
,
( 
v
u
Cov 5
.
5
,
5
.
4 2
2

 v
u 
 , then )
,
( v
u
 is
(a) 0.121 (b) 0.603 (c) 0.07 (d) 0.347
36. Given ,
10

n   ,
4
x   ,
3
y   ,
8
2
x   9
2
y and   ,
3
xy then the coefficient of correlation is
(a)
4
1
(b)
12
7
(c)
4
15
(d)
3
14
37. Let xy
r be the coefficient of correlation between two variables x and y. If the variable x is multiplied by 3 and the variable y is
increased by 2, then the correlation coefficient of the new set of variables is
(a) xy
r (b) xy
r
3 (c) 2
3 
xy
r (d) None of these
38. Coefficient of correlation between the two variates X and Y is
X 1 2 3 4 5
Y 5 4 3 2 1
(a) 0 (b) –1 (c) 1 (d) None of these
39. The coefficient of correlation between two variables X and Y is 0.5, their covariance is 15 and ,
6

x
 then
(a) 5 (b) 10 (c) 20 (d) 6
40. Karl Pearson’s coefficient of rank correlation between the ranks obtained by ten students in Mathematics and Chemistry in a class
test as given below
Rank in Mathematics : 1 2 3 4 5 6 7 8 9 10
Rank in Chemistry : 3 10 5 1 2 9 4 8 7 6
i
(a) 0.224 (b) 0.204 (c) 0.240 (d) None of these
41. The sum of squares of differences in ranks of marks obtained in Physics and Chemistry by 10 students in a test is 150, then the co-
efficient of rank-correlation is given by
(a) 0.909 (b) 0.091 (c) 0.849 (d) None of these
A
Ad
dv
va
an
nc
ce
e L
Le
ev
ve
el
l
78 Correlation and Regression
42. If a, b, h, k are constants, while U and V are
k
b
Y
V
h
a
X
U



 , , then
(a) Cov (X, Y) = Cov (U, V) (b) Cov (X, Y) = hk Cov (U, V)
(c) Cov (X, Y) = ab Cov (U, V) (d) Cov (U, V) = hk Cov (X, Y)
43. Let X, Y be two variables with correlation coefficient (X, Y) and variables U, V be related to X, Y by the relation U = 2X, V = 3Y, then
(U, V) is equal t
(a) (X, Y) (b) 6(X, Y) (c) )
,
(
6 Y
X
 (d) )
,
(
2
3
Y
X

44. If X and Y are two uncorrelated variables and if Y
X
u 
 , Y
X
v 
 , then r(u, v) is equal to
(a) 2
2
2
2
y
x
y
x






(b) 2
2
2
2
y
x
y
x






(c)
y
x
y
x



 2
2

(d) None of these
45. If 3
,
2
,
12
,
0 




 y
x
i
iy
x
y
x 
 and n = 10, then the coefficient of correlation is
(a) 0.4 (b) 0.3 (c) 0.2 (d) 0.1
46. Let X and Y be two variables with the same variance and U and V be two variables such that U = X + Y, V = X – Y. Then Cov (U, V) is
equal to
(a) Cov (X, Y) (b) 0 (c) 1 (d) – 1
47. If there exists a linear statistical relationship between two variables x and y, then the regression coefficient of y on x is
(a)
y
x
y
x
cor

 .
)
,
(
(b) 2
)
,
(
y
y
x
cor

(c) 2
)
,
(
x
y
x
cor

(d)
x
y
x
cor

)
,
(
, where y
x 
 , are standard deviations of x and y respectively.
48. If 0


 c
by
ax is a line of regression of y on x and 0
1
1
1 

 c
y
b
x
a that of x on y, then
(a) 1
1 ab
b
a  (b) 1
1 bb
aa  (c) b
a
ab 1
1  (d) None of these
49. Least square lines of regression give best possible estimates, when (X, Y) is
(a) <1 (b) > –1 (c) –1 or 1 (d) None of these
50. Which of the following statement is correct
(a) Correlation coefficient is the arithmetic mean of the regression coefficient
(b) Correlation coefficient is the geometric mean of the regression coefficient
(c) Correlation coefficient is the harmonic mean of the regression coefficient
(d) None of these
51. The relationship between the correlation coefficient r and the regression coefficients xy
b and yx
b is
(a) )
(
2
1
yx
xy b
b
r 
 (b) yx
xy b
b
r .
 (c) 2
)
( yx
xy b
b
r  (d) yx
xy b
b
r 

B
Ba
as
si
ic
c L
Le
ev
ve
el
l
Regression
Correlation and Regression 79
52. If the coefficient of correlation is positive, then the regression coefficients
(a) Both are positive
(b) Both are negative
(c) One is positive and another is negative
(d) None of these
53. If yx
b and xy
b are both positive (where yx
b and xy
b are regression coefficients), then
(a)
r
b
b xy
yx
2
1
1

 (b)
r
b
b xy
yx
2
1
1


(c)
2
1
1 r
b
b xy
yx

 (d) None of these
54. If 1
x and 2
x are regression coefficients and r is the coefficient of correlation, then
(a) r
x
x 
 2
1 (b) r
x
x 
 2
1 (c) r
x
x 2
2
1 
 (d) None of these
55. If one regression coefficient be unity, then the other will be
(a) Greater than unity (b) Greater than or equal to unity (c) Less than or equal to unity (d) None of these
56. If one regression coefficient be less than unity, then the other will be
(a) Less than unity (b) Equal to unity (c) Greater than unity (d) All of the above
57. If regression coefficient of y on x is 2, then the regression coefficient of x on y is
(a) 2 (b)
2
1
(c)
2
1
 (d) None of these
58. The lines of regression of x on y estimates
(a) x for a given value of y (b) y for a given value of x (c) x from y and y from x (d) None of these
59. The statistical method which helps us to estimate or predict the unknown value of one variable from the known value of the related
variable is called
(a) Correlation (b) Scatter diagram (c) Regression (d) Dispersion
60. The coefficient of correlation between two variables x and y is 0.8 while regression coefficient of y on x is 0.2. Then the regression
coefficient of x on y is
(a) –3.2 (b) 3.2 (c) 4 (d) 0.16
61. If the lines of regression coincide, then the value of correlation coefficient is
(a) 0 (b) 1 (c) 0.5 (d) 0.33
62. Two lines of regression are 0
7
4
3 

 y
x and 0
5
4 

 y
x . Then correlation coefficient between x and y is
(a)
4
3
(b)
4
3
 (c)
16
3
(d)
16
3

63. If the two lines of regression are 0
7
3
4 

 y
x and 0
8
4
3 

 y
x , then the means of x and y are
(a)
7
11
,
7
4

 (b)
7
11
,
7
4
 (c)
7
11
,
7
4
 (d) 4, 7
64. The two regression lines for a bivariate data are 0
50 

 y
x and 0
3
2 

 K
y
x . If 0

x , then y is
(a) 50 (b) 100

K (c) – 50 (d) K

50
65. The two regression lines are 0
6
9
2 

 y
x and 0
1
2 

 y
x . What is the correlation coefficient between x and y
(a)
3
2
 (b)
3
2
(c)
9
4
(d) None of these
66. If the two regression coefficient between x and y are 0.8 and 0.2, then the coefficient of correlation between them is
80 Correlation and Regression
(a) 0.4 (b) 0.6 (c) 0.3 (d) 0.5
67. The two lines of regression are given by 26
2
3 
 y
x and 31
6 
 y
x . The coefficient of correlation between x and y is
(a)
3
1
 (b)
3
1
(c)
2
1
 (d)
2
1
68. If the lines of regression be 0

 y
x and 0
3
4 

 y
x and 1
2

x
 , then the coefficient of correlation is
(a) – 0.5 (b) 0.5 (c) 1.0 (d) – 1.0
69. A student obtained two regression lines as 0
7
5
1 


 y
x
L and 0
8
3
2 


 y
x
L . Then the regression line of y on x is
(a) 1
L (b) 2
L (c) Neither of the two (d) 0
5 
 y
x
70. If yx
b and xy
b are regression coefficients of y on x and x on y respectively, then which of the following statement is true
(a) 4
.
1
,
5
.
1 
 yx
xy b
b (b) 9
.
0
,
5
.
1 
 yx
xy b
b (c) 8
.
0
,
5
.
1 
 yx
xy b
b (d) 6
.
0
,
5
.
1 
 yx
xy b
b
71. Angle between two lines of regression is given by
(a)

















yx
xy
xy
yx
b
b
b
b
1
1
tan 1
(b)












xy
yx
xy
yx
b
b
b
b 1
tan 1
(c)

















yx
xy
yx
xy
b
b
b
b
1
1
tan 1
(d)











xy
yx
xy
yx
b
b
b
b
.
1
tan 1
72. If acute angle between the two regression lines is , then
(a) 2
1
sin r


 (b) 2
1
tan r


 (c) 2
1
sin r


 (d) 2
1
tan r



73. If the angle between the two lines of regression is 90°, then it represents
(a) Perfect correlation (b) Perfect negative correlation (c) No linear correlation (d) None of these
74. If 7
2 
 y
x and 7
2 
 y
x are the two regression lines respectively, then the correlation co-efficient between x and y is
(a) + 1 (b) –1 (c)
2
1
 (d)
2
1

75. For a perfect correlation between the variables x and y, the line of regression is 0


 c
by
ax where 0
,
, 
c
b
a ; then 
)
,
( y
x

(a) 0 (b) –1 (c) 1 (d) None of these
76. If two random variables X and Y of a bivariate distribution are connected by the relationship 4
2
3 
 y
x , then correlation coefficient
xy
r equals
(a) 1 (b) –1 (c) 2/3 (d) –2/3
77. Two variables x and y are related by the linear equation 0


 c
by
ax . The coefficient of correlation between the two is +1, if
(a) a is positive (b) b is positive (c) a and b both are positive (d) a and b are of opposite sign
78. If the two lines of regression are 55
3
5 
 y
x and 45
7 
 y
x , then the correlation coefficient between x and y is
(a) +1 (b) –1 (c)
21
5
 (d)
5
21

79. The error of prediction of x from the required line of regression is given by,
(where  is the co-efficient of correlation)
(a) )
1
( 2

 
x (b) )
1
( 2
2

 
x
n (c) )
1
( 2
2

 
x (d) )
1
( 2
2

 
y
n
80. Probable error of r is
Correlation and Regression 81
(a) 






 
n
r2
1
6745
.
0 (b) 






 
n
r 2
1
6754
.
0 (c) 






 
n
r 2
1
6547
.
0 (d) 






 
n
r2
1
6754
.
0
81. For the following data
x y
Mean 65 67
Standard deviation 5.0 2.5
Correlation coefficient 0.8
Then the equation of line of regression of y on x is
(a) )
65
(
5
2
67 

 x
y (b) )
65
(
5
1
67 

 x
y (c) )
67
(
5
2
65 

 y
x (d) )
67
(
5
1
65 

 y
x
82. If the lines of regression of y on x and that of x on y are 4

 kx
y and 5
4 
 y
x respectively, then
(a) 0

k (b) 0

k (c)
4
1
0 
 k (d) 1
0 
 k
83. From the following observations )}
5
,
13
(
),
6
,
10
(
),
2
,
7
(
),
5
,
4
(
),
7
,
1
{(
)}
,
{( 
y
x . The line of regression of y on x is
(a) 0
187
30
7 

 y
x (b) 0
187
30
7 

 y
x (c) 0
187
30
7 

 y
x (d) None of these
84. If the variance of 9

x and regression equations are 0
33
5
4 

 y
x and 0
10
9
20 

 y
x , then the coefficient of correlation
between x and y and the variance of y respectively are
(a) 0.6; 16 (b) 0.16; 16 (c) 0.3; 4 (d) 0.6; 4
85. If the two lines of regression are 3
4 
 y
x and 15
3 
 y
x , then value of x for 3

y is
(a) 4 (b) –9 (c) – 4 (d) None of these
86. Which of the following two sets of regression lines are the true representative of the information from the bivariate population
I. 15
4 
 y
x and 3
,
3
,
12
3 


 y
x
x
y II. 9
4
3 
 y
x and
13
30
,
10
5
,
1
4 



 y
x
y
x
(a) Both I and II (b) II only (c) I only (d) None of these
87. Out of the two lines of regression given by 4
2 
 y
x and 0
5
3
2 

 y
x , the regression line of x on y is
(a) 4
2 
 y
x (b) 0
5
3
2 

 y
x
(c) The given lines cannot be the regression lines (d) 0
2 
 y
x
88. Regression of savings (S) of a family on income Y may be expressed as
m
Y
a
S 
 , where a and m are constants. In a random sample
of 100 families the variance of savings is one-quarter of the variance of incomes and the correlation coefficient is found to be 0.4. The
value of m is
(a) 2 (b) 5 (c) 8 (d) None of these
A
Ad
dv
va
an
nc
ce
e L
Le
ev
ve
el
l

Recomendados

Correlation & Regression (complete) Theory. Module-6-Bpdf von
Correlation & Regression (complete) Theory. Module-6-BpdfCorrelation & Regression (complete) Theory. Module-6-Bpdf
Correlation & Regression (complete) Theory. Module-6-BpdfSTUDY INNOVATIONS
7 views9 Folien
5 regression von
5 regression5 regression
5 regressionAnas Farooq Maniya AFM
3.8K views5 Folien
Correlation by Neeraj Bhandari ( Surkhet.Nepal ) von
Correlation by Neeraj Bhandari ( Surkhet.Nepal )Correlation by Neeraj Bhandari ( Surkhet.Nepal )
Correlation by Neeraj Bhandari ( Surkhet.Nepal )Neeraj Bhandari
7.4K views38 Folien
02-NUMERICAL METHOD (ASSIGNMENT) von
02-NUMERICAL METHOD (ASSIGNMENT) 02-NUMERICAL METHOD (ASSIGNMENT)
02-NUMERICAL METHOD (ASSIGNMENT) STUDY INNOVATIONS
11 views10 Folien
4 correlation von
4 correlation4 correlation
4 correlationAnas Farooq Maniya AFM
1.5K views4 Folien
Corr-and-Regress (1).ppt von
Corr-and-Regress (1).pptCorr-and-Regress (1).ppt
Corr-and-Regress (1).pptMuhammadAftab89
23 views30 Folien

Más contenido relacionado

Similar a 05-CORRELATION AND REGRESSION (ASSIGNEMNT)

Corr-and-Regress.ppt von
Corr-and-Regress.pptCorr-and-Regress.ppt
Corr-and-Regress.pptHarunorRashid74
1 view30 Folien
Cr-and-Regress.ppt von
Cr-and-Regress.pptCr-and-Regress.ppt
Cr-and-Regress.pptRidaIrfan10
2 views30 Folien
Corr-and-Regress.ppt von
Corr-and-Regress.pptCorr-and-Regress.ppt
Corr-and-Regress.pptkrunal soni
1 view30 Folien
NIMCET Previous Year Solved Paper 2022 von
NIMCET Previous Year Solved  Paper 2022NIMCET Previous Year Solved  Paper 2022
NIMCET Previous Year Solved Paper 2022Infomaths
10 views15 Folien
05. Set & Relation Exercise. Module-1pdf von
05. Set & Relation  Exercise. Module-1pdf05. Set & Relation  Exercise. Module-1pdf
05. Set & Relation Exercise. Module-1pdfSTUDY INNOVATIONS
20 views8 Folien
02-BINOMIAL THEOREM-(E)-Assignment von
02-BINOMIAL THEOREM-(E)-Assignment02-BINOMIAL THEOREM-(E)-Assignment
02-BINOMIAL THEOREM-(E)-AssignmentSTUDY INNOVATIONS
9 views20 Folien

Similar a 05-CORRELATION AND REGRESSION (ASSIGNEMNT) (20)

NIMCET Previous Year Solved Paper 2022 von Infomaths
NIMCET Previous Year Solved  Paper 2022NIMCET Previous Year Solved  Paper 2022
NIMCET Previous Year Solved Paper 2022
Infomaths 10 views
Discrete maths questions von DIT University
Discrete maths questionsDiscrete maths questions
Discrete maths questions
DIT University11.3K views
Correlation and Regrretion von Parth Desani
Correlation and RegrretionCorrelation and Regrretion
Correlation and Regrretion
Parth Desani80 views
Statistics von KafiPati
Statistics Statistics
Statistics
KafiPati21 views
ISI MSQE Entrance Question Paper (2011) von CrackDSE
ISI MSQE Entrance Question Paper (2011)ISI MSQE Entrance Question Paper (2011)
ISI MSQE Entrance Question Paper (2011)
CrackDSE15.9K views
Given are five observations for two variables- x and y- (a) Develop a.pdf von aoneelectronices
Given are five observations for two variables- x and y- (a) Develop a.pdfGiven are five observations for two variables- x and y- (a) Develop a.pdf
Given are five observations for two variables- x and y- (a) Develop a.pdf
aoneelectronices12 views
GATE Mathematics Paper-2000 von Dips Academy
GATE Mathematics Paper-2000GATE Mathematics Paper-2000
GATE Mathematics Paper-2000
Dips Academy448 views

Más de STUDY INNOVATIONS

Science-Class-12 Physics and Chemistry DPP Talent Search Examinations von
Science-Class-12 Physics and Chemistry DPP Talent Search ExaminationsScience-Class-12 Physics and Chemistry DPP Talent Search Examinations
Science-Class-12 Physics and Chemistry DPP Talent Search ExaminationsSTUDY INNOVATIONS
5 views15 Folien
Science-Class-12 Maths DPP Talent Search Examinations von
Science-Class-12 Maths DPP Talent Search ExaminationsScience-Class-12 Maths DPP Talent Search Examinations
Science-Class-12 Maths DPP Talent Search ExaminationsSTUDY INNOVATIONS
6 views3 Folien
Science-Class-11 Physics and Chemistry DPP Talent Search Examinations von
Science-Class-11 Physics and Chemistry DPP Talent Search ExaminationsScience-Class-11 Physics and Chemistry DPP Talent Search Examinations
Science-Class-11 Physics and Chemistry DPP Talent Search ExaminationsSTUDY INNOVATIONS
12 views14 Folien
Science-Class-11 Maths DPP Talent Search Examinations von
Science-Class-11 Maths DPP Talent Search ExaminationsScience-Class-11 Maths DPP Talent Search Examinations
Science-Class-11 Maths DPP Talent Search ExaminationsSTUDY INNOVATIONS
5 views3 Folien
Science-Class-11 Biology DPP Talent Search Examinations von
Science-Class-11 Biology DPP Talent Search ExaminationsScience-Class-11 Biology DPP Talent Search Examinations
Science-Class-11 Biology DPP Talent Search ExaminationsSTUDY INNOVATIONS
6 views9 Folien
Science-Class-10 DPP Talent Search Examinations von
Science-Class-10 DPP Talent Search ExaminationsScience-Class-10 DPP Talent Search Examinations
Science-Class-10 DPP Talent Search ExaminationsSTUDY INNOVATIONS
8 views12 Folien

Más de STUDY INNOVATIONS(20)

Science-Class-12 Physics and Chemistry DPP Talent Search Examinations von STUDY INNOVATIONS
Science-Class-12 Physics and Chemistry DPP Talent Search ExaminationsScience-Class-12 Physics and Chemistry DPP Talent Search Examinations
Science-Class-12 Physics and Chemistry DPP Talent Search Examinations
Science-Class-12 Maths DPP Talent Search Examinations von STUDY INNOVATIONS
Science-Class-12 Maths DPP Talent Search ExaminationsScience-Class-12 Maths DPP Talent Search Examinations
Science-Class-12 Maths DPP Talent Search Examinations
Science-Class-11 Physics and Chemistry DPP Talent Search Examinations von STUDY INNOVATIONS
Science-Class-11 Physics and Chemistry DPP Talent Search ExaminationsScience-Class-11 Physics and Chemistry DPP Talent Search Examinations
Science-Class-11 Physics and Chemistry DPP Talent Search Examinations
Science-Class-11 Maths DPP Talent Search Examinations von STUDY INNOVATIONS
Science-Class-11 Maths DPP Talent Search ExaminationsScience-Class-11 Maths DPP Talent Search Examinations
Science-Class-11 Maths DPP Talent Search Examinations
Science-Class-11 Biology DPP Talent Search Examinations von STUDY INNOVATIONS
Science-Class-11 Biology DPP Talent Search ExaminationsScience-Class-11 Biology DPP Talent Search Examinations
Science-Class-11 Biology DPP Talent Search Examinations
Science-Class-9 DPP Talent Search Examinations von STUDY INNOVATIONS
Science-Class-9 DPP Talent Search ExaminationsScience-Class-9 DPP Talent Search Examinations
Science-Class-9 DPP Talent Search Examinations
Mathematics-Class-10 DPP Talent Search Examinations von STUDY INNOVATIONS
Mathematics-Class-10 DPP Talent Search ExaminationsMathematics-Class-10 DPP Talent Search Examinations
Mathematics-Class-10 DPP Talent Search Examinations
Mathematics-Class-8 DPP Talent Search Examinations von STUDY INNOVATIONS
Mathematics-Class-8 DPP Talent Search ExaminationsMathematics-Class-8 DPP Talent Search Examinations
Mathematics-Class-8 DPP Talent Search Examinations
Mathematics-Class-7 DPP Talent Search Examinations von STUDY INNOVATIONS
Mathematics-Class-7 DPP Talent Search ExaminationsMathematics-Class-7 DPP Talent Search Examinations
Mathematics-Class-7 DPP Talent Search Examinations
Mathematics-Class-6 DPP Talent Search Examinations von STUDY INNOVATIONS
Mathematics-Class-6 DPP Talent Search ExaminationsMathematics-Class-6 DPP Talent Search Examinations
Mathematics-Class-6 DPP Talent Search Examinations
Mathematics-Class-4 DPP Talent Search Examinations von STUDY INNOVATIONS
Mathematics-Class-4 DPP Talent Search ExaminationsMathematics-Class-4 DPP Talent Search Examinations
Mathematics-Class-4 DPP Talent Search Examinations
Mathematics-Class-3 DPP Talent Search Examinations von STUDY INNOVATIONS
Mathematics-Class-3 DPP Talent Search ExaminationsMathematics-Class-3 DPP Talent Search Examinations
Mathematics-Class-3 DPP Talent Search Examinations
Mathematics-Class-2 DPP Talent Search Examinations von STUDY INNOVATIONS
Mathematics-Class-2 DPP Talent Search ExaminationsMathematics-Class-2 DPP Talent Search Examinations
Mathematics-Class-2 DPP Talent Search Examinations
Mathematics-Class-1 DPP Talent Search Examinations von STUDY INNOVATIONS
Mathematics-Class-1 DPP Talent Search ExaminationsMathematics-Class-1 DPP Talent Search Examinations
Mathematics-Class-1 DPP Talent Search Examinations

Último

Google solution challenge..pptx von
Google solution challenge..pptxGoogle solution challenge..pptx
Google solution challenge..pptxChitreshGyanani1
117 views18 Folien
Scope of Biochemistry.pptx von
Scope of Biochemistry.pptxScope of Biochemistry.pptx
Scope of Biochemistry.pptxshoba shoba
126 views55 Folien
ACTIVITY BOOK key water sports.pptx von
ACTIVITY BOOK key water sports.pptxACTIVITY BOOK key water sports.pptx
ACTIVITY BOOK key water sports.pptxMar Caston Palacio
511 views4 Folien
Gopal Chakraborty Memorial Quiz 2.0 Prelims.pptx von
Gopal Chakraborty Memorial Quiz 2.0 Prelims.pptxGopal Chakraborty Memorial Quiz 2.0 Prelims.pptx
Gopal Chakraborty Memorial Quiz 2.0 Prelims.pptxDebapriya Chakraborty
625 views81 Folien
OEB 2023 Co-learning To Speed Up AI Implementation in Courses.pptx von
OEB 2023 Co-learning To Speed Up AI Implementation in Courses.pptxOEB 2023 Co-learning To Speed Up AI Implementation in Courses.pptx
OEB 2023 Co-learning To Speed Up AI Implementation in Courses.pptxInge de Waard
169 views29 Folien
11.30.23 Poverty and Inequality in America.pptx von
11.30.23 Poverty and Inequality in America.pptx11.30.23 Poverty and Inequality in America.pptx
11.30.23 Poverty and Inequality in America.pptxmary850239
149 views33 Folien

Último(20)

Scope of Biochemistry.pptx von shoba shoba
Scope of Biochemistry.pptxScope of Biochemistry.pptx
Scope of Biochemistry.pptx
shoba shoba126 views
OEB 2023 Co-learning To Speed Up AI Implementation in Courses.pptx von Inge de Waard
OEB 2023 Co-learning To Speed Up AI Implementation in Courses.pptxOEB 2023 Co-learning To Speed Up AI Implementation in Courses.pptx
OEB 2023 Co-learning To Speed Up AI Implementation in Courses.pptx
Inge de Waard169 views
11.30.23 Poverty and Inequality in America.pptx von mary850239
11.30.23 Poverty and Inequality in America.pptx11.30.23 Poverty and Inequality in America.pptx
11.30.23 Poverty and Inequality in America.pptx
mary850239149 views
Structure and Functions of Cell.pdf von Nithya Murugan
Structure and Functions of Cell.pdfStructure and Functions of Cell.pdf
Structure and Functions of Cell.pdf
Nithya Murugan455 views
UWP OA Week Presentation (1).pptx von Jisc
UWP OA Week Presentation (1).pptxUWP OA Week Presentation (1).pptx
UWP OA Week Presentation (1).pptx
Jisc87 views
Class 10 English notes 23-24.pptx von TARIQ KHAN
Class 10 English notes 23-24.pptxClass 10 English notes 23-24.pptx
Class 10 English notes 23-24.pptx
TARIQ KHAN125 views
Psychology KS4 von WestHatch
Psychology KS4Psychology KS4
Psychology KS4
WestHatch76 views
Psychology KS5 von WestHatch
Psychology KS5Psychology KS5
Psychology KS5
WestHatch81 views
The basics - information, data, technology and systems.pdf von JonathanCovena1
The basics - information, data, technology and systems.pdfThe basics - information, data, technology and systems.pdf
The basics - information, data, technology and systems.pdf
JonathanCovena1106 views
Narration ppt.pptx von TARIQ KHAN
Narration  ppt.pptxNarration  ppt.pptx
Narration ppt.pptx
TARIQ KHAN131 views
Classification of crude drugs.pptx von GayatriPatra14
Classification of crude drugs.pptxClassification of crude drugs.pptx
Classification of crude drugs.pptx
GayatriPatra1483 views
11.28.23 Social Capital and Social Exclusion.pptx von mary850239
11.28.23 Social Capital and Social Exclusion.pptx11.28.23 Social Capital and Social Exclusion.pptx
11.28.23 Social Capital and Social Exclusion.pptx
mary850239291 views

05-CORRELATION AND REGRESSION (ASSIGNEMNT)

  • 1. 74 Correlation and Regression 1. For the bivariate frequency table for x and y x y 0 – 10 10 – 20 20 – 30 30 – 40 Sum 0 – 10 3 2 4 2 11 10 – 20 – 1 3 1 5 20 – 30 3 2 – – 5 30 – 40 – 6 7 – 13 Sum 6 11 14 3 34 Then the marginal frequency distribution for y is given by (a) 0 – 10 6 10 – 20 11 20 – 30 14 30 – 40 3 (b) 0 – 10 11 10 – 20 5 20 – 30 5 30 – 40 13 (c) 0 – 10 10 10 – 20 12 20 – 30 11 30 – 40 1 (d) None of these 2. The variables x and y represent height in cm and weight in gm respectively. The correlation between x and y has the unit (a) gm (b) cm (c) gm.cm (d) None of these 3. The value of    )] )( [( y y x x is (a) y x xy r n   . . (b) 2 2 . y xy x r   (c) y x xy r   (d) None of these 4. Karl Pearson’s coefficient of correlation is dependent (a) Only on the change of origin and not on the change of scale (b) Only on the change of scale and not on the change of origin (b) On both the change of origin and the change of scale (d) Neither on the change of scale nor on the change of origin 5. If X and Y are independent variable, then correlation coefficient is B Ba as si ic c L Le ev ve el l Correlation 74
  • 2. Correlation and Regression 75 (a) 1 (b) – 1 (c) 2 1 (d) 0 6. The value of the correlation coefficient between two variable lies between (a) 0 and 1 (b) – 1 and 1 (c) 0 and  (d) –  and 0 7. The coefficient of correlation between two variables x and y is given by (a) y x y x y x r      2 2 2 2     (b) y x y x y x r      2 2 2 2     (c) y x y x y x r      2 2 2     (d) y x y x y x r      2 2 2     8. If r is the correlation coefficient between two variables, then (a) 1  r (b) 1  r (c) 1 | |  r (d) 1 | |  r 9. When the correlation between two variables is perfect, then the value of coefficient of correlation r is (a) –1 (b) +1 (c) 0 (d) 1  10. If correlation between x and y is r, then between y and x correlation will be (a) –r (b) r 1 (c) r (d) 1- r 11. If r is the coefficient of correlation and , bX a Y   then  | | r (a) b a (b) a b (c) 1 (d) None of these 12. If coefficient of correlation between the variables x and y is zero, then (a) Variables x and y have no relation (b) y decreases as x increases (c) y increases as x increases (d) There may be a relation between x and y 13. When the origin is changed, then the coefficient of correlation (a) Becomes zero (b) Varies (c) Remains fixed (d) None of these 14. If , 97 . 0   r then (a) Correlation is negative and curved (b) Correlation is linear and negative (c) Correlation is in third and fourth quadrant (d) None of these 15. In a scatter diagram, if plotted points form a straight line running from the lower left to the upper right corner, then there exists a (a) High degree of positive correlation (b) Perfect positive correlation (c) Perfect negative correlation (d) None of these 16. If the two variables x and y of a bivariate distribution have a perfect correlation, they may be connected by (a) 1  xy (b) 1   y b x a (c) 1   b y a x (d) None of these 17. If x and y are related as , 3 4   x y then the nature of correlation between x and y is (a) Perfect positive (b) Perfect negative (c) No correlation (d) None of these 18. If , 15   x   36 y ,   110 xy , 5  n then ) , ( y x Cov equals (a) 5 1 (b) 5 1  (c) 5 2 (d) 5 2  19. For a bivariable distribution ) , ( y x , if         , 6 , 5 , 60 , 50 , 350 y x y x xy then ) , ( y x Cov equals (a) 5 (b) 6 (c) 22 (d) 28 20. For covariance the number of variate values in the two given distribution should be (a) Unequal (b) Any number in one and any number in the other (c) Equal (d) None of these 21. If x and y are independent variables, then
  • 3. 76 Correlation and Regression (a) 1 ) , (  y x Cov (b) 1 ) , (   y x Cov (c) 0 ) , (  y x Cov (d) 2 1 ) , (   y x Cov 22. If x : 3 4 8 6 2 1 y : 5 3 9 6 9 2 then the coefficient of correlation will be approximately (a) 0.49 (b) 0. 40 (c) – 0. 49 (d) – 0. 40 23. The coefficient of correlation for the following data x 20 25 30 35 40 45 y 16 10 8 20 5 10 will be (a) 0. 32 (b) – 0.32 (c) 0. 35 (d) None of these 24. Coefficient of correlation from the following data x : 1 2 3 4 5 y : 2 5 7 8 10 will be (a) 0. 97 (b) – 0.97 (c) 0. 90 (d) None of these 25. Coefficient of correlation between x and y for the following data x : 15 16 17 17 18 20 10 y : 12 17 15 16 12 15 11 will be approximately (a) 0. 50 (b) 0. 53 (c) – 0. 50 (d) – 0. 53 26. Karl Pearson’s coefficient of correlation between x and y for the following data x : 3 4 8 9 6 2 1 y : 5 3 7 7 6 9 2 (a) 0. 480 (b) – 0. 480 (c) 0. 408 (d) – 0. 408 27. The coefficient of correlation for the following data x : 1 2 3 4 5 6 7 8 9 10 y : 3 10 5 1 2 9 4 8 7 6 will be (a) 0. 224 (b) 0. 240 (c) 0. 30 (d) None of these 28. Karl Pearson’s coefficient of correlation between the marks in English and Mathematics by ten students Marks in English 20 13 18 21 11 12 17 14 19 15 Marks in Maths 17 12 23 25 14 8 19 21 22 19 will be (a) 0. 75 (b) – 0. 75 (c) 0. 57 (d) None of these 29. Coefficient of correlation between x and y for the following data x – 4 –3 –2 –1 0 1 2 3 4 y 16 9 4 1 0 1 4 9 16 will be (a) 1 (b) –1 (c) 0 (d) None of these 30. If the variances of two variables x and y are respectively 9 and 16 and their covariance is 8, then their coefficient of correlation is
  • 4. Correlation and Regression 77 (a) 3 2 (b) 2 3 8 (c) 2 8 9 (d) 9 2 31. If the co-efficient of correlation between x and y is 0. 28, covariance between x and y is 7.6 and the variance of x is 9, then the S.D. of y series is (a) 9.8 (b) 10. 1 (c) 9.05 (d) 10. 05 32. If Cov(x, y) = 0, then ) , ( y x  equals (a) 0 (b) 1 (c) – 1 (d) 2 1  33. Karl Pearson’s coefficient of correlation between the heights (in inches) of teachers and students corresponding to the given data Height of teachers x : 66 67 68 69 70 Height of students y : 68 66 69 72 70 is (a) 2 1 (b) 2 (c) 2 1  (d) 0 34. The coefficient of correlation between x and y is 0.6, then covariance is 16. Standard deviation of x is 4, then the standard deviation of y is (a) 5 (b) 10 (c) 20/3 (d) None of these 35. If , 3 ) , (  v u Cov 5 . 5 , 5 . 4 2 2   v u   , then ) , ( v u  is (a) 0.121 (b) 0.603 (c) 0.07 (d) 0.347 36. Given , 10  n   , 4 x   , 3 y   , 8 2 x   9 2 y and   , 3 xy then the coefficient of correlation is (a) 4 1 (b) 12 7 (c) 4 15 (d) 3 14 37. Let xy r be the coefficient of correlation between two variables x and y. If the variable x is multiplied by 3 and the variable y is increased by 2, then the correlation coefficient of the new set of variables is (a) xy r (b) xy r 3 (c) 2 3  xy r (d) None of these 38. Coefficient of correlation between the two variates X and Y is X 1 2 3 4 5 Y 5 4 3 2 1 (a) 0 (b) –1 (c) 1 (d) None of these 39. The coefficient of correlation between two variables X and Y is 0.5, their covariance is 15 and , 6  x  then (a) 5 (b) 10 (c) 20 (d) 6 40. Karl Pearson’s coefficient of rank correlation between the ranks obtained by ten students in Mathematics and Chemistry in a class test as given below Rank in Mathematics : 1 2 3 4 5 6 7 8 9 10 Rank in Chemistry : 3 10 5 1 2 9 4 8 7 6 i (a) 0.224 (b) 0.204 (c) 0.240 (d) None of these 41. The sum of squares of differences in ranks of marks obtained in Physics and Chemistry by 10 students in a test is 150, then the co- efficient of rank-correlation is given by (a) 0.909 (b) 0.091 (c) 0.849 (d) None of these A Ad dv va an nc ce e L Le ev ve el l
  • 5. 78 Correlation and Regression 42. If a, b, h, k are constants, while U and V are k b Y V h a X U     , , then (a) Cov (X, Y) = Cov (U, V) (b) Cov (X, Y) = hk Cov (U, V) (c) Cov (X, Y) = ab Cov (U, V) (d) Cov (U, V) = hk Cov (X, Y) 43. Let X, Y be two variables with correlation coefficient (X, Y) and variables U, V be related to X, Y by the relation U = 2X, V = 3Y, then (U, V) is equal t (a) (X, Y) (b) 6(X, Y) (c) ) , ( 6 Y X  (d) ) , ( 2 3 Y X  44. If X and Y are two uncorrelated variables and if Y X u   , Y X v   , then r(u, v) is equal to (a) 2 2 2 2 y x y x       (b) 2 2 2 2 y x y x       (c) y x y x     2 2  (d) None of these 45. If 3 , 2 , 12 , 0       y x i iy x y x   and n = 10, then the coefficient of correlation is (a) 0.4 (b) 0.3 (c) 0.2 (d) 0.1 46. Let X and Y be two variables with the same variance and U and V be two variables such that U = X + Y, V = X – Y. Then Cov (U, V) is equal to (a) Cov (X, Y) (b) 0 (c) 1 (d) – 1 47. If there exists a linear statistical relationship between two variables x and y, then the regression coefficient of y on x is (a) y x y x cor   . ) , ( (b) 2 ) , ( y y x cor  (c) 2 ) , ( x y x cor  (d) x y x cor  ) , ( , where y x   , are standard deviations of x and y respectively. 48. If 0    c by ax is a line of regression of y on x and 0 1 1 1    c y b x a that of x on y, then (a) 1 1 ab b a  (b) 1 1 bb aa  (c) b a ab 1 1  (d) None of these 49. Least square lines of regression give best possible estimates, when (X, Y) is (a) <1 (b) > –1 (c) –1 or 1 (d) None of these 50. Which of the following statement is correct (a) Correlation coefficient is the arithmetic mean of the regression coefficient (b) Correlation coefficient is the geometric mean of the regression coefficient (c) Correlation coefficient is the harmonic mean of the regression coefficient (d) None of these 51. The relationship between the correlation coefficient r and the regression coefficients xy b and yx b is (a) ) ( 2 1 yx xy b b r   (b) yx xy b b r .  (c) 2 ) ( yx xy b b r  (d) yx xy b b r   B Ba as si ic c L Le ev ve el l Regression
  • 6. Correlation and Regression 79 52. If the coefficient of correlation is positive, then the regression coefficients (a) Both are positive (b) Both are negative (c) One is positive and another is negative (d) None of these 53. If yx b and xy b are both positive (where yx b and xy b are regression coefficients), then (a) r b b xy yx 2 1 1   (b) r b b xy yx 2 1 1   (c) 2 1 1 r b b xy yx   (d) None of these 54. If 1 x and 2 x are regression coefficients and r is the coefficient of correlation, then (a) r x x   2 1 (b) r x x   2 1 (c) r x x 2 2 1   (d) None of these 55. If one regression coefficient be unity, then the other will be (a) Greater than unity (b) Greater than or equal to unity (c) Less than or equal to unity (d) None of these 56. If one regression coefficient be less than unity, then the other will be (a) Less than unity (b) Equal to unity (c) Greater than unity (d) All of the above 57. If regression coefficient of y on x is 2, then the regression coefficient of x on y is (a) 2 (b) 2 1 (c) 2 1  (d) None of these 58. The lines of regression of x on y estimates (a) x for a given value of y (b) y for a given value of x (c) x from y and y from x (d) None of these 59. The statistical method which helps us to estimate or predict the unknown value of one variable from the known value of the related variable is called (a) Correlation (b) Scatter diagram (c) Regression (d) Dispersion 60. The coefficient of correlation between two variables x and y is 0.8 while regression coefficient of y on x is 0.2. Then the regression coefficient of x on y is (a) –3.2 (b) 3.2 (c) 4 (d) 0.16 61. If the lines of regression coincide, then the value of correlation coefficient is (a) 0 (b) 1 (c) 0.5 (d) 0.33 62. Two lines of regression are 0 7 4 3    y x and 0 5 4    y x . Then correlation coefficient between x and y is (a) 4 3 (b) 4 3  (c) 16 3 (d) 16 3  63. If the two lines of regression are 0 7 3 4    y x and 0 8 4 3    y x , then the means of x and y are (a) 7 11 , 7 4   (b) 7 11 , 7 4  (c) 7 11 , 7 4  (d) 4, 7 64. The two regression lines for a bivariate data are 0 50    y x and 0 3 2    K y x . If 0  x , then y is (a) 50 (b) 100  K (c) – 50 (d) K  50 65. The two regression lines are 0 6 9 2    y x and 0 1 2    y x . What is the correlation coefficient between x and y (a) 3 2  (b) 3 2 (c) 9 4 (d) None of these 66. If the two regression coefficient between x and y are 0.8 and 0.2, then the coefficient of correlation between them is
  • 7. 80 Correlation and Regression (a) 0.4 (b) 0.6 (c) 0.3 (d) 0.5 67. The two lines of regression are given by 26 2 3   y x and 31 6   y x . The coefficient of correlation between x and y is (a) 3 1  (b) 3 1 (c) 2 1  (d) 2 1 68. If the lines of regression be 0   y x and 0 3 4    y x and 1 2  x  , then the coefficient of correlation is (a) – 0.5 (b) 0.5 (c) 1.0 (d) – 1.0 69. A student obtained two regression lines as 0 7 5 1     y x L and 0 8 3 2     y x L . Then the regression line of y on x is (a) 1 L (b) 2 L (c) Neither of the two (d) 0 5   y x 70. If yx b and xy b are regression coefficients of y on x and x on y respectively, then which of the following statement is true (a) 4 . 1 , 5 . 1   yx xy b b (b) 9 . 0 , 5 . 1   yx xy b b (c) 8 . 0 , 5 . 1   yx xy b b (d) 6 . 0 , 5 . 1   yx xy b b 71. Angle between two lines of regression is given by (a)                  yx xy xy yx b b b b 1 1 tan 1 (b)             xy yx xy yx b b b b 1 tan 1 (c)                  yx xy yx xy b b b b 1 1 tan 1 (d)            xy yx xy yx b b b b . 1 tan 1 72. If acute angle between the two regression lines is , then (a) 2 1 sin r    (b) 2 1 tan r    (c) 2 1 sin r    (d) 2 1 tan r    73. If the angle between the two lines of regression is 90°, then it represents (a) Perfect correlation (b) Perfect negative correlation (c) No linear correlation (d) None of these 74. If 7 2   y x and 7 2   y x are the two regression lines respectively, then the correlation co-efficient between x and y is (a) + 1 (b) –1 (c) 2 1  (d) 2 1  75. For a perfect correlation between the variables x and y, the line of regression is 0    c by ax where 0 , ,  c b a ; then  ) , ( y x  (a) 0 (b) –1 (c) 1 (d) None of these 76. If two random variables X and Y of a bivariate distribution are connected by the relationship 4 2 3   y x , then correlation coefficient xy r equals (a) 1 (b) –1 (c) 2/3 (d) –2/3 77. Two variables x and y are related by the linear equation 0    c by ax . The coefficient of correlation between the two is +1, if (a) a is positive (b) b is positive (c) a and b both are positive (d) a and b are of opposite sign 78. If the two lines of regression are 55 3 5   y x and 45 7   y x , then the correlation coefficient between x and y is (a) +1 (b) –1 (c) 21 5  (d) 5 21  79. The error of prediction of x from the required line of regression is given by, (where  is the co-efficient of correlation) (a) ) 1 ( 2    x (b) ) 1 ( 2 2    x n (c) ) 1 ( 2 2    x (d) ) 1 ( 2 2    y n 80. Probable error of r is
  • 8. Correlation and Regression 81 (a)          n r2 1 6745 . 0 (b)          n r 2 1 6754 . 0 (c)          n r 2 1 6547 . 0 (d)          n r2 1 6754 . 0 81. For the following data x y Mean 65 67 Standard deviation 5.0 2.5 Correlation coefficient 0.8 Then the equation of line of regression of y on x is (a) ) 65 ( 5 2 67    x y (b) ) 65 ( 5 1 67    x y (c) ) 67 ( 5 2 65    y x (d) ) 67 ( 5 1 65    y x 82. If the lines of regression of y on x and that of x on y are 4   kx y and 5 4   y x respectively, then (a) 0  k (b) 0  k (c) 4 1 0   k (d) 1 0   k 83. From the following observations )} 5 , 13 ( ), 6 , 10 ( ), 2 , 7 ( ), 5 , 4 ( ), 7 , 1 {( )} , {(  y x . The line of regression of y on x is (a) 0 187 30 7    y x (b) 0 187 30 7    y x (c) 0 187 30 7    y x (d) None of these 84. If the variance of 9  x and regression equations are 0 33 5 4    y x and 0 10 9 20    y x , then the coefficient of correlation between x and y and the variance of y respectively are (a) 0.6; 16 (b) 0.16; 16 (c) 0.3; 4 (d) 0.6; 4 85. If the two lines of regression are 3 4   y x and 15 3   y x , then value of x for 3  y is (a) 4 (b) –9 (c) – 4 (d) None of these 86. Which of the following two sets of regression lines are the true representative of the information from the bivariate population I. 15 4   y x and 3 , 3 , 12 3     y x x y II. 9 4 3   y x and 13 30 , 10 5 , 1 4      y x y x (a) Both I and II (b) II only (c) I only (d) None of these 87. Out of the two lines of regression given by 4 2   y x and 0 5 3 2    y x , the regression line of x on y is (a) 4 2   y x (b) 0 5 3 2    y x (c) The given lines cannot be the regression lines (d) 0 2   y x 88. Regression of savings (S) of a family on income Y may be expressed as m Y a S   , where a and m are constants. In a random sample of 100 families the variance of savings is one-quarter of the variance of incomes and the correlation coefficient is found to be 0.4. The value of m is (a) 2 (b) 5 (c) 8 (d) None of these A Ad dv va an nc ce e L Le ev ve el l