1. The initial velocity of a particle is , and the acceleration f is given by at. Which of the following relation is valid (a) (b) (c) (d) 2. A particle is moving in a straight line such that the distance described s and time taken t are given by , . If v is the velocity of the particle at any time t, then its acceleration is (a) (b) (c) (d) None of these 3. If a particle, moving in a straight line, covers a distance s in time t, given by the relations , then its acceleration is (a) (b) (c) (d) 4. The speed v of a body moving on a straight track varies according to . The distances are measured in metres and time t in seconds. The distance in metres moved by the particle at the end of 10 seconds is (a) 127 (b) 247 (c) 186 (d) 313 5. If the velocity of a particle moving in a straight line is given by , then its acceleration is (a) (b) (c) (d) 6. The position at any time t, of a particle moving along x-axis is given by the relation , where s denotes the distance in metre from the origin. The velocity v of the particle at the instant when the acceleration becomes zero, is given by (a) (b) (c) (d) 7. For a particle moving in a straight line, if time t be regarded as a function of velocity v, then the rate of change of the acceleration a is given by (a) (b) (c) (d) None of these 8. If the law of motion of a particle moving in a straight line is given by , then its acceleration a is given by (a) (b) (c) (d) None of these 9. A point moves rectilinearly with deceleration whose modulus depends on the velocity of the particle as , where a is a positive constant. At the initial moment its velocity is equal to . The time it takes before it comes to rest is (a) (b) (c) (d) 10. The law of motion of a particle moving in a straight line is given by , where v is the velocity at time t and s is the distance covered. Then acceleration is (a) A function of t (b) a function of s (c) a function of v (d) constant 11. If the displacement of a particle varies with time as , then (a) The velocity of the particle is inversely proportional to t (b) The velocity of the particle is proportional to t (c) The velocity of the particle is proportional to (d) The particle moves with a constant acceleration 12. The x and y displacement of a particle in the xy-plane at any instant are given by and , where a is a constant. The velocity of the particle at any instant is given by (a) (b) (c) (d) 13. The acceleration of a particle, starting from rest, varies with time according to the relation . The displacement of this particle at time t will be (a) (b) (c) (d) 14. A particle moves along a straight line in such a way that its distance from a fixed point on the line, at any time t from the start, is given by the equation . Its acceleration after 1 second of motion is (a) 12 (b) 16 (c) 18 (d) None of these 15. A particle moves in a straight line with
1. The initial velocity of a particle is , and the acceleration f is given by at. Which of the following relation is valid (a) (b) (c) (d) 2. A particle is moving in a straight line such that the distance described s and time taken t are given by , . If v is the velocity of the particle at any time t, then its acceleration is (a) (b) (c) (d) None of these 3. If a particle, moving in a straight line, covers a distance s in time t, given by the relations , then its acceleration is (a) (b) (c) (d) 4. The speed v of a body moving on a straight track varies according to . The distances are measured in metres and time t in seconds. The distance in metres moved by the particle at the end of 10 seconds is (a) 127 (b) 247 (c) 186 (d) 313 5. If the velocity of a particle moving in a straight line is given by , then its acceleration is (a) (b) (c) (d) 6. The position at any time t, of a particle moving along x-axis is given by the relation , where s denotes the distance in metre from the origin. The velocity v of the particle at the instant when the acceleration becomes zero, is given by (a) (b) (c) (d) 7. For a particle moving in a straight line, if time t be regarded as a function of velocity v, then the rate of change of the acceleration a is given by (a) (b) (c) (d) None of these 8. If the law of motion of a particle moving in a straight line is given by , then its acceleration a is given by (a) (b) (c) (d) None of these 9. A point moves rectilinearly with deceleration whose modulus depends on the velocity of the particle as , where a is a positive constant. At the initial moment its velocity is equal to . The time it takes before it comes to rest is (a) (b) (c) (d) 10. The law of motion of a particle moving in a straight line is given by , where v is the velocity at time t and s is the distance covered. Then acceleration is (a) A function of t (b) a function of s (c) a function of v (d) constant 11. If the displacement of a particle varies with time as , then (a) The velocity of the particle is inversely proportional to t (b) The velocity of the particle is proportional to t (c) The velocity of the particle is proportional to (d) The particle moves with a constant acceleration 12. The x and y displacement of a particle in the xy-plane at any instant are given by and , where a is a constant. The velocity of the particle at any instant is given by (a) (b) (c) (d) 13. The acceleration of a particle, starting from rest, varies with time according to the relation . The displacement of this particle at time t will be (a) (b) (c) (d) 14. A particle moves along a straight line in such a way that its distance from a fixed point on the line, at any time t from the start, is given by the equation . Its acceleration after 1 second of motion is (a) 12 (b) 16 (c) 18 (d) None of these 15. A particle moves in a straight line with