SlideShare a Scribd company logo
1 of 45
Download to read offline
Personalized screening intervals for biomarkers using joint
models for longitudinal and survival data
Dimitris Rizopoulos, Jeremy Taylor, Joost van Rosmalen, Ewout Steyerberg,
Hanneke Takkenberg
Department of Biostatistics, Erasmus University Medical Center, the Netherlands
d.rizopoulos@erasmusmc.nl
Joint Statistical Meetings
August 1st, 2016, Chicago, USA
1. Introduction
• Nowadays growing interest in tailoring medical decision making to individual patients
◃ Personalized Medicine
◃ Shared Decision Making
• This is of high relevance in various diseases
◃ cancer research, cardiovascular diseases, HIV research, . . .
Physicians are interested in accurate prognostic tools that will
inform them about the future prospect of a patient in order to
adjust medical care
JSM – August 1st, 2016, Chicago 1/30
1. Introduction (cont’d)
• Aortic Valve study: Patients who received a human tissue valve in the aortic position
◃ data collected by Erasmus MC (from 1987 to 2008);
77 received sub-coronary implantation; 209 received root replacement
• Outcomes of interest:
◃ death and re-operation → composite event
◃ aortic gradient
JSM – August 1st, 2016, Chicago 2/30
1. Introduction (cont’d)
• General Questions:
◃ Can we utilize available aortic gradient measurements to predict
survival/re-operation?
◃ When to plan the next echo for a patient?
JSM – August 1st, 2016, Chicago 3/30
1. Introduction (cont’d)
• Goals of this talk:
◃ introduce joint models
◃ dynamic predictions
◃ optimal timing of next visit
JSM – August 1st, 2016, Chicago 4/30
2.1 Joint Modeling Framework
• To answer these questions we need to postulate a model that relates
◃ the aortic gradient with
◃ the time to death or re-operation
• Some notation
◃ T∗
i : True time-to-death for patient i
◃ Ti: Observed time-to-death for patient i
◃ δi: Event indicator, i.e., equals 1 for true events
◃ yi: Longitudinal aortic gradient measurements
JSM – August 1st, 2016, Chicago 5/30
2.1 Joint Modeling Framework (cont’d)
Time
0.10.20.30.4
hazard
0.00.51.01.52.0
0 2 4 6 8
marker
JSM – August 1st, 2016, Chicago 6/30
2.1 Joint Modeling Framework (cont’d)
• We start with a standard joint model
◃ Survival Part: Relative risk model
hi(t | Mi(t)) = h0(t) exp{γ⊤
wi + αmi(t)},
where
* mi(t) = the true & unobserved value of aortic gradient at time t
* Mi(t) = {mi(s), 0 ≤ s < t}
* α quantifies the effect of aortic gradient on the risk for death/re-operation
* wi baseline covariates
JSM – August 1st, 2016, Chicago 7/30
2.1 Joint Modeling Framework (cont’d)
◃ Longitudinal Part: Reconstruct Mi(t) = {mi(s), 0 ≤ s < t} using yi(t) and a
mixed effects model (we focus on continuous markers)
yi(t) = mi(t) + εi(t)
= x⊤
i (t)β + z⊤
i (t)bi + εi(t), εi(t) ∼ N(0, σ2
),
where
* xi(t) and β: Fixed-effects part
* zi(t) and bi: Random-effects part, bi ∼ N(0, D)
JSM – August 1st, 2016, Chicago 8/30
2.1 Joint Modeling Framework (cont’d)
• The two processes are associated ⇒ define a model for their joint distribution
• Joint Models for such joint distributions are of the following form
(Tsiatis & Davidian, Stat. Sinica, 2004; Rizopoulos, CRC Press, 2012)
p(yi, Ti, δi) =
∫
p(yi | bi)
{
h(Ti | bi)δi S(Ti | bi)
}
p(bi) dbi
where
◃ bi a vector of random effects that explains the interdependencies
◃ p(·) density function; S(·) survival function
JSM – August 1st, 2016, Chicago 9/30
2.2 Estimation
• Joint models can be estimated with either Maximum Likelihood or Bayesian
approaches (i.e., MCMC)
• Here we follow the Bayesian approach because it facilitates computations for our later
developments. . .
JSM – August 1st, 2016, Chicago 10/30
3.1 Prediction Survival – Definitions
• We are interested in predicting survival probabilities for a new patient j that has
provided a set of aortic gradient measurements up to a specific time point t
• Example: We consider Patients 20 and 81 from the Aortic Valve dataset
JSM – August 1st, 2016, Chicago 11/30
3.1 Prediction Survival – Definitions (cont’d)
Follow−up Time (years)
AorticGradient(mmHg)
0
2
4
6
8
10
0 5 10
Patient 20
0 5 10
Patient 81
JSM – August 1st, 2016, Chicago 12/30
3.1 Prediction Survival – Definitions (cont’d)
Follow−up Time (years)
AorticGradient(mmHg)
0
2
4
6
8
10
2 4 6 8 10 12
Patient 20
2 4 6 8 10 12
Patient 81
JSM – August 1st, 2016, Chicago 12/30
3.1 Prediction Survival – Definitions (cont’d)
Follow−up Time (years)
AorticGradient(mmHg)
0
2
4
6
8
10
2 4 6 8 10 12
Patient 20
2 4 6 8 10 12
Patient 81
JSM – August 1st, 2016, Chicago 12/30
3.1 Prediction Survival – Definitions (cont’d)
• What do we know for these patients?
◃ a series of aortic gradient measurements
◃ patient are event-free up to the last measurement
• Dynamic Prediction survival probabilities are dynamically updated as additional
longitudinal information is recorded
JSM – August 1st, 2016, Chicago 13/30
3.1 Prediction Survival – Definitions (cont’d)
• Available info: A new subject j with longitudinal measurements up to t
◃ T∗
j > t
◃ Yj(t) = {yj(tjl); 0 ≤ tjl ≤ t, l = 1, . . . , nj}
◃ Dn sample on which the joint model was fitted
Basic tool: Posterior Predictive Distribution
p
{
T∗
j | T∗
j > t, Yj(t), Dn
}
JSM – August 1st, 2016, Chicago 14/30
3.2 Prediction Survival – Estimation
• Based on the fitted model we can estimate the conditional survival probabilities
πj(u | t) = Pr
{
T∗
j ≥ u | T∗
j > t, Yj(t), Dn
}
, u > t
• For more details check:
◃ Proust-Lima and Taylor (2009, Biostatistics), Rizopoulos (2011, Biometrics),
Taylor et al. (2013, Biometrics)
JSM – August 1st, 2016, Chicago 15/30
3.3 Prediction Survival – Illustration
• Example: We fit a joint model to the Aortic Valve data
• Longitudinal submodel
◃ fixed effects: natural cubic splines of time (d.f.= 3), operation type, and their
interaction
◃ random effects: Intercept, & natural cubic splines of time (d.f.= 3)
• Survival submodel
◃ type of operation, age, sex + underlying aortic gradient level
◃ log baseline hazard approximated using B-splines
JSM – August 1st, 2016, Chicago 16/30
3.3 Prediction Survival – Illustration (cont’d)
Follow−up Time (years)
AorticGradient(mmHg)
0
2
4
6
8
10
0 5 10
Patient 20
0 5 10
Patient 81
JSM – August 1st, 2016, Chicago 17/30
3.3 Prediction Survival – Illustration (cont’d)
0 5 10 15
024681012
Time
Patient 20
0.0
0.2
0.4
0.6
0.8
1.0
AorticGradient(mmHg)
0 5 10 15
024681012
Time
0.0
0.2
0.4
0.6
0.8
1.0
Patient 81
Re−Operation−FreeSurvival
JSM – August 1st, 2016, Chicago 18/30
3.3 Prediction Survival – Illustration (cont’d)
0 5 10 15
024681012
Time
Patient 20
0.0
0.2
0.4
0.6
0.8
1.0
AorticGradient(mmHg)
0 5 10 15
024681012
Time
0.0
0.2
0.4
0.6
0.8
1.0
Patient 81
Re−Operation−FreeSurvival
JSM – August 1st, 2016, Chicago 18/30
3.3 Prediction Survival – Illustration (cont’d)
0 5 10 15
024681012
Time
Patient 20
0.0
0.2
0.4
0.6
0.8
1.0
AorticGradient(mmHg)
0 5 10 15
024681012
Time
0.0
0.2
0.4
0.6
0.8
1.0
Patient 81
Re−Operation−FreeSurvival
JSM – August 1st, 2016, Chicago 18/30
3.3 Prediction Survival – Illustration (cont’d)
0 5 10 15
024681012
Time
Patient 20
0.0
0.2
0.4
0.6
0.8
1.0
AorticGradient(mmHg)
0 5 10 15
024681012
Time
0.0
0.2
0.4
0.6
0.8
1.0
Patient 81
Re−Operation−FreeSurvival
JSM – August 1st, 2016, Chicago 18/30
3.3 Prediction Survival – Illustration (cont’d)
0 5 10 15
024681012
Time
Patient 20
0.0
0.2
0.4
0.6
0.8
1.0
AorticGradient(mmHg)
0 5 10 15
024681012
Time
0.0
0.2
0.4
0.6
0.8
1.0
Patient 81
Re−Operation−FreeSurvival
JSM – August 1st, 2016, Chicago 18/30
3.3 Prediction Survival – Illustration (cont’d)
0 5 10 15
024681012
Time
Patient 20
0.0
0.2
0.4
0.6
0.8
1.0
AorticGradient(mmHg)
0 5 10 15
024681012
Time
0.0
0.2
0.4
0.6
0.8
1.0
Patient 81
Re−Operation−FreeSurvival
JSM – August 1st, 2016, Chicago 18/30
4.1 Next Visit Time – Set up
• Question 2:
◃ When the patient should come for the next visit?
JSM – August 1st, 2016, Chicago 19/30
4.1 Next Visit Time – Set up (cont’d)
This is a difficult question!
• Many parameters that affect it
◃ which model to use?
◃ what criterion to use?
◃ change in treatment?
◃ . . .
We will work under the following setting ⇒
JSM – August 1st, 2016, Chicago 20/30
4.1 Next Visit Time – Set up(cont’d)
Time
Event−FreeProbability
AoGradient
t
JSM – August 1st, 2016, Chicago 21/30
4.1 Next Visit Time – Set up(cont’d)
Time
Event−FreeProbability
AoGradient
t
JSM – August 1st, 2016, Chicago 21/30
4.1 Next Visit Time – Set up(cont’d)
Time
Event−FreeProbability
AoGradient
t u
JSM – August 1st, 2016, Chicago 21/30
4.2 Next Visit Time – Timing
• Let yj(u) denote the future longitudinal measurement u > t
• We would like to select the optimal u such that:
◃ patient still event-free up to u
◃ maximize the information by measuring yj(u) at u
JSM – August 1st, 2016, Chicago 22/30
4.2 Next Visit Time – Timing (cont’d)
• Utility function
U(u | t) = E
{
λ1 log
p
(
T∗
j | T∗
j > u,
{
Yj(t), yj(u)
}
, Dn
)
p{T∗
j | T∗
j > u, Yj(t), Dn}
+λ2 I(T∗
j > u)
}
First term Second term
expectation wrt joint predictive distribution [T∗
j , yj(u) | T∗
j > t, Yj(t), Dn]
◃ First term: expected Kullback-Leibler divergence of posterior predictive
distributions with and without yj(u)
◃ Second term: ‘cost’ of waiting up to u ⇒ increase the risk
JSM – August 1st, 2016, Chicago 23/30
4.2 Next Visit Time – Timing (cont’d)
• Nonnegative constants λ1 and λ2 weigh the cost of waiting as opposed to the
information gain
◃ elicitation in practice difficult ⇒ trading information units with probabilities
• How to get around it?
Equivalence between compound and constrained
optimal designs
JSM – August 1st, 2016, Chicago 24/30
4.2 Next Visit Time – Timing (cont’d)
• It can be shown that
◃ for any λ1 and λ2,
◃ there exists a constant κ ∈ [0, 1] for which
argmax
u
U(u | t) ⇐⇒ argmax
u
E
{
log
p
(
T∗
j | T∗
j > u,
{
Yj(t), yj(u)
}
, Dn
)
p{T∗
j | T∗
j > u, Yj(t), Dn}
}
subject to the constraint πj(u | t) ≥ κ
JSM – August 1st, 2016, Chicago 25/30
4.2 Next Visit Time – Timing (cont’d)
• Elicitation of κ is relatively easier
◃ Chosen by the physician
◃ Determined using ROC analysis
• Estimation is achieved using a Monte Carlo scheme
◃ more details in Rizopoulos et al. (2015)
JSM – August 1st, 2016, Chicago 26/30
4.3 Next Visit Time – Example
• Example: We illustrate how for Patient 81 we have seen before
◃ The threshold for the constraint is set to
πj(u | t) ≥ κ = 0.8
◃ After each visit we calculate the optimal timing for the next one using
argmax
u
EKL(u | t) where u ∈ (t, tup
]
and
tup
= min{5, u : πj(u | t) = 0.8}
JSM – August 1st, 2016, Chicago 27/30
4.3 Next Visit Time – Example (cont’d)
0 5 10 15
024681012
Time
Patient 81
0.0
0.2
0.4
0.6
0.8
1.0
5y
κ
AorticGradient(mmHg)
Re−Operation−FreeSurvival
JSM – August 1st, 2016, Chicago 28/30
4.3 Next Visit Time – Example (cont’d)
0 5 10 15
024681012
Time
Patient 81
0.0
0.2
0.4
0.6
0.8
1.0
5y
κ
AorticGradient(mmHg)
Re−Operation−FreeSurvival
JSM – August 1st, 2016, Chicago 28/30
4.3 Next Visit Time – Example (cont’d)
0 5 10 15
024681012
Time
Patient 81
0.0
0.2
0.4
0.6
0.8
1.0
2y
κ
AorticGradient(mmHg)
Re−Operation−FreeSurvival
JSM – August 1st, 2016, Chicago 28/30
4.3 Next Visit Time – Example (cont’d)
0 5 10 15
024681012
Time
Patient 81
0.0
0.2
0.4
0.6
0.8
1.0
1.6y
κ
AorticGradient(mmHg)
Re−Operation−FreeSurvival
JSM – August 1st, 2016, Chicago 28/30
4.3 Next Visit Time – Example (cont’d)
0 5 10 15
024681012
Time
Patient 81
0.0
0.2
0.4
0.6
0.8
1.0
0.4y
κ
AorticGradient(mmHg)
Re−Operation−FreeSurvival
JSM – August 1st, 2016, Chicago 28/30
4.3 Next Visit Time – Example (cont’d)
0 5 10 15
024681012
Time
Patient 81
0.0
0.2
0.4
0.6
0.8
1.0
0.4y
κ
AorticGradient(mmHg)
Re−Operation−FreeSurvival
JSM – August 1st, 2016, Chicago 28/30
5. Software
• Software: R package JMbayes freely available via
http://cran.r-project.org/package=JMbayes
◃ it can fit a variety of joint models + many other features
◃ relevant to this talk: cvDCL() and dynInfo()
GUI interface for dynamic predictions using package
shiny
JSM – August 1st, 2016, Chicago 29/30
Thank you for your attention!
JSM – August 1st, 2016, Chicago 30/30

More Related Content

Viewers also liked

1 bases de-datos
1 bases de-datos1 bases de-datos
1 bases de-datosCesar Yupa
 
Jornada de convivencia
Jornada de convivenciaJornada de convivencia
Jornada de convivenciaevax14
 
Yupa cesar bdii_t8
Yupa cesar bdii_t8Yupa cesar bdii_t8
Yupa cesar bdii_t8Cesar Yupa
 
Cocoa powder health benefits
Cocoa powder health benefitsCocoa powder health benefits
Cocoa powder health benefitsh3kahealth3
 
Se hacen tesis de física
Se hacen tesis de física Se hacen tesis de física
Se hacen tesis de física bastiano1000
 
2016.10.24 studieveiledning i 2 timer web i elektroteknikk kap.4 - versjon ...
2016.10.24   studieveiledning i 2 timer web i elektroteknikk kap.4 - versjon ...2016.10.24   studieveiledning i 2 timer web i elektroteknikk kap.4 - versjon ...
2016.10.24 studieveiledning i 2 timer web i elektroteknikk kap.4 - versjon ...Sven Åge Eriksen
 
Family data sheet HP Virtual Connect(May 2013)
Family data sheet HP Virtual Connect(May 2013)Family data sheet HP Virtual Connect(May 2013)
Family data sheet HP Virtual Connect(May 2013)E. Balauca
 
Búsqueda avanzada caso 3
Búsqueda avanzada   caso 3Búsqueda avanzada   caso 3
Búsqueda avanzada caso 3gonsusi
 
Yupa cesar bdii_t3
Yupa cesar bdii_t3Yupa cesar bdii_t3
Yupa cesar bdii_t3Cesar Yupa
 
Tally Multi user installation kalpataru
Tally Multi user installation kalpataruTally Multi user installation kalpataru
Tally Multi user installation kalpataruSwati
 

Viewers also liked (12)

1 bases de-datos
1 bases de-datos1 bases de-datos
1 bases de-datos
 
Jornada de convivencia
Jornada de convivenciaJornada de convivencia
Jornada de convivencia
 
Yupa cesar bdii_t8
Yupa cesar bdii_t8Yupa cesar bdii_t8
Yupa cesar bdii_t8
 
Cocoa powder health benefits
Cocoa powder health benefitsCocoa powder health benefits
Cocoa powder health benefits
 
Matui island
Matui islandMatui island
Matui island
 
Se hacen tesis de física
Se hacen tesis de física Se hacen tesis de física
Se hacen tesis de física
 
2016.10.24 studieveiledning i 2 timer web i elektroteknikk kap.4 - versjon ...
2016.10.24   studieveiledning i 2 timer web i elektroteknikk kap.4 - versjon ...2016.10.24   studieveiledning i 2 timer web i elektroteknikk kap.4 - versjon ...
2016.10.24 studieveiledning i 2 timer web i elektroteknikk kap.4 - versjon ...
 
Family data sheet HP Virtual Connect(May 2013)
Family data sheet HP Virtual Connect(May 2013)Family data sheet HP Virtual Connect(May 2013)
Family data sheet HP Virtual Connect(May 2013)
 
Búsqueda avanzada caso 3
Búsqueda avanzada   caso 3Búsqueda avanzada   caso 3
Búsqueda avanzada caso 3
 
Yupa cesar bdii_t3
Yupa cesar bdii_t3Yupa cesar bdii_t3
Yupa cesar bdii_t3
 
Presentation1
Presentation1Presentation1
Presentation1
 
Tally Multi user installation kalpataru
Tally Multi user installation kalpataruTally Multi user installation kalpataru
Tally Multi user installation kalpataru
 

Similar to Personalized Screening Intervals for Biomarkers using Joint Models for Longitudinal and Survival Data

lecture1 on survival analysis HRP 262 class
lecture1 on survival analysis HRP 262 classlecture1 on survival analysis HRP 262 class
lecture1 on survival analysis HRP 262 classTroyTeo1
 
Survival Analysis Lecture.ppt
Survival Analysis Lecture.pptSurvival Analysis Lecture.ppt
Survival Analysis Lecture.ppthabtamu biazin
 
Simulation Study for Extended AUC In Disease Risk Prediction in survival anal...
Simulation Study for Extended AUC In Disease Risk Prediction in survival anal...Simulation Study for Extended AUC In Disease Risk Prediction in survival anal...
Simulation Study for Extended AUC In Disease Risk Prediction in survival anal...Gang Cui
 
Use Proportional Hazards Regression Method To Analyze The Survival of Patient...
Use Proportional Hazards Regression Method To Analyze The Survival of Patient...Use Proportional Hazards Regression Method To Analyze The Survival of Patient...
Use Proportional Hazards Regression Method To Analyze The Survival of Patient...Waqas Tariq
 
STATISTICAL TESTS TO COMPARE k SURVIVAL ANALYSIS FUNCTIONS INVOLVING RECURREN...
STATISTICAL TESTS TO COMPARE k SURVIVAL ANALYSIS FUNCTIONS INVOLVING RECURREN...STATISTICAL TESTS TO COMPARE k SURVIVAL ANALYSIS FUNCTIONS INVOLVING RECURREN...
STATISTICAL TESTS TO COMPARE k SURVIVAL ANALYSIS FUNCTIONS INVOLVING RECURREN...Carlos M Martínez M
 
A gentle introduction to survival analysis
A gentle introduction to survival analysisA gentle introduction to survival analysis
A gentle introduction to survival analysisAngelo Tinazzi
 
Non-Parametric Survival Models
Non-Parametric Survival ModelsNon-Parametric Survival Models
Non-Parametric Survival ModelsMangaiK4
 
Biostat_Chapter6_Part3.pdf Bio Statistics
Biostat_Chapter6_Part3.pdf Bio StatisticsBiostat_Chapter6_Part3.pdf Bio Statistics
Biostat_Chapter6_Part3.pdf Bio StatisticsArwaAbdelHamid1
 
Professor Chris Williams et al - Healthcare condition monitoring using ICU data
Professor Chris Williams et al - Healthcare condition monitoring using ICU dataProfessor Chris Williams et al - Healthcare condition monitoring using ICU data
Professor Chris Williams et al - Healthcare condition monitoring using ICU dataBayes Nets meetup London
 
Answer the following.   (5 pts ea)A study is conducted to estimate.docx
Answer the following.   (5 pts ea)A study is conducted to estimate.docxAnswer the following.   (5 pts ea)A study is conducted to estimate.docx
Answer the following.   (5 pts ea)A study is conducted to estimate.docxboyfieldhouse
 
8Survival analysis presentation ppt DLpdf
8Survival analysis presentation ppt DLpdf8Survival analysis presentation ppt DLpdf
8Survival analysis presentation ppt DLpdfMitikuTeka1
 
Clinical Database
Clinical DatabaseClinical Database
Clinical DatabaseRobert Chen
 
Computational methods for nanoscale bio sensors
Computational methods for nanoscale bio sensorsComputational methods for nanoscale bio sensors
Computational methods for nanoscale bio sensorsUniversity of Glasgow
 

Similar to Personalized Screening Intervals for Biomarkers using Joint Models for Longitudinal and Survival Data (20)

lecture1 on survival analysis HRP 262 class
lecture1 on survival analysis HRP 262 classlecture1 on survival analysis HRP 262 class
lecture1 on survival analysis HRP 262 class
 
Survival Analysis Lecture.ppt
Survival Analysis Lecture.pptSurvival Analysis Lecture.ppt
Survival Analysis Lecture.ppt
 
Simulation Study for Extended AUC In Disease Risk Prediction in survival anal...
Simulation Study for Extended AUC In Disease Risk Prediction in survival anal...Simulation Study for Extended AUC In Disease Risk Prediction in survival anal...
Simulation Study for Extended AUC In Disease Risk Prediction in survival anal...
 
Survival analysis
Survival analysisSurvival analysis
Survival analysis
 
Use Proportional Hazards Regression Method To Analyze The Survival of Patient...
Use Proportional Hazards Regression Method To Analyze The Survival of Patient...Use Proportional Hazards Regression Method To Analyze The Survival of Patient...
Use Proportional Hazards Regression Method To Analyze The Survival of Patient...
 
Survival Analysis Project
Survival Analysis Project Survival Analysis Project
Survival Analysis Project
 
JSM2015
JSM2015JSM2015
JSM2015
 
STATISTICAL TESTS TO COMPARE k SURVIVAL ANALYSIS FUNCTIONS INVOLVING RECURREN...
STATISTICAL TESTS TO COMPARE k SURVIVAL ANALYSIS FUNCTIONS INVOLVING RECURREN...STATISTICAL TESTS TO COMPARE k SURVIVAL ANALYSIS FUNCTIONS INVOLVING RECURREN...
STATISTICAL TESTS TO COMPARE k SURVIVAL ANALYSIS FUNCTIONS INVOLVING RECURREN...
 
A gentle introduction to survival analysis
A gentle introduction to survival analysisA gentle introduction to survival analysis
A gentle introduction to survival analysis
 
TestSurvRec manual
TestSurvRec manualTestSurvRec manual
TestSurvRec manual
 
Non-Parametric Survival Models
Non-Parametric Survival ModelsNon-Parametric Survival Models
Non-Parametric Survival Models
 
Biostat_Chapter6_Part3.pdf Bio Statistics
Biostat_Chapter6_Part3.pdf Bio StatisticsBiostat_Chapter6_Part3.pdf Bio Statistics
Biostat_Chapter6_Part3.pdf Bio Statistics
 
Part 1 Survival Analysis
Part 1 Survival AnalysisPart 1 Survival Analysis
Part 1 Survival Analysis
 
Art01
Art01Art01
Art01
 
USA_ISR_Poster
USA_ISR_PosterUSA_ISR_Poster
USA_ISR_Poster
 
Professor Chris Williams et al - Healthcare condition monitoring using ICU data
Professor Chris Williams et al - Healthcare condition monitoring using ICU dataProfessor Chris Williams et al - Healthcare condition monitoring using ICU data
Professor Chris Williams et al - Healthcare condition monitoring using ICU data
 
Answer the following.   (5 pts ea)A study is conducted to estimate.docx
Answer the following.   (5 pts ea)A study is conducted to estimate.docxAnswer the following.   (5 pts ea)A study is conducted to estimate.docx
Answer the following.   (5 pts ea)A study is conducted to estimate.docx
 
8Survival analysis presentation ppt DLpdf
8Survival analysis presentation ppt DLpdf8Survival analysis presentation ppt DLpdf
8Survival analysis presentation ppt DLpdf
 
Clinical Database
Clinical DatabaseClinical Database
Clinical Database
 
Computational methods for nanoscale bio sensors
Computational methods for nanoscale bio sensorsComputational methods for nanoscale bio sensors
Computational methods for nanoscale bio sensors
 

Recently uploaded

BabyOno dropshipping via API with DroFx.pptx
BabyOno dropshipping via API with DroFx.pptxBabyOno dropshipping via API with DroFx.pptx
BabyOno dropshipping via API with DroFx.pptxolyaivanovalion
 
Halmar dropshipping via API with DroFx
Halmar  dropshipping  via API with DroFxHalmar  dropshipping  via API with DroFx
Halmar dropshipping via API with DroFxolyaivanovalion
 
Carero dropshipping via API with DroFx.pptx
Carero dropshipping via API with DroFx.pptxCarero dropshipping via API with DroFx.pptx
Carero dropshipping via API with DroFx.pptxolyaivanovalion
 
FESE Capital Markets Fact Sheet 2024 Q1.pdf
FESE Capital Markets Fact Sheet 2024 Q1.pdfFESE Capital Markets Fact Sheet 2024 Q1.pdf
FESE Capital Markets Fact Sheet 2024 Q1.pdfMarinCaroMartnezBerg
 
Junnasandra Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...
Junnasandra Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...Junnasandra Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...
Junnasandra Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...amitlee9823
 
Accredited-Transport-Cooperatives-Jan-2021-Web.pdf
Accredited-Transport-Cooperatives-Jan-2021-Web.pdfAccredited-Transport-Cooperatives-Jan-2021-Web.pdf
Accredited-Transport-Cooperatives-Jan-2021-Web.pdfadriantubila
 
BPAC WITH UFSBI GENERAL PRESENTATION 18_05_2017-1.pptx
BPAC WITH UFSBI GENERAL PRESENTATION 18_05_2017-1.pptxBPAC WITH UFSBI GENERAL PRESENTATION 18_05_2017-1.pptx
BPAC WITH UFSBI GENERAL PRESENTATION 18_05_2017-1.pptxMohammedJunaid861692
 
VIP Model Call Girls Hinjewadi ( Pune ) Call ON 8005736733 Starting From 5K t...
VIP Model Call Girls Hinjewadi ( Pune ) Call ON 8005736733 Starting From 5K t...VIP Model Call Girls Hinjewadi ( Pune ) Call ON 8005736733 Starting From 5K t...
VIP Model Call Girls Hinjewadi ( Pune ) Call ON 8005736733 Starting From 5K t...SUHANI PANDEY
 
Market Analysis in the 5 Largest Economic Countries in Southeast Asia.pdf
Market Analysis in the 5 Largest Economic Countries in Southeast Asia.pdfMarket Analysis in the 5 Largest Economic Countries in Southeast Asia.pdf
Market Analysis in the 5 Largest Economic Countries in Southeast Asia.pdfRachmat Ramadhan H
 
Digital Advertising Lecture for Advanced Digital & Social Media Strategy at U...
Digital Advertising Lecture for Advanced Digital & Social Media Strategy at U...Digital Advertising Lecture for Advanced Digital & Social Media Strategy at U...
Digital Advertising Lecture for Advanced Digital & Social Media Strategy at U...Valters Lauzums
 
100-Concepts-of-AI by Anupama Kate .pptx
100-Concepts-of-AI by Anupama Kate .pptx100-Concepts-of-AI by Anupama Kate .pptx
100-Concepts-of-AI by Anupama Kate .pptxAnupama Kate
 
Delhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip CallDelhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Callshivangimorya083
 
Week-01-2.ppt BBB human Computer interaction
Week-01-2.ppt BBB human Computer interactionWeek-01-2.ppt BBB human Computer interaction
Week-01-2.ppt BBB human Computer interactionfulawalesam
 
Al Barsha Escorts $#$ O565212860 $#$ Escort Service In Al Barsha
Al Barsha Escorts $#$ O565212860 $#$ Escort Service In Al BarshaAl Barsha Escorts $#$ O565212860 $#$ Escort Service In Al Barsha
Al Barsha Escorts $#$ O565212860 $#$ Escort Service In Al BarshaAroojKhan71
 
Determinants of health, dimensions of health, positive health and spectrum of...
Determinants of health, dimensions of health, positive health and spectrum of...Determinants of health, dimensions of health, positive health and spectrum of...
Determinants of health, dimensions of health, positive health and spectrum of...shambhavirathore45
 
Log Analysis using OSSEC sasoasasasas.pptx
Log Analysis using OSSEC sasoasasasas.pptxLog Analysis using OSSEC sasoasasasas.pptx
Log Analysis using OSSEC sasoasasasas.pptxJohnnyPlasten
 
Introduction-to-Machine-Learning (1).pptx
Introduction-to-Machine-Learning (1).pptxIntroduction-to-Machine-Learning (1).pptx
Introduction-to-Machine-Learning (1).pptxfirstjob4
 

Recently uploaded (20)

BabyOno dropshipping via API with DroFx.pptx
BabyOno dropshipping via API with DroFx.pptxBabyOno dropshipping via API with DroFx.pptx
BabyOno dropshipping via API with DroFx.pptx
 
Halmar dropshipping via API with DroFx
Halmar  dropshipping  via API with DroFxHalmar  dropshipping  via API with DroFx
Halmar dropshipping via API with DroFx
 
Carero dropshipping via API with DroFx.pptx
Carero dropshipping via API with DroFx.pptxCarero dropshipping via API with DroFx.pptx
Carero dropshipping via API with DroFx.pptx
 
FESE Capital Markets Fact Sheet 2024 Q1.pdf
FESE Capital Markets Fact Sheet 2024 Q1.pdfFESE Capital Markets Fact Sheet 2024 Q1.pdf
FESE Capital Markets Fact Sheet 2024 Q1.pdf
 
Junnasandra Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...
Junnasandra Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...Junnasandra Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...
Junnasandra Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore...
 
Accredited-Transport-Cooperatives-Jan-2021-Web.pdf
Accredited-Transport-Cooperatives-Jan-2021-Web.pdfAccredited-Transport-Cooperatives-Jan-2021-Web.pdf
Accredited-Transport-Cooperatives-Jan-2021-Web.pdf
 
BPAC WITH UFSBI GENERAL PRESENTATION 18_05_2017-1.pptx
BPAC WITH UFSBI GENERAL PRESENTATION 18_05_2017-1.pptxBPAC WITH UFSBI GENERAL PRESENTATION 18_05_2017-1.pptx
BPAC WITH UFSBI GENERAL PRESENTATION 18_05_2017-1.pptx
 
(NEHA) Call Girls Katra Call Now 8617697112 Katra Escorts 24x7
(NEHA) Call Girls Katra Call Now 8617697112 Katra Escorts 24x7(NEHA) Call Girls Katra Call Now 8617697112 Katra Escorts 24x7
(NEHA) Call Girls Katra Call Now 8617697112 Katra Escorts 24x7
 
VIP Model Call Girls Hinjewadi ( Pune ) Call ON 8005736733 Starting From 5K t...
VIP Model Call Girls Hinjewadi ( Pune ) Call ON 8005736733 Starting From 5K t...VIP Model Call Girls Hinjewadi ( Pune ) Call ON 8005736733 Starting From 5K t...
VIP Model Call Girls Hinjewadi ( Pune ) Call ON 8005736733 Starting From 5K t...
 
Market Analysis in the 5 Largest Economic Countries in Southeast Asia.pdf
Market Analysis in the 5 Largest Economic Countries in Southeast Asia.pdfMarket Analysis in the 5 Largest Economic Countries in Southeast Asia.pdf
Market Analysis in the 5 Largest Economic Countries in Southeast Asia.pdf
 
Digital Advertising Lecture for Advanced Digital & Social Media Strategy at U...
Digital Advertising Lecture for Advanced Digital & Social Media Strategy at U...Digital Advertising Lecture for Advanced Digital & Social Media Strategy at U...
Digital Advertising Lecture for Advanced Digital & Social Media Strategy at U...
 
100-Concepts-of-AI by Anupama Kate .pptx
100-Concepts-of-AI by Anupama Kate .pptx100-Concepts-of-AI by Anupama Kate .pptx
100-Concepts-of-AI by Anupama Kate .pptx
 
Delhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip CallDelhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
Delhi Call Girls Punjabi Bagh 9711199171 ☎✔👌✔ Whatsapp Hard And Sexy Vip Call
 
Week-01-2.ppt BBB human Computer interaction
Week-01-2.ppt BBB human Computer interactionWeek-01-2.ppt BBB human Computer interaction
Week-01-2.ppt BBB human Computer interaction
 
Al Barsha Escorts $#$ O565212860 $#$ Escort Service In Al Barsha
Al Barsha Escorts $#$ O565212860 $#$ Escort Service In Al BarshaAl Barsha Escorts $#$ O565212860 $#$ Escort Service In Al Barsha
Al Barsha Escorts $#$ O565212860 $#$ Escort Service In Al Barsha
 
Determinants of health, dimensions of health, positive health and spectrum of...
Determinants of health, dimensions of health, positive health and spectrum of...Determinants of health, dimensions of health, positive health and spectrum of...
Determinants of health, dimensions of health, positive health and spectrum of...
 
Log Analysis using OSSEC sasoasasasas.pptx
Log Analysis using OSSEC sasoasasasas.pptxLog Analysis using OSSEC sasoasasasas.pptx
Log Analysis using OSSEC sasoasasasas.pptx
 
Sampling (random) method and Non random.ppt
Sampling (random) method and Non random.pptSampling (random) method and Non random.ppt
Sampling (random) method and Non random.ppt
 
CHEAP Call Girls in Saket (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICE
CHEAP Call Girls in Saket (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICECHEAP Call Girls in Saket (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICE
CHEAP Call Girls in Saket (-DELHI )🔝 9953056974🔝(=)/CALL GIRLS SERVICE
 
Introduction-to-Machine-Learning (1).pptx
Introduction-to-Machine-Learning (1).pptxIntroduction-to-Machine-Learning (1).pptx
Introduction-to-Machine-Learning (1).pptx
 

Personalized Screening Intervals for Biomarkers using Joint Models for Longitudinal and Survival Data

  • 1. Personalized screening intervals for biomarkers using joint models for longitudinal and survival data Dimitris Rizopoulos, Jeremy Taylor, Joost van Rosmalen, Ewout Steyerberg, Hanneke Takkenberg Department of Biostatistics, Erasmus University Medical Center, the Netherlands d.rizopoulos@erasmusmc.nl Joint Statistical Meetings August 1st, 2016, Chicago, USA
  • 2. 1. Introduction • Nowadays growing interest in tailoring medical decision making to individual patients ◃ Personalized Medicine ◃ Shared Decision Making • This is of high relevance in various diseases ◃ cancer research, cardiovascular diseases, HIV research, . . . Physicians are interested in accurate prognostic tools that will inform them about the future prospect of a patient in order to adjust medical care JSM – August 1st, 2016, Chicago 1/30
  • 3. 1. Introduction (cont’d) • Aortic Valve study: Patients who received a human tissue valve in the aortic position ◃ data collected by Erasmus MC (from 1987 to 2008); 77 received sub-coronary implantation; 209 received root replacement • Outcomes of interest: ◃ death and re-operation → composite event ◃ aortic gradient JSM – August 1st, 2016, Chicago 2/30
  • 4. 1. Introduction (cont’d) • General Questions: ◃ Can we utilize available aortic gradient measurements to predict survival/re-operation? ◃ When to plan the next echo for a patient? JSM – August 1st, 2016, Chicago 3/30
  • 5. 1. Introduction (cont’d) • Goals of this talk: ◃ introduce joint models ◃ dynamic predictions ◃ optimal timing of next visit JSM – August 1st, 2016, Chicago 4/30
  • 6. 2.1 Joint Modeling Framework • To answer these questions we need to postulate a model that relates ◃ the aortic gradient with ◃ the time to death or re-operation • Some notation ◃ T∗ i : True time-to-death for patient i ◃ Ti: Observed time-to-death for patient i ◃ δi: Event indicator, i.e., equals 1 for true events ◃ yi: Longitudinal aortic gradient measurements JSM – August 1st, 2016, Chicago 5/30
  • 7. 2.1 Joint Modeling Framework (cont’d) Time 0.10.20.30.4 hazard 0.00.51.01.52.0 0 2 4 6 8 marker JSM – August 1st, 2016, Chicago 6/30
  • 8. 2.1 Joint Modeling Framework (cont’d) • We start with a standard joint model ◃ Survival Part: Relative risk model hi(t | Mi(t)) = h0(t) exp{γ⊤ wi + αmi(t)}, where * mi(t) = the true & unobserved value of aortic gradient at time t * Mi(t) = {mi(s), 0 ≤ s < t} * α quantifies the effect of aortic gradient on the risk for death/re-operation * wi baseline covariates JSM – August 1st, 2016, Chicago 7/30
  • 9. 2.1 Joint Modeling Framework (cont’d) ◃ Longitudinal Part: Reconstruct Mi(t) = {mi(s), 0 ≤ s < t} using yi(t) and a mixed effects model (we focus on continuous markers) yi(t) = mi(t) + εi(t) = x⊤ i (t)β + z⊤ i (t)bi + εi(t), εi(t) ∼ N(0, σ2 ), where * xi(t) and β: Fixed-effects part * zi(t) and bi: Random-effects part, bi ∼ N(0, D) JSM – August 1st, 2016, Chicago 8/30
  • 10. 2.1 Joint Modeling Framework (cont’d) • The two processes are associated ⇒ define a model for their joint distribution • Joint Models for such joint distributions are of the following form (Tsiatis & Davidian, Stat. Sinica, 2004; Rizopoulos, CRC Press, 2012) p(yi, Ti, δi) = ∫ p(yi | bi) { h(Ti | bi)δi S(Ti | bi) } p(bi) dbi where ◃ bi a vector of random effects that explains the interdependencies ◃ p(·) density function; S(·) survival function JSM – August 1st, 2016, Chicago 9/30
  • 11. 2.2 Estimation • Joint models can be estimated with either Maximum Likelihood or Bayesian approaches (i.e., MCMC) • Here we follow the Bayesian approach because it facilitates computations for our later developments. . . JSM – August 1st, 2016, Chicago 10/30
  • 12. 3.1 Prediction Survival – Definitions • We are interested in predicting survival probabilities for a new patient j that has provided a set of aortic gradient measurements up to a specific time point t • Example: We consider Patients 20 and 81 from the Aortic Valve dataset JSM – August 1st, 2016, Chicago 11/30
  • 13. 3.1 Prediction Survival – Definitions (cont’d) Follow−up Time (years) AorticGradient(mmHg) 0 2 4 6 8 10 0 5 10 Patient 20 0 5 10 Patient 81 JSM – August 1st, 2016, Chicago 12/30
  • 14. 3.1 Prediction Survival – Definitions (cont’d) Follow−up Time (years) AorticGradient(mmHg) 0 2 4 6 8 10 2 4 6 8 10 12 Patient 20 2 4 6 8 10 12 Patient 81 JSM – August 1st, 2016, Chicago 12/30
  • 15. 3.1 Prediction Survival – Definitions (cont’d) Follow−up Time (years) AorticGradient(mmHg) 0 2 4 6 8 10 2 4 6 8 10 12 Patient 20 2 4 6 8 10 12 Patient 81 JSM – August 1st, 2016, Chicago 12/30
  • 16. 3.1 Prediction Survival – Definitions (cont’d) • What do we know for these patients? ◃ a series of aortic gradient measurements ◃ patient are event-free up to the last measurement • Dynamic Prediction survival probabilities are dynamically updated as additional longitudinal information is recorded JSM – August 1st, 2016, Chicago 13/30
  • 17. 3.1 Prediction Survival – Definitions (cont’d) • Available info: A new subject j with longitudinal measurements up to t ◃ T∗ j > t ◃ Yj(t) = {yj(tjl); 0 ≤ tjl ≤ t, l = 1, . . . , nj} ◃ Dn sample on which the joint model was fitted Basic tool: Posterior Predictive Distribution p { T∗ j | T∗ j > t, Yj(t), Dn } JSM – August 1st, 2016, Chicago 14/30
  • 18. 3.2 Prediction Survival – Estimation • Based on the fitted model we can estimate the conditional survival probabilities πj(u | t) = Pr { T∗ j ≥ u | T∗ j > t, Yj(t), Dn } , u > t • For more details check: ◃ Proust-Lima and Taylor (2009, Biostatistics), Rizopoulos (2011, Biometrics), Taylor et al. (2013, Biometrics) JSM – August 1st, 2016, Chicago 15/30
  • 19. 3.3 Prediction Survival – Illustration • Example: We fit a joint model to the Aortic Valve data • Longitudinal submodel ◃ fixed effects: natural cubic splines of time (d.f.= 3), operation type, and their interaction ◃ random effects: Intercept, & natural cubic splines of time (d.f.= 3) • Survival submodel ◃ type of operation, age, sex + underlying aortic gradient level ◃ log baseline hazard approximated using B-splines JSM – August 1st, 2016, Chicago 16/30
  • 20. 3.3 Prediction Survival – Illustration (cont’d) Follow−up Time (years) AorticGradient(mmHg) 0 2 4 6 8 10 0 5 10 Patient 20 0 5 10 Patient 81 JSM – August 1st, 2016, Chicago 17/30
  • 21. 3.3 Prediction Survival – Illustration (cont’d) 0 5 10 15 024681012 Time Patient 20 0.0 0.2 0.4 0.6 0.8 1.0 AorticGradient(mmHg) 0 5 10 15 024681012 Time 0.0 0.2 0.4 0.6 0.8 1.0 Patient 81 Re−Operation−FreeSurvival JSM – August 1st, 2016, Chicago 18/30
  • 22. 3.3 Prediction Survival – Illustration (cont’d) 0 5 10 15 024681012 Time Patient 20 0.0 0.2 0.4 0.6 0.8 1.0 AorticGradient(mmHg) 0 5 10 15 024681012 Time 0.0 0.2 0.4 0.6 0.8 1.0 Patient 81 Re−Operation−FreeSurvival JSM – August 1st, 2016, Chicago 18/30
  • 23. 3.3 Prediction Survival – Illustration (cont’d) 0 5 10 15 024681012 Time Patient 20 0.0 0.2 0.4 0.6 0.8 1.0 AorticGradient(mmHg) 0 5 10 15 024681012 Time 0.0 0.2 0.4 0.6 0.8 1.0 Patient 81 Re−Operation−FreeSurvival JSM – August 1st, 2016, Chicago 18/30
  • 24. 3.3 Prediction Survival – Illustration (cont’d) 0 5 10 15 024681012 Time Patient 20 0.0 0.2 0.4 0.6 0.8 1.0 AorticGradient(mmHg) 0 5 10 15 024681012 Time 0.0 0.2 0.4 0.6 0.8 1.0 Patient 81 Re−Operation−FreeSurvival JSM – August 1st, 2016, Chicago 18/30
  • 25. 3.3 Prediction Survival – Illustration (cont’d) 0 5 10 15 024681012 Time Patient 20 0.0 0.2 0.4 0.6 0.8 1.0 AorticGradient(mmHg) 0 5 10 15 024681012 Time 0.0 0.2 0.4 0.6 0.8 1.0 Patient 81 Re−Operation−FreeSurvival JSM – August 1st, 2016, Chicago 18/30
  • 26. 3.3 Prediction Survival – Illustration (cont’d) 0 5 10 15 024681012 Time Patient 20 0.0 0.2 0.4 0.6 0.8 1.0 AorticGradient(mmHg) 0 5 10 15 024681012 Time 0.0 0.2 0.4 0.6 0.8 1.0 Patient 81 Re−Operation−FreeSurvival JSM – August 1st, 2016, Chicago 18/30
  • 27. 4.1 Next Visit Time – Set up • Question 2: ◃ When the patient should come for the next visit? JSM – August 1st, 2016, Chicago 19/30
  • 28. 4.1 Next Visit Time – Set up (cont’d) This is a difficult question! • Many parameters that affect it ◃ which model to use? ◃ what criterion to use? ◃ change in treatment? ◃ . . . We will work under the following setting ⇒ JSM – August 1st, 2016, Chicago 20/30
  • 29. 4.1 Next Visit Time – Set up(cont’d) Time Event−FreeProbability AoGradient t JSM – August 1st, 2016, Chicago 21/30
  • 30. 4.1 Next Visit Time – Set up(cont’d) Time Event−FreeProbability AoGradient t JSM – August 1st, 2016, Chicago 21/30
  • 31. 4.1 Next Visit Time – Set up(cont’d) Time Event−FreeProbability AoGradient t u JSM – August 1st, 2016, Chicago 21/30
  • 32. 4.2 Next Visit Time – Timing • Let yj(u) denote the future longitudinal measurement u > t • We would like to select the optimal u such that: ◃ patient still event-free up to u ◃ maximize the information by measuring yj(u) at u JSM – August 1st, 2016, Chicago 22/30
  • 33. 4.2 Next Visit Time – Timing (cont’d) • Utility function U(u | t) = E { λ1 log p ( T∗ j | T∗ j > u, { Yj(t), yj(u) } , Dn ) p{T∗ j | T∗ j > u, Yj(t), Dn} +λ2 I(T∗ j > u) } First term Second term expectation wrt joint predictive distribution [T∗ j , yj(u) | T∗ j > t, Yj(t), Dn] ◃ First term: expected Kullback-Leibler divergence of posterior predictive distributions with and without yj(u) ◃ Second term: ‘cost’ of waiting up to u ⇒ increase the risk JSM – August 1st, 2016, Chicago 23/30
  • 34. 4.2 Next Visit Time – Timing (cont’d) • Nonnegative constants λ1 and λ2 weigh the cost of waiting as opposed to the information gain ◃ elicitation in practice difficult ⇒ trading information units with probabilities • How to get around it? Equivalence between compound and constrained optimal designs JSM – August 1st, 2016, Chicago 24/30
  • 35. 4.2 Next Visit Time – Timing (cont’d) • It can be shown that ◃ for any λ1 and λ2, ◃ there exists a constant κ ∈ [0, 1] for which argmax u U(u | t) ⇐⇒ argmax u E { log p ( T∗ j | T∗ j > u, { Yj(t), yj(u) } , Dn ) p{T∗ j | T∗ j > u, Yj(t), Dn} } subject to the constraint πj(u | t) ≥ κ JSM – August 1st, 2016, Chicago 25/30
  • 36. 4.2 Next Visit Time – Timing (cont’d) • Elicitation of κ is relatively easier ◃ Chosen by the physician ◃ Determined using ROC analysis • Estimation is achieved using a Monte Carlo scheme ◃ more details in Rizopoulos et al. (2015) JSM – August 1st, 2016, Chicago 26/30
  • 37. 4.3 Next Visit Time – Example • Example: We illustrate how for Patient 81 we have seen before ◃ The threshold for the constraint is set to πj(u | t) ≥ κ = 0.8 ◃ After each visit we calculate the optimal timing for the next one using argmax u EKL(u | t) where u ∈ (t, tup ] and tup = min{5, u : πj(u | t) = 0.8} JSM – August 1st, 2016, Chicago 27/30
  • 38. 4.3 Next Visit Time – Example (cont’d) 0 5 10 15 024681012 Time Patient 81 0.0 0.2 0.4 0.6 0.8 1.0 5y κ AorticGradient(mmHg) Re−Operation−FreeSurvival JSM – August 1st, 2016, Chicago 28/30
  • 39. 4.3 Next Visit Time – Example (cont’d) 0 5 10 15 024681012 Time Patient 81 0.0 0.2 0.4 0.6 0.8 1.0 5y κ AorticGradient(mmHg) Re−Operation−FreeSurvival JSM – August 1st, 2016, Chicago 28/30
  • 40. 4.3 Next Visit Time – Example (cont’d) 0 5 10 15 024681012 Time Patient 81 0.0 0.2 0.4 0.6 0.8 1.0 2y κ AorticGradient(mmHg) Re−Operation−FreeSurvival JSM – August 1st, 2016, Chicago 28/30
  • 41. 4.3 Next Visit Time – Example (cont’d) 0 5 10 15 024681012 Time Patient 81 0.0 0.2 0.4 0.6 0.8 1.0 1.6y κ AorticGradient(mmHg) Re−Operation−FreeSurvival JSM – August 1st, 2016, Chicago 28/30
  • 42. 4.3 Next Visit Time – Example (cont’d) 0 5 10 15 024681012 Time Patient 81 0.0 0.2 0.4 0.6 0.8 1.0 0.4y κ AorticGradient(mmHg) Re−Operation−FreeSurvival JSM – August 1st, 2016, Chicago 28/30
  • 43. 4.3 Next Visit Time – Example (cont’d) 0 5 10 15 024681012 Time Patient 81 0.0 0.2 0.4 0.6 0.8 1.0 0.4y κ AorticGradient(mmHg) Re−Operation−FreeSurvival JSM – August 1st, 2016, Chicago 28/30
  • 44. 5. Software • Software: R package JMbayes freely available via http://cran.r-project.org/package=JMbayes ◃ it can fit a variety of joint models + many other features ◃ relevant to this talk: cvDCL() and dynInfo() GUI interface for dynamic predictions using package shiny JSM – August 1st, 2016, Chicago 29/30
  • 45. Thank you for your attention! JSM – August 1st, 2016, Chicago 30/30