Diese Präsentation wurde erfolgreich gemeldet.
Wir verwenden Ihre LinkedIn Profilangaben und Informationen zu Ihren Aktivitäten, um Anzeigen zu personalisieren und Ihnen relevantere Inhalte anzuzeigen. Sie können Ihre Anzeigeneinstellungen jederzeit ändern.

ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 8

1.309 Aufrufe

Veröffentlicht am

...

Veröffentlicht in: Bildung
  • Als Erste(r) kommentieren

  • Gehören Sie zu den Ersten, denen das gefällt!

ΠΛΗ30 ΔΙΑΓΩΝΙΣΜΑ 8

  1. 1. ∆ηµήτρης Ψούνης – ΠΛΗ30, ∆ιαγώνισµα 8 1 ΠΛΗ30 - ∆ΙΑΓΩΝΙΣΜΑ 8 ΘΕΜΑ 1: (Μονάδες 20/20) (Α) Να ταξινοµηθούν οι ακόλουθες συναρτήσεις κατά αύξουσα τάξη µεγέθους καθώς το n τείνει στο άπειρο: 1)log( 4 )(loglog 3 2 2 1 1 2)( 2log)( 2)( )( −+ − − = += = = nn nn n nf nnf nf nnf n
  2. 2. ∆ηµήτρης Ψούνης – ΠΛΗ30, ∆ιαγώνισµα 8 2 (Β) Για την επίλυση ενός προβλήµατος έχουµε στη διάθεσή µας τέσσερις αλγόριθµους: Ο αλγόριθµος Α για να επιλύσει ένα πρόβληµα µεγέθους n, επιλύει αναδροµικά δύο υποπροβλήµατα µεγέθους n/7 το καθένα και συνδυάζει τις λύσεις τους σε χρόνο n2 Ο αλγόριθµος Β για να επιλύσει ένα πρόβληµα µεγέθους n, επιλύει αναδροµικά εκατό υποπροβλήµατα µεγέθους n/10 το καθένα και συνδυάζει τις λύσεις τους σε χρόνο n1/2 . Ο αλγόριθµος Γ για να επιλύσει ένα πρόβληµα µεγέθους n, επιλύει ένα υποπρόβληµα µεγέθους n-1 και βρίσκει την λύση του αρχικού προβλήµατος σε χρόνο logn. Να βρεθούν οι ασυµπτωτικοί χρόνοι επίλυσης του προβλήµατος για κάθε αλγόριθµο και να επιλέξετε τον ταχύτερο αλγόριθµο. Θεώρηµα Κυριαρχίας: Έστω η αναδροµική εξίσωση T(n) = aT(n/b) + f(n), όπου a≥1, b>1 είναι σταθερές, και f(n) είναι µια ασυµπτωτικά θετική συνάρτηση. Τότε διακρίνονται οι ακόλουθες τρεις περιπτώσεις: log log ( ) ( ), ( )b ba a (1) αν f n O n για κάποια σταθερά ε>0, τότε T(n) = nεεεε−−−− = Θ= Θ= Θ= Θ log log ( ) ( ), ( log )b ba a (2) αν f n n τότε T(n) = n n= Θ Θ= Θ Θ= Θ Θ= Θ Θ log ( ) ( ), , ( ( )). b a 0 0 (3) αν f n n για κάποια σταθερά ε>0, και αν υπάρχει σταθερά n τέτοια n ώστε, για κάθε n n , af cf(n) για κάποια σταθερά c<1, τότε T(n) = f n b εεεε++++ = Ω= Ω= Ω= Ω      ≥ ≤ Θ≥ ≤ Θ≥ ≤ Θ≥ ≤ Θ         
  3. 3. ∆ηµήτρης Ψούνης – ΠΛΗ30, ∆ιαγώνισµα 8 3 ΘΕΜΑ 2: (Μονάδες 20/20) (1) Εξετάστε αν: )5(ω2. )(log.Α log nn n nOnn =Β = (2) Μας δίνουν µια σειρά από αντικείµενα 1, 2, 3, … , n, µε αντίστοιχες αξίες a[1], a[2], a[3], …, a[n], αντίστοιχα, οι οποίες είναι όλες θετικές. Πρέπει να επιλέξουµε υποσύνολο αντικειµένων µε το µέγιστο δυνατό άθροισµα αξιών. Η λύση όµως πρέπει να ικανοποιεί τον εξής περιορισµό: αν επιλεγεί το αντικείµενο i τότε µένει εκτός το αµέσως προηγούµενό του αντικείµενο, i-1. (Α) Περιγράψτε αναδροµικό αλγόριθµο που επιστρέφει το µέγιστο άθροισµα αξιών. (Β) Γράψτε την αναδροµική εξίσωση χρονικής πολυπλοκότητας του αλγορίθµου. (Γ) Περιγράψτε αλγόριθµο ∆υναµικού Προγραµµατισµού που επιστρέφει το µέγιστο άθροισµα αξιών (σχεδιασµό της αναδροµικής εξίσωσης και χρήση της για αποµνηµόνευση επιµέρους λύσεων σε πίνακα).
  4. 4. ∆ηµήτρης Ψούνης – ΠΛΗ30, ∆ιαγώνισµα 8 4 ΘΕΜΑ 3: (Μονάδες 20/20) (A) Βρείτε µια κανονική έκφραση για τη γλώσσα που αναγνωρίζει το αυτόµατο του παρακάτω σχήµατος. (B) Μετατρέψτε το παραπάνω µη ντετερµινιστικό (µη αιτιοκρατικό) αυτόµατο µε ε κινήσεις σε µη ντετερµινιστικό αυτόµατο χωρίς ε κινήσεις. (Γ) Μετατρέψτε το µη ντετερµινιστικό αυτόµατο του ερωτήµατος Β σε ντετερµινιστικό. (∆) Ελαχιστοποιήστε τις καταστάσεις του αυτοµάτου του ερωτήµατος Γ και δείξτε ότι δεν υπάρχει άλλο ντετερµινιστικό πεπερασµένο αυτόµατο µε λιγότερες καταστάσεις που να δέχεται την ίδια γλώσσα, βρίσκοντας ένα κατάλληλο πλήθος συµβολοσειρών ανά δύο διακρινόµενων.
  5. 5. ∆ηµήτρης Ψούνης – ΠΛΗ30, ∆ιαγώνισµα 8 5 2. Ποια από τις παρακάτω γλώσσες είναι κανονική και ποια όχι; Για να αποδείξετε ότι κάποια από τις γλώσσες δεν είναι κανονική χρησιµοποιέιστε το λήµµα της άντλησης. Για να αποδείξετε ότι είναι κανονική δώστε την αντίστοιχη κανονική έκφραση. A = { | w ∈ 0,1 ∗ , | | 1 } Β = { 0 1 | 1 2 Γ = { 0 1 | 2 ∆ = { 1 0 1 | 2 } Το Λήµµα Άντλησης για Κανονικές Γλώσσες: Έστω µια άπειρη κανονική γλώσσα. Τότε υπάρχει ένας αριθµός (µήκος άντλησης) τέτοιος ώστε κάθε ∈ µε | | να µπορεί να γραφεί στην µορφή όπου για τις συµβολοσειρές , και ισχύει: | | ∈ για κάθε φυσικό !
  6. 6. ∆ηµήτρης Ψούνης – ΠΛΗ30, ∆ιαγώνισµα 8 6 ΘΕΜΑ 4: (Μονάδες 20/20) Ποια από τις παρακάτω γλώσσες είναι χωρίς συµφραζόµενα και ποια δεν είναι; L1 = { | w ∈ 0,1 ∗ } L2 = { | w ∈ 0,1 ∗ } (A) Για την γλώσσα που είναι χωρίς συµφραζόµενα: (1) ∆ώστε Γραµµατική Χωρίς Συµφραζόµενα που παράγει τις συµβολοσειρές της. (2) ∆ώστε ντετερµινιστικό αυτόµατο στοίβας που αναγνωρίζει τις συµβολοσειρές της: a. Περιγράψτε άτυπα τη λειτουργία του Μ. b. ∆ώστε την πλήρη περιγραφή του Μ (σύνολο καταστάσεων, αλφάβητα εισόδου και στοίβας, αρχική κατάσταση, αρχικό σύµβολο στοίβας, συνάρτηση µετάβασης και σύνολο τελικών καταστάσεων). Για την περιγραφή της συνάρτησης µετάβασης µπορείτε να χρησιµοποιήσετε πίνακα.
  7. 7. ∆ηµήτρης Ψούνης – ΠΛΗ30, ∆ιαγώνισµα 8 7 (Β) Για την γλώσσα που δεν είναι χωρίς συµφραζόµενα,δώστε τυπική απόδειξη µε το 2ο λήµµα άντλησης: Το Λήµµα Άντλησης για Γλώσσες Ανεξάρτητες Συµφραζοµένων Έστω " µια άπειρη γλώσσα ανεξάρτητη συµφραζοµένων. Τότε υπάρχει ένας αριθµός (µήκος άντλησης) τέτοιος ώστε κάθε s ∈ " µε |s| να µπορεί να γραφεί στην µορφή $ %& '( όπου για τις συµβολοσειρές %, &, , ' και ( ισχύει: |& '| |&'| ) 0 %& ' ( ∈ " για κάθε φυσικό 0
  8. 8. ∆ηµήτρης Ψούνης – ΠΛΗ30, ∆ιαγώνισµα 8 8 ΘΕΜΑ 5: (Μονάδες 20/20) Α: Έστω αλφάβητο Σ={0,1} και η γλώσσα: " 0 1 | 0 . Να κατασκευάσετε µηχανή Turing T µε αλφάβητο Σ0={0,1,#,$,Υ,Ν} που θα αποφασίζει την γλώσσα L. H µηχανή θα ξεκινά µε σχηµατισµό #w# για κάποιο ∈ *∗ . (1) ∆ώστε άτυπη περιγραφή της παραπάνω µηχανής Turing (2) ∆ώστε το γράφηµα ροής (3) ∆ώστε το διάγραµµα καταστάσεων Β: ∆ίνεται η γλώσσα L={M,q | η µηχανή Turing Μ µεταβαίνει στην q µε κάθε είσοδο}. ∆είξτε ότι η L δεν είναι επιλύσιµη δεδοµένου ότι η γλώσσα L’={M,w | H M µε είσοδο w τερµατίζει} δεν είναι επιλύσιµη.
  9. 9. ∆ηµήτρης Ψούνης – ΠΛΗ30, ∆ιαγώνισµα 8 9 ΘΕΜΑ 6: (Μονάδες 20/20) Αποδείξτε ότι το πρόβληµα D3SAT είναι ΝΡ-πλήρες. Για την απόδειξη χρησιµοποιήστε αποκλειστικά το γνωστό ΝΡ-πλήρες πρόβληµα 3SAT. Ακολουθούν οι ορισµοί των προβληµάτων. 3SAT: ∆ίνεται λογική έκφραση Φ σε Συζευκτική Κανονική Μορφή, που ορίζεται σε n µεταβλητές και αποτελείται από m προτάσεις, µε κάθε πρόταση της να περιέχει ακριβώς τρεις µεταβλητές. Υπάρχει ανάθεση λογικών τιµών που ικανοποιεί την Φ; D3SAT: ∆ίνεται λογική έκφραση Φ σε Συζευκτική Κανονική Μορφή, που ορίζεται σε n µεταβλητές και αποτελείται από m προτάσεις, µε κάθε πρόταση της να περιέχει ακριβώς τρεις µεταβλητές. Υπάρχουν τουλάχιστον δύο αναθέσεις λογικών τιµών που ικανοποιούν την Φ;

×