Diese Präsentation wurde erfolgreich gemeldet.

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
×

## Hier ansehen

1 von 15 Anzeige

Gaussian Quadrature Formulas, which are simple and will help learners learn about Gauss's One, Two and Three Point Formulas, I have also included sums so that learning can be easy and the method can be understood.

Gaussian Quadrature Formulas, which are simple and will help learners learn about Gauss's One, Two and Three Point Formulas, I have also included sums so that learning can be easy and the method can be understood.

Anzeige
Anzeige

## Weitere Verwandte Inhalte

Anzeige

### Aktuellste (20)

Anzeige

1. 1. Gaussian Quadrature Formula -BY GROUP NO. 9 -MECHANICAL DEPARTMENT -4TH SEMESTER -COMPLEX VARIABLES AND NUMERICAL METHODS(2141905)
2. 2. Gaussian Quadrature Formula        b a 1 1- f(x)dx.f(t)dt to integralthefromdtransforme becan; 2 1 2 1 t ofnnsformatiolinear traThe abxab
3. 3. Gaussian One Point Formula 1. The Gaussian One Point Formula to convert an integral into its linear transform is given by   1 1 )0(2)( fdxxf
4. 4. Gaussian Two Point Formula 2. The Gaussian Two Point Formula to convert an integral into its linear transform is given by              3 1 3 1 )( 1 1 ffdxxf
5. 5. Gaussian Three Point Formula 3. The Gaussian Three Point Formula to convert an integral into its linear transform is given by                           1 1 5 3 5 3 9 5 )0( 9 8 )( fffdxxf
6. 6. Example of Gaussian Quadrature Formula formula.pointthreeand pointtwopoint,oneby x1 dx Evaluate 1 1 2  2 1 1 x Here f(x)  
7. 7. Example of Gaussian Quadrature Formula mulaPoint Forussian Oneound by Gawhich is f 2f(x)dx (0)1 1 2 2f(0)f(x)dx 1 1 2 1 1              
8. 8. Example of Gaussian Quadrature Formula                          1 1 50.1)( dxxf 1.50 0.750.75 f(0.57735)0.57735)f( 3 1 f 3 1 ff(x)dx t Formula,n Two PoinBy Gaussia 1 1
9. 9. Example of Gaussian Quadrature Formula      0.75 9 5 9 8 0.3750.375 9 5 1 9 8 f(x)dxNow, 0.375 5 3 0.375, f 5 3 -1, ff(0) 5 3 f 5 3 f 9 5 f(0) 9 8 f(x)dx a,int Formuln Three PoBy Gaussia 1 -1 1 1                                              
10. 10. Example of Gaussian Quadrature Formula 1.305f(x)dx 1.305 9 11.75 9 3.75 9 8 1 -1     
11. 11. Example of Gaussian Quadrature Formula   Formula.hree Pointdx with T2xxEvaluate 4 2 2         3tx 2)(4 2 1 t24 2 1 x 42, ba ab 2 1 tab 2 1 Here x    
12. 12. Example of Gaussian Quadrature Formula             dt158ttdx2xx 158tt 3t23t2xx 3txdtf(t), dxf(x) 1t4x 1t2when x 1 1 2 4 2 2 2 22         
13. 13. Example of Gaussian Quadrature Formula          31.2 9 5 15 9 8 21.7979.403 9 5 15 9 8 f(t)dt 21.797 5 3 9.403, f 5 3 15, ff(0) 5 3 f 5 3 f 9 5 0f 9 8 f(t)dt a,int Formuln Three PoBy Gaussia 1 1 1 1                                                
14. 14. Example of Gaussian Quadrature Formula   sum.the givenevaluatedFormula we Pointsian Threese of Gauswith the uTherefore 30.667dx2xx 30.667 9 276 9 156 9 120 4 2 2     
15. 15. Thank You!