SlideShare a Scribd company logo
1 of 34
Evaluating NVMe drives for
accelerating HBase
Nicolas Poggi and David Grier
Denver/Boulder BigData 2017
BSC Data Centric Computing ā€“ Rackspace collaboration
Outline
1. Intro on Rackspace BSC and
ALOJA
2. Cluster specs and disk
benchmarks
3. HBase use case with NVE
1. Read-only workload
ā€¢ Different strategies
2. Mixed workload
4. Summary
Denver/Boulder BigData 2017 2
Max of bw (MB/s)
Max of lat (us)
BYTES/S
REQ SIZE
Barcelona Supercomputing Center (BSC)
ā€¢ Spanish national supercomputing center 22 years history in:
ā€¢ Computer Architecture, networking and distributed systems
research
ā€¢ Based at BarcelonaTech University (UPC)
ā€¢ Large ongoing life science computational projects
ā€¢ Prominent body of research activity around Hadoop
ā€¢ 2008-2013: SLA Adaptive Scheduler, Accelerators, Locality
Awareness, Performance Management. 7+ publications
ā€¢ 2013-Present: Cost-efficient upcoming Big Data architectures
(ALOJA) 6+ publications
Denver/Boulder BigData 2017 4
ALOJA: towards cost-effective Big Data
ā€¢ Research project for automating characterization and
optimization of Big Data deployments
ā€¢ Open source Benchmarking-to-Insights platform and tools
ā€¢ Largest Big Data public repository (70,000+ jobs)
ā€¢ Community collaboration with industry and academia
http://aloja.bsc.es
Big Data
Benchmarking
Online
Repository
Web / ML
Analytics
Motivation and objectives
ā€¢ Explore use cases where NVMe devices
can speedup Big Data apps
ā€¢ Poor initial resultsā€¦
ā€¢ HBase (this study) based on Intel report
ā€¢ Measure the possibilities of NVMe devices
ā€¢ System level benchmarks (FIO, IO Meter)
ā€¢ WiP towards tiered-storage for Big data status
ā€¢ Extend ALOJA into low-level I/O
ā€¢ Challenge
ā€¢ benchmark and stress high-end Big Data
clusters
ā€¢ In reasonable amount of time (and cost)
First tests:
Denver/Boulder BigData 2017 6
8512 8667 8523
9668
0
2000
4000
6000
8000
10000
12000
Seconds
Lower is better
Running time of terasort (1TB) under different
disks
terasort
teragen
Marginal improvement!!!
Cluster and drive specs
All nodes (x5)
Operating System CentOS 7.2
Memory 128GB
CPU Single Octo-core (16 threads)
Disk Config OS 2x600GB SAS RAID1
Network 10Gb/10Gb redundant
Master node (x1, extra nodes for HA not used in these tests)
Disk Config Master storage 4x600GB SAS RAID10
XSF partition
Data Nodes (x4)
NVMe (cache) 1.6TB Intel DC P3608 NVMe SSD (PCIe)
Disk config HDFS data
storage
10x 0.6TB NL-SAS/SATA JBOD
PCIe3 x8, 12Gb/s SAS RAID
SEAGATE ST3600057SS 15K (XFS partition)
1. Intel DC P3608 (current 2015)
ā€¢ PCI-Express 3.0 x8 lanes
ā€¢ Capacity: 1.6TB (two drives)
ā€¢ Seq R/W BW:
ā€¢ 5000/2000 MB/s, (128k req)
ā€¢ Random 4k R/W IOPS:
ā€¢ 850k/150k
ā€¢ Random 8k R/W IOPS:
ā€¢ 500k/60k, 8 workers
ā€¢ Price $10,780
ā€¢ (online search 02/2017)
2. LSI Nytro WarpDrive 4-400 (old gen 2012)
ā€¢ PCI-Express 2.0 x8 lanes
ā€¢ Capacity: 1.6TB (two drives)
ā€¢ Seq. R/W BW:
ā€¢ 2000/1000 MB/s (256k req)
ā€¢ R/W IOPS:
ā€¢ 185k/120k (8k req)
ā€¢ Price $4,096
ā€¢ (online search 02/2017)
ā€¢ $12,195 MSRP 2012
Denver/Boulder BigData 2017 7
FIO Benchmarks
Objectives:
ā€¢ Assert vendor specs (BW, IOPS, Latency)
ā€¢ Seq R/W, Random R/W
ā€¢ Verify driver/firmware and OS
ā€¢ Set performance expectations
Commands on reference on last slides 8
Max of bw (MB/s)
Max of lat (us)
0
5000000
10000000
15000000
20000000
25000000
524288
1048576
2097152
4194304
Bytes/s
Req Size
FIO results: Max Bandwidth
Higher is better.
Max BW recorded for each device under different settings: req size, io depth, threads. Using libaio. 9
Results:
ā€¢ Random R/W similar in both
PCIe SSDs
ā€¢ But not for the SAS
JBOD
ā€¢ SAS JBOD achieves high both
seq R/W
ā€¢ 10 disks 2GB/s
ā€¢ Achieved both PCIe vendor
numbers
ā€¢ Also on IOPS
ā€¢ Combined WPD disks only
improve in W performance
Intel NVMe SAS (15KRPM) 10 and 1 disk(s) PCIe SSD (old gen) 1 and 2 disks
NVMe (2 disks P3608) SAS JBOD (10d) SAS disk (1 disk 15K) PCIe (WPD 1 disk) PCIe (WPD 2 disks)
New cluster (NVMe) Old Cluster
randread 4674.99 409.95 118.07 1935.24 4165.65
randwrite 2015.27 843 249.06 1140.96 1256.12
read 4964.44 1861.4 198.54 2033.52 3957.42
write 2006 1869.49 204.17 1201.52 2066.48
0
1000
2000
3000
4000
5000
6000
MB/s
Max bandwidth (MB/s) per disk type
NVMe (2 disks P3608) SAS JBOD (10d) PCIe (WPD 1 disk) PCIe (WPD 2 disks)
New cluster (NVMe) Old Cluster
randread 381.43 5823.5 519.61 250.06
randwrite 389.9 1996.9 1340.35 252.96
read 369.53 294.33 405.65 204.39
write 369.42 280.2 852.03 410.14
0
1000
2000
3000
4000
5000
6000
7000
Āµsecs
Average latency by device (64KB req size, 1 io depth)
FIO results: Latency (smoke test)
Higher is better.
Average latency for req size 64KB and 1 io depth (varying workers). Using libaio. 10
Results:
ā€¢ JBOD has highest latency for
random R/W (as expected)
ā€¢ But very low for seq
ā€¢ Combined WPD disks lower
the latency
ā€¢ Lower than P3608
disks.
Notes:
ā€¢ Need to more thorough
comparison and at different
settings.
Intel NVMe SAS 10 disk JBOD PCIe SSD (old gen) 1 and 2 disks
High latency
HBase in a nutshell
ā€¢ Highly scalable Big data key-value store
ā€¢ On top of Hadoop (HDFS)
ā€¢ Based on Googleā€™s Bigtable
ā€¢ Real-time and random access
ā€¢ Indexed
ā€¢ Low-latency
ā€¢ Block cache and Bloom Filters
ā€¢ Linear, modular scalability
ā€¢ Automatic sharding of tables and failover
ā€¢ Strictly consistent reads and writes.
ā€¢ failover support
ā€¢ Production ready and battle tested
ā€¢ Building block of other projects
HBase R/W architecture
Denver/Boulder BigData 2017 11
Source: HDP doc
JVM Heap
L2 Bucket Cache (BC) in HBase
Region server (worker) memory with BC
Denver/Boulder BigData 2017 12
ā€¢ Adds a second ā€œblockā€ storage for HFiles
ā€¢ Use case: L2 cache and replaces OS buļ¬€er
cache
ā€¢ Does copy-onā€read
ā€¢ Fixed sized, reserved on startup
ā€¢ 3 different modes:
ā€¢ Heap
ā€¢ Marginal improvement
ā€¢ Divides mem with the block cache
ā€¢ Offheap (in RAM)
ā€¢ Uses Java NIOā€™s Direct ByteBuļ¬€er
ā€¢ File
ā€¢ Any local file / device
ā€¢ Bypasses HDFS
ā€¢ Saves RAM
L2-BucketCache experiments summary
Tested configurations for HBase v1.24
1. HBase default (baseline)
2. HBase w/ Bucket cache Offheap
1. Size: 32GB /work node
3. HBase w/ Bucket cache in RAM disk
1. Size: 32GB /work node
4. HBase w/ Bucket cache in NVMe disk
1. Size: 250GB / worker node
ā€¢ All using same Hadoop and HDFS
configuration
ā€¢ On JBOD (10 SAS disks, /grid/{0,9})
ā€¢ 1 Replica, short-circuit reads
Experiments
1. Read-only (workload C)
1. RAM at 128GB / node
2. RAM at 32GB / node
3. Clearing buffer cache
2. Full YCSB (workloads A-F)
4. RAM at 128GB / node
5. RAM at 32GB / node
ā€¢ Payload:
ā€¢ YCSB 250M records.
ā€¢ ~2TB HDFS raw
Denver/Boulder BigData 2017 13
Experiment 1: Read-only (gets)
YCSB Workload C: 25M records, 500 threads, ~2TB HDFS
Denver/Boulder BigData 2017 14
E 1.1: Throughput of the 4 configurations
(128GB RAM)
Higher is better for Ops (Y1), lower for latency (Y2)
(Offheap run2 and 3 the same run)
15
Results:
ā€¢ Ops/Sec improve with BC
ā€¢ Offheap 1.6x
ā€¢ RAMd 1.5x
ā€¢ NVMe 2.3x
ā€¢ AVG latency as well
ā€¢ (req time)
ā€¢ First run slower on 4
cases (writes OS cache
and BC)
ā€¢ Baseline and RAMd
only 6% faster after
ā€¢ NVMe 16%
ā€¢ 3rd run not faster, cache
already loaded
ā€¢ Tested onheap config:
ā€¢ > 8GB failed
ā€¢ 8GB slower than
baseline
Baseline BucketCache Offheap BucketCache RAM disk BucketCache NVMe
WorkloadC_run1 105610 133981 161712 218342
WorkloadC_run2 111530 175483 171236 257017
WorkloadC_run3 111422 175483 170889 253625
Cache Time % 5.5 31 5.6 16.2
Speeup (run3) 1 1.57 1.53 2.28
Latency Āµs (run3) 4476 2841 2917 1964
0
500
1000
1500
2000
2500
3000
3500
4000
4500
5000
0
50000
100000
150000
200000
250000
300000
Ops/Sec
Throughput of 3 consecutive iterations of Workload C (128GB)
E 1.1 Cluster resource consumption: Baseline
16
CPU % (AVG)
Disk R/W MB/s (SUM)
Mem Usage KB (AVG)
NET R/W Mb/s (SUM)
Notes:
ā€¢ Java heap and OS buffer cache holds 100% of WL
ā€¢ Data is read from disks (HDFS) only in first part of
the run,
ā€¢ then throughput stabilizes (see NET and CPU)
ā€¢ Free resources,
ā€¢ Bottleneck in application and OS path (not shown)
Write
Read
E 1.1 Cluster resource consumption: Bucket Cache strategies
17
Offheap (32GB) Disk R/W RAM disk (tmpfs 32GB) Disk R/W
NVMe (250GB) Disk R/WNotes:
ā€¢ 3 BC strategies faster than baseline
ā€¢ BC LRU more effective than OS buffer
ā€¢ Offheap slightly more efficient ran RAMd (same size)
ā€¢ But seems to take longer to fill (different per node)
ā€¢ And more capacity for same payload (plus java heap)
ā€¢ NVM can hold the complete WL in the BC
ā€¢ Read and Writes to MEM not captured by charts
BC fills on 1st run
WL doesnā€™t fit
completely
E 1.2-3
Challenge:
Limit OS buffer cache effect on experiments
1st approach, larger payload. Cons: high execution time
2nd limit available RAM (using stress tool)
3rd clear buffer cache periodically (drop caches)
Denver/Boulder BigData 2017 18
E1.2: Throughput of the 4 configurations
(32GB RAM)
Higher is better for Ops (Y1), lower for latency (Y2) 19
Results:
ā€¢ Ops/Sec improve only
with NVMe up to 8X
ā€¢ RAMd performs
close to baseline
ā€¢ First run same on baseline
and RAMd
ā€¢ tmpfs ā€œblocksā€ as
RAM is needed
ā€¢ At lower capacity,
external BC shows more
improvement
Baseline BucketCache Offheap BucketCache RAM disk BucketCache NVMe
WorkloadC_run1 20578 14715.493 21520 109488
WorkloadC_run2 20598 16995 21534 166588
Speeup (run2) 1 0.83 1.05 8.09
Cache Time % 99.9 99.9 99.9 48
Latency Āµs (run3) 24226 29360 23176 2993
0
5000
10000
15000
20000
25000
30000
35000
0
20000
40000
60000
80000
100000
120000
140000
160000
180000
Ops/Sec
Throughput of 2 consecutive iterations of Workload C (32GB)
E 1.1 Cluster CPU% AVG: Bucket Cache (32GB RAM)
20
Baseline
RAM disk (/dev/shm 8GB)
Offheap (4GB)
NVMe (250GB)
Read disk throughput: 2.4GB/s Read disk throughput: 2.8GB/s
Read disk throughput: 2.5GB/s Read disk throughput: 38.GB/s
BC failure
Slowest
E1.3: Throughput of the 4 configurations
(Drop OS buffer cache)
Higher is better for Ops (Y1), lower for latency (Y2).
Dropping cache every 10 secs.
21
Results:
ā€¢ Ops/Sec improve only
with NVMe up to 9X
ā€¢ RAMd performs 1.43X
better this time
ā€¢ First run same on baseline
and RAMd
ā€¢ But RAMd worked
fine
ā€¢ Having a larger sized BC
improves performance
over RAMd
Baseline BucketCache Offheap BucketCache RAM disk BucketCache NVMe
WorkloadC_run1 22780 30593 32447 126306
WorkloadC_run2 22770 30469 32617 210976
Speeup (run3) 1 1.34 1.43 9.27
Cache Time % -0.1 -0.1 0.5 67
Latency Āµs (run2) 21924 16375 15293 2361
0
5000
10000
15000
20000
25000
0
50000
100000
150000
200000
250000
Ops/Sec
Throughput of 2 consecutive iterations of Workload C (Drop OS Cache)
Experiment 2: All workloads (-E)
YCSB workloads A-D, F: 25M records, 1000 threads
Denver/Boulder BigData 2017 22
Benchmark suite: The Yahoo! Cloud Serving Benchmark (YCSB)
ā€¢ Open source specification and kit, for comparing NoSQL DBs. (since 2010)
ā€¢ Core workloads:
ā€¢ A: Update heavy workload
ā€¢ 50/50 R/W.
ā€¢ B: Read mostly workload
ā€¢ 95/5 R/W mix.
ā€¢ C: Read only
ā€¢ 100% read.
ā€¢ D: Read latest workload
ā€¢ Inserts new records and reads them
ā€¢ Workload E: Short ranges (Not used, takes too long to run SCAN type)
ā€¢ Short ranges of records are queried, instead of individual records
ā€¢ F: Read-modify-write
ā€¢ read a record, modify it, and write back.
https://github.com/brianfrankcooper/YCSB/wiki/Core-Workloads 23
E2.1: Throughput and Speedup ALL
(128GB RAM)
Higher is better 24
Results:
ā€¢ Datagen same in all
ā€¢ (write-only)
ā€¢ Overall: Ops/Sec improve
with BC
ā€¢ RAMd 14%
ā€¢ NVMe 37%
ā€¢ WL D gets higher speedup
with NVMe
ā€¢ WL F 6% faster on RAMd
than in NVMe
ā€¢ Need to run more
iterations to see max
improvement
Baseline
BucketCache RAM
disk
BucketCache NVMe
Datagen 68502 67998 65933
WL A 77049 83379 96752
WL B 80966 87788 115713
WL C 89372 99403 132738
WL D 136426 171123 244759
WL F 48699 65223 62496
0
50000
100000
150000
200000
250000
300000
Ops/Sec
Throughput of workloads A-D,F (128GB, 1 iteration)
Baseline
BucketCache RAM
disk
BucketCache NVMe
Speedup Data 1 0.99 0.96
Speedup A 1 1.08 1.26
Speedup B 1 1.08 1.43
Speedup C 1 1.11 1.49
Speedup D 1 1.25 1.79
Speedup F 1 1.34 1.28
Total 1 1.14 1.37
0.8
1
1.2
1.4
1.6
1.8
2
Speedup
Speedup of workloads A-D,F (128GB, 1 iteration)
E2.1: Throughput and Speedup ALL
(32GB RAM)
Higher is better 25
Results:
ā€¢ Datagen slower with the
RAMd (less OS RAM)
Overall: Ops/Sec improve
with BC
ā€¢ RAMd 17%
ā€¢ NVMe 87%
ā€¢ WL C gets higher speedup
with NVMe
ā€¢ WL F now faster with
NVMe
ā€¢ Need to run more
iterations to see max
improvement
Baseline
BucketCache RAM
disk
BucketCache NVMe
Speedup Data 1 0.88 0.98
Speedup A 1 1.02 1.37
Speedup B 1 1.31 2.38
Speedup C 1 1.42 2.65
Speedup D 1 1.1 1.5
Speedup F 1 1.27 1.98
Total 1 1.17 1.81
0.8
1
1.2
1.4
1.6
1.8
2
2.2
2.4
2.6
2.8
Speedup
Speedup of workloads A-D,F (128GB, 1 iteration)
Baseline
BucketCache RAM
disk
BucketCache NVMe
Datagen 68821 60819 67737
WL A 55682 56702 76315
WL B 33551 43978 79895
WL C 30631 43420 81245
WL D 85725 94631 128881
WL F 25540 32464 50568
0
20000
40000
60000
80000
100000
120000
140000
Ops/Sec
Throughput of workloads A-D,F (128GB, 1 iteration)
E2.1: CPU and Disk for ALL (32GB RAM)
26
Baseline CPU %
NVMe CPU%
Baseline Disk R/w
NVMe Disk R/W
High I/O wait
Read disk throughput: 1.8GB/s
Moderate I/O wait (2x less time)
Read disk throughput: up to 25GB/s
E2.1: NET and MEM ALL (32GB RAM)
27
Baseline MEM
NVMe MEM
Baseline NET R/W
NVMe NET R/W
Higher OS cache util
Throughput: 1Gb/s
Lower OS cache util Throughput: up to 2.5 Gb/s
Summary
Lessons learned, findings, conclusions, references
Denver/Boulder BigData 2017 28
Bucket Cache results recap (medium sized WL)
ā€¢ Full cluster (128GB RAM / node)
ā€¢ WL-C up to 2.7x speedup (warm cache)
ā€¢ Full benchmark (CRUD) from 0.3 to 0.9x speedup (cold cache)
ā€¢ Limiting resources
ā€¢ 32GB RAM / node
ā€¢ WL-C NVMe gets up to 8X improvement (warm cache)
ā€¢ Other techniques failed/poor results
ā€¢ Full benchmark between 0.4 and 2.7x speedup (cold cache)
ā€¢ Drop OS cache WL-C
ā€¢ Up to 9x with NVMe, only < 0.5x with other techniques (warm cache)
ā€¢ Latency reduces significantly with cached results
ā€¢ Onheap BC not recommended
ā€¢ just give more RAM to BlockCache
Denver/Boulder BigData 2017 29
Open challenges / Lessons learned
ā€¢ Generating app level workloads that stresses newer HW
ā€¢ At acceptable time / cost
ā€¢ Still need to
ā€¢ Run micro-benchmarks
ā€¢ Per DEV, node, cluster
ā€¢ Large working sets
ā€¢ > RAM (128GB / Node)
ā€¢ > NMVe (1.6TB / Node)
ā€¢ OS buffer cache highly effective
ā€¢ at least with HDFS and HBase
ā€¢ Still, a RAM app ā€œL2 cacheā€ is able to speedup
ā€¢ App level LRU more effective
ā€¢ YCSB Zipfian distribution (popular records)
ā€¢ The larger the WL, higher the gains
ā€¢ Can be simulated by limiting resources or dropping caches effectively
Denver/Boulder BigData 2017 30
8512 8667 8523
9668
0
2000
4000
6000
8000
10000
12000
NVMe JBOD10+NVMe JBOD10 JBOD05
Seconds
Lower is better
Running time of terasort (1TB) under different disks
terasort
teragen
To concludeā€¦
ā€¢ NVMe offers significant BW and Latency improvement over SAS/SATA,
but
ā€¢ JBODs still perform well for seq R/W
ā€¢ Also cheaper $/TB
ā€¢ Big Data apps still designed for rotational (avoid random I/O)
ā€¢ Full tiered-storage support is missing by Big Data frameworks
ā€¢ Byte addressable vs. block access
ā€¢ Research shows improvements
ā€¢ Need to rely on external tools/file systems
ā€¢ Alluxio (Tachyon), Triple-H, New file systems (SSDFS), ā€¦
ā€¢ Fast devices speedup, but still caching is the simple use caseā€¦
Denver/Boulder BigData 2017 31
References
ā€¢ ALOJA
ā€¢ http://aloja.bsc.es
ā€¢ https://github.com/aloja/aloja
ā€¢ Bucket cache and HBase
ā€¢ BlockCache (and Bucket Cache 101) http://www.n10k.com/blog/blockcache-101/
ā€¢ Intel brief on bucket cache:
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/apache-
hbase-block-cache-testing-brief.pdf
ā€¢ http://www.slideshare.net/larsgeorge/hbase-status-report-hadoop-summit-europe-2014
ā€¢ HBase performance: http://www.slideshare.net/bijugs/h-base-performance
ā€¢ Benchmarks
ā€¢ FIO https://github.com/axboe/fio
ā€¢ Brian F. Cooper, et. Al. 2010. Benchmarking cloud serving systems with YCSB.
http://dx.doi.org/10.1145/1807128.1807152
Denver/Boulder BigData 2017 32
Thanks, questions?
Sales: sales@objectrocket.com
Follow up / feedback : David.Grier@objectrocket.com
Twitter: @grierdavid
Denver/Boulder BigData 2017
Evaluating NVMe drives for accelerating HBase
FIO commands:
ā€¢ Sequential read
ā€¢ fio --name=read --directory=${dir} --ioengine=libaio --direct=1 --bs=${bs} --rw=read --iodepth=${iodepth} --numjobs=1 --buffered=0 --size=2gb --
runtime=30 --time_based --randrepeat=0 --norandommap --refill_buffers --output-format=json
ā€¢ Random read
ā€¢ fio --name=randread --directory=${dir} --ioengine=libaio --direct=1 --bs=${bs} --rw=randread --iodepth=${iodepth} --numjobs=${numjobs} --
buffered=0 --size=2gb --runtime=30 --time_based --randrepeat=0 --norandommap --refill_buffers --output-format=json
ā€¢ Sequential read on raw devices:
ā€¢ fio --name=read --filename=${dev} --ioengine=libaio --direct=1 --bs=${bs} --rw=read --iodepth=${iodepth} --numjobs=1 --buffered=0 --size=2gb --
runtime=30 --time_based --randrepeat=0 --norandommap --refill_buffers --output-format=json
ā€¢ Sequential write
ā€¢ fio --name=write --directory=${dir} --ioengine=libaio --direct=1 --bs=${bs} --rw=write --iodepth=${iodepth} --numjobs=1 --buffered=0 --size=2gb --
runtime=30 --time_based --randrepeat=0 --norandommap --refill_buffers --output-format=json
ā€¢ Random write
ā€¢ fio --name=randwrite --directory=${dir} --ioengine=libaio --direct=1 --bs=${bs} --rw=randwrite --iodepth=${iodepth} --numjobs=${numjobs} --
buffered=0 --size=2gb --runtime=30 --time_based --randrepeat=0 --norandommap --refill_buffers --output-format=json
ā€¢ Random read on raw devices:
ā€¢ fio --name=randread --filename=${dev} --ioengine=libaio --direct=1 --bs=${bs} --rw=randread --iodepth=${iodepth} --numjobs=${numjobs} --
buffered=0 --size=2gb --runtime=30 --time_based --randrepeat=0 --norandommap --refill_buffers --offset_increment=2gb --output-format=json
https://github.com/axboe/fio 34

More Related Content

What's hot

Hug Hbase Presentation.
Hug Hbase Presentation.Hug Hbase Presentation.
Hug Hbase Presentation.
Jack Levin
Ā 

What's hot (19)

MyRocks introduction and production deployment
MyRocks introduction and production deploymentMyRocks introduction and production deployment
MyRocks introduction and production deployment
Ā 
Ceph - High Performance Without High Costs
Ceph - High Performance Without High CostsCeph - High Performance Without High Costs
Ceph - High Performance Without High Costs
Ā 
Unified readonly cache for ceph
Unified readonly cache for cephUnified readonly cache for ceph
Unified readonly cache for ceph
Ā 
Build an High-Performance and High-Durable Block Storage Service Based on Ceph
Build an High-Performance and High-Durable Block Storage Service Based on CephBuild an High-Performance and High-Durable Block Storage Service Based on Ceph
Build an High-Performance and High-Durable Block Storage Service Based on Ceph
Ā 
Your 1st Ceph cluster
Your 1st Ceph clusterYour 1st Ceph cluster
Your 1st Ceph cluster
Ā 
Tech Talk: RocksDB Slides by Dhruba Borthakur & Haobo Xu of Facebook
Tech Talk: RocksDB Slides by Dhruba Borthakur & Haobo Xu of FacebookTech Talk: RocksDB Slides by Dhruba Borthakur & Haobo Xu of Facebook
Tech Talk: RocksDB Slides by Dhruba Borthakur & Haobo Xu of Facebook
Ā 
Bluestore
BluestoreBluestore
Bluestore
Ā 
Ceph Performance and Sizing Guide
Ceph Performance and Sizing GuideCeph Performance and Sizing Guide
Ceph Performance and Sizing Guide
Ā 
Write behind logging
Write behind loggingWrite behind logging
Write behind logging
Ā 
Hug Hbase Presentation.
Hug Hbase Presentation.Hug Hbase Presentation.
Hug Hbase Presentation.
Ā 
Ceph Day Beijing - Optimizing Ceph Performance by Leveraging Intel Optane and...
Ceph Day Beijing - Optimizing Ceph Performance by Leveraging Intel Optane and...Ceph Day Beijing - Optimizing Ceph Performance by Leveraging Intel Optane and...
Ceph Day Beijing - Optimizing Ceph Performance by Leveraging Intel Optane and...
Ā 
Development to Production with Sharded MongoDB Clusters
Development to Production with Sharded MongoDB ClustersDevelopment to Production with Sharded MongoDB Clusters
Development to Production with Sharded MongoDB Clusters
Ā 
The Hive Think Tank: Rocking the Database World with RocksDB
The Hive Think Tank: Rocking the Database World with RocksDBThe Hive Think Tank: Rocking the Database World with RocksDB
The Hive Think Tank: Rocking the Database World with RocksDB
Ā 
MongoDB memory management demystified
MongoDB memory management demystifiedMongoDB memory management demystified
MongoDB memory management demystified
Ā 
Hadoop over rgw
Hadoop over rgwHadoop over rgw
Hadoop over rgw
Ā 
Ceph and RocksDB
Ceph and RocksDBCeph and RocksDB
Ceph and RocksDB
Ā 
Ceph - A distributed storage system
Ceph - A distributed storage systemCeph - A distributed storage system
Ceph - A distributed storage system
Ā 
The Hive Think Tank: Rocking the Database World with RocksDB
The Hive Think Tank:  Rocking the Database World with RocksDBThe Hive Think Tank:  Rocking the Database World with RocksDB
The Hive Think Tank: Rocking the Database World with RocksDB
Ā 
HKG15-401: Ceph and Software Defined Storage on ARM servers
HKG15-401: Ceph and Software Defined Storage on ARM serversHKG15-401: Ceph and Software Defined Storage on ARM servers
HKG15-401: Ceph and Software Defined Storage on ARM servers
Ā 

Viewers also liked

Rackspace 2017 End to End v1_12_4_16
Rackspace 2017 End to End v1_12_4_16Rackspace 2017 End to End v1_12_4_16
Rackspace 2017 End to End v1_12_4_16
Ron Guida
Ā 
Lily for the Bay Area HBase UG - NYC edition
Lily for the Bay Area HBase UG - NYC editionLily for the Bay Area HBase UG - NYC edition
Lily for the Bay Area HBase UG - NYC edition
NGDATA
Ā 
HERD-Hanjun
HERD-HanjunHERD-Hanjun
HERD-Hanjun
Hanjun Xiao
Ā 
SOUG_GV_Flashgrid_V4
SOUG_GV_Flashgrid_V4SOUG_GV_Flashgrid_V4
SOUG_GV_Flashgrid_V4
UniFabric
Ā 

Viewers also liked (20)

London HUG 14/3
London HUG 14/3London HUG 14/3
London HUG 14/3
Ā 
How to Become a Thought Leader in Your Niche
How to Become a Thought Leader in Your NicheHow to Become a Thought Leader in Your Niche
How to Become a Thought Leader in Your Niche
Ā 
#askSAP: Journey to the Cloud: SAP Strategy and Roadmap for Cloud and Hybrid ...
#askSAP: Journey to the Cloud: SAP Strategy and Roadmap for Cloud and Hybrid ...#askSAP: Journey to the Cloud: SAP Strategy and Roadmap for Cloud and Hybrid ...
#askSAP: Journey to the Cloud: SAP Strategy and Roadmap for Cloud and Hybrid ...
Ā 
Rackspace 2017 End to End v1_12_4_16
Rackspace 2017 End to End v1_12_4_16Rackspace 2017 End to End v1_12_4_16
Rackspace 2017 End to End v1_12_4_16
Ā 
Lily for the Bay Area HBase UG - NYC edition
Lily for the Bay Area HBase UG - NYC editionLily for the Bay Area HBase UG - NYC edition
Lily for the Bay Area HBase UG - NYC edition
Ā 
Large Scale Performance Monitoring for ElasticSearch, HBase, Solr, SenseiDB, ...
Large Scale Performance Monitoring for ElasticSearch, HBase, Solr, SenseiDB, ...Large Scale Performance Monitoring for ElasticSearch, HBase, Solr, SenseiDB, ...
Large Scale Performance Monitoring for ElasticSearch, HBase, Solr, SenseiDB, ...
Ā 
Rigorous and Multi-tenant HBase Performance
Rigorous and Multi-tenant HBase PerformanceRigorous and Multi-tenant HBase Performance
Rigorous and Multi-tenant HBase Performance
Ā 
GPUrdma - Presentation
GPUrdma - PresentationGPUrdma - Presentation
GPUrdma - Presentation
Ā 
HERD-Hanjun
HERD-HanjunHERD-Hanjun
HERD-Hanjun
Ā 
Paper on RDMA enabled Cluster FileSystem at Intel Developer Forum
Paper on RDMA enabled Cluster FileSystem at Intel Developer ForumPaper on RDMA enabled Cluster FileSystem at Intel Developer Forum
Paper on RDMA enabled Cluster FileSystem at Intel Developer Forum
Ā 
slides
slidesslides
slides
Ā 
ė…øķƒœģƒ - ė¦¬ėˆ…ģŠ¤ ģ»¤ė„ ź°œģš” ė° ģ“ģŠˆ ģ•„ģ“ģ—  (2010Y01M30D)
ė…øķƒœģƒ - ė¦¬ėˆ…ģŠ¤ ģ»¤ė„ ź°œģš” ė° ģ“ģŠˆ ģ•„ģ“ģ—  (2010Y01M30D)ė…øķƒœģƒ - ė¦¬ėˆ…ģŠ¤ ģ»¤ė„ ź°œģš” ė° ģ“ģŠˆ ģ•„ģ“ģ—  (2010Y01M30D)
ė…øķƒœģƒ - ė¦¬ėˆ…ģŠ¤ ģ»¤ė„ ź°œģš” ė° ģ“ģŠˆ ģ•„ģ“ģ—  (2010Y01M30D)
Ā 
An Introduction to Edgecombe County
An Introduction to Edgecombe CountyAn Introduction to Edgecombe County
An Introduction to Edgecombe County
Ā 
NoSQL Type, Bigdata, and Analytics
NoSQL Type, Bigdata, and AnalyticsNoSQL Type, Bigdata, and Analytics
NoSQL Type, Bigdata, and Analytics
Ā 
IMCSummit 2015 - Day 1 Developer Track - Evolution of non-volatile memory exp...
IMCSummit 2015 - Day 1 Developer Track - Evolution of non-volatile memory exp...IMCSummit 2015 - Day 1 Developer Track - Evolution of non-volatile memory exp...
IMCSummit 2015 - Day 1 Developer Track - Evolution of non-volatile memory exp...
Ā 
Practica virtual del agua
Practica virtual del agua Practica virtual del agua
Practica virtual del agua
Ā 
SOUG_GV_Flashgrid_V4
SOUG_GV_Flashgrid_V4SOUG_GV_Flashgrid_V4
SOUG_GV_Flashgrid_V4
Ā 
Persistent memory
Persistent memoryPersistent memory
Persistent memory
Ā 
STAC Summit 2014 - Building a multitenant Big Data infrastructure
STAC Summit 2014 - Building a multitenant Big Data infrastructureSTAC Summit 2014 - Building a multitenant Big Data infrastructure
STAC Summit 2014 - Building a multitenant Big Data infrastructure
Ā 
Approaching hyperconvergedopenstack
Approaching hyperconvergedopenstackApproaching hyperconvergedopenstack
Approaching hyperconvergedopenstack
Ā 

Similar to Accelerating hbase with nvme and bucket cache

SF Big Analytics & SF Machine Learning Meetup: Machine Learning at the Limit ...
SF Big Analytics & SF Machine Learning Meetup: Machine Learning at the Limit ...SF Big Analytics & SF Machine Learning Meetup: Machine Learning at the Limit ...
SF Big Analytics & SF Machine Learning Meetup: Machine Learning at the Limit ...
Chester Chen
Ā 
CLFS 2010
CLFS 2010CLFS 2010
CLFS 2010
bergwolf
Ā 
Red Hat Storage Day Dallas - Red Hat Ceph Storage Acceleration Utilizing Flas...
Red Hat Storage Day Dallas - Red Hat Ceph Storage Acceleration Utilizing Flas...Red Hat Storage Day Dallas - Red Hat Ceph Storage Acceleration Utilizing Flas...
Red Hat Storage Day Dallas - Red Hat Ceph Storage Acceleration Utilizing Flas...
Red_Hat_Storage
Ā 
In-memory Caching in HDFS: Lower Latency, Same Great Taste
In-memory Caching in HDFS: Lower Latency, Same Great TasteIn-memory Caching in HDFS: Lower Latency, Same Great Taste
In-memory Caching in HDFS: Lower Latency, Same Great Taste
DataWorks Summit
Ā 

Similar to Accelerating hbase with nvme and bucket cache (20)

Accelerating HBase with NVMe and Bucket Cache
Accelerating HBase with NVMe and Bucket CacheAccelerating HBase with NVMe and Bucket Cache
Accelerating HBase with NVMe and Bucket Cache
Ā 
The state of Hive and Spark in the Cloud (July 2017)
The state of Hive and Spark in the Cloud (July 2017)The state of Hive and Spark in the Cloud (July 2017)
The state of Hive and Spark in the Cloud (July 2017)
Ā 
LUG 2014
LUG 2014LUG 2014
LUG 2014
Ā 
SF Big Analytics & SF Machine Learning Meetup: Machine Learning at the Limit ...
SF Big Analytics & SF Machine Learning Meetup: Machine Learning at the Limit ...SF Big Analytics & SF Machine Learning Meetup: Machine Learning at the Limit ...
SF Big Analytics & SF Machine Learning Meetup: Machine Learning at the Limit ...
Ā 
The state of SQL-on-Hadoop in the Cloud
The state of SQL-on-Hadoop in the CloudThe state of SQL-on-Hadoop in the Cloud
The state of SQL-on-Hadoop in the Cloud
Ā 
Red Hat Storage Server Administration Deep Dive
Red Hat Storage Server Administration Deep DiveRed Hat Storage Server Administration Deep Dive
Red Hat Storage Server Administration Deep Dive
Ā 
CLFS 2010
CLFS 2010CLFS 2010
CLFS 2010
Ā 
Cassandra Day Chicago 2015: DataStax Enterprise & Apache Cassandra Hardware B...
Cassandra Day Chicago 2015: DataStax Enterprise & Apache Cassandra Hardware B...Cassandra Day Chicago 2015: DataStax Enterprise & Apache Cassandra Hardware B...
Cassandra Day Chicago 2015: DataStax Enterprise & Apache Cassandra Hardware B...
Ā 
Open Source Data Deduplication
Open Source Data DeduplicationOpen Source Data Deduplication
Open Source Data Deduplication
Ā 
FlashSQL ģ†Œź°œ & TechTalk
FlashSQL ģ†Œź°œ & TechTalkFlashSQL ģ†Œź°œ & TechTalk
FlashSQL ģ†Œź°œ & TechTalk
Ā 
IAP09 CUDA@MIT 6.963 - Guest Lecture: Out-of-Core Programming with NVIDIA's C...
IAP09 CUDA@MIT 6.963 - Guest Lecture: Out-of-Core Programming with NVIDIA's C...IAP09 CUDA@MIT 6.963 - Guest Lecture: Out-of-Core Programming with NVIDIA's C...
IAP09 CUDA@MIT 6.963 - Guest Lecture: Out-of-Core Programming with NVIDIA's C...
Ā 
Galaxy Big Data with MariaDB
Galaxy Big Data with MariaDBGalaxy Big Data with MariaDB
Galaxy Big Data with MariaDB
Ā 
Storage Spaces Direct - the new Microsoft SDS star - Carsten Rachfahl
Storage Spaces Direct - the new Microsoft SDS star - Carsten RachfahlStorage Spaces Direct - the new Microsoft SDS star - Carsten Rachfahl
Storage Spaces Direct - the new Microsoft SDS star - Carsten Rachfahl
Ā 
QCT Ceph Solution - Design Consideration and Reference Architecture
QCT Ceph Solution - Design Consideration and Reference ArchitectureQCT Ceph Solution - Design Consideration and Reference Architecture
QCT Ceph Solution - Design Consideration and Reference Architecture
Ā 
QCT Ceph Solution - Design Consideration and Reference Architecture
QCT Ceph Solution - Design Consideration and Reference ArchitectureQCT Ceph Solution - Design Consideration and Reference Architecture
QCT Ceph Solution - Design Consideration and Reference Architecture
Ā 
Red Hat Storage Day New York - New Reference Architectures
Red Hat Storage Day New York - New Reference ArchitecturesRed Hat Storage Day New York - New Reference Architectures
Red Hat Storage Day New York - New Reference Architectures
Ā 
Red Hat Storage Day Dallas - Red Hat Ceph Storage Acceleration Utilizing Flas...
Red Hat Storage Day Dallas - Red Hat Ceph Storage Acceleration Utilizing Flas...Red Hat Storage Day Dallas - Red Hat Ceph Storage Acceleration Utilizing Flas...
Red Hat Storage Day Dallas - Red Hat Ceph Storage Acceleration Utilizing Flas...
Ā 
In-memory Caching in HDFS: Lower Latency, Same Great Taste
In-memory Caching in HDFS: Lower Latency, Same Great TasteIn-memory Caching in HDFS: Lower Latency, Same Great Taste
In-memory Caching in HDFS: Lower Latency, Same Great Taste
Ā 
Logs @ OVHcloud
Logs @ OVHcloudLogs @ OVHcloud
Logs @ OVHcloud
Ā 
Ceph Performance: Projects Leading up to Jewel
Ceph Performance: Projects Leading up to JewelCeph Performance: Projects Leading up to Jewel
Ceph Performance: Projects Leading up to Jewel
Ā 

Recently uploaded

+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
?#DUbAI#??##{{(ā˜Žļø+971_581248768%)**%*]'#abortion pills for sale in dubai@
Ā 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
Joaquim Jorge
Ā 

Recently uploaded (20)

+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
Ā 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
Ā 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
Ā 
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdfUnderstanding Discord NSFW Servers A Guide for Responsible Users.pdf
Understanding Discord NSFW Servers A Guide for Responsible Users.pdf
Ā 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
Ā 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivity
Ā 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
Ā 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
Ā 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Ā 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Ā 
Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...
Ā 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?
Ā 
Artificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and MythsArtificial Intelligence: Facts and Myths
Artificial Intelligence: Facts and Myths
Ā 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Ā 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day Presentation
Ā 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
Ā 
Handwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed textsHandwritten Text Recognition for manuscripts and early printed texts
Handwritten Text Recognition for manuscripts and early printed texts
Ā 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
Ā 
Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024
Ā 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
Ā 

Accelerating hbase with nvme and bucket cache

  • 1. Evaluating NVMe drives for accelerating HBase Nicolas Poggi and David Grier Denver/Boulder BigData 2017 BSC Data Centric Computing ā€“ Rackspace collaboration
  • 2. Outline 1. Intro on Rackspace BSC and ALOJA 2. Cluster specs and disk benchmarks 3. HBase use case with NVE 1. Read-only workload ā€¢ Different strategies 2. Mixed workload 4. Summary Denver/Boulder BigData 2017 2 Max of bw (MB/s) Max of lat (us) BYTES/S REQ SIZE
  • 3. Barcelona Supercomputing Center (BSC) ā€¢ Spanish national supercomputing center 22 years history in: ā€¢ Computer Architecture, networking and distributed systems research ā€¢ Based at BarcelonaTech University (UPC) ā€¢ Large ongoing life science computational projects ā€¢ Prominent body of research activity around Hadoop ā€¢ 2008-2013: SLA Adaptive Scheduler, Accelerators, Locality Awareness, Performance Management. 7+ publications ā€¢ 2013-Present: Cost-efficient upcoming Big Data architectures (ALOJA) 6+ publications
  • 5. ALOJA: towards cost-effective Big Data ā€¢ Research project for automating characterization and optimization of Big Data deployments ā€¢ Open source Benchmarking-to-Insights platform and tools ā€¢ Largest Big Data public repository (70,000+ jobs) ā€¢ Community collaboration with industry and academia http://aloja.bsc.es Big Data Benchmarking Online Repository Web / ML Analytics
  • 6. Motivation and objectives ā€¢ Explore use cases where NVMe devices can speedup Big Data apps ā€¢ Poor initial resultsā€¦ ā€¢ HBase (this study) based on Intel report ā€¢ Measure the possibilities of NVMe devices ā€¢ System level benchmarks (FIO, IO Meter) ā€¢ WiP towards tiered-storage for Big data status ā€¢ Extend ALOJA into low-level I/O ā€¢ Challenge ā€¢ benchmark and stress high-end Big Data clusters ā€¢ In reasonable amount of time (and cost) First tests: Denver/Boulder BigData 2017 6 8512 8667 8523 9668 0 2000 4000 6000 8000 10000 12000 Seconds Lower is better Running time of terasort (1TB) under different disks terasort teragen Marginal improvement!!!
  • 7. Cluster and drive specs All nodes (x5) Operating System CentOS 7.2 Memory 128GB CPU Single Octo-core (16 threads) Disk Config OS 2x600GB SAS RAID1 Network 10Gb/10Gb redundant Master node (x1, extra nodes for HA not used in these tests) Disk Config Master storage 4x600GB SAS RAID10 XSF partition Data Nodes (x4) NVMe (cache) 1.6TB Intel DC P3608 NVMe SSD (PCIe) Disk config HDFS data storage 10x 0.6TB NL-SAS/SATA JBOD PCIe3 x8, 12Gb/s SAS RAID SEAGATE ST3600057SS 15K (XFS partition) 1. Intel DC P3608 (current 2015) ā€¢ PCI-Express 3.0 x8 lanes ā€¢ Capacity: 1.6TB (two drives) ā€¢ Seq R/W BW: ā€¢ 5000/2000 MB/s, (128k req) ā€¢ Random 4k R/W IOPS: ā€¢ 850k/150k ā€¢ Random 8k R/W IOPS: ā€¢ 500k/60k, 8 workers ā€¢ Price $10,780 ā€¢ (online search 02/2017) 2. LSI Nytro WarpDrive 4-400 (old gen 2012) ā€¢ PCI-Express 2.0 x8 lanes ā€¢ Capacity: 1.6TB (two drives) ā€¢ Seq. R/W BW: ā€¢ 2000/1000 MB/s (256k req) ā€¢ R/W IOPS: ā€¢ 185k/120k (8k req) ā€¢ Price $4,096 ā€¢ (online search 02/2017) ā€¢ $12,195 MSRP 2012 Denver/Boulder BigData 2017 7
  • 8. FIO Benchmarks Objectives: ā€¢ Assert vendor specs (BW, IOPS, Latency) ā€¢ Seq R/W, Random R/W ā€¢ Verify driver/firmware and OS ā€¢ Set performance expectations Commands on reference on last slides 8 Max of bw (MB/s) Max of lat (us) 0 5000000 10000000 15000000 20000000 25000000 524288 1048576 2097152 4194304 Bytes/s Req Size
  • 9. FIO results: Max Bandwidth Higher is better. Max BW recorded for each device under different settings: req size, io depth, threads. Using libaio. 9 Results: ā€¢ Random R/W similar in both PCIe SSDs ā€¢ But not for the SAS JBOD ā€¢ SAS JBOD achieves high both seq R/W ā€¢ 10 disks 2GB/s ā€¢ Achieved both PCIe vendor numbers ā€¢ Also on IOPS ā€¢ Combined WPD disks only improve in W performance Intel NVMe SAS (15KRPM) 10 and 1 disk(s) PCIe SSD (old gen) 1 and 2 disks NVMe (2 disks P3608) SAS JBOD (10d) SAS disk (1 disk 15K) PCIe (WPD 1 disk) PCIe (WPD 2 disks) New cluster (NVMe) Old Cluster randread 4674.99 409.95 118.07 1935.24 4165.65 randwrite 2015.27 843 249.06 1140.96 1256.12 read 4964.44 1861.4 198.54 2033.52 3957.42 write 2006 1869.49 204.17 1201.52 2066.48 0 1000 2000 3000 4000 5000 6000 MB/s Max bandwidth (MB/s) per disk type
  • 10. NVMe (2 disks P3608) SAS JBOD (10d) PCIe (WPD 1 disk) PCIe (WPD 2 disks) New cluster (NVMe) Old Cluster randread 381.43 5823.5 519.61 250.06 randwrite 389.9 1996.9 1340.35 252.96 read 369.53 294.33 405.65 204.39 write 369.42 280.2 852.03 410.14 0 1000 2000 3000 4000 5000 6000 7000 Āµsecs Average latency by device (64KB req size, 1 io depth) FIO results: Latency (smoke test) Higher is better. Average latency for req size 64KB and 1 io depth (varying workers). Using libaio. 10 Results: ā€¢ JBOD has highest latency for random R/W (as expected) ā€¢ But very low for seq ā€¢ Combined WPD disks lower the latency ā€¢ Lower than P3608 disks. Notes: ā€¢ Need to more thorough comparison and at different settings. Intel NVMe SAS 10 disk JBOD PCIe SSD (old gen) 1 and 2 disks High latency
  • 11. HBase in a nutshell ā€¢ Highly scalable Big data key-value store ā€¢ On top of Hadoop (HDFS) ā€¢ Based on Googleā€™s Bigtable ā€¢ Real-time and random access ā€¢ Indexed ā€¢ Low-latency ā€¢ Block cache and Bloom Filters ā€¢ Linear, modular scalability ā€¢ Automatic sharding of tables and failover ā€¢ Strictly consistent reads and writes. ā€¢ failover support ā€¢ Production ready and battle tested ā€¢ Building block of other projects HBase R/W architecture Denver/Boulder BigData 2017 11 Source: HDP doc JVM Heap
  • 12. L2 Bucket Cache (BC) in HBase Region server (worker) memory with BC Denver/Boulder BigData 2017 12 ā€¢ Adds a second ā€œblockā€ storage for HFiles ā€¢ Use case: L2 cache and replaces OS buļ¬€er cache ā€¢ Does copy-onā€read ā€¢ Fixed sized, reserved on startup ā€¢ 3 different modes: ā€¢ Heap ā€¢ Marginal improvement ā€¢ Divides mem with the block cache ā€¢ Offheap (in RAM) ā€¢ Uses Java NIOā€™s Direct ByteBuļ¬€er ā€¢ File ā€¢ Any local file / device ā€¢ Bypasses HDFS ā€¢ Saves RAM
  • 13. L2-BucketCache experiments summary Tested configurations for HBase v1.24 1. HBase default (baseline) 2. HBase w/ Bucket cache Offheap 1. Size: 32GB /work node 3. HBase w/ Bucket cache in RAM disk 1. Size: 32GB /work node 4. HBase w/ Bucket cache in NVMe disk 1. Size: 250GB / worker node ā€¢ All using same Hadoop and HDFS configuration ā€¢ On JBOD (10 SAS disks, /grid/{0,9}) ā€¢ 1 Replica, short-circuit reads Experiments 1. Read-only (workload C) 1. RAM at 128GB / node 2. RAM at 32GB / node 3. Clearing buffer cache 2. Full YCSB (workloads A-F) 4. RAM at 128GB / node 5. RAM at 32GB / node ā€¢ Payload: ā€¢ YCSB 250M records. ā€¢ ~2TB HDFS raw Denver/Boulder BigData 2017 13
  • 14. Experiment 1: Read-only (gets) YCSB Workload C: 25M records, 500 threads, ~2TB HDFS Denver/Boulder BigData 2017 14
  • 15. E 1.1: Throughput of the 4 configurations (128GB RAM) Higher is better for Ops (Y1), lower for latency (Y2) (Offheap run2 and 3 the same run) 15 Results: ā€¢ Ops/Sec improve with BC ā€¢ Offheap 1.6x ā€¢ RAMd 1.5x ā€¢ NVMe 2.3x ā€¢ AVG latency as well ā€¢ (req time) ā€¢ First run slower on 4 cases (writes OS cache and BC) ā€¢ Baseline and RAMd only 6% faster after ā€¢ NVMe 16% ā€¢ 3rd run not faster, cache already loaded ā€¢ Tested onheap config: ā€¢ > 8GB failed ā€¢ 8GB slower than baseline Baseline BucketCache Offheap BucketCache RAM disk BucketCache NVMe WorkloadC_run1 105610 133981 161712 218342 WorkloadC_run2 111530 175483 171236 257017 WorkloadC_run3 111422 175483 170889 253625 Cache Time % 5.5 31 5.6 16.2 Speeup (run3) 1 1.57 1.53 2.28 Latency Āµs (run3) 4476 2841 2917 1964 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 0 50000 100000 150000 200000 250000 300000 Ops/Sec Throughput of 3 consecutive iterations of Workload C (128GB)
  • 16. E 1.1 Cluster resource consumption: Baseline 16 CPU % (AVG) Disk R/W MB/s (SUM) Mem Usage KB (AVG) NET R/W Mb/s (SUM) Notes: ā€¢ Java heap and OS buffer cache holds 100% of WL ā€¢ Data is read from disks (HDFS) only in first part of the run, ā€¢ then throughput stabilizes (see NET and CPU) ā€¢ Free resources, ā€¢ Bottleneck in application and OS path (not shown) Write Read
  • 17. E 1.1 Cluster resource consumption: Bucket Cache strategies 17 Offheap (32GB) Disk R/W RAM disk (tmpfs 32GB) Disk R/W NVMe (250GB) Disk R/WNotes: ā€¢ 3 BC strategies faster than baseline ā€¢ BC LRU more effective than OS buffer ā€¢ Offheap slightly more efficient ran RAMd (same size) ā€¢ But seems to take longer to fill (different per node) ā€¢ And more capacity for same payload (plus java heap) ā€¢ NVM can hold the complete WL in the BC ā€¢ Read and Writes to MEM not captured by charts BC fills on 1st run WL doesnā€™t fit completely
  • 18. E 1.2-3 Challenge: Limit OS buffer cache effect on experiments 1st approach, larger payload. Cons: high execution time 2nd limit available RAM (using stress tool) 3rd clear buffer cache periodically (drop caches) Denver/Boulder BigData 2017 18
  • 19. E1.2: Throughput of the 4 configurations (32GB RAM) Higher is better for Ops (Y1), lower for latency (Y2) 19 Results: ā€¢ Ops/Sec improve only with NVMe up to 8X ā€¢ RAMd performs close to baseline ā€¢ First run same on baseline and RAMd ā€¢ tmpfs ā€œblocksā€ as RAM is needed ā€¢ At lower capacity, external BC shows more improvement Baseline BucketCache Offheap BucketCache RAM disk BucketCache NVMe WorkloadC_run1 20578 14715.493 21520 109488 WorkloadC_run2 20598 16995 21534 166588 Speeup (run2) 1 0.83 1.05 8.09 Cache Time % 99.9 99.9 99.9 48 Latency Āµs (run3) 24226 29360 23176 2993 0 5000 10000 15000 20000 25000 30000 35000 0 20000 40000 60000 80000 100000 120000 140000 160000 180000 Ops/Sec Throughput of 2 consecutive iterations of Workload C (32GB)
  • 20. E 1.1 Cluster CPU% AVG: Bucket Cache (32GB RAM) 20 Baseline RAM disk (/dev/shm 8GB) Offheap (4GB) NVMe (250GB) Read disk throughput: 2.4GB/s Read disk throughput: 2.8GB/s Read disk throughput: 2.5GB/s Read disk throughput: 38.GB/s BC failure Slowest
  • 21. E1.3: Throughput of the 4 configurations (Drop OS buffer cache) Higher is better for Ops (Y1), lower for latency (Y2). Dropping cache every 10 secs. 21 Results: ā€¢ Ops/Sec improve only with NVMe up to 9X ā€¢ RAMd performs 1.43X better this time ā€¢ First run same on baseline and RAMd ā€¢ But RAMd worked fine ā€¢ Having a larger sized BC improves performance over RAMd Baseline BucketCache Offheap BucketCache RAM disk BucketCache NVMe WorkloadC_run1 22780 30593 32447 126306 WorkloadC_run2 22770 30469 32617 210976 Speeup (run3) 1 1.34 1.43 9.27 Cache Time % -0.1 -0.1 0.5 67 Latency Āµs (run2) 21924 16375 15293 2361 0 5000 10000 15000 20000 25000 0 50000 100000 150000 200000 250000 Ops/Sec Throughput of 2 consecutive iterations of Workload C (Drop OS Cache)
  • 22. Experiment 2: All workloads (-E) YCSB workloads A-D, F: 25M records, 1000 threads Denver/Boulder BigData 2017 22
  • 23. Benchmark suite: The Yahoo! Cloud Serving Benchmark (YCSB) ā€¢ Open source specification and kit, for comparing NoSQL DBs. (since 2010) ā€¢ Core workloads: ā€¢ A: Update heavy workload ā€¢ 50/50 R/W. ā€¢ B: Read mostly workload ā€¢ 95/5 R/W mix. ā€¢ C: Read only ā€¢ 100% read. ā€¢ D: Read latest workload ā€¢ Inserts new records and reads them ā€¢ Workload E: Short ranges (Not used, takes too long to run SCAN type) ā€¢ Short ranges of records are queried, instead of individual records ā€¢ F: Read-modify-write ā€¢ read a record, modify it, and write back. https://github.com/brianfrankcooper/YCSB/wiki/Core-Workloads 23
  • 24. E2.1: Throughput and Speedup ALL (128GB RAM) Higher is better 24 Results: ā€¢ Datagen same in all ā€¢ (write-only) ā€¢ Overall: Ops/Sec improve with BC ā€¢ RAMd 14% ā€¢ NVMe 37% ā€¢ WL D gets higher speedup with NVMe ā€¢ WL F 6% faster on RAMd than in NVMe ā€¢ Need to run more iterations to see max improvement Baseline BucketCache RAM disk BucketCache NVMe Datagen 68502 67998 65933 WL A 77049 83379 96752 WL B 80966 87788 115713 WL C 89372 99403 132738 WL D 136426 171123 244759 WL F 48699 65223 62496 0 50000 100000 150000 200000 250000 300000 Ops/Sec Throughput of workloads A-D,F (128GB, 1 iteration) Baseline BucketCache RAM disk BucketCache NVMe Speedup Data 1 0.99 0.96 Speedup A 1 1.08 1.26 Speedup B 1 1.08 1.43 Speedup C 1 1.11 1.49 Speedup D 1 1.25 1.79 Speedup F 1 1.34 1.28 Total 1 1.14 1.37 0.8 1 1.2 1.4 1.6 1.8 2 Speedup Speedup of workloads A-D,F (128GB, 1 iteration)
  • 25. E2.1: Throughput and Speedup ALL (32GB RAM) Higher is better 25 Results: ā€¢ Datagen slower with the RAMd (less OS RAM) Overall: Ops/Sec improve with BC ā€¢ RAMd 17% ā€¢ NVMe 87% ā€¢ WL C gets higher speedup with NVMe ā€¢ WL F now faster with NVMe ā€¢ Need to run more iterations to see max improvement Baseline BucketCache RAM disk BucketCache NVMe Speedup Data 1 0.88 0.98 Speedup A 1 1.02 1.37 Speedup B 1 1.31 2.38 Speedup C 1 1.42 2.65 Speedup D 1 1.1 1.5 Speedup F 1 1.27 1.98 Total 1 1.17 1.81 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 Speedup Speedup of workloads A-D,F (128GB, 1 iteration) Baseline BucketCache RAM disk BucketCache NVMe Datagen 68821 60819 67737 WL A 55682 56702 76315 WL B 33551 43978 79895 WL C 30631 43420 81245 WL D 85725 94631 128881 WL F 25540 32464 50568 0 20000 40000 60000 80000 100000 120000 140000 Ops/Sec Throughput of workloads A-D,F (128GB, 1 iteration)
  • 26. E2.1: CPU and Disk for ALL (32GB RAM) 26 Baseline CPU % NVMe CPU% Baseline Disk R/w NVMe Disk R/W High I/O wait Read disk throughput: 1.8GB/s Moderate I/O wait (2x less time) Read disk throughput: up to 25GB/s
  • 27. E2.1: NET and MEM ALL (32GB RAM) 27 Baseline MEM NVMe MEM Baseline NET R/W NVMe NET R/W Higher OS cache util Throughput: 1Gb/s Lower OS cache util Throughput: up to 2.5 Gb/s
  • 28. Summary Lessons learned, findings, conclusions, references Denver/Boulder BigData 2017 28
  • 29. Bucket Cache results recap (medium sized WL) ā€¢ Full cluster (128GB RAM / node) ā€¢ WL-C up to 2.7x speedup (warm cache) ā€¢ Full benchmark (CRUD) from 0.3 to 0.9x speedup (cold cache) ā€¢ Limiting resources ā€¢ 32GB RAM / node ā€¢ WL-C NVMe gets up to 8X improvement (warm cache) ā€¢ Other techniques failed/poor results ā€¢ Full benchmark between 0.4 and 2.7x speedup (cold cache) ā€¢ Drop OS cache WL-C ā€¢ Up to 9x with NVMe, only < 0.5x with other techniques (warm cache) ā€¢ Latency reduces significantly with cached results ā€¢ Onheap BC not recommended ā€¢ just give more RAM to BlockCache Denver/Boulder BigData 2017 29
  • 30. Open challenges / Lessons learned ā€¢ Generating app level workloads that stresses newer HW ā€¢ At acceptable time / cost ā€¢ Still need to ā€¢ Run micro-benchmarks ā€¢ Per DEV, node, cluster ā€¢ Large working sets ā€¢ > RAM (128GB / Node) ā€¢ > NMVe (1.6TB / Node) ā€¢ OS buffer cache highly effective ā€¢ at least with HDFS and HBase ā€¢ Still, a RAM app ā€œL2 cacheā€ is able to speedup ā€¢ App level LRU more effective ā€¢ YCSB Zipfian distribution (popular records) ā€¢ The larger the WL, higher the gains ā€¢ Can be simulated by limiting resources or dropping caches effectively Denver/Boulder BigData 2017 30 8512 8667 8523 9668 0 2000 4000 6000 8000 10000 12000 NVMe JBOD10+NVMe JBOD10 JBOD05 Seconds Lower is better Running time of terasort (1TB) under different disks terasort teragen
  • 31. To concludeā€¦ ā€¢ NVMe offers significant BW and Latency improvement over SAS/SATA, but ā€¢ JBODs still perform well for seq R/W ā€¢ Also cheaper $/TB ā€¢ Big Data apps still designed for rotational (avoid random I/O) ā€¢ Full tiered-storage support is missing by Big Data frameworks ā€¢ Byte addressable vs. block access ā€¢ Research shows improvements ā€¢ Need to rely on external tools/file systems ā€¢ Alluxio (Tachyon), Triple-H, New file systems (SSDFS), ā€¦ ā€¢ Fast devices speedup, but still caching is the simple use caseā€¦ Denver/Boulder BigData 2017 31
  • 32. References ā€¢ ALOJA ā€¢ http://aloja.bsc.es ā€¢ https://github.com/aloja/aloja ā€¢ Bucket cache and HBase ā€¢ BlockCache (and Bucket Cache 101) http://www.n10k.com/blog/blockcache-101/ ā€¢ Intel brief on bucket cache: http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/apache- hbase-block-cache-testing-brief.pdf ā€¢ http://www.slideshare.net/larsgeorge/hbase-status-report-hadoop-summit-europe-2014 ā€¢ HBase performance: http://www.slideshare.net/bijugs/h-base-performance ā€¢ Benchmarks ā€¢ FIO https://github.com/axboe/fio ā€¢ Brian F. Cooper, et. Al. 2010. Benchmarking cloud serving systems with YCSB. http://dx.doi.org/10.1145/1807128.1807152 Denver/Boulder BigData 2017 32
  • 33. Thanks, questions? Sales: sales@objectrocket.com Follow up / feedback : David.Grier@objectrocket.com Twitter: @grierdavid Denver/Boulder BigData 2017 Evaluating NVMe drives for accelerating HBase
  • 34. FIO commands: ā€¢ Sequential read ā€¢ fio --name=read --directory=${dir} --ioengine=libaio --direct=1 --bs=${bs} --rw=read --iodepth=${iodepth} --numjobs=1 --buffered=0 --size=2gb -- runtime=30 --time_based --randrepeat=0 --norandommap --refill_buffers --output-format=json ā€¢ Random read ā€¢ fio --name=randread --directory=${dir} --ioengine=libaio --direct=1 --bs=${bs} --rw=randread --iodepth=${iodepth} --numjobs=${numjobs} -- buffered=0 --size=2gb --runtime=30 --time_based --randrepeat=0 --norandommap --refill_buffers --output-format=json ā€¢ Sequential read on raw devices: ā€¢ fio --name=read --filename=${dev} --ioengine=libaio --direct=1 --bs=${bs} --rw=read --iodepth=${iodepth} --numjobs=1 --buffered=0 --size=2gb -- runtime=30 --time_based --randrepeat=0 --norandommap --refill_buffers --output-format=json ā€¢ Sequential write ā€¢ fio --name=write --directory=${dir} --ioengine=libaio --direct=1 --bs=${bs} --rw=write --iodepth=${iodepth} --numjobs=1 --buffered=0 --size=2gb -- runtime=30 --time_based --randrepeat=0 --norandommap --refill_buffers --output-format=json ā€¢ Random write ā€¢ fio --name=randwrite --directory=${dir} --ioengine=libaio --direct=1 --bs=${bs} --rw=randwrite --iodepth=${iodepth} --numjobs=${numjobs} -- buffered=0 --size=2gb --runtime=30 --time_based --randrepeat=0 --norandommap --refill_buffers --output-format=json ā€¢ Random read on raw devices: ā€¢ fio --name=randread --filename=${dev} --ioengine=libaio --direct=1 --bs=${bs} --rw=randread --iodepth=${iodepth} --numjobs=${numjobs} -- buffered=0 --size=2gb --runtime=30 --time_based --randrepeat=0 --norandommap --refill_buffers --offset_increment=2gb --output-format=json https://github.com/axboe/fio 34