SlideShare ist ein Scribd-Unternehmen logo
1 von 33
Second Order Generalized Van Vleck
Perturbation Theory Molecular Gradients
and Nonadiabatic CouplingTerms
Daniel P. Theis
University of North Dakota
Chemistry Department
Grand Forks, ND
2
• Introduction
Outline
Hoffmann, M. R. et. al. J. Chem. Phys. 2002, 117, 4133.
• GVVPT2 Gradiengts
• GVVPT2 Nonadiabatic Coupling Terms
3
1. GVVPT2 is a post-MCSCF, perturbation based electronic structure method.
Benefits of the GVVPT2 Method
Hoffmann, M. R. et. al. J. Chem. Phys. 2002, 117, 4133.
2. GVVPT2 can determine accurate electronic energies for systems with several low
lying, nearly degenerate electronic states.
3. GVVPT2 potential energy surfaces are continuous, differentiable functions of the
geometry, that ensure the evaluation of molecular gradients.
4. A highly efficient algorithm has been constructed for the GVVPT2 method, which
combines the advantages of the macroconfiguration and GUGA techniques.
4
Λ
∈
Λ ∑=Ψ t
Lt
t
MRCI
AF
T
HMM
HQM
HMQ
HQQ
Hoffmann, M. R. et. al. J. Chem. Phys. 2002, 117, 4133.
MCSCF
The GVVPT Methodology
◦ Relatively Small CSF space, LM
◦ Neglects Dynamic Correlation (LQ)
mI
Lm
m
MC
I CF
M
∑∈
=Ψ
◦ Large CSF Space, LT = LM ⊕ LQ
◦ Includes Dynamic Correlation.
MRCISD
( ) 0=−∑∈
′′
MLm
mImm
MC
Imm CEH δ
( ) 0=−∑∈
Λ
′Λ′
TLt
ttt
MRCI
tt AEH δ
5
∑∈
Λ
Λ =Φ
MLm
mm
GV
AF
HQM
HMQ
Hoffmann, M. R. et. al. J. Chem. Phys. 2002, 117, 4133.
eff
MMH
GVVPT Methods
The GVVPT Methodology
HQQ
,ˆ GVVGVV
ΛΛ ΦΩ=Ψ
( ) ,0=−∑∈
Λ
′Λ′
MLm
mmm
GVVeff
mm AEH δ
mm
eff
mm FHFH ′
+
ΩΩ= ˆˆˆ
◦ Heff
is the same dimension as HMM
◦ Perturbative corrections from HQM,
HMQ, and the diagonal elements of
HQQ add dynamic correlation.
6
eff
QPH
eff
PQH
eff
PSH
eff
SPH
eff
PPH
eff
SSH
eff
SQH
eff
SQH
eff
QQH
The GVVPT Methodology
Shavitt, I.; Redmon, L. T. J. Chem. Phys. 1980, 73, 5711.
Kuhler, K.; Hoffmann, M. R. J. Math. Chem. 1996, 20, 351.
Hoffmann, M. R. et. al. J. Chem. Phys. 2002, 117, 4133.
The effective Hamiltonian is formed by:
• LM = LP ⊕ LS.
7
eff
QPH
eff
PQH
eff
PSH
eff
SPH
eff
PPH
eff
SSH
eff
SQH
eff
SQH
eff
QQH
( ) 0HH XX
== −−
QP
eff
QP ee
The GVVPT Methodology
Shavitt, I.; Redmon, L. T. J. Chem. Phys. 1980, 73, 5711.
Kuhler, K.; Hoffmann, M. R. J. Math. Chem. 1996, 20, 351.
Hoffmann, M. R. et. al. J. Chem. Phys. 2002, 117, 4133.
X
e
ˆ
ˆ =Ω
QPQPPQPQX FXFFXF +
−=ˆ
The effective Hamiltonian is formed by:
• LM = LP ⊕ LS.
• Define Ω, X, and XQP such that:ˆ ˆ
◦
◦
◦
8
eff
QPH
eff
PQH
eff
PSH
eff
SPH
eff
PPH
eff
SSH
eff
SQH
eff
SQH
eff
QQH
• Perturbatively expand Heff
and X.
( ) 0HH XX
== −−
QP
eff
QP ee
The GVVPT Methodology
Shavitt, I.; Redmon, L. T. J. Chem. Phys. 1980, 73, 5711.
Kuhler, K.; Hoffmann, M. R. J. Math. Chem. 1996, 20, 351.
Hoffmann, M. R. et. al. J. Chem. Phys. 2002, 117, 4133.
X
e
ˆ
ˆ =Ω
QPQPPQPQX FXFFXF +
−=ˆ
The effective Hamiltonian is formed by:
• LM = LP ⊕ LS.
• Define Ω, X, and XQP such that:ˆ ˆ
◦
◦
◦
{ }( )+
++= )2()2(
2
1)2(
MMMMMM
eff
MM ZZHH
( ) PMQPMQPMMPMMM CXHCCIZ )1()2(
2 −=
GVVPT2 Effective Hamiltonian
9
Hoffmann, M. R. et. al. J. Chem. Phys. 2002, 117, 4133.
The Origen of GVVPT2’s Stable Potential Energy Curves
)1(
qIX
I
emε∆
a
2a
3a
4a
-4a
-3a
-2a
-a
a = HqI
I
Iq
II
qI
qI
ee
HH
X
mm εεε ∆
−=
−
−≈
0
)1(
( ) QIQ
MC
IQQQI E HIHX
1)1( −
−=
Kuhler, K.; Hoffmann, M. R. J. Math. Chem. 1996, 20, 351.
10
Hoffmann, M. R. et. al. J. Chem. Phys. 2002, 117, 4133.
)1(
qIX
I
emε∆
a
2a
3a
4a
-4a
-3a
-2a
-a
a = HqI
I
Iq
qI
e
E
H
X
m∆
−≈)1(
( ) ( )∑∈
+∆+∆=∆
e
eee
Lq
qI
III
HE
m
xxxx mmm
22
4
1
2
1
)()()()( εε◦
( ) QIQ
MC
IQQQI E HIHX
1)1( −
−=
Kuhler, K.; Hoffmann, M. R. J. Math. Chem. 1996, 20, 351.
The Origen of GVVPT2’s Stable Potential Energy Curves
11
qI
I
qI HDX em≈)1(
Hoffmann, M. R. et. al. J. Chem. Phys. 2002, 117, 4133.
( )
I
I
I
e
e
e
E
E
D
m
m
m
∆
∆
−=
tanh
)1(
qIX
I
emε∆
a
2a
3a
4a
-4a
-3a
-2a
-a
a = HqI
◦
( ) QIQ
MC
IQQQI E HIHX
1)1( −
−=
Kuhler, K.; Hoffmann, M. R. J. Math. Chem. 1996, 20, 351.
The Origen of GVVPT2’s Stable Potential Energy Curves
12
where each λj is determine from
…
e1(x;λ(x)) = 0
e2(x;λ(x)) = 0EΛ = EΛ(x;λ(x))
Determining Energy Gradients
Helgaker, T.; Jørgensen, P. Theor. Chim. Acta. 1989, 75, 111.
13
( )
∑ ∂
∂
∂
∂
+
∂
∂
= ΛΛΛ
j a
j
jaa x
E
x
E
dx
dE λ
λ
)(; xλx
where each λj is determine from
…
e1(x;λ(x)) = 0
e2(x;λ(x)) = 0EΛ = EΛ(x;λ(x))
( ) 0
)(;
=
∂
∂
∂
∂
+
∂
∂
= ∑j a
j
j
i
a
i
a
i
x
e
x
e
dx
de λ
λ
xλx
a
j
x∂
∂λ
where each is determined from
Determining Energy Gradients
Helgaker, T.; Jørgensen, P. Theor. Chim. Acta. 1989, 75, 111.
14
( ) ( ) ( )∑+= ΛΛ
i
ii eEL )(;)()(;)(),(; xλxxxλxxξxλx ξ
0=
∂
∂ Λ
j
L
λ
( ) 0)(; ==
∂
∂ Λ
xλxi
i
e
L
ξ
where the values for ξi and λj are determined by requiring
and
The Lagrangian Approach of Determining
Energy Gradients
Helgaker, T.; Jørgensen, P. Theor. Chim. Acta. 1989, 75, 111.
15
The Lagrangian Approach of Determining
Energy Gradients
( ) ( ) ( )∑+= ΛΛ
i
ii eEL )(;)()(;)(),(; xλxxxλxxξxλx ξ
0=
∂
∂ Λ
j
L
λ
( ) 0)(; ==
∂
∂ Λ
xλxi
i
e
L
ξ
where the values for ξi and λj are determined by requiring
and
Under these conditions
( )
aaa x
L
dx
dL
dx
dE
∂
∂
== ΛΛΛ )(; xλx
Helgaker, T.; Jørgensen, P. Theor. Chim. Acta. 1989, 75, 111.
16
The Lagrangian Approach of Determining
Energy Gradients
( ) ( ) ( )∑+= ΛΛ
i
ii eEL )(;)()(;)(),(; xλxxxλxxξxλx ξ
0=
∂
∂ Λ
j
L
λ
( ) 0)(; ==
∂
∂ Λ
xλxi
i
e
L
ξ
where the values for ξi and λj are determined by requiring
and
Under these conditions
( )
aaa x
L
dx
dL
dx
dE
∂
∂
== ΛΛΛ )(; xλx
Helgaker, T.; Jørgensen, P. Theor. Chim. Acta. 1989, 75, 111.




















∂
∂
∂
∂
∂
∂
−=
































∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
∂
Λ
Λ
Λ
n
n
n
n
nn
n
n
E
E
E
eee
eee
eee
λ
λ
λ
ξ
ξ
ξ
λλλ
λλλ
λλλ






2
1
0
01
01
21
22
2
2
1
11
2
1
1
)(
)(
)(
x
x
x
17
( )∑∈
′
Λ
′
Λ
′Λ =
MLm
MP
rveff
mmmm
GVV
HAAE )(,)(,)(;)()()( xCxΔxΔxxxx•
Electron Structure Parameters that are used
in the GVVPT2 Calculations
18
( )∑∈
′
Λ
′
Λ
′Λ =
MLm
MP
rveff
mmmm
GVV
HAAE )(,)(,)(;)()()( xCxΔxΔxxxx•
Electron Structure Parameters that are used
in the GVVPT2 Calculations
( ) ( )∑∈
=Φ
MLm
mI
rv
mMP
rvMC
I CF )()(,)(;)(,)(,)(; xxΔxΔxxCxΔxΔxCmI(x) ~•
19
( )∑∈
′
Λ
′
Λ
′Λ =
MLm
MP
rveff
mmmm
GVV
HAAE )(,)(,)(;)()()( xCxΔxΔxxxx•
Electron Structure Parameters that are used
in the GVVPT2 Calculations
( ) ( )∑∈
=Φ
MLm
mI
rv
mMP
rvMC
I CF )()(,)(;)(,)(,)(; xxΔxΔxxCxΔxΔxCmI(x) ~•
~)(and)( xx ab
r
ij
v
∆∆ ( ) ( ){ }∑∈
=
iGk
ki
omo
k
rvmo
i )(exp)()(,)(; xΔxxΔxΔx ϕφ
v
r
( ){ }∑ ∑≠ ∈
+
ik kGG Gk
ki
omo
k )(exp)( xΔxϕ
•
•
i∈GiNote:
20
( )∑∈
′
Λ
′
Λ
′Λ =
MLm
MP
rveff
mmmm
GVV
HAAE )(,)(,)(;)()()( xCxΔxΔxxxx•
Electron Structure Parameters that are used
in the GVVPT2 Calculations
( ) ( )∑∈
=Φ
MLm
mI
rv
mMP
rvMC
I CF )()(,)(;)(,)(,)(; xxΔxΔxxCxΔxΔxCmI(x) ~•
~)(and)( xx ab
r
ij
v
∆∆ ( ) ( ){ }∑∈
=
iGk
ki
omo
k
rvmo
i )(exp)()(,)(; xΔxxΔxΔx ϕφ
v
r
( ){ }∑ ∑≠ ∈
+
ik kGG Gk
ki
omo
k )(exp)( xΔxϕ
•
•
i∈GiNote:
∑∑ +=
OMO
ijkl
b
omo
ijklA
omo
ijkl
OMO
ij
B
omo
ijA
omo
ijAB FeFgFEFhH
~
ˆ
~
)(
~ˆ~
)()( 2
1
xxx
21
~ ( ) 1)(
2
=∑∈ MLm
mIC x [ ] 0)( =−∑∈′
′′′
MLm
Im
MC
Immmm
CEH xδand
The Constraint Equations that are used by
the GVVPT2 and MRCI Calculations
CmI(x)•
22
( ) 0)()(1)(
2
=














−+−= ∑ ∑∈′
′
∈′′
′′′′
M
M
Lm
Im
Lm
Im
MC
ImmmmmI CCEHe xxx δCmI(x)• ~
The Constraint Equations that are used by
the GVVPT2 and MRCI Calculations
23
( ) 0)()(1)(
2
=














−+−= ∑ ∑∈′
′
∈′′
′′′′
M
M
Lm
Im
Lm
Im
MC
ImmmmmI CCEHe xxx δCmI(x)•
~)(xij
v
∆••
~
[ ] 0)(ˆˆ),()()( =Φ−Φ= ∑ xxxx MC
Ijiij
MC
I
N
I
Iij EEHwe
P
The Constraint Equations that are used by
the GVVPT2 and MRCI Calculations
24
( ) 0)()(1)(
2
=














−+−= ∑ ∑∈′
′
∈′′
′′′′
M
M
Lm
Im
Lm
Im
MC
ImmmmmI CCEHe xxx δCmI(x)•
~)(xij
v
∆••
~
The Constraint Equations that are used by
the GVVPT2 and MRCI Calculations
)(xab
r
∆ ~ [ ] 0)()()()()( 2
1
=−+== ∑
OCC
kl
akblabklklababab gghfe xxxxx γ•
[ ] 0)(ˆˆ),()()( =Φ−Φ= ∑ xxxx MC
Ijiij
MC
I
N
I
Iij EEHwe
P
25
( )∑ ∑∑∑ 





×ΦΦ+Γ+=
∂
∂
Λ
Λ
PN
I
MO
i
aI
ii
GVV
iI
MC
I
GVV
MO
ij
a
ijkl
GVV
ijkl
MO
ij
a
ij
GVV
ij
a
GVV
fPgh
x
E
2
1
γ•
∑ ∑
∑∑∑∑
















∆∂
∂
×ΦΦ+






Γ+−





Γ+=
∆∂
∂
Λ
Λ
PN
I
MO
k ij
v
I
kkGVV
kI
MC
I
GVV
MO
xyz
jxyz
GVV
ixyz
MO
x
jx
GVV
ix
MO
xyz
ixyz
GVV
jxyz
MO
x
ix
GVV
jx
ij
v
GVV
f
P
ghgh
E
2
1
2222 γγ
Efficiently Evaluating the Partial Derivatives of E
Λ
GVV
•
26
( )∑ ∑∑∑ 





×ΦΦ+Γ+=
∂
∂
Λ
Λ
PN
I
MO
i
aI
ii
GVV
iI
MC
I
GVV
MO
ij
a
ijkl
GVV
ijkl
MO
ij
a
ij
GVV
ij
a
GVV
fPgh
x
E
2
1
γ•
∑ ∑
∑∑∑∑
















∆∂
∂
×ΦΦ+






Γ+−





Γ+=
∆∂
∂
Λ
Λ
PN
I
MO
k ij
v
I
kkGVV
kI
MC
I
GVV
MO
xyz
jxyz
GVV
ixyz
MO
x
jx
GVV
ix
MO
xyz
ixyz
GVV
jxyz
MO
x
ix
GVV
jx
ij
v
GVV
f
P
ghgh
E
2
1
2222 γγ
( ) ( )
( ) ( ) ( ){ }[ ]MIPMMIPM
MC
P
GVV
MIMm
Pm
MC
P
GVV
Q
mI
IQMC
I
GVV
mI
GVV
A
CC
E
CHXHXCΦAHX
HXΦHβ
X
++
Λ
Λ+Λ
+
Λ
Λ
+
Λ
Λ
+Φ−+








Φ−








∂
∂
×ΦΦ=
∂
∂
2
1
2
Efficiently Evaluating the Partial Derivatives of E
Λ
GVV
•
•
27
( )∑ ∑ ∑ ∑∈ ∈ ∈






+×=
Qe e M
P
e
L q Lm
N
I
qjiijmMIQMqmI
GVV
ij FEEFW
m m
m
CH ˆ
2
1

γ
•
Efficiently Evaluating the Partial Derivatives of E
Λ
GVV
( )∑ ∑ ∑ ∑∈ ∈ ∈






+++×=Γ
Qe e M
P
e
L q Lm
N
I
qjilkjiklijlkijklmMIQMqmI
GVV
ijkl FeeeeFW
m m
m
CH

ˆˆ8
1
( ) ( )∑ ∑∈ ∈
×=
Qe e
e
L q
mqMIQMqImI HX
m m
m
CHHX
( ) ( )∑ ∑∈ ∈
Λ
+
×=








∂
∂
Qe e
e
L q
mqMIQMqIQ
mI
IQ
HV
C m m
m
CHHβ
X
GVVPT2 Energies – Slowest Step
GVVPT2 v
∆ij, r
∆ab, and CmI Derivatives – Slowest Steps
•
•
•
~ 2 × time
of (HX)mI
~ 1 × time
of (HX)mI
28
Molecule Analytical Values Deviation from Numerical Values
Geometry Description X Y Z X Y Z
H2
CO C -0.171726 0.205990 0.000000 -6.90×10-7
-8.00×10-8
0.00
CH1 Str. (+0.5 Å) O 0.081525 -0.025708 0.000000 3.70×10-7
4.20×10-7
0.00
H1 0.240019 -0.424267 0.000000 -6.00×10-8
7.00×10-8
0.00
H2 -0.149818 0.243985 0.000000 9.00×10-8
-1.20×10-7
0.00
LiH (X 1
Σ+
) H 0.000000 0.000000 -0.014113 0.00 0.00 0.00
Avoided Crossing Li 0.000000 0.000000 0.014113 0.00 0.00 0.00
LiH (A 1
Σ+
) H 0.000000 0.000000 -0.004441 0.00 0.00 0.00
Avoided Crossing Li 0.000000 0.000000 0.004441 0.00 0.00 0.00
• cc-pVTZ Basis Set
Technical Details: H2CO (Cs – Broken Sym.)
• RCO = 1.205 Å, RCH = 1.611 Å, and RCH = 1.111 Å.
• 2 Val. Groups {612
40
; 611
41
; 610
42
}
∀ ∠HCH = 116.1o
and ∠OCH = 121.9o
1 2
• Roos Aug. TZ Basis Set
Technical Details: LiH (C∞v)
• 9:1 SA-MCSCF MOs
• (2:10)-CAS + 1 Core Orb.
• RLiH = 3.400 Å
Analytical GVVPT2 Gradients for H2CO and LiH
29
The Lagrangian Approach of Determining
Nonadiabatic Coupling Terms
( ) ( ) ( )∑+= Λ′ΛΛ′Λ
i
ii eg )(;)()(;)(),(; xλxxxλxxξxλx ξL
where gΛΛ'(x) is a function that makes
0=
∂
∂ Λ′Λ
jλ
L
andSetting 0=
∂
∂ Λ′Λ
iξ
L
, makes:
aaaaa xdx
d
dx
dg
dx
d
dx
d
∂
∂
===




 Ψ
Ψ−
Ψ
Ψ Λ′ΛΛ′ΛΛ′ΛΛ
Λ′
Λ′
Λ
)()()()()(
2
1 xxxxx LL





 Ψ
Ψ−
Ψ
Ψ= Λ
Λ′
Λ′
Λ
Λ′Λ
aaa dx
d
dx
d
dx
dg )()()(
2
1 xxx
30
The Lagrangian Approach of Determining
Nonadiabatic Coupling Terms
( ) ( ) ( )∑+= Λ′ΛΛ′Λ
i
ii eg )(;)()(;)(),(; xλxxxλxxξxλx ξL
where gΛΛ'(x) is a function that makes
( ) ( ){ } Λ′
ΛΛ′
++Λ
Λ′Λ 





−
++Θ−Θ= M
eff
MMGVGVMMPMMPPMMPM
GV
EE
CCg AxHxFFxxAx )(
1
)()()()( 2
1





 Ψ
Ψ−
Ψ
Ψ= Λ
Λ′
Λ′
Λ
Λ′Λ
aaa dx
d
dx
d
dx
dg )()()(
2
1 xxx
For GVVPT2
31
The Lagrangian Approach of Determining
Nonadiabatic Coupling Terms
( ) ( ) ( )∑+= Λ′ΛΛ′Λ
i
ii eg )(;)()(;)(),(; xλxxxλxxξxλx ξL
where gΛΛ'(x) is a function that makes
( ) ( ){ } Λ′
ΛΛ′
++Λ
Λ′Λ 





−
++Θ−Θ= M
eff
MMGVGVMMPMMPPMMPM
GV
EE
CCg AxHxFFxxAx )(
1
)()()()( 2
1





 Ψ
Ψ−
Ψ
Ψ= Λ
Λ′
Λ′
Λ
Λ′Λ
aaa dx
d
dx
d
dx
dg )()()(
2
1 xxx
For GVVPT2
)()()(ˆ)( )2()2(
xAxFxx Λ
Λ Ω=Ψ MM
GV
• Geometry optimizations, gradients calculations, and frequency calculations verify that
the GVVPT2 method accurately describes the chemically important regions of most
potential energy surfaces.
Conclusions
32
• The GVVPT2 gradients are continuous across potential energy surfaces, including
regions of avoided crossings.
• Analytic formulas for GVVPT2 molecular gradients and nonadiabatic coupling terms
have been developed which scale at approximately 2-3 times the speed of the GVVPT2
energy.
• Computational implementation of GVVPT2 analytic gradients show excellent
agreement with finite difference calculations.
Dr. Mark R. Hoffmann
Dr. Yuriy G. Khait
Patrick Tamukang
Rashel Mokambe
Jason Hicks
Erik Timmian
Dr. Theresa Windus
Dr. Klaus Ruedenberg
Acknowledgements
33

Weitere ähnliche Inhalte

Was ist angesagt?

Calculus of variations
Calculus of variationsCalculus of variations
Calculus of variationsSolo Hermelin
 
Equation of motion of a variable mass system3
Equation of motion of a variable mass system3Equation of motion of a variable mass system3
Equation of motion of a variable mass system3Solo Hermelin
 
Reduced order observers
Reduced order observersReduced order observers
Reduced order observersSolo Hermelin
 
I. Antoniadis - "Introduction to Supersymmetry" 1/2
I. Antoniadis - "Introduction to Supersymmetry" 1/2I. Antoniadis - "Introduction to Supersymmetry" 1/2
I. Antoniadis - "Introduction to Supersymmetry" 1/2SEENET-MTP
 
SOLUTIONS OF THE SCHRÖDINGER EQUATION WITH INVERSELY QUADRATIC HELLMANN PLUS ...
SOLUTIONS OF THE SCHRÖDINGER EQUATION WITH INVERSELY QUADRATIC HELLMANN PLUS ...SOLUTIONS OF THE SCHRÖDINGER EQUATION WITH INVERSELY QUADRATIC HELLMANN PLUS ...
SOLUTIONS OF THE SCHRÖDINGER EQUATION WITH INVERSELY QUADRATIC HELLMANN PLUS ...ijrap
 
Analytical Solution Of Schrödinger Equation With Mie–Type Potential Using Fac...
Analytical Solution Of Schrödinger Equation With Mie–Type Potential Using Fac...Analytical Solution Of Schrödinger Equation With Mie–Type Potential Using Fac...
Analytical Solution Of Schrödinger Equation With Mie–Type Potential Using Fac...ijrap
 
2 backlash simulation
2 backlash simulation2 backlash simulation
2 backlash simulationSolo Hermelin
 
2014 04 22 wits presentation oqw
2014 04 22 wits presentation oqw2014 04 22 wits presentation oqw
2014 04 22 wits presentation oqwRene Kotze
 
A New Nonlinear Reinforcement Scheme for Stochastic Learning Automata
A New Nonlinear Reinforcement Scheme for Stochastic Learning AutomataA New Nonlinear Reinforcement Scheme for Stochastic Learning Automata
A New Nonlinear Reinforcement Scheme for Stochastic Learning Automatainfopapers
 
Hawkinrad a source_notes ii _secured
Hawkinrad a source_notes ii _securedHawkinrad a source_notes ii _secured
Hawkinrad a source_notes ii _securedfoxtrot jp R
 
Exact Solutions of the Klein-Gordon Equation for the Q-Deformed Morse Potenti...
Exact Solutions of the Klein-Gordon Equation for the Q-Deformed Morse Potenti...Exact Solutions of the Klein-Gordon Equation for the Q-Deformed Morse Potenti...
Exact Solutions of the Klein-Gordon Equation for the Q-Deformed Morse Potenti...ijrap
 
Computational model to design circular runner
Computational model to design circular runnerComputational model to design circular runner
Computational model to design circular runnereSAT Publishing House
 
I. Antoniadis - "Introduction to Supersymmetry" 2/2
I. Antoniadis - "Introduction to Supersymmetry" 2/2I. Antoniadis - "Introduction to Supersymmetry" 2/2
I. Antoniadis - "Introduction to Supersymmetry" 2/2SEENET-MTP
 
Wits Node Seminar: Dr Sunandan Gangopadhyay (NITheP Stellenbosch) TITLE: Path...
Wits Node Seminar: Dr Sunandan Gangopadhyay (NITheP Stellenbosch) TITLE: Path...Wits Node Seminar: Dr Sunandan Gangopadhyay (NITheP Stellenbosch) TITLE: Path...
Wits Node Seminar: Dr Sunandan Gangopadhyay (NITheP Stellenbosch) TITLE: Path...Rene Kotze
 

Was ist angesagt? (20)

Calculus of variations
Calculus of variationsCalculus of variations
Calculus of variations
 
2 estimators
2 estimators2 estimators
2 estimators
 
Centros de masa
Centros de masaCentros de masa
Centros de masa
 
Equation of motion of a variable mass system3
Equation of motion of a variable mass system3Equation of motion of a variable mass system3
Equation of motion of a variable mass system3
 
Reduced order observers
Reduced order observersReduced order observers
Reduced order observers
 
I. Antoniadis - "Introduction to Supersymmetry" 1/2
I. Antoniadis - "Introduction to Supersymmetry" 1/2I. Antoniadis - "Introduction to Supersymmetry" 1/2
I. Antoniadis - "Introduction to Supersymmetry" 1/2
 
SOLUTIONS OF THE SCHRÖDINGER EQUATION WITH INVERSELY QUADRATIC HELLMANN PLUS ...
SOLUTIONS OF THE SCHRÖDINGER EQUATION WITH INVERSELY QUADRATIC HELLMANN PLUS ...SOLUTIONS OF THE SCHRÖDINGER EQUATION WITH INVERSELY QUADRATIC HELLMANN PLUS ...
SOLUTIONS OF THE SCHRÖDINGER EQUATION WITH INVERSELY QUADRATIC HELLMANN PLUS ...
 
Analytical Solution Of Schrödinger Equation With Mie–Type Potential Using Fac...
Analytical Solution Of Schrödinger Equation With Mie–Type Potential Using Fac...Analytical Solution Of Schrödinger Equation With Mie–Type Potential Using Fac...
Analytical Solution Of Schrödinger Equation With Mie–Type Potential Using Fac...
 
2 backlash simulation
2 backlash simulation2 backlash simulation
2 backlash simulation
 
2014 04 22 wits presentation oqw
2014 04 22 wits presentation oqw2014 04 22 wits presentation oqw
2014 04 22 wits presentation oqw
 
Contraction mapping
Contraction mappingContraction mapping
Contraction mapping
 
Exponential decay for the solution of the nonlinear equation induced by the m...
Exponential decay for the solution of the nonlinear equation induced by the m...Exponential decay for the solution of the nonlinear equation induced by the m...
Exponential decay for the solution of the nonlinear equation induced by the m...
 
A New Nonlinear Reinforcement Scheme for Stochastic Learning Automata
A New Nonlinear Reinforcement Scheme for Stochastic Learning AutomataA New Nonlinear Reinforcement Scheme for Stochastic Learning Automata
A New Nonlinear Reinforcement Scheme for Stochastic Learning Automata
 
Hawkinrad a source_notes ii _secured
Hawkinrad a source_notes ii _securedHawkinrad a source_notes ii _secured
Hawkinrad a source_notes ii _secured
 
Exact Solutions of the Klein-Gordon Equation for the Q-Deformed Morse Potenti...
Exact Solutions of the Klein-Gordon Equation for the Q-Deformed Morse Potenti...Exact Solutions of the Klein-Gordon Equation for the Q-Deformed Morse Potenti...
Exact Solutions of the Klein-Gordon Equation for the Q-Deformed Morse Potenti...
 
Computational model to design circular runner
Computational model to design circular runnerComputational model to design circular runner
Computational model to design circular runner
 
I. Antoniadis - "Introduction to Supersymmetry" 2/2
I. Antoniadis - "Introduction to Supersymmetry" 2/2I. Antoniadis - "Introduction to Supersymmetry" 2/2
I. Antoniadis - "Introduction to Supersymmetry" 2/2
 
Wits Node Seminar: Dr Sunandan Gangopadhyay (NITheP Stellenbosch) TITLE: Path...
Wits Node Seminar: Dr Sunandan Gangopadhyay (NITheP Stellenbosch) TITLE: Path...Wits Node Seminar: Dr Sunandan Gangopadhyay (NITheP Stellenbosch) TITLE: Path...
Wits Node Seminar: Dr Sunandan Gangopadhyay (NITheP Stellenbosch) TITLE: Path...
 
Prime numbers
Prime numbersPrime numbers
Prime numbers
 
HRISTOVA_VANKOVA_2012
HRISTOVA_VANKOVA_2012HRISTOVA_VANKOVA_2012
HRISTOVA_VANKOVA_2012
 

Andere mochten auch

Treasurehunt Slideshare
Treasurehunt SlideshareTreasurehunt Slideshare
Treasurehunt Slidesharetrialrun
 
CADA DIA ES UNA NUEVA OPORTUNIDAD
CADA DIA ES UNA NUEVA OPORTUNIDADCADA DIA ES UNA NUEVA OPORTUNIDAD
CADA DIA ES UNA NUEVA OPORTUNIDADRicardo Aucapiña
 
sugumar resume
sugumar resumesugumar resume
sugumar resumesugu mani
 
PhD Defence Part 1
PhD Defence Part 1PhD Defence Part 1
PhD Defence Part 1Daniel Theis
 
Estimulació Magnètica Transcranial en la Rehabilitació de l'Afàsia
Estimulació Magnètica Transcranial en la Rehabilitació de l'AfàsiaEstimulació Magnètica Transcranial en la Rehabilitació de l'Afàsia
Estimulació Magnètica Transcranial en la Rehabilitació de l'AfàsiaIsabel Pintor Hernández
 
Ramesh resume
Ramesh resumeRamesh resume
Ramesh resumeRamesh R
 
Game development -session on unity 3d
Game development -session on unity 3d Game development -session on unity 3d
Game development -session on unity 3d Muhammad Maaz Irfan
 
Design phase of game development of unity 2d game
Design phase of game development of unity 2d game Design phase of game development of unity 2d game
Design phase of game development of unity 2d game Muhammad Maaz Irfan
 
This is Service Design Doing, Essentials - Rio de Janeiro
This is Service Design Doing, Essentials - Rio de JaneiroThis is Service Design Doing, Essentials - Rio de Janeiro
This is Service Design Doing, Essentials - Rio de JaneiroRoberto Miranda Socorro
 

Andere mochten auch (14)

mini account
mini accountmini account
mini account
 
Treasurehunt Slideshare
Treasurehunt SlideshareTreasurehunt Slideshare
Treasurehunt Slideshare
 
Pastel Qualifications
Pastel QualificationsPastel Qualifications
Pastel Qualifications
 
CADA DIA ES UNA NUEVA OPORTUNIDAD
CADA DIA ES UNA NUEVA OPORTUNIDADCADA DIA ES UNA NUEVA OPORTUNIDAD
CADA DIA ES UNA NUEVA OPORTUNIDAD
 
DaisyDeviL
DaisyDeviLDaisyDeviL
DaisyDeviL
 
sugumar resume
sugumar resumesugumar resume
sugumar resume
 
PhD Defence Part 1
PhD Defence Part 1PhD Defence Part 1
PhD Defence Part 1
 
Estimulació Magnètica Transcranial en la Rehabilitació de l'Afàsia
Estimulació Magnètica Transcranial en la Rehabilitació de l'AfàsiaEstimulació Magnètica Transcranial en la Rehabilitació de l'Afàsia
Estimulació Magnètica Transcranial en la Rehabilitació de l'Afàsia
 
Ramesh resume
Ramesh resumeRamesh resume
Ramesh resume
 
tutorial de slideshare
tutorial de slidesharetutorial de slideshare
tutorial de slideshare
 
Game development -session on unity 3d
Game development -session on unity 3d Game development -session on unity 3d
Game development -session on unity 3d
 
Delegated legislation
Delegated legislationDelegated legislation
Delegated legislation
 
Design phase of game development of unity 2d game
Design phase of game development of unity 2d game Design phase of game development of unity 2d game
Design phase of game development of unity 2d game
 
This is Service Design Doing, Essentials - Rio de Janeiro
This is Service Design Doing, Essentials - Rio de JaneiroThis is Service Design Doing, Essentials - Rio de Janeiro
This is Service Design Doing, Essentials - Rio de Janeiro
 

Ähnlich wie PhD Defence Part 2

Lecture 5: Stochastic Hydrology
Lecture 5: Stochastic Hydrology Lecture 5: Stochastic Hydrology
Lecture 5: Stochastic Hydrology Amro Elfeki
 
Ph 101-9 QUANTUM MACHANICS
Ph 101-9 QUANTUM MACHANICSPh 101-9 QUANTUM MACHANICS
Ph 101-9 QUANTUM MACHANICSChandan Singh
 
Identification of the Mathematical Models of Complex Relaxation Processes in ...
Identification of the Mathematical Models of Complex Relaxation Processes in ...Identification of the Mathematical Models of Complex Relaxation Processes in ...
Identification of the Mathematical Models of Complex Relaxation Processes in ...Vladimir Bakhrushin
 
Response Surface in Tensor Train format for Uncertainty Quantification
Response Surface in Tensor Train format for Uncertainty QuantificationResponse Surface in Tensor Train format for Uncertainty Quantification
Response Surface in Tensor Train format for Uncertainty QuantificationAlexander Litvinenko
 
Bound State Solution to Schrodinger Equation with Hulthen Plus Exponential Co...
Bound State Solution to Schrodinger Equation with Hulthen Plus Exponential Co...Bound State Solution to Schrodinger Equation with Hulthen Plus Exponential Co...
Bound State Solution to Schrodinger Equation with Hulthen Plus Exponential Co...ijrap
 
On the principle of optimality for linear stochastic dynamic system
On the principle of optimality for linear stochastic dynamic systemOn the principle of optimality for linear stochastic dynamic system
On the principle of optimality for linear stochastic dynamic systemijfcstjournal
 
Bound State Solution to Schrodinger Equation With Modified Hylleraas Plus Inv...
Bound State Solution to Schrodinger Equation With Modified Hylleraas Plus Inv...Bound State Solution to Schrodinger Equation With Modified Hylleraas Plus Inv...
Bound State Solution to Schrodinger Equation With Modified Hylleraas Plus Inv...ijrap
 
First-order cosmological perturbations produced by point-like masses: all sca...
First-order cosmological perturbations produced by point-like masses: all sca...First-order cosmological perturbations produced by point-like masses: all sca...
First-order cosmological perturbations produced by point-like masses: all sca...Maxim Eingorn
 
Linear response theory and TDDFT
Linear response theory and TDDFT Linear response theory and TDDFT
Linear response theory and TDDFT Claudio Attaccalite
 
PaperNo8-HabibiSafari-IJAM-CHAOTICITY OF A PAIR OF OPERATORS
PaperNo8-HabibiSafari-IJAM-CHAOTICITY OF A PAIR OF OPERATORSPaperNo8-HabibiSafari-IJAM-CHAOTICITY OF A PAIR OF OPERATORS
PaperNo8-HabibiSafari-IJAM-CHAOTICITY OF A PAIR OF OPERATORSMezban Habibi
 
On the Principle of Optimality for Linear Stochastic Dynamic System
On the Principle of Optimality for Linear Stochastic Dynamic System On the Principle of Optimality for Linear Stochastic Dynamic System
On the Principle of Optimality for Linear Stochastic Dynamic System ijfcstjournal
 
BOUND STATE SOLUTION TO SCHRODINGER EQUATION WITH MODIFIED HYLLERAAS PLUS INV...
BOUND STATE SOLUTION TO SCHRODINGER EQUATION WITH MODIFIED HYLLERAAS PLUS INV...BOUND STATE SOLUTION TO SCHRODINGER EQUATION WITH MODIFIED HYLLERAAS PLUS INV...
BOUND STATE SOLUTION TO SCHRODINGER EQUATION WITH MODIFIED HYLLERAAS PLUS INV...ijrap
 
SDF Hysteretic System 1 - Differential Vaiana Rosati Model
SDF Hysteretic System 1 - Differential Vaiana Rosati Model SDF Hysteretic System 1 - Differential Vaiana Rosati Model
SDF Hysteretic System 1 - Differential Vaiana Rosati Model University of Naples Federico II
 
EXACT SOLUTIONS OF SCHRÖDINGER EQUATION WITH SOLVABLE POTENTIALS FOR NON PT/P...
EXACT SOLUTIONS OF SCHRÖDINGER EQUATION WITH SOLVABLE POTENTIALS FOR NON PT/P...EXACT SOLUTIONS OF SCHRÖDINGER EQUATION WITH SOLVABLE POTENTIALS FOR NON PT/P...
EXACT SOLUTIONS OF SCHRÖDINGER EQUATION WITH SOLVABLE POTENTIALS FOR NON PT/P...ijrap
 
Efficient mode-matching analysis of 2-D scattering by periodic array of circu...
Efficient mode-matching analysis of 2-D scattering by periodic array of circu...Efficient mode-matching analysis of 2-D scattering by periodic array of circu...
Efficient mode-matching analysis of 2-D scattering by periodic array of circu...Yong Heui Cho
 
Wereszczynski Molecular Dynamics
Wereszczynski Molecular DynamicsWereszczynski Molecular Dynamics
Wereszczynski Molecular DynamicsSciCompIIT
 
Data sparse approximation of the Karhunen-Loeve expansion
Data sparse approximation of the Karhunen-Loeve expansionData sparse approximation of the Karhunen-Loeve expansion
Data sparse approximation of the Karhunen-Loeve expansionAlexander Litvinenko
 

Ähnlich wie PhD Defence Part 2 (20)

Instantons in 1D QM
Instantons in 1D QMInstantons in 1D QM
Instantons in 1D QM
 
Lecture 5: Stochastic Hydrology
Lecture 5: Stochastic Hydrology Lecture 5: Stochastic Hydrology
Lecture 5: Stochastic Hydrology
 
Ph 101-9 QUANTUM MACHANICS
Ph 101-9 QUANTUM MACHANICSPh 101-9 QUANTUM MACHANICS
Ph 101-9 QUANTUM MACHANICS
 
Identification of the Mathematical Models of Complex Relaxation Processes in ...
Identification of the Mathematical Models of Complex Relaxation Processes in ...Identification of the Mathematical Models of Complex Relaxation Processes in ...
Identification of the Mathematical Models of Complex Relaxation Processes in ...
 
Response Surface in Tensor Train format for Uncertainty Quantification
Response Surface in Tensor Train format for Uncertainty QuantificationResponse Surface in Tensor Train format for Uncertainty Quantification
Response Surface in Tensor Train format for Uncertainty Quantification
 
Bound State Solution to Schrodinger Equation with Hulthen Plus Exponential Co...
Bound State Solution to Schrodinger Equation with Hulthen Plus Exponential Co...Bound State Solution to Schrodinger Equation with Hulthen Plus Exponential Co...
Bound State Solution to Schrodinger Equation with Hulthen Plus Exponential Co...
 
On the principle of optimality for linear stochastic dynamic system
On the principle of optimality for linear stochastic dynamic systemOn the principle of optimality for linear stochastic dynamic system
On the principle of optimality for linear stochastic dynamic system
 
Bound State Solution to Schrodinger Equation With Modified Hylleraas Plus Inv...
Bound State Solution to Schrodinger Equation With Modified Hylleraas Plus Inv...Bound State Solution to Schrodinger Equation With Modified Hylleraas Plus Inv...
Bound State Solution to Schrodinger Equation With Modified Hylleraas Plus Inv...
 
Dynamics of wind & marine turbines
Dynamics of wind & marine turbinesDynamics of wind & marine turbines
Dynamics of wind & marine turbines
 
First-order cosmological perturbations produced by point-like masses: all sca...
First-order cosmological perturbations produced by point-like masses: all sca...First-order cosmological perturbations produced by point-like masses: all sca...
First-order cosmological perturbations produced by point-like masses: all sca...
 
Linear response theory and TDDFT
Linear response theory and TDDFT Linear response theory and TDDFT
Linear response theory and TDDFT
 
PaperNo8-HabibiSafari-IJAM-CHAOTICITY OF A PAIR OF OPERATORS
PaperNo8-HabibiSafari-IJAM-CHAOTICITY OF A PAIR OF OPERATORSPaperNo8-HabibiSafari-IJAM-CHAOTICITY OF A PAIR OF OPERATORS
PaperNo8-HabibiSafari-IJAM-CHAOTICITY OF A PAIR OF OPERATORS
 
On the Principle of Optimality for Linear Stochastic Dynamic System
On the Principle of Optimality for Linear Stochastic Dynamic System On the Principle of Optimality for Linear Stochastic Dynamic System
On the Principle of Optimality for Linear Stochastic Dynamic System
 
Chemical Bonding
Chemical BondingChemical Bonding
Chemical Bonding
 
BOUND STATE SOLUTION TO SCHRODINGER EQUATION WITH MODIFIED HYLLERAAS PLUS INV...
BOUND STATE SOLUTION TO SCHRODINGER EQUATION WITH MODIFIED HYLLERAAS PLUS INV...BOUND STATE SOLUTION TO SCHRODINGER EQUATION WITH MODIFIED HYLLERAAS PLUS INV...
BOUND STATE SOLUTION TO SCHRODINGER EQUATION WITH MODIFIED HYLLERAAS PLUS INV...
 
SDF Hysteretic System 1 - Differential Vaiana Rosati Model
SDF Hysteretic System 1 - Differential Vaiana Rosati Model SDF Hysteretic System 1 - Differential Vaiana Rosati Model
SDF Hysteretic System 1 - Differential Vaiana Rosati Model
 
EXACT SOLUTIONS OF SCHRÖDINGER EQUATION WITH SOLVABLE POTENTIALS FOR NON PT/P...
EXACT SOLUTIONS OF SCHRÖDINGER EQUATION WITH SOLVABLE POTENTIALS FOR NON PT/P...EXACT SOLUTIONS OF SCHRÖDINGER EQUATION WITH SOLVABLE POTENTIALS FOR NON PT/P...
EXACT SOLUTIONS OF SCHRÖDINGER EQUATION WITH SOLVABLE POTENTIALS FOR NON PT/P...
 
Efficient mode-matching analysis of 2-D scattering by periodic array of circu...
Efficient mode-matching analysis of 2-D scattering by periodic array of circu...Efficient mode-matching analysis of 2-D scattering by periodic array of circu...
Efficient mode-matching analysis of 2-D scattering by periodic array of circu...
 
Wereszczynski Molecular Dynamics
Wereszczynski Molecular DynamicsWereszczynski Molecular Dynamics
Wereszczynski Molecular Dynamics
 
Data sparse approximation of the Karhunen-Loeve expansion
Data sparse approximation of the Karhunen-Loeve expansionData sparse approximation of the Karhunen-Loeve expansion
Data sparse approximation of the Karhunen-Loeve expansion
 

PhD Defence Part 2

  • 1. Second Order Generalized Van Vleck Perturbation Theory Molecular Gradients and Nonadiabatic CouplingTerms Daniel P. Theis University of North Dakota Chemistry Department Grand Forks, ND
  • 2. 2 • Introduction Outline Hoffmann, M. R. et. al. J. Chem. Phys. 2002, 117, 4133. • GVVPT2 Gradiengts • GVVPT2 Nonadiabatic Coupling Terms
  • 3. 3 1. GVVPT2 is a post-MCSCF, perturbation based electronic structure method. Benefits of the GVVPT2 Method Hoffmann, M. R. et. al. J. Chem. Phys. 2002, 117, 4133. 2. GVVPT2 can determine accurate electronic energies for systems with several low lying, nearly degenerate electronic states. 3. GVVPT2 potential energy surfaces are continuous, differentiable functions of the geometry, that ensure the evaluation of molecular gradients. 4. A highly efficient algorithm has been constructed for the GVVPT2 method, which combines the advantages of the macroconfiguration and GUGA techniques.
  • 4. 4 Λ ∈ Λ ∑=Ψ t Lt t MRCI AF T HMM HQM HMQ HQQ Hoffmann, M. R. et. al. J. Chem. Phys. 2002, 117, 4133. MCSCF The GVVPT Methodology ◦ Relatively Small CSF space, LM ◦ Neglects Dynamic Correlation (LQ) mI Lm m MC I CF M ∑∈ =Ψ ◦ Large CSF Space, LT = LM ⊕ LQ ◦ Includes Dynamic Correlation. MRCISD ( ) 0=−∑∈ ′′ MLm mImm MC Imm CEH δ ( ) 0=−∑∈ Λ ′Λ′ TLt ttt MRCI tt AEH δ
  • 5. 5 ∑∈ Λ Λ =Φ MLm mm GV AF HQM HMQ Hoffmann, M. R. et. al. J. Chem. Phys. 2002, 117, 4133. eff MMH GVVPT Methods The GVVPT Methodology HQQ ,ˆ GVVGVV ΛΛ ΦΩ=Ψ ( ) ,0=−∑∈ Λ ′Λ′ MLm mmm GVVeff mm AEH δ mm eff mm FHFH ′ + ΩΩ= ˆˆˆ ◦ Heff is the same dimension as HMM ◦ Perturbative corrections from HQM, HMQ, and the diagonal elements of HQQ add dynamic correlation.
  • 6. 6 eff QPH eff PQH eff PSH eff SPH eff PPH eff SSH eff SQH eff SQH eff QQH The GVVPT Methodology Shavitt, I.; Redmon, L. T. J. Chem. Phys. 1980, 73, 5711. Kuhler, K.; Hoffmann, M. R. J. Math. Chem. 1996, 20, 351. Hoffmann, M. R. et. al. J. Chem. Phys. 2002, 117, 4133. The effective Hamiltonian is formed by: • LM = LP ⊕ LS.
  • 7. 7 eff QPH eff PQH eff PSH eff SPH eff PPH eff SSH eff SQH eff SQH eff QQH ( ) 0HH XX == −− QP eff QP ee The GVVPT Methodology Shavitt, I.; Redmon, L. T. J. Chem. Phys. 1980, 73, 5711. Kuhler, K.; Hoffmann, M. R. J. Math. Chem. 1996, 20, 351. Hoffmann, M. R. et. al. J. Chem. Phys. 2002, 117, 4133. X e ˆ ˆ =Ω QPQPPQPQX FXFFXF + −=ˆ The effective Hamiltonian is formed by: • LM = LP ⊕ LS. • Define Ω, X, and XQP such that:ˆ ˆ ◦ ◦ ◦
  • 8. 8 eff QPH eff PQH eff PSH eff SPH eff PPH eff SSH eff SQH eff SQH eff QQH • Perturbatively expand Heff and X. ( ) 0HH XX == −− QP eff QP ee The GVVPT Methodology Shavitt, I.; Redmon, L. T. J. Chem. Phys. 1980, 73, 5711. Kuhler, K.; Hoffmann, M. R. J. Math. Chem. 1996, 20, 351. Hoffmann, M. R. et. al. J. Chem. Phys. 2002, 117, 4133. X e ˆ ˆ =Ω QPQPPQPQX FXFFXF + −=ˆ The effective Hamiltonian is formed by: • LM = LP ⊕ LS. • Define Ω, X, and XQP such that:ˆ ˆ ◦ ◦ ◦ { }( )+ ++= )2()2( 2 1)2( MMMMMM eff MM ZZHH ( ) PMQPMQPMMPMMM CXHCCIZ )1()2( 2 −= GVVPT2 Effective Hamiltonian
  • 9. 9 Hoffmann, M. R. et. al. J. Chem. Phys. 2002, 117, 4133. The Origen of GVVPT2’s Stable Potential Energy Curves )1( qIX I emε∆ a 2a 3a 4a -4a -3a -2a -a a = HqI I Iq II qI qI ee HH X mm εεε ∆ −= − −≈ 0 )1( ( ) QIQ MC IQQQI E HIHX 1)1( − −= Kuhler, K.; Hoffmann, M. R. J. Math. Chem. 1996, 20, 351.
  • 10. 10 Hoffmann, M. R. et. al. J. Chem. Phys. 2002, 117, 4133. )1( qIX I emε∆ a 2a 3a 4a -4a -3a -2a -a a = HqI I Iq qI e E H X m∆ −≈)1( ( ) ( )∑∈ +∆+∆=∆ e eee Lq qI III HE m xxxx mmm 22 4 1 2 1 )()()()( εε◦ ( ) QIQ MC IQQQI E HIHX 1)1( − −= Kuhler, K.; Hoffmann, M. R. J. Math. Chem. 1996, 20, 351. The Origen of GVVPT2’s Stable Potential Energy Curves
  • 11. 11 qI I qI HDX em≈)1( Hoffmann, M. R. et. al. J. Chem. Phys. 2002, 117, 4133. ( ) I I I e e e E E D m m m ∆ ∆ −= tanh )1( qIX I emε∆ a 2a 3a 4a -4a -3a -2a -a a = HqI ◦ ( ) QIQ MC IQQQI E HIHX 1)1( − −= Kuhler, K.; Hoffmann, M. R. J. Math. Chem. 1996, 20, 351. The Origen of GVVPT2’s Stable Potential Energy Curves
  • 12. 12 where each λj is determine from … e1(x;λ(x)) = 0 e2(x;λ(x)) = 0EΛ = EΛ(x;λ(x)) Determining Energy Gradients Helgaker, T.; Jørgensen, P. Theor. Chim. Acta. 1989, 75, 111.
  • 13. 13 ( ) ∑ ∂ ∂ ∂ ∂ + ∂ ∂ = ΛΛΛ j a j jaa x E x E dx dE λ λ )(; xλx where each λj is determine from … e1(x;λ(x)) = 0 e2(x;λ(x)) = 0EΛ = EΛ(x;λ(x)) ( ) 0 )(; = ∂ ∂ ∂ ∂ + ∂ ∂ = ∑j a j j i a i a i x e x e dx de λ λ xλx a j x∂ ∂λ where each is determined from Determining Energy Gradients Helgaker, T.; Jørgensen, P. Theor. Chim. Acta. 1989, 75, 111.
  • 14. 14 ( ) ( ) ( )∑+= ΛΛ i ii eEL )(;)()(;)(),(; xλxxxλxxξxλx ξ 0= ∂ ∂ Λ j L λ ( ) 0)(; == ∂ ∂ Λ xλxi i e L ξ where the values for ξi and λj are determined by requiring and The Lagrangian Approach of Determining Energy Gradients Helgaker, T.; Jørgensen, P. Theor. Chim. Acta. 1989, 75, 111.
  • 15. 15 The Lagrangian Approach of Determining Energy Gradients ( ) ( ) ( )∑+= ΛΛ i ii eEL )(;)()(;)(),(; xλxxxλxxξxλx ξ 0= ∂ ∂ Λ j L λ ( ) 0)(; == ∂ ∂ Λ xλxi i e L ξ where the values for ξi and λj are determined by requiring and Under these conditions ( ) aaa x L dx dL dx dE ∂ ∂ == ΛΛΛ )(; xλx Helgaker, T.; Jørgensen, P. Theor. Chim. Acta. 1989, 75, 111.
  • 16. 16 The Lagrangian Approach of Determining Energy Gradients ( ) ( ) ( )∑+= ΛΛ i ii eEL )(;)()(;)(),(; xλxxxλxxξxλx ξ 0= ∂ ∂ Λ j L λ ( ) 0)(; == ∂ ∂ Λ xλxi i e L ξ where the values for ξi and λj are determined by requiring and Under these conditions ( ) aaa x L dx dL dx dE ∂ ∂ == ΛΛΛ )(; xλx Helgaker, T.; Jørgensen, P. Theor. Chim. Acta. 1989, 75, 111.                     ∂ ∂ ∂ ∂ ∂ ∂ −=                                 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ Λ Λ Λ n n n n nn n n E E E eee eee eee λ λ λ ξ ξ ξ λλλ λλλ λλλ       2 1 0 01 01 21 22 2 2 1 11 2 1 1 )( )( )( x x x
  • 17. 17 ( )∑∈ ′ Λ ′ Λ ′Λ = MLm MP rveff mmmm GVV HAAE )(,)(,)(;)()()( xCxΔxΔxxxx• Electron Structure Parameters that are used in the GVVPT2 Calculations
  • 18. 18 ( )∑∈ ′ Λ ′ Λ ′Λ = MLm MP rveff mmmm GVV HAAE )(,)(,)(;)()()( xCxΔxΔxxxx• Electron Structure Parameters that are used in the GVVPT2 Calculations ( ) ( )∑∈ =Φ MLm mI rv mMP rvMC I CF )()(,)(;)(,)(,)(; xxΔxΔxxCxΔxΔxCmI(x) ~•
  • 19. 19 ( )∑∈ ′ Λ ′ Λ ′Λ = MLm MP rveff mmmm GVV HAAE )(,)(,)(;)()()( xCxΔxΔxxxx• Electron Structure Parameters that are used in the GVVPT2 Calculations ( ) ( )∑∈ =Φ MLm mI rv mMP rvMC I CF )()(,)(;)(,)(,)(; xxΔxΔxxCxΔxΔxCmI(x) ~• ~)(and)( xx ab r ij v ∆∆ ( ) ( ){ }∑∈ = iGk ki omo k rvmo i )(exp)()(,)(; xΔxxΔxΔx ϕφ v r ( ){ }∑ ∑≠ ∈ + ik kGG Gk ki omo k )(exp)( xΔxϕ • • i∈GiNote:
  • 20. 20 ( )∑∈ ′ Λ ′ Λ ′Λ = MLm MP rveff mmmm GVV HAAE )(,)(,)(;)()()( xCxΔxΔxxxx• Electron Structure Parameters that are used in the GVVPT2 Calculations ( ) ( )∑∈ =Φ MLm mI rv mMP rvMC I CF )()(,)(;)(,)(,)(; xxΔxΔxxCxΔxΔxCmI(x) ~• ~)(and)( xx ab r ij v ∆∆ ( ) ( ){ }∑∈ = iGk ki omo k rvmo i )(exp)()(,)(; xΔxxΔxΔx ϕφ v r ( ){ }∑ ∑≠ ∈ + ik kGG Gk ki omo k )(exp)( xΔxϕ • • i∈GiNote: ∑∑ += OMO ijkl b omo ijklA omo ijkl OMO ij B omo ijA omo ijAB FeFgFEFhH ~ ˆ ~ )( ~ˆ~ )()( 2 1 xxx
  • 21. 21 ~ ( ) 1)( 2 =∑∈ MLm mIC x [ ] 0)( =−∑∈′ ′′′ MLm Im MC Immmm CEH xδand The Constraint Equations that are used by the GVVPT2 and MRCI Calculations CmI(x)•
  • 22. 22 ( ) 0)()(1)( 2 =               −+−= ∑ ∑∈′ ′ ∈′′ ′′′′ M M Lm Im Lm Im MC ImmmmmI CCEHe xxx δCmI(x)• ~ The Constraint Equations that are used by the GVVPT2 and MRCI Calculations
  • 23. 23 ( ) 0)()(1)( 2 =               −+−= ∑ ∑∈′ ′ ∈′′ ′′′′ M M Lm Im Lm Im MC ImmmmmI CCEHe xxx δCmI(x)• ~)(xij v ∆•• ~ [ ] 0)(ˆˆ),()()( =Φ−Φ= ∑ xxxx MC Ijiij MC I N I Iij EEHwe P The Constraint Equations that are used by the GVVPT2 and MRCI Calculations
  • 24. 24 ( ) 0)()(1)( 2 =               −+−= ∑ ∑∈′ ′ ∈′′ ′′′′ M M Lm Im Lm Im MC ImmmmmI CCEHe xxx δCmI(x)• ~)(xij v ∆•• ~ The Constraint Equations that are used by the GVVPT2 and MRCI Calculations )(xab r ∆ ~ [ ] 0)()()()()( 2 1 =−+== ∑ OCC kl akblabklklababab gghfe xxxxx γ• [ ] 0)(ˆˆ),()()( =Φ−Φ= ∑ xxxx MC Ijiij MC I N I Iij EEHwe P
  • 25. 25 ( )∑ ∑∑∑       ×ΦΦ+Γ+= ∂ ∂ Λ Λ PN I MO i aI ii GVV iI MC I GVV MO ij a ijkl GVV ijkl MO ij a ij GVV ij a GVV fPgh x E 2 1 γ• ∑ ∑ ∑∑∑∑                 ∆∂ ∂ ×ΦΦ+       Γ+−      Γ+= ∆∂ ∂ Λ Λ PN I MO k ij v I kkGVV kI MC I GVV MO xyz jxyz GVV ixyz MO x jx GVV ix MO xyz ixyz GVV jxyz MO x ix GVV jx ij v GVV f P ghgh E 2 1 2222 γγ Efficiently Evaluating the Partial Derivatives of E Λ GVV •
  • 26. 26 ( )∑ ∑∑∑       ×ΦΦ+Γ+= ∂ ∂ Λ Λ PN I MO i aI ii GVV iI MC I GVV MO ij a ijkl GVV ijkl MO ij a ij GVV ij a GVV fPgh x E 2 1 γ• ∑ ∑ ∑∑∑∑                 ∆∂ ∂ ×ΦΦ+       Γ+−      Γ+= ∆∂ ∂ Λ Λ PN I MO k ij v I kkGVV kI MC I GVV MO xyz jxyz GVV ixyz MO x jx GVV ix MO xyz ixyz GVV jxyz MO x ix GVV jx ij v GVV f P ghgh E 2 1 2222 γγ ( ) ( ) ( ) ( ) ( ){ }[ ]MIPMMIPM MC P GVV MIMm Pm MC P GVV Q mI IQMC I GVV mI GVV A CC E CHXHXCΦAHX HXΦHβ X ++ Λ Λ+Λ + Λ Λ + Λ Λ +Φ−+         Φ−         ∂ ∂ ×ΦΦ= ∂ ∂ 2 1 2 Efficiently Evaluating the Partial Derivatives of E Λ GVV • •
  • 27. 27 ( )∑ ∑ ∑ ∑∈ ∈ ∈       +×= Qe e M P e L q Lm N I qjiijmMIQMqmI GVV ij FEEFW m m m CH ˆ 2 1  γ • Efficiently Evaluating the Partial Derivatives of E Λ GVV ( )∑ ∑ ∑ ∑∈ ∈ ∈       +++×=Γ Qe e M P e L q Lm N I qjilkjiklijlkijklmMIQMqmI GVV ijkl FeeeeFW m m m CH  ˆˆ8 1 ( ) ( )∑ ∑∈ ∈ ×= Qe e e L q mqMIQMqImI HX m m m CHHX ( ) ( )∑ ∑∈ ∈ Λ + ×=         ∂ ∂ Qe e e L q mqMIQMqIQ mI IQ HV C m m m CHHβ X GVVPT2 Energies – Slowest Step GVVPT2 v ∆ij, r ∆ab, and CmI Derivatives – Slowest Steps • • • ~ 2 × time of (HX)mI ~ 1 × time of (HX)mI
  • 28. 28 Molecule Analytical Values Deviation from Numerical Values Geometry Description X Y Z X Y Z H2 CO C -0.171726 0.205990 0.000000 -6.90×10-7 -8.00×10-8 0.00 CH1 Str. (+0.5 Å) O 0.081525 -0.025708 0.000000 3.70×10-7 4.20×10-7 0.00 H1 0.240019 -0.424267 0.000000 -6.00×10-8 7.00×10-8 0.00 H2 -0.149818 0.243985 0.000000 9.00×10-8 -1.20×10-7 0.00 LiH (X 1 Σ+ ) H 0.000000 0.000000 -0.014113 0.00 0.00 0.00 Avoided Crossing Li 0.000000 0.000000 0.014113 0.00 0.00 0.00 LiH (A 1 Σ+ ) H 0.000000 0.000000 -0.004441 0.00 0.00 0.00 Avoided Crossing Li 0.000000 0.000000 0.004441 0.00 0.00 0.00 • cc-pVTZ Basis Set Technical Details: H2CO (Cs – Broken Sym.) • RCO = 1.205 Å, RCH = 1.611 Å, and RCH = 1.111 Å. • 2 Val. Groups {612 40 ; 611 41 ; 610 42 } ∀ ∠HCH = 116.1o and ∠OCH = 121.9o 1 2 • Roos Aug. TZ Basis Set Technical Details: LiH (C∞v) • 9:1 SA-MCSCF MOs • (2:10)-CAS + 1 Core Orb. • RLiH = 3.400 Å Analytical GVVPT2 Gradients for H2CO and LiH
  • 29. 29 The Lagrangian Approach of Determining Nonadiabatic Coupling Terms ( ) ( ) ( )∑+= Λ′ΛΛ′Λ i ii eg )(;)()(;)(),(; xλxxxλxxξxλx ξL where gΛΛ'(x) is a function that makes 0= ∂ ∂ Λ′Λ jλ L andSetting 0= ∂ ∂ Λ′Λ iξ L , makes: aaaaa xdx d dx dg dx d dx d ∂ ∂ ===      Ψ Ψ− Ψ Ψ Λ′ΛΛ′ΛΛ′ΛΛ Λ′ Λ′ Λ )()()()()( 2 1 xxxxx LL       Ψ Ψ− Ψ Ψ= Λ Λ′ Λ′ Λ Λ′Λ aaa dx d dx d dx dg )()()( 2 1 xxx
  • 30. 30 The Lagrangian Approach of Determining Nonadiabatic Coupling Terms ( ) ( ) ( )∑+= Λ′ΛΛ′Λ i ii eg )(;)()(;)(),(; xλxxxλxxξxλx ξL where gΛΛ'(x) is a function that makes ( ) ( ){ } Λ′ ΛΛ′ ++Λ Λ′Λ       − ++Θ−Θ= M eff MMGVGVMMPMMPPMMPM GV EE CCg AxHxFFxxAx )( 1 )()()()( 2 1       Ψ Ψ− Ψ Ψ= Λ Λ′ Λ′ Λ Λ′Λ aaa dx d dx d dx dg )()()( 2 1 xxx For GVVPT2
  • 31. 31 The Lagrangian Approach of Determining Nonadiabatic Coupling Terms ( ) ( ) ( )∑+= Λ′ΛΛ′Λ i ii eg )(;)()(;)(),(; xλxxxλxxξxλx ξL where gΛΛ'(x) is a function that makes ( ) ( ){ } Λ′ ΛΛ′ ++Λ Λ′Λ       − ++Θ−Θ= M eff MMGVGVMMPMMPPMMPM GV EE CCg AxHxFFxxAx )( 1 )()()()( 2 1       Ψ Ψ− Ψ Ψ= Λ Λ′ Λ′ Λ Λ′Λ aaa dx d dx d dx dg )()()( 2 1 xxx For GVVPT2 )()()(ˆ)( )2()2( xAxFxx Λ Λ Ω=Ψ MM GV
  • 32. • Geometry optimizations, gradients calculations, and frequency calculations verify that the GVVPT2 method accurately describes the chemically important regions of most potential energy surfaces. Conclusions 32 • The GVVPT2 gradients are continuous across potential energy surfaces, including regions of avoided crossings. • Analytic formulas for GVVPT2 molecular gradients and nonadiabatic coupling terms have been developed which scale at approximately 2-3 times the speed of the GVVPT2 energy. • Computational implementation of GVVPT2 analytic gradients show excellent agreement with finite difference calculations.
  • 33. Dr. Mark R. Hoffmann Dr. Yuriy G. Khait Patrick Tamukang Rashel Mokambe Jason Hicks Erik Timmian Dr. Theresa Windus Dr. Klaus Ruedenberg Acknowledgements 33