SlideShare ist ein Scribd-Unternehmen logo
1 von 50
Downloaden Sie, um offline zu lesen
1/50	
  
	
  
Microgravity	
  observa3ons	
  and	
  hydrological	
  modelling	
  
e-­‐mail:	
  alberto.bellin@unitn.it	
  
The value of aggregated measurements of
state variables in hydrological modeling	
  
	
  
Alberto Bellin
Department of Civil, Environmental and
Mechanical Engineering
2/50	
  
	
  
Microgravity	
  observa3ons	
  and	
  hydrological	
  modelling	
  
e-­‐mail:	
  alberto.bellin@unitn.it	
  
RESEARCH ARTICLE
10.1002/2015WR016994
On the use of spatially distributed, time-lapse microgravity
surveys to inform hydrological modeling
Sebastiano Piccolroaz1, Bruno Majone1, Francesco Palmieri2, Giorgio Cassiani3, and Alberto Bellin1
1
Department of Civil, Environmental, and Mechanical Engineering, University of Trento, Trento, Italy, 2
Istituto Nazionale di
Oceanografia e di Geofisica Sperimentale, Trieste, Italy, 3
Department of Geosciences, University of Padova, Padova, Italy
Abstract In the last decades significant technological advances together with improved modeling capa-
bilities fostered a rapid development of geophysical monitoring techniques in support of hydrological mod-
eling. Geophysical monitoring offers the attractive possibility to acquire spatially distributed information on
state variables. These provide complementary information about the functioning of the hydrological system
to that provided by standard hydrological measurements, which are either intrinsically local or the result of
a complex spatial averaging process. Soil water content is an example of state variable, which is relatively
simple to measure pointwise (locally) but with a vanishing constraining effect on catchment-scale modeling,
while streamflow data, the typical hydrological measurement, offer limited possibility to disentangle the
controlling processes. The objective of this work is to analyze the advantages offered by coupling traditional
hydrological data with unconventional geophysical information in inverse modeling of hydrological sys-
tems. In particular, we explored how the use of time-lapse, spatially distributed microgravity measurements
may improve the conceptual model identification of a topographically complex Alpine catchment (the Ver-
migliana catchment, South-Eastern Alps, Italy). The inclusion of microgravity data resulted in a better con-
straint of the inversion procedure and an improved capability to identify limitations of concurring
conceptual models to a level that would be impossible relying only on streamflow data. This allowed for a
better identification of model parameters and a more reliable description of the controlling hydrological
processes, with a significant reduction of uncertainty in water storage dynamics with respect to the case
when only streamflow data are used.
Key Points:
 Microgravity data constrain
subsurface water storage in
hydrological models
 Combining streamflow and
microgravity data rules out improper
conceptual models
 Indirect measures of state variables
constrain inversion of hydrological
data
Supporting Information:
 Supporting Information S1
Correspondence to:
S. Piccolroaz,
s.piccolroaz@unitn.it
Citation:
Piccolroaz, S., B. Majone, F. Palmieri,
G. Cassiani, and A. Bellin (2015), On the
use of spatially distributed, time-lapse
microgravity surveys to inform
hydrological modeling, Water Resour.
Res., 51, doi:10.1002/2015WR016994.
Received 30 JAN 2015
Accepted 6 AUG 2015
Accepted article online 11 AUG 2015
Water Resources Research
PUBLICATIONS
3/50	
  
	
  
Microgravity	
  observa3ons	
  and	
  hydrological	
  modelling	
  
e-­‐mail:	
  alberto.bellin@unitn.it	
  
Two	
  concurring	
  hydrological	
  models	
  (M1	
  and	
  M2)	
  having	
  the	
  same	
  high	
  efficiency	
  when	
  
calibrated	
  using	
  only	
  streamflow	
  data	
  (single	
  objecve)…	
  
Jan Apr Jul Oct Jan Apr Jul Oct Jan Apr Jul
0
5
10
15
20
25
30
Time
Discharge[m3
/s]
Observed
Sim. M1 (KGE
hydro
=0.92
Sim. M2 (KGE
hydro
=0.93
4/50	
  
	
  
Microgravity	
  observa3ons	
  and	
  hydrological	
  modelling	
  
e-­‐mail:	
  alberto.bellin@unitn.it	
  
…	
  show	
  remarkable	
  differences	
  when	
  adding	
  geophysical	
  informaon	
  (mul	
  objecve):	
  the	
  
shape	
  of	
  the	
  Pareto	
  fronts	
  provide	
  useful	
  hints	
  to	
  idenfy	
  model	
  limitaons,	
  and	
  indicate	
  the	
  
value	
  of	
  including	
  geophysical	
  data	
  to	
  beGer	
  constraint	
  of	
  the	
  inversion	
  procedure.	
  
5/50	
  
	
  
Microgravity	
  observa3ons	
  and	
  hydrological	
  modelling	
  
e-­‐mail:	
  alberto.bellin@unitn.it	
  
Introduc3on
Microgravimetry	
  may	
  provide	
  useful	
  data	
  on	
  water	
  storage	
  in	
  the	
  earth’s	
  subsurface	
  	
  
• relevant	
  in	
  the	
  evalua3on/quan3fica3on	
  of	
  groundwater	
  resources	
  (e.g.	
  GRACE	
  at	
  large	
  
scale);	
  
• a	
  promising	
  support	
  in	
  hydrological	
  modeling.	
  
	
  	
  
Are	
  microgravimetry	
  data	
  useful	
  to	
  inform	
  hydrological	
  models?	
  We	
  are	
  interested	
  in	
  
coupling	
  tradi3onal	
  hydrological	
  data	
  (inherently	
  global)	
  and	
  geophysical	
  informa3on	
  
(spaally	
  distributed).	
  
Time-­‐lapse,	
  rela3ve	
  microgravimetry	
  is	
  a	
  geophysical	
  
technique	
  which	
  allows	
  to	
  obtain	
  an	
  indirect	
  esmate	
  of	
  
surface	
  and	
  subsurface	
  water	
  storage	
  varia3ons	
  (i.e.,	
  soil	
  
water	
  content,	
  groundwater	
  and	
  snowpack)	
  
	
  
Basic	
  concept:	
  
the	
  temporal	
  variaon	
  of	
  the	
  gravitaonal	
  aGracon	
  is	
  
proporonal	
  to	
  the	
  hydrological	
  storage	
  changes	
  	
  
(once	
  all	
  other	
  contribuons	
  are	
  corrected).	
  
6/50	
  
	
  
Microgravity	
  observa3ons	
  and	
  hydrological	
  modelling	
  
e-­‐mail:	
  alberto.bellin@unitn.it	
  
Study	
  site:	
  the	
  Vermigliana	
  catchment,	
  located	
  in	
  the	
  South-­‐Eastern	
  Alps	
  (Italy).	
  
Main	
  characteris3cs:	
  
•  contribung	
  area:	
  104	
  km2;	
  
•  the	
  main	
  creek	
  has	
  a	
  length	
  of	
  4	
  km	
  and	
  an	
  
average	
  slope	
  of	
  1%;	
  
•  elevaon	
  ranging	
  from	
  950	
  to	
  3558	
  m	
  a.s.l.;	
  
•  very	
  steep	
  slopes	
  and	
  a	
  narrow	
  valley	
  
boGom	
  (U-­‐shaped	
  profile);	
  
•  nivo-­‐glacial	
  regime;	
  
•  almost	
  prisne	
  condions.	
  
Microgravity	
  campaign
7/50	
  
	
  
Microgravity	
  observa3ons	
  and	
  hydrological	
  modelling	
  
e-­‐mail:	
  alberto.bellin@unitn.it	
  
Fieldwork	
  and	
  data	
  acquisi3on1:	
  
•  6	
  field	
  campaigns	
  between	
  June	
  2009	
  and	
  May	
  2011;	
  
•  extensive	
  point	
  gravity	
  measurements	
  on	
  a	
  network	
  of	
  53	
  sta3ons;	
  
•  the	
  Vermigliana	
  catchment	
  has	
  been	
  monitored	
  through	
  8	
  sta3ons;	
  
•  streamflow	
  data	
  are	
  available	
  at	
  the	
  Vermiglio	
  stream	
  gauging	
  staon.	
  
1	
  Equipment:	
  LaCoste-­‐Romberg	
  mod	
  D-­‐018	
  equipped	
  with	
  a	
  Zero	
  Length	
  Spring	
  feedback.	
  
Microgravity	
  campaign
Reference	
  	
  
measurement
8/50	
  
	
  
Microgravity	
  observa3ons	
  and	
  hydrological	
  modelling	
  
e-­‐mail:	
  alberto.bellin@unitn.it	
  
Modeling	
  approach
Hydrological	
  model:	
  a	
  modified	
  version	
  of	
  GEOTRANSF	
  (Majone	
  et	
  al.,	
  2012,	
  WATER	
  RESOUR	
  
RES),	
  a	
  distributed	
  hydrological	
  model	
  characterized	
  by	
  
1.  subdividing	
  the	
  catchment	
  into	
  slope	
  and	
  valley	
  boGom	
  areas	
  (assuming	
  they	
  are	
  governed	
  
by	
  inherently	
  different	
  processes);	
  	
  
2.  explicitly	
  coupling	
  vadose-­‐zone	
  and	
  groundwater	
  dynamics.	
  
	
  
The	
  valley	
  boGom	
  is	
  idenfied	
  considering	
  thresholds	
  on	
  slope	
  and	
  elevaon	
  	
  
(≈	
  1.8	
  km2,	
  2%	
  of	
  the	
  catchment	
  area)	
  
9/50	
  
	
  
Microgravity	
  observa3ons	
  and	
  hydrological	
  modelling	
  
e-­‐mail:	
  alberto.bellin@unitn.it	
  
Valley bottom
10/50	
  
	
  
Microgravity	
  observa3ons	
  and	
  hydrological	
  modelling	
  
e-­‐mail:	
  alberto.bellin@unitn.it	
  
Valley bottom
Sub-basin entirely
confined in the
hillslope unit
11/50	
  
	
  
Microgravity	
  observa3ons	
  and	
  hydrological	
  modelling	
  
e-­‐mail:	
  alberto.bellin@unitn.it	
  
Valley bottom
Sub-basin
partitioned between
hillslope and valley
bottom
12/50	
  
	
  
Microgravity	
  observa3ons	
  and	
  hydrological	
  modelling	
  
e-­‐mail:	
  alberto.bellin@unitn.it	
  
Modeling	
  approach
Calibra3on	
  procedure:	
  parcle	
  swarm	
  
algorithm	
  to	
  solve	
  a	
  mul-­‐objecve	
  
opmizaon	
  problem	
  	
  
(see	
  e.g.,	
  Robinson	
  and	
  Rahmat-­‐Samii,	
  2004,	
  IEEE	
  T	
  
ANTENN	
  PROPAG)	
  
Objec3ve	
  func3on:	
  the	
  following	
  expression	
  has	
  been	
  used	
  as	
  model	
  performance	
  criterion	
  
KGE	
  =	
  Kling–Gupta	
  efficiency	
  index	
  (Gupta	
  et	
  al.,	
  2009,	
  J	
  HYDROL)	
  
=
µs
µ0
=
s
0
r =
covSO
( S 0)
KGE = 1
q
( 1)
2
+ ( 1)
2
+ (r 1)
2
KGEtot = (1 ↵)KGEhydro + ↵KGEgrav, ↵ = 0 ÷ 1
13/50	
  
	
  
Microgravity	
  observa3ons	
  and	
  hydrological	
  modelling	
  
e-­‐mail:	
  alberto.bellin@unitn.it	
  
Modeling	
  approach
Gravity	
  model:	
  	
  the	
  domain	
  is	
  divided	
  into	
  n	
  prisms	
  for	
  
which	
  the	
  individual	
  contribuon	
  to	
  the	
  hydrology-­‐
induced	
  gravity	
  variaons	
  is	
  evaluated	
  according	
  to	
  
The	
  following	
  approximated	
  soluon	
  has	
  been	
  
applied	
  for	
  distances	
  larger	
  than	
  a	
  given	
  
threshold	
  from	
  the	
  gravimeter
14/50	
  
	
  
Microgravity	
  observa3ons	
  and	
  hydrological	
  modelling	
  
e-­‐mail:	
  alberto.bellin@unitn.it	
  
Domain	
  discre3za3on:	
  carried	
  out	
  at	
  two	
  levels	
  	
  	
  
• Horizontal	
  plane	
  based	
  on	
  the	
  10x10	
  m	
  resoluon	
  DEM	
  available	
  for	
  the	
  catchment	
  
	
  
	
  
• Ver3cal	
  direc3on	
  considering	
  the	
  same	
  layers	
  of	
  the	
  hydrological	
  model,	
  including	
  
snowpack	
  
Modeling	
  approach
Main	
  water	
  storage	
  components:	
  soil	
  
moisture	
  in	
  the	
  rizosphere	
  and	
  in	
  the	
  
vadose	
  zone,	
  groundwater	
  and	
  snowpack.	
  
15/50	
  
	
  
Microgravity	
  observa3ons	
  and	
  hydrological	
  modelling	
  
e-­‐mail:	
  alberto.bellin@unitn.it	
  
Model	
  M1 Model	
  M2
16/50	
  
	
  
Microgravity	
  observa3ons	
  and	
  hydrological	
  modelling	
  
e-­‐mail:	
  alberto.bellin@unitn.it	
  
Two	
  concurring	
  hydrological	
  models	
  (M1	
  and	
  M2)	
  having	
  the	
  same	
  high	
  efficiency	
  when	
  
calibrated	
  using	
  only	
  streamflow	
  data	
  (single	
  objecve)…	
  
Jan Apr Jul Oct Jan Apr Jul Oct Jan Apr Jul
0
5
10
15
20
25
30
Time
Discharge[m3
/s]
Observed
Sim. M1 (KGE
hydro
=0.92
Sim. M2 (KGE
hydro
=0.93
17/50	
  
	
  
Microgravity	
  observa3ons	
  and	
  hydrological	
  modelling	
  
e-­‐mail:	
  alberto.bellin@unitn.it	
  
…	
  show	
  remarkable	
  differences	
  when	
  adding	
  geophysical	
  informaon	
  (mul	
  objecve):	
  the	
  
shape	
  of	
  the	
  Pareto	
  fronts	
  provide	
  useful	
  hints	
  to	
  idenfy	
  model	
  limitaons,	
  and	
  indicate	
  the	
  
value	
  of	
  including	
  geophysical	
  data	
  to	
  beGer	
  constraint	
  of	
  the	
  inversion	
  procedure.	
  
18/50	
  
	
  
Microgravity	
  observa3ons	
  and	
  hydrological	
  modelling	
  
e-­‐mail:	
  alberto.bellin@unitn.it	
  
Uncertainty	
  assessment	
  
Results
Comparison	
   among	
   parameters	
   and	
   model	
   output	
   uncertainty	
   (model	
   M1)	
   for	
   two	
  
significant	
  cases:	
  
• only	
  streamflow	
  data	
  are	
  available	
  for	
  model	
  calibraon	
  (α=0)	
  
• both	
   streamflow	
   and	
   microgravity	
   data	
   are	
   used	
   for	
   parameters	
   inference	
   with	
   a	
  
balanced	
  aggregated	
  objecve	
  funcon	
  (α=0.5)	
  
Among	
   the	
   soluons	
   obtained	
   during	
   the	
   exploraon	
   of	
  
the	
   parameters	
   space,	
   only	
   those	
   with	
   KGEtot	
   differing	
  
less	
  the	
  1%	
  from	
  the	
  maximum	
  value	
  (colored	
  squares	
  in	
  
the	
  previous	
  slide)	
  have	
  been	
  retained	
  for	
  the	
  uncertainty	
  
analysis.	
  	
  
The	
   analysis	
   has	
   been	
   focused	
   on	
   the	
   100%	
   confidence	
  
bands	
  resulng	
  from	
  the	
  retained	
  soluons.	
  
To	
  address	
  the	
  
c l u s t e r i n g	
  
effect	
  of	
  PSO.	
  
19/50	
  
	
  
Microgravity	
  observa3ons	
  and	
  hydrological	
  modelling	
  
e-­‐mail:	
  alberto.bellin@unitn.it	
  
Model	
  parameters	
  
Results
The	
  values	
  of	
  the	
  parameters	
  are	
  normalized	
  with	
  respect	
  to	
  their	
  range	
  
Confidence	
  bands	
  are:	
  
• 45%	
  smaller	
  for	
  α=0.5	
  than	
  
for	
  α=0	
  
• well	
  distributed	
  between	
  0	
  
and	
  1	
  (proper	
  choice	
  of	
  their	
  
prior	
  range	
  of	
  variaon)	
  
20/50	
  
	
  
Microgravity	
  observa3ons	
  and	
  hydrological	
  modelling	
  
e-­‐mail:	
  alberto.bellin@unitn.it	
  
Results
Water	
  storage	
  
When	
  including	
  
microgravity	
  data,	
  
confidence	
  bands	
  
reduce	
  by	
  
• 26%	
  in	
  the	
  hillslope	
  
• 95%	
   in	
   the	
   valley	
  
boGom	
  
The	
  accumulaon	
  of	
  
water	
  in	
  the	
  valley	
  
boGom	
  (due	
  to	
  a	
  
parcularly	
  wet	
  
summer	
  in	
  2010)	
  is	
  
observed	
  only	
  for	
  
α=0.5	
  	
  
21/50	
  
	
  
Microgravity	
  observa3ons	
  and	
  hydrological	
  modelling	
  
e-­‐mail:	
  alberto.bellin@unitn.it	
  
Results
Water	
  table	
  fluctua3on	
  
When	
  including	
  
microgravity	
  data,	
  
confidence	
  bands	
  
reduce	
  by	
  
•  39%	
  in	
  the	
  hillslope	
  
•  93%	
   in	
   the	
   valley	
  
boGom	
  
22/50	
  
	
  
Microgravity	
  observa3ons	
  and	
  hydrological	
  modelling	
  
e-­‐mail:	
  alberto.bellin@unitn.it	
  
Results
Streamflow	
  
The	
  averaged	
  confidence	
  
band	
  reduces	
  from	
  0.95	
  m3/
s	
  to	
  0.78	
  m3/s	
  when	
  
microgravity	
  data	
  are	
  
included	
  
microgravity	
  data	
  not	
  only	
  allow	
  for	
  a	
  beGer	
  
representaon	
  of	
  subsurface	
  storage,	
  but	
  they	
  
also	
  reduce	
  uncertainty	
  of	
  streamflow.	
  
23/50	
  
	
  
Microgravity	
  observa3ons	
  and	
  hydrological	
  modelling	
  
e-­‐mail:	
  alberto.bellin@unitn.it	
  
Results
Gravity	
  change	
  (for	
  α=0.5)	
  	
  
Valley	
  boGom	
  staons	
  	
  (green)	
  
show	
  a	
  good	
  agreement	
  between	
  
simulated	
  and	
  observed	
  data,	
  
while	
  hillslope	
  staons	
  (blue)	
  show	
  
larger	
  deviaons.	
  	
  
In	
  general,	
  seasonal	
  variaons	
  are	
  
well	
  reproduced.	
  
Errors	
  are	
  likely	
  due	
  to	
  the	
  simplificaon,	
  
dictated	
  by	
  the	
  lack	
  of	
  detailed	
  stragraphic	
  
data,	
  of	
  assuming	
  the	
  water	
  
table	
  moving	
  parallel	
  to	
  the	
  ground	
  surface.	
  
24/50	
  
	
  
Microgravity	
  observa3ons	
  and	
  hydrological	
  modelling	
  
e-­‐mail:	
  alberto.bellin@unitn.it	
  
Conclusions
Conclusions	
  
Coupled	
  approach	
  
tradi3onal	
  streamflow	
  data	
  +	
  me-­‐lapse,	
  spaally	
  distributed	
  microgravity	
  measurements	
  	
  
	
  
Main	
  results	
  
•  significant	
  reduc3on	
  of	
  the	
  uncertainty	
  associated	
  with	
  the	
  esmaon	
  of	
  the	
  me	
  
variaons	
  of	
  the	
  main	
  hydrological	
  state	
  variables	
  (e.g.,	
  total	
  water	
  volume,	
  water	
  table	
  elevaon)	
  
•  the	
  major	
  effects	
  can	
  be	
  observed	
  in	
  the	
  valley	
  boaom	
  area	
  	
  
→ higher	
  density	
  of	
  gravimetric	
  staons
•  uncertainty	
  on	
  simulated	
  streamflow	
  decreases	
  as	
  well	
  
•  gravimetric	
  data	
  allowed	
  for	
  a	
  beaer	
  idenficaon	
  of	
  the	
  hydrological	
  conceptual	
  model	
  
including	
  the	
  definion	
  of	
  the	
  valley	
  boGom	
  region	
  
Thank	
  you
25/50	
  
	
  
Microgravity	
  observa3ons	
  and	
  hydrological	
  modelling	
  
e-­‐mail:	
  alberto.bellin@unitn.it	
  
26/50	
  
	
  
Microgravity	
  observa3ons	
  and	
  hydrological	
  modelling	
  
e-­‐mail:	
  alberto.bellin@unitn.it	
  
Pareto	
  front	
  	
  
27/50	
  
	
  
Microgravity	
  observa3ons	
  and	
  hydrological	
  modelling	
  
e-­‐mail:	
  alberto.bellin@unitn.it	
  
HydroSCAPE: a multi-scale
framework for streamflow routing in
large-scale hydrological models
Leno River at Rovereto
28/50	
  
	
  
Microgravity	
  observa3ons	
  and	
  hydrological	
  modelling	
  
e-­‐mail:	
  alberto.bellin@unitn.it	
  
Open	
  un3l	
  30	
  October	
  2015
29/50	
  
	
  
Microgravity	
  observa3ons	
  and	
  hydrological	
  modelling	
  
e-­‐mail:	
  alberto.bellin@unitn.it	
  
Large	
  scale	
  hydrological	
  model	
  
•  Rainfall-­‐runoff	
  model	
  aimed	
  at	
  simulang	
  the	
  occurrence	
  of	
  floods	
  at	
  the	
  large	
  scale	
  
(i.e.,	
  catchments	
  with	
  an	
  extension	
  ranging	
  from	
  1000	
  km2	
  up	
  to	
  the	
  connental	
  scale).	
  
Parcular	
  emphasis	
  is	
  given	
  to	
  extreme	
  events.	
  
•  Possible	
  extensions	
  include	
  the	
  applicaon	
  to	
  several	
  water	
  resources	
  issues:	
  aquifer	
  
recharge,	
  storage	
  dynamics,	
  water	
  resources	
  availability,	
  interacons	
  with	
  river	
  
ecosystems	
  etc.	
  
•  Specific	
  aGenon	
  is	
  given	
  to	
  the	
  flow	
  rou3ng	
  algorithm,	
  which	
  has	
  been	
  indicated	
  as	
  an	
  
aspect	
  of	
  LSM	
  and	
  global	
  hydrological	
  models	
  needing	
  some	
  improvement	
  (Clark	
  et	
  al,	
  
WRR	
  2015)	
  
REVIEW ARTICLE
10.1002/2015WR017096
Improving the representation of hydrologic processes in Earth
System Models
Martyn P. Clark1, Ying Fan2, David M. Lawrence1, Jennifer C. Adam3, Diogo Bolster4, David J. Gochis1,
Richard P. Hooper5, Mukesh Kumar6, L. Ruby Leung7, D. Scott Mackay8, Reed M. Maxwell9,
Chaopeng Shen10, Sean C. Swenson1, and Xubin Zeng11
1
National Center for Atmospheric Research, Boulder, Colorado, USA, 2
Department of Earth and Planetary Sciences,
Rutgers University, New Brunswick, New Jersey, USA, 3
Department of Civil and Environmental Engineering, Washington
State University, Pullman, Washington, USA, 4
Department of Civil  Environmental Engineering and Earth Sciences,
University of Notre Dame, South Bend, Indiana, USA, 5
The Consortium of Universities for the Advancement of Hydrologic
Science, Inc., 6
Nichols Schools of Environment, Duke University, Durham, North Carolina, USA, 7
Pacific Northwest National
Laboratory, Richland, Washington, USA, 8
Department of Geography, University at Buffalo, State University of New York,
Special Section:
The 50th Anniversary of Water
Resources Research
Key Points:
 Land model development can
benefit from recent advances in
hydrology
 Accelerating modeling advances
requires comprehensive
benchmarking activities
Water Resources Research
PUBLICATIONS
30/50	
  
	
  
Microgravity	
  observa3ons	
  and	
  hydrological	
  modelling	
  
e-­‐mail:	
  alberto.bellin@unitn.it	
  
•  Some	
  key	
  scien3fic	
  ques3ons:	
  
•  How	
  climate	
  change	
  may	
  modify	
  the	
  stascs	
  of	
  floods	
  occurring	
  IN	
  large	
  river	
  
basins?	
  
•  What	
  are	
  the	
  consequences	
  on	
  the	
  management	
  of	
  the	
  hydraulic	
  structures?	
  
•  Can	
  we	
  determine	
  the	
  uncertainty	
  associated	
  with	
  the	
  esmate	
  of	
  extreme	
  
hydrological	
  events?
Large	
  scale	
  hydrological	
  model	
  
LETTERS
PUBLISHED ONLINE: 21 OCTOBER 2012 | DOI: 10.1038/NCLIMATE1719
Hydroclimatic shifts driven by human water use
for food and energy production
Georgia Destouni*, Fernando Jaramillo and Carmen Prieto
Hydrological change is a central part of global change1–3
. Its
drivers in the past need to be understood and quantified for ac-
curate projection of disruptive future changes4
. Here we anal-
yse past hydro-climatic, agricultural and hydropower changes
from twentieth century data for nine major Swedish drainage
basins, and synthesize and compare these results with other
regional5–7
and global2
assessments of hydrological change by
irrigation and deforestation. Cross-regional comparison shows
similar increases of evapotranspiration by non-irrigated agri-
culture and hydropower as for irrigated agriculture. In the
Swedish basins, non-irrigated agriculture has also increased,
whereas hydropower has decreased temporal runoff variability.
A global indication of the regional results is a net total increase
of evapotranspiration that is larger than a proposed associated
planetary boundary8
. This emphasizes the need for climate
and Earth system models to account for different human uses
of water as anthropogenic drivers of hydro-climatic change.
The present study shows how these drivers and their effects
can be distinguished and quantified for hydrological basins on
different scales and in different world regions. This should en-
courage further exploration of greater basin variety for better
understanding of anthropogenic hydro-climatic change.
Drivers of freshwater changes are multiple and difficult to
distinguish and quantify9–12
. Global increase of evapotranspiration
while instrumental hydro-climatic data have become available for
direct analysis of their hydrological effects.
In this study, we investigate twentieth century land–water use
and hydro-climatic data, and interpret them by the fundamental
water balance quantification P ET R DS = 0 (where P is
precipitation, R is runoff and DS is water storage change) for
nine major Swedish drainage basins (Fig. 1a). The investigation
has three goals. First, a basin-scale distinction of hydrological
changes and their drivers in the Swedish basins, which among
them represent different land–water uses (Fig. 1a, green: dominant
non-irrigated agriculture, red: dominant hydropower, blue: with
essentially unregulated rivers and little agriculture) and hydro-
climatic conditions in terms of surface temperature (T; Fig. 1b)
and P (Fig. 1c). Second, cross-regional result comparison across
the complementary Swedish, Aral and Mahanadi basins (Fig. 1a),
representing an even wider range of different hydro-climatic
conditions (Fig. 1b,c) and land–water uses (irrigated and non-
irrigated agriculture, hydropower, unregulated). Third, cross-
scale/method comparison between the extrapolation implications
of the regional basin results and previous spatial estimates of
global hydrological changes and drivers2
. Hydrological, and other
physical and ecological science communities11,17,18
have identified
fundamental needs for such synthesis and comparisons along
climatic and other gradients.
Resilience of river flow regimes
Gianluca Bottera
, Stefano Bassoa,b
, Ignacio Rodriguez-Iturbec
, and Andrea Rinaldoa,d,1
a
Department of Civil, Architectural, and Environmental Engineering, University of Padua, I-35100 Padua, Italy; b
Department of Water Resources and Drinking
Water, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland; c
Department of Civil and Environmental Engineering,
Princeton University, Princeton 08540, NJ; and d
Laboratory of Ecohydrology, School of Architecture, Civil and Environmental Engineering, École Polytechnique
Fédérale de Lausanne, Lausanne CH-1015, Switzerland
Contributed by Andrea Rinaldo, June 25, 2013 (sent for review March 3, 2013)
Landscape and climate alterations foreshadow global-scale shifts of
river flow regimes. However, a theory that identifies the range of
foreseen impacts on streamflows resulting from inhomogeneous
forcings and sensitivity gradients across diverse regimes is lacking.
Here, we derive a measurable index embedding climate and
landscape attributes (the ratio of the mean interarrival of stream-
flow-producing rainfall events and the mean catchment response
time) that discriminates erratic regimes with enhanced intraseaso-
nal streamflow variability from persistent regimes endowed with
regular flow patterns. Theoretical and empirical data show that
from the censoring operated by catchment soils on daily rainfall,
and they are modeled as a spatially uniform marked Poisson
process with mean depth α [L] and mean frequency λ ½T−1
Š. Al-
though α quantifies the average daily intensity of rainfall events, λ
is smaller than the underlying precipitation frequency because the
soil–water deficit created by plant transpiration in the root zone
may hinder the routing of some inputs to streams (Eq. S3).
Therefore, λ crucially embeds rainfall attributes; soil/vegetation
properties; and other climate variables, such as temperature, hu-
midity, and wind speed.
31/50	
  
	
  
Microgravity	
  observa3ons	
  and	
  hydrological	
  modelling	
  
e-­‐mail:	
  alberto.bellin@unitn.it	
  
Characteristics of the model
Macro-­‐regional/connental	
  hydrological	
  model	
  for	
  flood	
  assessment.	
  
Possible	
   applicaon	
   to	
   water	
   resources	
   problems:	
   aquifer	
   recharge,	
   storage	
   dynamics,	
  
water	
  resources	
  availability,	
  interacons	
  with	
  river	
  ecosystems	
  etc.
Discrezaon	
   into	
   large	
   macro-­‐cells:	
   computaonal	
   requirements,	
   direct	
   coupling	
   with	
  
climate	
  models,	
  focus	
  on	
  large	
  scale	
  dynamics.	
  
Simplicity:	
   a	
   few	
   parameters,	
   possibly	
   linked	
   to	
   physical	
   properes	
   for	
   which	
   distributed	
  
informaon	
  is	
  easily	
  available.	
  
Linearity	
   of	
   the	
   processes:	
   in	
   order	
   to	
   ensure	
   a	
   simple	
   and	
   efficient	
   numerical	
  
parallelizaon.	
  
Rigorous	
  upscaling	
  of	
  the	
  spaal	
  distribuon	
  of	
  water	
  fluxes.	
  
Physically	
  based	
  (WFIUH	
  approach).	
  
32/50	
  
	
  
Microgravity	
  observa3ons	
  and	
  hydrological	
  modelling	
  
e-­‐mail:	
  alberto.bellin@unitn.it	
  
Delineaon	
  of	
  the	
  catchment	
  area.	
  
Pre-processing
33/50	
  
	
  
Microgravity	
  observa3ons	
  and	
  hydrological	
  modelling	
  
e-­‐mail:	
  alberto.bellin@unitn.it	
  
Pre-processing
Discre3za3on	
   of	
   the	
   domain	
   into	
   a	
  
number	
  of	
  macrocells.	
  
Delineaon	
  of	
  the	
  catchment	
  area.	
  
34/50	
  
	
  
Microgravity	
  observa3ons	
  and	
  hydrological	
  modelling	
  
e-­‐mail:	
  alberto.bellin@unitn.it	
  
Pre-processing
Discre3za3on	
   of	
   the	
   domain	
   into	
   a	
  
number	
  of	
  macrocells.	
  
Extracon	
  of	
  the	
  river	
  network	
  from	
  the	
  
DEM.	
  	
  
Delineaon	
  of	
  the	
  catchment	
  area.	
  
35/50	
  
	
  
Microgravity	
  observa3ons	
  and	
  hydrological	
  modelling	
  
e-­‐mail:	
  alberto.bellin@unitn.it	
  
Discre3za3on	
   of	
   the	
   domain	
   into	
   a	
  
number	
  of	
  macrocells.	
  
Extracon	
  of	
  the	
  river	
  network	
  from	
  the	
  
DEM.	
  	
  
Iden3fica3on	
   of	
   target	
   points	
   (hereater	
  
referred	
   to	
   as	
   nodes):	
   gauged	
   secons,	
  
residenal	
   areas,	
   hydraulic	
   structures,	
  
reservoir	
  etc.	
  
Definion	
  of	
  the	
  width	
  func3on	
  for	
  each	
  
node-­‐macrocell	
  pair.	
  
	
  
Delineaon	
  of	
  the	
  catchment	
  area.	
  
Pre-processing
36/50	
  
	
  
Microgravity	
  observa3ons	
  and	
  hydrological	
  modelling	
  
e-­‐mail:	
  alberto.bellin@unitn.it	
  
Structure of the model
Water	
   balance	
   dynamics	
   at	
   the	
   hillslope	
  
scale	
  are	
  simulated	
  using	
  a	
  simple	
  rainfall-­‐
runoff	
  model	
  (e.g.,	
  SCS)	
  	
  
	
  Hillslope	
   drains	
   into	
   the	
   river	
   network,	
  
where	
   water	
   is	
   transferred	
   towards	
  
nodes,	
  with	
  a	
  given	
  channel	
  velocity.	
  
WFIUH	
   approach	
   (e.g.	
   Rinaldo,	
   Marani,	
  
Rigon,	
  1991)	
  
	
  
The	
  streamflow	
  simulated	
  at	
  each	
  node	
  is	
  
given	
  by	
  the	
  sum	
  of	
  the	
  contribuons	
  of	
  
all	
  macrocells	
  contribung	
  to	
  that	
  node.	
  
The	
   model	
   is	
   linear	
   →	
   the	
   streamflow	
  
generated	
  at	
  each	
  macrocell	
  is	
  evaluated	
  
independently	
  from	
  the	
  others.	
  
	
  
37/50	
  
	
  
Microgravity	
  observa3ons	
  and	
  hydrological	
  modelling	
  
e-­‐mail:	
  alberto.bellin@unitn.it	
  
Characteris3cs:	
  
•  Few	
   reservoir	
   and	
   hydraulic	
  
structures.	
  
•  Snow	
  precipitaon	
  and	
  melng	
  is	
  
negligible.	
  
•  Historical	
   series	
   (a	
   few	
   decades)	
  
of	
   streamflow,	
   rainfall	
   and	
   air	
  
temperature	
  are	
  available.	
  
•  Surface	
   area	
   of	
   the	
   catchment	
  
equal	
  to	
  4116	
  km2.	
  
•  5	
   nodes,	
   in	
   correspondence	
   to	
  
gauging	
  secons.	
  
	
  
	
  
	
  
Example application: Upper Tiber
38/50	
  
	
  
Microgravity	
  observa3ons	
  and	
  hydrological	
  modelling	
  
e-­‐mail:	
  alberto.bellin@unitn.it	
  
Example application: Upper Tiber
39/50	
  
	
  
Microgravity	
  observa3ons	
  and	
  hydrological	
  modelling	
  
e-­‐mail:	
  alberto.bellin@unitn.it	
  
3	
  grid	
  sizes:	
  
5,	
  10	
  and	
  50	
  km
Example application: Upper Tiber
40/50	
  
	
  
Microgravity	
  observa3ons	
  and	
  hydrological	
  modelling	
  
e-­‐mail:	
  alberto.bellin@unitn.it	
  
Width	
  funcons	
  at	
  Ponte	
  Nuovo	
  
obtained	
  aggregang	
  the	
  original	
  
20	
  m	
  DEM	
  to	
  5,	
  10	
  and	
  50	
  km:	
  
Models	
  in	
  which	
  the	
  
geomorphological	
  descripon	
  of	
  
the	
  drainage	
  network	
  has	
  the	
  same	
  
scale	
  of	
  the	
  computaonal	
  grid,	
  
suffer	
  from	
  a	
  deterioraon	
  of	
  the	
  
geomorphological	
  response	
  of	
  the	
  
watershed.	
  
	
  
This	
  is	
  not	
  the	
  case	
  of	
  the	
  proposed	
  
formulaon,	
  in	
  which	
  the	
  width	
  
funcon	
  maintains	
  all	
  the	
  
informaon	
  derived	
  from	
  the	
  
original	
  DEM	
  
	
  
	
  
	
  
Example application: Upper Tiber
Figure 5. Width functions of the Upper Tiber river basin at Ponte Nuovo (PN) outlet (4116 km2
) derived from
DEMs obtained aggregating the original 20 m DEM to 5, 10 and 50 km (lower panels). The width function
obtained with the original 20 m DEM is also shown with a red line.
to represent the travel time distribution at the hillslope scale. In this case, rescaling may be obtained
by using a hillslope specific velocity V`  Vc.
41/50	
  
	
  
Microgravity	
  observa3ons	
  and	
  hydrological	
  modelling	
  
e-­‐mail:	
  alberto.bellin@unitn.it	
  
Rainfall-­‐runoff	
  models	
  
Model
parameters
v λ cS kH
SCSLR
H
✓ ✓ ✓ ✓
Data requirements
•  SCSLRH:	
  SCS	
  +	
  linear	
  reservoir	
  for	
  the	
  hillslope	
  
QUESTO	
  E’	
  IL	
  MODELLO	
  DI	
  PRODUZIONE	
  USATO	
  
IN	
  HESS,	
  LE	
  ALTRE	
  SLIDE	
  LE	
  HO	
  NASCOSTE
42/50	
  
	
  
Microgravity	
  observa3ons	
  and	
  hydrological	
  modelling	
  
e-­‐mail:	
  alberto.bellin@unitn.it	
  
Rainfall-­‐runoff	
  models	
  
•  none:	
  runoff=rainfall	
  
Model
parameters
v λ cS k kH
none ✓ - - - -
SCS ✓ ✓ ✓ - -
SCSLR
I
✓ ✓ ✓ ✓ -
SCSLR
H
✓ ✓ ✓ - ✓
SCSLR
HI
✓ ✓ ✓ ✓ ✓
Data requirements
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
43/50	
  
	
  
Microgravity	
  observa3ons	
  and	
  hydrological	
  modelling	
  
e-­‐mail:	
  alberto.bellin@unitn.it	
  
Rainfall-­‐runoff	
  models	
  
•  none:	
  runoff=rainfall	
  
Model
parameters
v λ cS k kH
none ✓ - - - -
SCS ✓ ✓ ✓ - -
SCSLR
I
✓ ✓ ✓ ✓ -
SCSLR
H
✓ ✓ ✓ - ✓
SCSLR
HI
✓ ✓ ✓ ✓ ✓
Data requirements
•  SCS:	
  Soil	
  Conservaon	
  Service	
  –	
  Curve	
  Number	
  Methodology	
  
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
44/50	
  
	
  
Microgravity	
  observa3ons	
  and	
  hydrological	
  modelling	
  
e-­‐mail:	
  alberto.bellin@unitn.it	
  
Rainfall-­‐runoff	
  models	
  
•  none:	
  runoff=rainfall	
  
Model
parameters
v λ cS k kH
none ✓ - - - -
SCS ✓ ✓ ✓ - -
SCSLR
I
✓ ✓ ✓ ✓ -
SCSLR
H
✓ ✓ ✓ - ✓
SCSLR
HI
✓ ✓ ✓ ✓ ✓
Data requirements
•  SCS:	
  Soil	
  Conservaon	
  Service	
  –	
  Curve	
  Number	
  Methodology	
  
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
•  SCSLRI:	
  SCS	
  +	
  linear	
  reservoir	
  for	
  infiltraon	
  
45/50	
  
	
  
Microgravity	
  observa3ons	
  and	
  hydrological	
  modelling	
  
e-­‐mail:	
  alberto.bellin@unitn.it	
  
Rainfall-­‐runoff	
  models	
  
•  none:	
  runoff=rainfall	
  
Model
parameters
v λ cS k kH
none ✓ - - - -
SCS ✓ ✓ ✓ - -
SCSLR
I
✓ ✓ ✓ ✓ -
SCSLR
H
✓ ✓ ✓ - ✓
SCSLR
HI
✓ ✓ ✓ ✓ ✓
Data requirements
•  SCS:	
  Soil	
  Conservaon	
  Service	
  –	
  Curve	
  Number	
  Methodology	
  
•  SCSLRH:	
  SCS	
  +	
  linear	
  reservoir	
  for	
  the	
  hillslope	
  
•  SCSLRHI:	
  SCS	
  +	
  linear	
  reservoir	
  for	
  the	
  hillslope	
  +	
  linear	
  reservoir	
  for	
  infiltraon	
  
•  SCSLRI:	
  SCS	
  +	
  linear	
  reservoir	
  for	
  infiltraon	
  
46/50	
  
	
  
Microgravity	
  observa3ons	
  and	
  hydrological	
  modelling	
  
e-­‐mail:	
  alberto.bellin@unitn.it	
  
Calibraon	
  at	
  Ponte	
  Nuovo
Example application: Upper Tiber
47/50	
  
	
  
Microgravity	
  observa3ons	
  and	
  hydrological	
  modelling	
  
e-­‐mail:	
  alberto.bellin@unitn.it	
  
Mul	
  site	
  validaon
Example application: Upper Tiber
48/50	
  
	
  
Microgravity	
  observa3ons	
  and	
  hydrological	
  modelling	
  
e-­‐mail:	
  alberto.bellin@unitn.it	
  
Mul	
  event	
  validaonExample application: Upper Tiber
49/50	
  
	
  
Microgravity	
  observa3ons	
  and	
  hydrological	
  modelling	
  
e-­‐mail:	
  alberto.bellin@unitn.it	
  
Conclusions
•  We proposed a routing scheme independent on
the gridding of the LSM;
•  “perfect” upscaling with geomorphological
dispersion preserved;
•  The scheme is computational efficient (major
computational burden in the preprocessing);
•  Routing dependent on 2 parameters.
50/50	
  
	
  
Microgravity	
  observa3ons	
  and	
  hydrological	
  modelling	
  
e-­‐mail:	
  alberto.bellin@unitn.it	
  
THANK YOU

Weitere ähnliche Inhalte

Was ist angesagt?

A statistical assessment of GDEM using LiDAR data
A statistical assessment of GDEM using LiDAR dataA statistical assessment of GDEM using LiDAR data
A statistical assessment of GDEM using LiDAR dataTomislav Hengl
 
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...India UK Water Centre (IUKWC)
 
A New Approximation of Water Saturation Estimation Based on Vertical Seismic ...
A New Approximation of Water Saturation Estimation Based on Vertical Seismic ...A New Approximation of Water Saturation Estimation Based on Vertical Seismic ...
A New Approximation of Water Saturation Estimation Based on Vertical Seismic ...IJERA Editor
 
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...India UK Water Centre (IUKWC)
 
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...India UK Water Centre (IUKWC)
 
Using Kriging Combined with Categorical Information of Soil Maps for Interpol...
Using Kriging Combined with Categorical Information of Soil Maps for Interpol...Using Kriging Combined with Categorical Information of Soil Maps for Interpol...
Using Kriging Combined with Categorical Information of Soil Maps for Interpol...FAO
 
Interpolation of meteodata using the method of regression-kriging
Interpolation of meteodata using the method of regression-krigingInterpolation of meteodata using the method of regression-kriging
Interpolation of meteodata using the method of regression-krigingAlexander Mkrtchian
 
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...India UK Water Centre (IUKWC)
 
Lauvaux, Thomas: Uncertainty-based analysis on constraining continental carbo...
Lauvaux, Thomas: Uncertainty-based analysis on constraining continental carbo...Lauvaux, Thomas: Uncertainty-based analysis on constraining continental carbo...
Lauvaux, Thomas: Uncertainty-based analysis on constraining continental carbo...Integrated Carbon Observation System (ICOS)
 
Research reproducibility - Code etc.
Research reproducibility - Code etc.Research reproducibility - Code etc.
Research reproducibility - Code etc.Riccardo Rigon
 
SOIL MOISTURE: A key variable for linking small scale catchment hydrology to ...
SOIL MOISTURE: A key variable for linking small scale catchment hydrology to ...SOIL MOISTURE: A key variable for linking small scale catchment hydrology to ...
SOIL MOISTURE: A key variable for linking small scale catchment hydrology to ...Luca Brocca
 

Was ist angesagt? (20)

Laura Gatel
Laura GatelLaura Gatel
Laura Gatel
 
20 Years and 20Mt, Statoil Storage Experience, Andrew Cavanagh - Geophysical ...
20 Years and 20Mt, Statoil Storage Experience, Andrew Cavanagh - Geophysical ...20 Years and 20Mt, Statoil Storage Experience, Andrew Cavanagh - Geophysical ...
20 Years and 20Mt, Statoil Storage Experience, Andrew Cavanagh - Geophysical ...
 
Giacomo bertoldi seminar_30_padova_08
Giacomo bertoldi seminar_30_padova_08Giacomo bertoldi seminar_30_padova_08
Giacomo bertoldi seminar_30_padova_08
 
Poster oslo 2010 (v2)
Poster oslo 2010 (v2)Poster oslo 2010 (v2)
Poster oslo 2010 (v2)
 
A statistical assessment of GDEM using LiDAR data
A statistical assessment of GDEM using LiDAR dataA statistical assessment of GDEM using LiDAR data
A statistical assessment of GDEM using LiDAR data
 
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...
 
A New Approximation of Water Saturation Estimation Based on Vertical Seismic ...
A New Approximation of Water Saturation Estimation Based on Vertical Seismic ...A New Approximation of Water Saturation Estimation Based on Vertical Seismic ...
A New Approximation of Water Saturation Estimation Based on Vertical Seismic ...
 
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...
 
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...
 
Using Kriging Combined with Categorical Information of Soil Maps for Interpol...
Using Kriging Combined with Categorical Information of Soil Maps for Interpol...Using Kriging Combined with Categorical Information of Soil Maps for Interpol...
Using Kriging Combined with Categorical Information of Soil Maps for Interpol...
 
Interpolation of meteodata using the method of regression-kriging
Interpolation of meteodata using the method of regression-krigingInterpolation of meteodata using the method of regression-kriging
Interpolation of meteodata using the method of regression-kriging
 
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...
 
Poster AGU 2013
Poster AGU 2013Poster AGU 2013
Poster AGU 2013
 
Lauvaux, Thomas: Uncertainty-based analysis on constraining continental carbo...
Lauvaux, Thomas: Uncertainty-based analysis on constraining continental carbo...Lauvaux, Thomas: Uncertainty-based analysis on constraining continental carbo...
Lauvaux, Thomas: Uncertainty-based analysis on constraining continental carbo...
 
Long term safety of geological co2 storage: lessons from Bravo Dome Natural C...
Long term safety of geological co2 storage: lessons from Bravo Dome Natural C...Long term safety of geological co2 storage: lessons from Bravo Dome Natural C...
Long term safety of geological co2 storage: lessons from Bravo Dome Natural C...
 
Research reproducibility - Code etc.
Research reproducibility - Code etc.Research reproducibility - Code etc.
Research reproducibility - Code etc.
 
Challenges in detecting a response to elevated sediment
Challenges in detecting a response to elevated sedimentChallenges in detecting a response to elevated sediment
Challenges in detecting a response to elevated sediment
 
Hydrological Modelling of Slope Stability
Hydrological Modelling of Slope StabilityHydrological Modelling of Slope Stability
Hydrological Modelling of Slope Stability
 
SOIL MOISTURE: A key variable for linking small scale catchment hydrology to ...
SOIL MOISTURE: A key variable for linking small scale catchment hydrology to ...SOIL MOISTURE: A key variable for linking small scale catchment hydrology to ...
SOIL MOISTURE: A key variable for linking small scale catchment hydrology to ...
 
Kowalsky_etal_WRR_2001
Kowalsky_etal_WRR_2001Kowalsky_etal_WRR_2001
Kowalsky_etal_WRR_2001
 

Andere mochten auch

June 05 P3
June 05 P3June 05 P3
June 05 P3Samimvez
 
Java is evolving rapidly: Maven helps you staying on track
Java is evolving rapidly:  Maven helps you staying on trackJava is evolving rapidly:  Maven helps you staying on track
Java is evolving rapidly: Maven helps you staying on trackArnaud Héritier
 
Jacksonville Tech coast Conference 2016 - Cloud Transformation - Final
Jacksonville Tech coast Conference 2016 - Cloud Transformation - FinalJacksonville Tech coast Conference 2016 - Cloud Transformation - Final
Jacksonville Tech coast Conference 2016 - Cloud Transformation - FinalPaz Efrat
 
Unit 22 tv drama 2.0
Unit 22 tv drama 2.0Unit 22 tv drama 2.0
Unit 22 tv drama 2.0MulkacE147
 
Troubleshooting MySQL Performance
Troubleshooting MySQL PerformanceTroubleshooting MySQL Performance
Troubleshooting MySQL PerformanceSveta Smirnova
 
Next-Generation Security Operations with AWS
Next-Generation Security Operations with AWSNext-Generation Security Operations with AWS
Next-Generation Security Operations with AWSAmazon Web Services
 
Women's Access to Healthcare - Emory Presentation
Women's Access to Healthcare - Emory PresentationWomen's Access to Healthcare - Emory Presentation
Women's Access to Healthcare - Emory PresentationGeorgia Commission on Women
 

Andere mochten auch (12)

Carbide rods
Carbide rodsCarbide rods
Carbide rods
 
Focus Group
Focus GroupFocus Group
Focus Group
 
Pitch Analysis
Pitch AnalysisPitch Analysis
Pitch Analysis
 
June 05 P3
June 05 P3June 05 P3
June 05 P3
 
Java is evolving rapidly: Maven helps you staying on track
Java is evolving rapidly:  Maven helps you staying on trackJava is evolving rapidly:  Maven helps you staying on track
Java is evolving rapidly: Maven helps you staying on track
 
Jacksonville Tech coast Conference 2016 - Cloud Transformation - Final
Jacksonville Tech coast Conference 2016 - Cloud Transformation - FinalJacksonville Tech coast Conference 2016 - Cloud Transformation - Final
Jacksonville Tech coast Conference 2016 - Cloud Transformation - Final
 
Unit 22 tv drama 2.0
Unit 22 tv drama 2.0Unit 22 tv drama 2.0
Unit 22 tv drama 2.0
 
Network Access Control (NAC)
Network Access Control (NAC)Network Access Control (NAC)
Network Access Control (NAC)
 
IT Transformation with AWS
IT Transformation with AWSIT Transformation with AWS
IT Transformation with AWS
 
Troubleshooting MySQL Performance
Troubleshooting MySQL PerformanceTroubleshooting MySQL Performance
Troubleshooting MySQL Performance
 
Next-Generation Security Operations with AWS
Next-Generation Security Operations with AWSNext-Generation Security Operations with AWS
Next-Generation Security Operations with AWS
 
Women's Access to Healthcare - Emory Presentation
Women's Access to Healthcare - Emory PresentationWomen's Access to Healthcare - Emory Presentation
Women's Access to Healthcare - Emory Presentation
 

Ähnlich wie Alberto Bellin

Experimental evaluation of two-layer air bubble curtains to prevent seawater ...
Experimental evaluation of two-layer air bubble curtains to prevent seawater ...Experimental evaluation of two-layer air bubble curtains to prevent seawater ...
Experimental evaluation of two-layer air bubble curtains to prevent seawater ...EhsanKahrizi3
 
Coupling of Surface water and Groundwater Models
Coupling of Surface water and Groundwater Models Coupling of Surface water and Groundwater Models
Coupling of Surface water and Groundwater Models TIPU SULTAN BADAGAN
 
Assessing the importance of geo hydrological data acquisition in the developm...
Assessing the importance of geo hydrological data acquisition in the developm...Assessing the importance of geo hydrological data acquisition in the developm...
Assessing the importance of geo hydrological data acquisition in the developm...Alexander Decker
 
A REVIEW ON RESERVOIR SEDIMENTATION STUDIES USING SATELLITE REMOTE SENSING TE...
A REVIEW ON RESERVOIR SEDIMENTATION STUDIES USING SATELLITE REMOTE SENSING TE...A REVIEW ON RESERVOIR SEDIMENTATION STUDIES USING SATELLITE REMOTE SENSING TE...
A REVIEW ON RESERVOIR SEDIMENTATION STUDIES USING SATELLITE REMOTE SENSING TE...ijiert bestjournal
 
Catchment classification: multivariate statistical analyses for physiographic...
Catchment classification: multivariate statistical analyses for physiographic...Catchment classification: multivariate statistical analyses for physiographic...
Catchment classification: multivariate statistical analyses for physiographic...IJERA Editor
 
ICT solutions for highly-customized water demand management strategies
ICT solutions for highly-customized water demand management strategiesICT solutions for highly-customized water demand management strategies
ICT solutions for highly-customized water demand management strategiesSmartH2O
 
Lecture by Prof. Salvatore Manfreda
Lecture by Prof. Salvatore ManfredaLecture by Prof. Salvatore Manfreda
Lecture by Prof. Salvatore ManfredaSalvatore Manfreda
 
Hydro-structural analysis of Northern Termination of Maiella
Hydro-structural analysis of Northern Termination of MaiellaHydro-structural analysis of Northern Termination of Maiella
Hydro-structural analysis of Northern Termination of Maiellakaisar ahmat
 
APPLICATION OF REMOTE SENSING AND GIS IN WATER QUALITY ASSESSMENT - REVIEW PAPER
APPLICATION OF REMOTE SENSING AND GIS IN WATER QUALITY ASSESSMENT - REVIEW PAPERAPPLICATION OF REMOTE SENSING AND GIS IN WATER QUALITY ASSESSMENT - REVIEW PAPER
APPLICATION OF REMOTE SENSING AND GIS IN WATER QUALITY ASSESSMENT - REVIEW PAPERDereck Downing
 
Applications of Integrated Surface Water Groundwater Modelling Techniques and...
Applications of Integrated Surface Water Groundwater Modelling Techniques and...Applications of Integrated Surface Water Groundwater Modelling Techniques and...
Applications of Integrated Surface Water Groundwater Modelling Techniques and...Dirk Kassenaar M.Sc. P.Eng.
 
Introducing climate change in river basin management
Introducing climate change in river basin managementIntroducing climate change in river basin management
Introducing climate change in river basin managementLia Romano
 
Practical training on Remote sensing,GIS.pdf
Practical training on Remote sensing,GIS.pdfPractical training on Remote sensing,GIS.pdf
Practical training on Remote sensing,GIS.pdfRaviRaoSondi
 
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security -...
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security -...IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security -...
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security -...India UK Water Centre (IUKWC)
 
Lecture 1 Stochastic Hydrology.pdf
Lecture 1 Stochastic Hydrology.pdfLecture 1 Stochastic Hydrology.pdf
Lecture 1 Stochastic Hydrology.pdfssuser92f0f0
 
Impacts of climate change on the water availability, seasonality and extremes...
Impacts of climate change on the water availability, seasonality and extremes...Impacts of climate change on the water availability, seasonality and extremes...
Impacts of climate change on the water availability, seasonality and extremes...asimjk
 

Ähnlich wie Alberto Bellin (20)

Experimental evaluation of two-layer air bubble curtains to prevent seawater ...
Experimental evaluation of two-layer air bubble curtains to prevent seawater ...Experimental evaluation of two-layer air bubble curtains to prevent seawater ...
Experimental evaluation of two-layer air bubble curtains to prevent seawater ...
 
Applicability Study on the Optical Remote Sensing Techniques in a River
Applicability Study on the Optical Remote Sensing Techniques in a RiverApplicability Study on the Optical Remote Sensing Techniques in a River
Applicability Study on the Optical Remote Sensing Techniques in a River
 
Coupling of Surface water and Groundwater Models
Coupling of Surface water and Groundwater Models Coupling of Surface water and Groundwater Models
Coupling of Surface water and Groundwater Models
 
Assessing the importance of geo hydrological data acquisition in the developm...
Assessing the importance of geo hydrological data acquisition in the developm...Assessing the importance of geo hydrological data acquisition in the developm...
Assessing the importance of geo hydrological data acquisition in the developm...
 
A REVIEW ON RESERVOIR SEDIMENTATION STUDIES USING SATELLITE REMOTE SENSING TE...
A REVIEW ON RESERVOIR SEDIMENTATION STUDIES USING SATELLITE REMOTE SENSING TE...A REVIEW ON RESERVOIR SEDIMENTATION STUDIES USING SATELLITE REMOTE SENSING TE...
A REVIEW ON RESERVOIR SEDIMENTATION STUDIES USING SATELLITE REMOTE SENSING TE...
 
Catchment classification: multivariate statistical analyses for physiographic...
Catchment classification: multivariate statistical analyses for physiographic...Catchment classification: multivariate statistical analyses for physiographic...
Catchment classification: multivariate statistical analyses for physiographic...
 
ICT solutions for highly-customized water demand management strategies
ICT solutions for highly-customized water demand management strategiesICT solutions for highly-customized water demand management strategies
ICT solutions for highly-customized water demand management strategies
 
Lecture by Prof. Salvatore Manfreda
Lecture by Prof. Salvatore ManfredaLecture by Prof. Salvatore Manfreda
Lecture by Prof. Salvatore Manfreda
 
Hydro-structural analysis of Northern Termination of Maiella
Hydro-structural analysis of Northern Termination of MaiellaHydro-structural analysis of Northern Termination of Maiella
Hydro-structural analysis of Northern Termination of Maiella
 
APPLICATION OF REMOTE SENSING AND GIS IN WATER QUALITY ASSESSMENT - REVIEW PAPER
APPLICATION OF REMOTE SENSING AND GIS IN WATER QUALITY ASSESSMENT - REVIEW PAPERAPPLICATION OF REMOTE SENSING AND GIS IN WATER QUALITY ASSESSMENT - REVIEW PAPER
APPLICATION OF REMOTE SENSING AND GIS IN WATER QUALITY ASSESSMENT - REVIEW PAPER
 
Deterministic hydrological modelling for flood risk assessment and climate ch...
Deterministic hydrological modelling for flood risk assessment and climate ch...Deterministic hydrological modelling for flood risk assessment and climate ch...
Deterministic hydrological modelling for flood risk assessment and climate ch...
 
Thesis_MS
Thesis_MSThesis_MS
Thesis_MS
 
Applications of Integrated Surface Water Groundwater Modelling Techniques and...
Applications of Integrated Surface Water Groundwater Modelling Techniques and...Applications of Integrated Surface Water Groundwater Modelling Techniques and...
Applications of Integrated Surface Water Groundwater Modelling Techniques and...
 
B012270509
B012270509B012270509
B012270509
 
Introducing climate change in river basin management
Introducing climate change in river basin managementIntroducing climate change in river basin management
Introducing climate change in river basin management
 
Practical training on Remote sensing,GIS.pdf
Practical training on Remote sensing,GIS.pdfPractical training on Remote sensing,GIS.pdf
Practical training on Remote sensing,GIS.pdf
 
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security -...
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security -...IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security -...
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security -...
 
Ijciet 06 10_004
Ijciet 06 10_004Ijciet 06 10_004
Ijciet 06 10_004
 
Lecture 1 Stochastic Hydrology.pdf
Lecture 1 Stochastic Hydrology.pdfLecture 1 Stochastic Hydrology.pdf
Lecture 1 Stochastic Hydrology.pdf
 
Impacts of climate change on the water availability, seasonality and extremes...
Impacts of climate change on the water availability, seasonality and extremes...Impacts of climate change on the water availability, seasonality and extremes...
Impacts of climate change on the water availability, seasonality and extremes...
 

Mehr von CoupledHydrologicalModeling (13)

Sylvain Weill
Sylvain WeillSylvain Weill
Sylvain Weill
 
Damiano Pasetto
Damiano PasettoDamiano Pasetto
Damiano Pasetto
 
Alfonso Senatore
Alfonso SenatoreAlfonso Senatore
Alfonso Senatore
 
Claude Mugler
Claude MuglerClaude Mugler
Claude Mugler
 
Reed Maxwell
Reed MaxwellReed Maxwell
Reed Maxwell
 
Marcello Fiorentini
Marcello FiorentiniMarcello Fiorentini
Marcello Fiorentini
 
Giorgio Cassiani
Giorgio CassianiGiorgio Cassiani
Giorgio Cassiani
 
Aldo Fiori
Aldo FioriAldo Fiori
Aldo Fiori
 
Carlotta Scudeler
Carlotta ScudelerCarlotta Scudeler
Carlotta Scudeler
 
Gianluca Botter
Gianluca BotterGianluca Botter
Gianluca Botter
 
Paolo Benettin
Paolo BenettinPaolo Benettin
Paolo Benettin
 
Gabriele Baroni
Gabriele BaroniGabriele Baroni
Gabriele Baroni
 
Adige modelling
Adige modellingAdige modelling
Adige modelling
 

Kürzlich hochgeladen

User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)Columbia Weather Systems
 
Manassas R - Parkside Middle School 🌎🏫
Manassas R - Parkside Middle School 🌎🏫Manassas R - Parkside Middle School 🌎🏫
Manassas R - Parkside Middle School 🌎🏫qfactory1
 
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxSTOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxMurugaveni B
 
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptx
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptxGENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptx
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptxRitchAndruAgustin
 
Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024AyushiRastogi48
 
Biological classification of plants with detail
Biological classification of plants with detailBiological classification of plants with detail
Biological classification of plants with detailhaiderbaloch3
 
bonjourmadame.tumblr.com bhaskar's girls
bonjourmadame.tumblr.com bhaskar's girlsbonjourmadame.tumblr.com bhaskar's girls
bonjourmadame.tumblr.com bhaskar's girlshansessene
 
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPirithiRaju
 
Davis plaque method.pptx recombinant DNA technology
Davis plaque method.pptx recombinant DNA technologyDavis plaque method.pptx recombinant DNA technology
Davis plaque method.pptx recombinant DNA technologycaarthichand2003
 
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubai
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In DubaiDubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubai
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubaikojalkojal131
 
Environmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial BiosensorEnvironmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial Biosensorsonawaneprad
 
Base editing, prime editing, Cas13 & RNA editing and organelle base editing
Base editing, prime editing, Cas13 & RNA editing and organelle base editingBase editing, prime editing, Cas13 & RNA editing and organelle base editing
Base editing, prime editing, Cas13 & RNA editing and organelle base editingNetHelix
 
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...Universidade Federal de Sergipe - UFS
 
Thermodynamics ,types of system,formulae ,gibbs free energy .pptx
Thermodynamics ,types of system,formulae ,gibbs free energy .pptxThermodynamics ,types of system,formulae ,gibbs free energy .pptx
Thermodynamics ,types of system,formulae ,gibbs free energy .pptxuniversity
 
Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxpriyankatabhane
 
Pests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdfPests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdfPirithiRaju
 
Citronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyayCitronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyayupadhyaymani499
 
CHROMATOGRAPHY PALLAVI RAWAT.pptx
CHROMATOGRAPHY  PALLAVI RAWAT.pptxCHROMATOGRAPHY  PALLAVI RAWAT.pptx
CHROMATOGRAPHY PALLAVI RAWAT.pptxpallavirawat456
 
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...Universidade Federal de Sergipe - UFS
 

Kürzlich hochgeladen (20)

User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
 
Manassas R - Parkside Middle School 🌎🏫
Manassas R - Parkside Middle School 🌎🏫Manassas R - Parkside Middle School 🌎🏫
Manassas R - Parkside Middle School 🌎🏫
 
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxSTOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
 
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptx
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptxGENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptx
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptx
 
Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024
 
Biological classification of plants with detail
Biological classification of plants with detailBiological classification of plants with detail
Biological classification of plants with detail
 
bonjourmadame.tumblr.com bhaskar's girls
bonjourmadame.tumblr.com bhaskar's girlsbonjourmadame.tumblr.com bhaskar's girls
bonjourmadame.tumblr.com bhaskar's girls
 
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
 
Davis plaque method.pptx recombinant DNA technology
Davis plaque method.pptx recombinant DNA technologyDavis plaque method.pptx recombinant DNA technology
Davis plaque method.pptx recombinant DNA technology
 
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubai
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In DubaiDubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubai
Dubai Calls Girl Lisa O525547819 Lexi Call Girls In Dubai
 
AZOTOBACTER AS BIOFERILIZER.PPTX
AZOTOBACTER AS BIOFERILIZER.PPTXAZOTOBACTER AS BIOFERILIZER.PPTX
AZOTOBACTER AS BIOFERILIZER.PPTX
 
Environmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial BiosensorEnvironmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial Biosensor
 
Base editing, prime editing, Cas13 & RNA editing and organelle base editing
Base editing, prime editing, Cas13 & RNA editing and organelle base editingBase editing, prime editing, Cas13 & RNA editing and organelle base editing
Base editing, prime editing, Cas13 & RNA editing and organelle base editing
 
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
 
Thermodynamics ,types of system,formulae ,gibbs free energy .pptx
Thermodynamics ,types of system,formulae ,gibbs free energy .pptxThermodynamics ,types of system,formulae ,gibbs free energy .pptx
Thermodynamics ,types of system,formulae ,gibbs free energy .pptx
 
Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptx
 
Pests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdfPests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdf
 
Citronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyayCitronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyay
 
CHROMATOGRAPHY PALLAVI RAWAT.pptx
CHROMATOGRAPHY  PALLAVI RAWAT.pptxCHROMATOGRAPHY  PALLAVI RAWAT.pptx
CHROMATOGRAPHY PALLAVI RAWAT.pptx
 
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
 

Alberto Bellin

  • 1. 1/50     Microgravity  observa3ons  and  hydrological  modelling   e-­‐mail:  alberto.bellin@unitn.it   The value of aggregated measurements of state variables in hydrological modeling     Alberto Bellin Department of Civil, Environmental and Mechanical Engineering
  • 2. 2/50     Microgravity  observa3ons  and  hydrological  modelling   e-­‐mail:  alberto.bellin@unitn.it   RESEARCH ARTICLE 10.1002/2015WR016994 On the use of spatially distributed, time-lapse microgravity surveys to inform hydrological modeling Sebastiano Piccolroaz1, Bruno Majone1, Francesco Palmieri2, Giorgio Cassiani3, and Alberto Bellin1 1 Department of Civil, Environmental, and Mechanical Engineering, University of Trento, Trento, Italy, 2 Istituto Nazionale di Oceanografia e di Geofisica Sperimentale, Trieste, Italy, 3 Department of Geosciences, University of Padova, Padova, Italy Abstract In the last decades significant technological advances together with improved modeling capa- bilities fostered a rapid development of geophysical monitoring techniques in support of hydrological mod- eling. Geophysical monitoring offers the attractive possibility to acquire spatially distributed information on state variables. These provide complementary information about the functioning of the hydrological system to that provided by standard hydrological measurements, which are either intrinsically local or the result of a complex spatial averaging process. Soil water content is an example of state variable, which is relatively simple to measure pointwise (locally) but with a vanishing constraining effect on catchment-scale modeling, while streamflow data, the typical hydrological measurement, offer limited possibility to disentangle the controlling processes. The objective of this work is to analyze the advantages offered by coupling traditional hydrological data with unconventional geophysical information in inverse modeling of hydrological sys- tems. In particular, we explored how the use of time-lapse, spatially distributed microgravity measurements may improve the conceptual model identification of a topographically complex Alpine catchment (the Ver- migliana catchment, South-Eastern Alps, Italy). The inclusion of microgravity data resulted in a better con- straint of the inversion procedure and an improved capability to identify limitations of concurring conceptual models to a level that would be impossible relying only on streamflow data. This allowed for a better identification of model parameters and a more reliable description of the controlling hydrological processes, with a significant reduction of uncertainty in water storage dynamics with respect to the case when only streamflow data are used. Key Points: Microgravity data constrain subsurface water storage in hydrological models Combining streamflow and microgravity data rules out improper conceptual models Indirect measures of state variables constrain inversion of hydrological data Supporting Information: Supporting Information S1 Correspondence to: S. Piccolroaz, s.piccolroaz@unitn.it Citation: Piccolroaz, S., B. Majone, F. Palmieri, G. Cassiani, and A. Bellin (2015), On the use of spatially distributed, time-lapse microgravity surveys to inform hydrological modeling, Water Resour. Res., 51, doi:10.1002/2015WR016994. Received 30 JAN 2015 Accepted 6 AUG 2015 Accepted article online 11 AUG 2015 Water Resources Research PUBLICATIONS
  • 3. 3/50     Microgravity  observa3ons  and  hydrological  modelling   e-­‐mail:  alberto.bellin@unitn.it   Two  concurring  hydrological  models  (M1  and  M2)  having  the  same  high  efficiency  when   calibrated  using  only  streamflow  data  (single  objecve)…   Jan Apr Jul Oct Jan Apr Jul Oct Jan Apr Jul 0 5 10 15 20 25 30 Time Discharge[m3 /s] Observed Sim. M1 (KGE hydro =0.92 Sim. M2 (KGE hydro =0.93
  • 4. 4/50     Microgravity  observa3ons  and  hydrological  modelling   e-­‐mail:  alberto.bellin@unitn.it   …  show  remarkable  differences  when  adding  geophysical  informaon  (mul  objecve):  the   shape  of  the  Pareto  fronts  provide  useful  hints  to  idenfy  model  limitaons,  and  indicate  the   value  of  including  geophysical  data  to  beGer  constraint  of  the  inversion  procedure.  
  • 5. 5/50     Microgravity  observa3ons  and  hydrological  modelling   e-­‐mail:  alberto.bellin@unitn.it   Introduc3on Microgravimetry  may  provide  useful  data  on  water  storage  in  the  earth’s  subsurface     • relevant  in  the  evalua3on/quan3fica3on  of  groundwater  resources  (e.g.  GRACE  at  large   scale);   • a  promising  support  in  hydrological  modeling.       Are  microgravimetry  data  useful  to  inform  hydrological  models?  We  are  interested  in   coupling  tradi3onal  hydrological  data  (inherently  global)  and  geophysical  informa3on   (spaally  distributed).   Time-­‐lapse,  rela3ve  microgravimetry  is  a  geophysical   technique  which  allows  to  obtain  an  indirect  esmate  of   surface  and  subsurface  water  storage  varia3ons  (i.e.,  soil   water  content,  groundwater  and  snowpack)     Basic  concept:   the  temporal  variaon  of  the  gravitaonal  aGracon  is   proporonal  to  the  hydrological  storage  changes     (once  all  other  contribuons  are  corrected).  
  • 6. 6/50     Microgravity  observa3ons  and  hydrological  modelling   e-­‐mail:  alberto.bellin@unitn.it   Study  site:  the  Vermigliana  catchment,  located  in  the  South-­‐Eastern  Alps  (Italy).   Main  characteris3cs:   •  contribung  area:  104  km2;   •  the  main  creek  has  a  length  of  4  km  and  an   average  slope  of  1%;   •  elevaon  ranging  from  950  to  3558  m  a.s.l.;   •  very  steep  slopes  and  a  narrow  valley   boGom  (U-­‐shaped  profile);   •  nivo-­‐glacial  regime;   •  almost  prisne  condions.   Microgravity  campaign
  • 7. 7/50     Microgravity  observa3ons  and  hydrological  modelling   e-­‐mail:  alberto.bellin@unitn.it   Fieldwork  and  data  acquisi3on1:   •  6  field  campaigns  between  June  2009  and  May  2011;   •  extensive  point  gravity  measurements  on  a  network  of  53  sta3ons;   •  the  Vermigliana  catchment  has  been  monitored  through  8  sta3ons;   •  streamflow  data  are  available  at  the  Vermiglio  stream  gauging  staon.   1  Equipment:  LaCoste-­‐Romberg  mod  D-­‐018  equipped  with  a  Zero  Length  Spring  feedback.   Microgravity  campaign Reference     measurement
  • 8. 8/50     Microgravity  observa3ons  and  hydrological  modelling   e-­‐mail:  alberto.bellin@unitn.it   Modeling  approach Hydrological  model:  a  modified  version  of  GEOTRANSF  (Majone  et  al.,  2012,  WATER  RESOUR   RES),  a  distributed  hydrological  model  characterized  by   1.  subdividing  the  catchment  into  slope  and  valley  boGom  areas  (assuming  they  are  governed   by  inherently  different  processes);     2.  explicitly  coupling  vadose-­‐zone  and  groundwater  dynamics.     The  valley  boGom  is  idenfied  considering  thresholds  on  slope  and  elevaon     (≈  1.8  km2,  2%  of  the  catchment  area)  
  • 9. 9/50     Microgravity  observa3ons  and  hydrological  modelling   e-­‐mail:  alberto.bellin@unitn.it   Valley bottom
  • 10. 10/50     Microgravity  observa3ons  and  hydrological  modelling   e-­‐mail:  alberto.bellin@unitn.it   Valley bottom Sub-basin entirely confined in the hillslope unit
  • 11. 11/50     Microgravity  observa3ons  and  hydrological  modelling   e-­‐mail:  alberto.bellin@unitn.it   Valley bottom Sub-basin partitioned between hillslope and valley bottom
  • 12. 12/50     Microgravity  observa3ons  and  hydrological  modelling   e-­‐mail:  alberto.bellin@unitn.it   Modeling  approach Calibra3on  procedure:  parcle  swarm   algorithm  to  solve  a  mul-­‐objecve   opmizaon  problem     (see  e.g.,  Robinson  and  Rahmat-­‐Samii,  2004,  IEEE  T   ANTENN  PROPAG)   Objec3ve  func3on:  the  following  expression  has  been  used  as  model  performance  criterion   KGE  =  Kling–Gupta  efficiency  index  (Gupta  et  al.,  2009,  J  HYDROL)   = µs µ0 = s 0 r = covSO ( S 0) KGE = 1 q ( 1) 2 + ( 1) 2 + (r 1) 2 KGEtot = (1 ↵)KGEhydro + ↵KGEgrav, ↵ = 0 ÷ 1
  • 13. 13/50     Microgravity  observa3ons  and  hydrological  modelling   e-­‐mail:  alberto.bellin@unitn.it   Modeling  approach Gravity  model:    the  domain  is  divided  into  n  prisms  for   which  the  individual  contribuon  to  the  hydrology-­‐ induced  gravity  variaons  is  evaluated  according  to   The  following  approximated  soluon  has  been   applied  for  distances  larger  than  a  given   threshold  from  the  gravimeter
  • 14. 14/50     Microgravity  observa3ons  and  hydrological  modelling   e-­‐mail:  alberto.bellin@unitn.it   Domain  discre3za3on:  carried  out  at  two  levels       • Horizontal  plane  based  on  the  10x10  m  resoluon  DEM  available  for  the  catchment       • Ver3cal  direc3on  considering  the  same  layers  of  the  hydrological  model,  including   snowpack   Modeling  approach Main  water  storage  components:  soil   moisture  in  the  rizosphere  and  in  the   vadose  zone,  groundwater  and  snowpack.  
  • 15. 15/50     Microgravity  observa3ons  and  hydrological  modelling   e-­‐mail:  alberto.bellin@unitn.it   Model  M1 Model  M2
  • 16. 16/50     Microgravity  observa3ons  and  hydrological  modelling   e-­‐mail:  alberto.bellin@unitn.it   Two  concurring  hydrological  models  (M1  and  M2)  having  the  same  high  efficiency  when   calibrated  using  only  streamflow  data  (single  objecve)…   Jan Apr Jul Oct Jan Apr Jul Oct Jan Apr Jul 0 5 10 15 20 25 30 Time Discharge[m3 /s] Observed Sim. M1 (KGE hydro =0.92 Sim. M2 (KGE hydro =0.93
  • 17. 17/50     Microgravity  observa3ons  and  hydrological  modelling   e-­‐mail:  alberto.bellin@unitn.it   …  show  remarkable  differences  when  adding  geophysical  informaon  (mul  objecve):  the   shape  of  the  Pareto  fronts  provide  useful  hints  to  idenfy  model  limitaons,  and  indicate  the   value  of  including  geophysical  data  to  beGer  constraint  of  the  inversion  procedure.  
  • 18. 18/50     Microgravity  observa3ons  and  hydrological  modelling   e-­‐mail:  alberto.bellin@unitn.it   Uncertainty  assessment   Results Comparison   among   parameters   and   model   output   uncertainty   (model   M1)   for   two   significant  cases:   • only  streamflow  data  are  available  for  model  calibraon  (α=0)   • both   streamflow   and   microgravity   data   are   used   for   parameters   inference   with   a   balanced  aggregated  objecve  funcon  (α=0.5)   Among   the   soluons   obtained   during   the   exploraon   of   the   parameters   space,   only   those   with   KGEtot   differing   less  the  1%  from  the  maximum  value  (colored  squares  in   the  previous  slide)  have  been  retained  for  the  uncertainty   analysis.     The   analysis   has   been   focused   on   the   100%   confidence   bands  resulng  from  the  retained  soluons.   To  address  the   c l u s t e r i n g   effect  of  PSO.  
  • 19. 19/50     Microgravity  observa3ons  and  hydrological  modelling   e-­‐mail:  alberto.bellin@unitn.it   Model  parameters   Results The  values  of  the  parameters  are  normalized  with  respect  to  their  range   Confidence  bands  are:   • 45%  smaller  for  α=0.5  than   for  α=0   • well  distributed  between  0   and  1  (proper  choice  of  their   prior  range  of  variaon)  
  • 20. 20/50     Microgravity  observa3ons  and  hydrological  modelling   e-­‐mail:  alberto.bellin@unitn.it   Results Water  storage   When  including   microgravity  data,   confidence  bands   reduce  by   • 26%  in  the  hillslope   • 95%   in   the   valley   boGom   The  accumulaon  of   water  in  the  valley   boGom  (due  to  a   parcularly  wet   summer  in  2010)  is   observed  only  for   α=0.5    
  • 21. 21/50     Microgravity  observa3ons  and  hydrological  modelling   e-­‐mail:  alberto.bellin@unitn.it   Results Water  table  fluctua3on   When  including   microgravity  data,   confidence  bands   reduce  by   •  39%  in  the  hillslope   •  93%   in   the   valley   boGom  
  • 22. 22/50     Microgravity  observa3ons  and  hydrological  modelling   e-­‐mail:  alberto.bellin@unitn.it   Results Streamflow   The  averaged  confidence   band  reduces  from  0.95  m3/ s  to  0.78  m3/s  when   microgravity  data  are   included   microgravity  data  not  only  allow  for  a  beGer   representaon  of  subsurface  storage,  but  they   also  reduce  uncertainty  of  streamflow.  
  • 23. 23/50     Microgravity  observa3ons  and  hydrological  modelling   e-­‐mail:  alberto.bellin@unitn.it   Results Gravity  change  (for  α=0.5)     Valley  boGom  staons    (green)   show  a  good  agreement  between   simulated  and  observed  data,   while  hillslope  staons  (blue)  show   larger  deviaons.     In  general,  seasonal  variaons  are   well  reproduced.   Errors  are  likely  due  to  the  simplificaon,   dictated  by  the  lack  of  detailed  stragraphic   data,  of  assuming  the  water   table  moving  parallel  to  the  ground  surface.  
  • 24. 24/50     Microgravity  observa3ons  and  hydrological  modelling   e-­‐mail:  alberto.bellin@unitn.it   Conclusions Conclusions   Coupled  approach   tradi3onal  streamflow  data  +  me-­‐lapse,  spaally  distributed  microgravity  measurements       Main  results   •  significant  reduc3on  of  the  uncertainty  associated  with  the  esmaon  of  the  me   variaons  of  the  main  hydrological  state  variables  (e.g.,  total  water  volume,  water  table  elevaon)   •  the  major  effects  can  be  observed  in  the  valley  boaom  area     → higher  density  of  gravimetric  staons •  uncertainty  on  simulated  streamflow  decreases  as  well   •  gravimetric  data  allowed  for  a  beaer  idenficaon  of  the  hydrological  conceptual  model   including  the  definion  of  the  valley  boGom  region   Thank  you
  • 25. 25/50     Microgravity  observa3ons  and  hydrological  modelling   e-­‐mail:  alberto.bellin@unitn.it  
  • 26. 26/50     Microgravity  observa3ons  and  hydrological  modelling   e-­‐mail:  alberto.bellin@unitn.it   Pareto  front    
  • 27. 27/50     Microgravity  observa3ons  and  hydrological  modelling   e-­‐mail:  alberto.bellin@unitn.it   HydroSCAPE: a multi-scale framework for streamflow routing in large-scale hydrological models Leno River at Rovereto
  • 28. 28/50     Microgravity  observa3ons  and  hydrological  modelling   e-­‐mail:  alberto.bellin@unitn.it   Open  un3l  30  October  2015
  • 29. 29/50     Microgravity  observa3ons  and  hydrological  modelling   e-­‐mail:  alberto.bellin@unitn.it   Large  scale  hydrological  model   •  Rainfall-­‐runoff  model  aimed  at  simulang  the  occurrence  of  floods  at  the  large  scale   (i.e.,  catchments  with  an  extension  ranging  from  1000  km2  up  to  the  connental  scale).   Parcular  emphasis  is  given  to  extreme  events.   •  Possible  extensions  include  the  applicaon  to  several  water  resources  issues:  aquifer   recharge,  storage  dynamics,  water  resources  availability,  interacons  with  river   ecosystems  etc.   •  Specific  aGenon  is  given  to  the  flow  rou3ng  algorithm,  which  has  been  indicated  as  an   aspect  of  LSM  and  global  hydrological  models  needing  some  improvement  (Clark  et  al,   WRR  2015)   REVIEW ARTICLE 10.1002/2015WR017096 Improving the representation of hydrologic processes in Earth System Models Martyn P. Clark1, Ying Fan2, David M. Lawrence1, Jennifer C. Adam3, Diogo Bolster4, David J. Gochis1, Richard P. Hooper5, Mukesh Kumar6, L. Ruby Leung7, D. Scott Mackay8, Reed M. Maxwell9, Chaopeng Shen10, Sean C. Swenson1, and Xubin Zeng11 1 National Center for Atmospheric Research, Boulder, Colorado, USA, 2 Department of Earth and Planetary Sciences, Rutgers University, New Brunswick, New Jersey, USA, 3 Department of Civil and Environmental Engineering, Washington State University, Pullman, Washington, USA, 4 Department of Civil Environmental Engineering and Earth Sciences, University of Notre Dame, South Bend, Indiana, USA, 5 The Consortium of Universities for the Advancement of Hydrologic Science, Inc., 6 Nichols Schools of Environment, Duke University, Durham, North Carolina, USA, 7 Pacific Northwest National Laboratory, Richland, Washington, USA, 8 Department of Geography, University at Buffalo, State University of New York, Special Section: The 50th Anniversary of Water Resources Research Key Points: Land model development can benefit from recent advances in hydrology Accelerating modeling advances requires comprehensive benchmarking activities Water Resources Research PUBLICATIONS
  • 30. 30/50     Microgravity  observa3ons  and  hydrological  modelling   e-­‐mail:  alberto.bellin@unitn.it   •  Some  key  scien3fic  ques3ons:   •  How  climate  change  may  modify  the  stascs  of  floods  occurring  IN  large  river   basins?   •  What  are  the  consequences  on  the  management  of  the  hydraulic  structures?   •  Can  we  determine  the  uncertainty  associated  with  the  esmate  of  extreme   hydrological  events? Large  scale  hydrological  model   LETTERS PUBLISHED ONLINE: 21 OCTOBER 2012 | DOI: 10.1038/NCLIMATE1719 Hydroclimatic shifts driven by human water use for food and energy production Georgia Destouni*, Fernando Jaramillo and Carmen Prieto Hydrological change is a central part of global change1–3 . Its drivers in the past need to be understood and quantified for ac- curate projection of disruptive future changes4 . Here we anal- yse past hydro-climatic, agricultural and hydropower changes from twentieth century data for nine major Swedish drainage basins, and synthesize and compare these results with other regional5–7 and global2 assessments of hydrological change by irrigation and deforestation. Cross-regional comparison shows similar increases of evapotranspiration by non-irrigated agri- culture and hydropower as for irrigated agriculture. In the Swedish basins, non-irrigated agriculture has also increased, whereas hydropower has decreased temporal runoff variability. A global indication of the regional results is a net total increase of evapotranspiration that is larger than a proposed associated planetary boundary8 . This emphasizes the need for climate and Earth system models to account for different human uses of water as anthropogenic drivers of hydro-climatic change. The present study shows how these drivers and their effects can be distinguished and quantified for hydrological basins on different scales and in different world regions. This should en- courage further exploration of greater basin variety for better understanding of anthropogenic hydro-climatic change. Drivers of freshwater changes are multiple and difficult to distinguish and quantify9–12 . Global increase of evapotranspiration while instrumental hydro-climatic data have become available for direct analysis of their hydrological effects. In this study, we investigate twentieth century land–water use and hydro-climatic data, and interpret them by the fundamental water balance quantification P ET R DS = 0 (where P is precipitation, R is runoff and DS is water storage change) for nine major Swedish drainage basins (Fig. 1a). The investigation has three goals. First, a basin-scale distinction of hydrological changes and their drivers in the Swedish basins, which among them represent different land–water uses (Fig. 1a, green: dominant non-irrigated agriculture, red: dominant hydropower, blue: with essentially unregulated rivers and little agriculture) and hydro- climatic conditions in terms of surface temperature (T; Fig. 1b) and P (Fig. 1c). Second, cross-regional result comparison across the complementary Swedish, Aral and Mahanadi basins (Fig. 1a), representing an even wider range of different hydro-climatic conditions (Fig. 1b,c) and land–water uses (irrigated and non- irrigated agriculture, hydropower, unregulated). Third, cross- scale/method comparison between the extrapolation implications of the regional basin results and previous spatial estimates of global hydrological changes and drivers2 . Hydrological, and other physical and ecological science communities11,17,18 have identified fundamental needs for such synthesis and comparisons along climatic and other gradients. Resilience of river flow regimes Gianluca Bottera , Stefano Bassoa,b , Ignacio Rodriguez-Iturbec , and Andrea Rinaldoa,d,1 a Department of Civil, Architectural, and Environmental Engineering, University of Padua, I-35100 Padua, Italy; b Department of Water Resources and Drinking Water, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland; c Department of Civil and Environmental Engineering, Princeton University, Princeton 08540, NJ; and d Laboratory of Ecohydrology, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland Contributed by Andrea Rinaldo, June 25, 2013 (sent for review March 3, 2013) Landscape and climate alterations foreshadow global-scale shifts of river flow regimes. However, a theory that identifies the range of foreseen impacts on streamflows resulting from inhomogeneous forcings and sensitivity gradients across diverse regimes is lacking. Here, we derive a measurable index embedding climate and landscape attributes (the ratio of the mean interarrival of stream- flow-producing rainfall events and the mean catchment response time) that discriminates erratic regimes with enhanced intraseaso- nal streamflow variability from persistent regimes endowed with regular flow patterns. Theoretical and empirical data show that from the censoring operated by catchment soils on daily rainfall, and they are modeled as a spatially uniform marked Poisson process with mean depth α [L] and mean frequency λ ½T−1 Š. Al- though α quantifies the average daily intensity of rainfall events, λ is smaller than the underlying precipitation frequency because the soil–water deficit created by plant transpiration in the root zone may hinder the routing of some inputs to streams (Eq. S3). Therefore, λ crucially embeds rainfall attributes; soil/vegetation properties; and other climate variables, such as temperature, hu- midity, and wind speed.
  • 31. 31/50     Microgravity  observa3ons  and  hydrological  modelling   e-­‐mail:  alberto.bellin@unitn.it   Characteristics of the model Macro-­‐regional/connental  hydrological  model  for  flood  assessment.   Possible   applicaon   to   water   resources   problems:   aquifer   recharge,   storage   dynamics,   water  resources  availability,  interacons  with  river  ecosystems  etc. Discrezaon   into   large   macro-­‐cells:   computaonal   requirements,   direct   coupling   with   climate  models,  focus  on  large  scale  dynamics.   Simplicity:   a   few   parameters,   possibly   linked   to   physical   properes   for   which   distributed   informaon  is  easily  available.   Linearity   of   the   processes:   in   order   to   ensure   a   simple   and   efficient   numerical   parallelizaon.   Rigorous  upscaling  of  the  spaal  distribuon  of  water  fluxes.   Physically  based  (WFIUH  approach).  
  • 32. 32/50     Microgravity  observa3ons  and  hydrological  modelling   e-­‐mail:  alberto.bellin@unitn.it   Delineaon  of  the  catchment  area.   Pre-processing
  • 33. 33/50     Microgravity  observa3ons  and  hydrological  modelling   e-­‐mail:  alberto.bellin@unitn.it   Pre-processing Discre3za3on   of   the   domain   into   a   number  of  macrocells.   Delineaon  of  the  catchment  area.  
  • 34. 34/50     Microgravity  observa3ons  and  hydrological  modelling   e-­‐mail:  alberto.bellin@unitn.it   Pre-processing Discre3za3on   of   the   domain   into   a   number  of  macrocells.   Extracon  of  the  river  network  from  the   DEM.     Delineaon  of  the  catchment  area.  
  • 35. 35/50     Microgravity  observa3ons  and  hydrological  modelling   e-­‐mail:  alberto.bellin@unitn.it   Discre3za3on   of   the   domain   into   a   number  of  macrocells.   Extracon  of  the  river  network  from  the   DEM.     Iden3fica3on   of   target   points   (hereater   referred   to   as   nodes):   gauged   secons,   residenal   areas,   hydraulic   structures,   reservoir  etc.   Definion  of  the  width  func3on  for  each   node-­‐macrocell  pair.     Delineaon  of  the  catchment  area.   Pre-processing
  • 36. 36/50     Microgravity  observa3ons  and  hydrological  modelling   e-­‐mail:  alberto.bellin@unitn.it   Structure of the model Water   balance   dynamics   at   the   hillslope   scale  are  simulated  using  a  simple  rainfall-­‐ runoff  model  (e.g.,  SCS)      Hillslope   drains   into   the   river   network,   where   water   is   transferred   towards   nodes,  with  a  given  channel  velocity.   WFIUH   approach   (e.g.   Rinaldo,   Marani,   Rigon,  1991)     The  streamflow  simulated  at  each  node  is   given  by  the  sum  of  the  contribuons  of   all  macrocells  contribung  to  that  node.   The   model   is   linear   →   the   streamflow   generated  at  each  macrocell  is  evaluated   independently  from  the  others.    
  • 37. 37/50     Microgravity  observa3ons  and  hydrological  modelling   e-­‐mail:  alberto.bellin@unitn.it   Characteris3cs:   •  Few   reservoir   and   hydraulic   structures.   •  Snow  precipitaon  and  melng  is   negligible.   •  Historical   series   (a   few   decades)   of   streamflow,   rainfall   and   air   temperature  are  available.   •  Surface   area   of   the   catchment   equal  to  4116  km2.   •  5   nodes,   in   correspondence   to   gauging  secons.         Example application: Upper Tiber
  • 38. 38/50     Microgravity  observa3ons  and  hydrological  modelling   e-­‐mail:  alberto.bellin@unitn.it   Example application: Upper Tiber
  • 39. 39/50     Microgravity  observa3ons  and  hydrological  modelling   e-­‐mail:  alberto.bellin@unitn.it   3  grid  sizes:   5,  10  and  50  km Example application: Upper Tiber
  • 40. 40/50     Microgravity  observa3ons  and  hydrological  modelling   e-­‐mail:  alberto.bellin@unitn.it   Width  funcons  at  Ponte  Nuovo   obtained  aggregang  the  original   20  m  DEM  to  5,  10  and  50  km:   Models  in  which  the   geomorphological  descripon  of   the  drainage  network  has  the  same   scale  of  the  computaonal  grid,   suffer  from  a  deterioraon  of  the   geomorphological  response  of  the   watershed.     This  is  not  the  case  of  the  proposed   formulaon,  in  which  the  width   funcon  maintains  all  the   informaon  derived  from  the   original  DEM         Example application: Upper Tiber Figure 5. Width functions of the Upper Tiber river basin at Ponte Nuovo (PN) outlet (4116 km2 ) derived from DEMs obtained aggregating the original 20 m DEM to 5, 10 and 50 km (lower panels). The width function obtained with the original 20 m DEM is also shown with a red line. to represent the travel time distribution at the hillslope scale. In this case, rescaling may be obtained by using a hillslope specific velocity V` Vc.
  • 41. 41/50     Microgravity  observa3ons  and  hydrological  modelling   e-­‐mail:  alberto.bellin@unitn.it   Rainfall-­‐runoff  models   Model parameters v λ cS kH SCSLR H ✓ ✓ ✓ ✓ Data requirements •  SCSLRH:  SCS  +  linear  reservoir  for  the  hillslope   QUESTO  E’  IL  MODELLO  DI  PRODUZIONE  USATO   IN  HESS,  LE  ALTRE  SLIDE  LE  HO  NASCOSTE
  • 42. 42/50     Microgravity  observa3ons  and  hydrological  modelling   e-­‐mail:  alberto.bellin@unitn.it   Rainfall-­‐runoff  models   •  none:  runoff=rainfall   Model parameters v λ cS k kH none ✓ - - - - SCS ✓ ✓ ✓ - - SCSLR I ✓ ✓ ✓ ✓ - SCSLR H ✓ ✓ ✓ - ✓ SCSLR HI ✓ ✓ ✓ ✓ ✓ Data requirements                                                                                                    
  • 43. 43/50     Microgravity  observa3ons  and  hydrological  modelling   e-­‐mail:  alberto.bellin@unitn.it   Rainfall-­‐runoff  models   •  none:  runoff=rainfall   Model parameters v λ cS k kH none ✓ - - - - SCS ✓ ✓ ✓ - - SCSLR I ✓ ✓ ✓ ✓ - SCSLR H ✓ ✓ ✓ - ✓ SCSLR HI ✓ ✓ ✓ ✓ ✓ Data requirements •  SCS:  Soil  Conservaon  Service  –  Curve  Number  Methodology                                                                                                      
  • 44. 44/50     Microgravity  observa3ons  and  hydrological  modelling   e-­‐mail:  alberto.bellin@unitn.it   Rainfall-­‐runoff  models   •  none:  runoff=rainfall   Model parameters v λ cS k kH none ✓ - - - - SCS ✓ ✓ ✓ - - SCSLR I ✓ ✓ ✓ ✓ - SCSLR H ✓ ✓ ✓ - ✓ SCSLR HI ✓ ✓ ✓ ✓ ✓ Data requirements •  SCS:  Soil  Conservaon  Service  –  Curve  Number  Methodology                                                                                                       •  SCSLRI:  SCS  +  linear  reservoir  for  infiltraon  
  • 45. 45/50     Microgravity  observa3ons  and  hydrological  modelling   e-­‐mail:  alberto.bellin@unitn.it   Rainfall-­‐runoff  models   •  none:  runoff=rainfall   Model parameters v λ cS k kH none ✓ - - - - SCS ✓ ✓ ✓ - - SCSLR I ✓ ✓ ✓ ✓ - SCSLR H ✓ ✓ ✓ - ✓ SCSLR HI ✓ ✓ ✓ ✓ ✓ Data requirements •  SCS:  Soil  Conservaon  Service  –  Curve  Number  Methodology   •  SCSLRH:  SCS  +  linear  reservoir  for  the  hillslope   •  SCSLRHI:  SCS  +  linear  reservoir  for  the  hillslope  +  linear  reservoir  for  infiltraon   •  SCSLRI:  SCS  +  linear  reservoir  for  infiltraon  
  • 46. 46/50     Microgravity  observa3ons  and  hydrological  modelling   e-­‐mail:  alberto.bellin@unitn.it   Calibraon  at  Ponte  Nuovo Example application: Upper Tiber
  • 47. 47/50     Microgravity  observa3ons  and  hydrological  modelling   e-­‐mail:  alberto.bellin@unitn.it   Mul  site  validaon Example application: Upper Tiber
  • 48. 48/50     Microgravity  observa3ons  and  hydrological  modelling   e-­‐mail:  alberto.bellin@unitn.it   Mul  event  validaonExample application: Upper Tiber
  • 49. 49/50     Microgravity  observa3ons  and  hydrological  modelling   e-­‐mail:  alberto.bellin@unitn.it   Conclusions •  We proposed a routing scheme independent on the gridding of the LSM; •  “perfect” upscaling with geomorphological dispersion preserved; •  The scheme is computational efficient (major computational burden in the preprocessing); •  Routing dependent on 2 parameters.
  • 50. 50/50     Microgravity  observa3ons  and  hydrological  modelling   e-­‐mail:  alberto.bellin@unitn.it   THANK YOU