Diese Präsentation wurde erfolgreich gemeldet.
Wir verwenden Ihre LinkedIn Profilangaben und Informationen zu Ihren Aktivitäten, um Anzeigen zu personalisieren und Ihnen relevantere Inhalte anzuzeigen. Sie können Ihre Anzeigeneinstellungen jederzeit ändern.
Gandhinagar Institute ofTechnology
Fourier Integral
Mehta Chintan B.
D1-14
3rd SEM. Mech. D
Guided By:- Prof. M. S. Suthar...
Fourier Series
• As we know that the fourier series of function f(x) in any interval (-l, l) is given by:
• 𝑓 𝑥 = 𝑎0 + 𝑛=1...
Fourier Integral
• Let f(x) be a function which is piecewise continuous in every finite interval in
(−∞, ∞) and absolute i...
Proof of Fourier Integral
𝑓 𝑥 = 𝑎0 +
𝑛=1
∞
𝑎 𝑛 cos
𝑛𝜋𝑥
𝐿
+ 𝑏 𝑛 sin
𝑛𝜋𝑥
𝐿
𝑓 𝑥 =
1
2𝑙 −𝑙
𝑙
𝑓 𝑡 𝑑𝑡 +
𝑛=1
∞
1
𝑙 −𝑙
𝑙
𝑓 𝑡 𝑐𝑜𝑠
𝑛...
• Putting 𝜔 𝑛 =
𝑛𝜋
𝑙
and ∆𝜔 𝑛 = 𝜔 𝑛+1 − 𝜔 𝑛 = 𝑛 + 1
𝜋
𝑙
−
𝜋
𝑙
=
𝜋
𝑙
so
∆𝜔 𝑛
𝜋
=
1
𝑙
𝑓 𝑥 =
1
2𝑙 −𝑙
𝑙
𝑓 𝑡 𝑑𝑡 +
∆𝜔 𝑛
𝜋
𝑛=1
∞
...
𝑓 𝑥 =
1
𝜋 0
∞
(
−∞
∞
𝑓 𝑡 𝑐𝑜𝑠𝜔𝑡 𝑐𝑜𝑠𝜔𝑥 + 𝑠𝑖𝑛𝜔𝑡 𝑠𝑖𝑛𝜔𝑥) 𝑑𝜔
=
1
𝜋 0
∞
−∞
∞
𝑓 𝑡 𝑐𝑜𝑠𝜔𝑡𝑑𝑡 𝑐𝑜𝑠𝜔𝑥𝑑𝜔 +
1
𝜋 0
∞
−∞
∞
𝑓 𝑡 𝑠𝑖𝑛𝜔𝑡𝑑𝑡 𝑠𝑖𝑛𝜔𝑥...
Fourier cosine integrals
• When 𝑓(𝑥) is an even function:
• 𝐴 𝜔 =
2
𝜋 0
∞
𝑓 𝑡 𝑐𝑜𝑠𝜔𝑡𝑑𝑡 and B 𝜔 = 0
• So the fourier integra...
Fourier sin integral
• When 𝑓(𝑥) is an odd function:
• 𝐴 𝜔 = 0 and B 𝜔 =
2
𝜋 0
∞
𝑓 𝑡 𝑠𝑖𝑛𝜔𝑡𝑑𝑡
• So the fourier integral of ...
Fourier cosine sum
• Find the fourier cosine integral of 𝒇 𝒙 = 𝒆−𝒌𝒙, where 𝒙 > 𝟎, 𝒌 > 𝟎 hence show that
𝟎
∞ 𝒄𝒐𝒔𝝎𝒙
𝒂 𝟐+𝝎 𝟐 ...
• Hence:
𝑓 𝑥 =
2𝑎
𝜋 0
∞
1
𝑎2 + 𝜔2
𝑐𝑜𝑠𝜔𝑥𝑑𝜔
0
∞
𝑐𝑜𝑠𝜔𝑥
𝑎2 + 𝜔2
𝑑𝜔 =
𝜋
2𝑎
𝑓(𝑥)
=
𝜋
2𝑎
𝑒−𝑎𝑥 (x > 0, 𝑎 > 0)
Fourier sine integral sum
• Find the sine integral of 𝑓 𝑥 = 𝑒−𝑏𝑥
, hence show that
𝜋
2
𝑒−𝑏𝑥
=
0
∞ 𝜔𝑠𝑖𝑛𝜔𝑥
𝑏2+𝜔2 𝑑𝜔
The fou...
𝐵 𝜔 =
2
𝜋 0
∞
𝑓 𝑡 𝑠𝑖𝑛𝜔𝑡𝑑𝑡
=
2
𝜋 0
∞
𝑒−𝜔𝑡 𝑠𝑖𝑛𝜔𝑡𝑑𝑡
=
2
𝜋
𝑒−𝑏𝑡
𝑏2 + 𝜔2
(−𝑏𝑠𝑖𝑛𝜔𝑡 − 𝜔𝑐𝑜𝑠𝜔𝑡) (𝑓𝑟𝑜𝑚 0 𝑡𝑜 ∞)
=
2
𝜋
(
𝜔
𝑏2 + 𝜔2
)
• Hence:
𝑓 𝑥 =
2
𝜋 0
∞
𝜔𝑠𝑖𝑛𝜔𝑥
𝑏2 + 𝜔2
𝑑𝜔
0
∞
𝜔𝑠𝑖𝑛𝜔𝑥
𝑏2 + 𝜔2
𝑑𝜔 =
𝜋
2
𝑓 𝑥
0
∞
𝜔𝑠𝑖𝑛𝜔𝑥
𝑏2 + 𝜔2
𝑑𝜔 =
𝜋
2
𝑒−𝑏𝑥(x > 0, 𝑏 > 0)
References
• Advanced engineering mathematics ofTATA McGraw Hill
• https://www.wikipedia.org>wiki>fourier_integral
• https...
ThankYou
Nächste SlideShare
Wird geladen in …5
×

Fourier integral of Fourier series

1.095 Aufrufe

Veröffentlicht am

Fourier Integral of Advanced engineering Mathematics.

Veröffentlicht in: Ingenieurwesen
  • Loggen Sie sich ein, um Kommentare anzuzeigen.

Fourier integral of Fourier series

  1. 1. Gandhinagar Institute ofTechnology Fourier Integral Mehta Chintan B. D1-14 3rd SEM. Mech. D Guided By:- Prof. M. S. Suthar Advanced Engineering Mathematics (2130002)
  2. 2. Fourier Series • As we know that the fourier series of function f(x) in any interval (-l, l) is given by: • 𝑓 𝑥 = 𝑎0 + 𝑛=1 ∞ 𝑎 𝑛 cos 𝑛𝜋𝑥 𝐿 + 𝑏 𝑛 sin 𝑛𝜋𝑥 𝐿 • Where:- • 𝑎0 = 1 2𝑙 −𝑙 𝑙 𝑓 𝑡 𝑑𝑡 • 𝑎 𝑛= 1 𝑙 −𝑙 𝑙 𝑓 𝑡 𝑐𝑜𝑠 𝑛𝜋𝑡 𝑙 𝑑𝑡 • 𝑏 𝑛= 1 𝑙 −𝑙 𝑙 𝑓 𝑡 𝑠𝑖𝑛 𝑛𝜋𝑡 𝑙 𝑑𝑡
  3. 3. Fourier Integral • Let f(x) be a function which is piecewise continuous in every finite interval in (−∞, ∞) and absolute integral in (−∞, ∞). • Then 𝑓 𝑥 = 1 𝜋 0 ∞ ( −∞ ∞ 𝑓 𝑡 𝑐𝑜𝑠𝜔 𝑡 − 𝑥 𝑑𝑡)𝑑𝜔 • Where : • 𝜔 = 𝑛𝜋 𝑙 • 𝑙 → ∞
  4. 4. Proof of Fourier Integral 𝑓 𝑥 = 𝑎0 + 𝑛=1 ∞ 𝑎 𝑛 cos 𝑛𝜋𝑥 𝐿 + 𝑏 𝑛 sin 𝑛𝜋𝑥 𝐿 𝑓 𝑥 = 1 2𝑙 −𝑙 𝑙 𝑓 𝑡 𝑑𝑡 + 𝑛=1 ∞ 1 𝑙 −𝑙 𝑙 𝑓 𝑡 𝑐𝑜𝑠 𝑛𝜋𝑡 𝑙 𝑐𝑜𝑠 𝑛𝜋𝑥 𝑙 𝑑𝑡 + 𝑛=1 ∞ 1 𝑙 −𝑙 𝑙 𝑓 𝑡 𝑠𝑖𝑛 𝑛𝜋𝑡 𝑙 𝑠𝑖𝑛 𝑛𝜋𝑥 𝑙 𝑑𝑡 = 1 2𝑙 −𝑙 𝑙 𝑓 𝑡 𝑑𝑡 + 𝑛=1 ∞ 1 𝑙 −𝑙 𝑙 𝑓(𝑡) 𝑐𝑜𝑠 𝑛𝜋𝑡 𝑙 𝑐𝑜𝑠 𝑛𝜋𝑥 𝑙 𝑑𝑡 + 𝑠𝑖𝑛 𝑛𝜋𝑡 𝑙 𝑠𝑖𝑛 𝑛𝜋𝑥 𝑙 𝑑𝑡 = 1 2𝑙 −𝑙 𝑙 𝑓 𝑡 𝑑𝑡 + 1 𝑙 𝑛=1 ∞ −𝑙 𝑙 𝑓 𝑡 𝑐𝑜𝑠 𝑛𝜋 𝑙 𝑡 − 𝑥 𝑑𝑡
  5. 5. • Putting 𝜔 𝑛 = 𝑛𝜋 𝑙 and ∆𝜔 𝑛 = 𝜔 𝑛+1 − 𝜔 𝑛 = 𝑛 + 1 𝜋 𝑙 − 𝜋 𝑙 = 𝜋 𝑙 so ∆𝜔 𝑛 𝜋 = 1 𝑙 𝑓 𝑥 = 1 2𝑙 −𝑙 𝑙 𝑓 𝑡 𝑑𝑡 + ∆𝜔 𝑛 𝜋 𝑛=1 ∞ −𝑙 𝑙 𝑓 𝑡 𝑐𝑜𝑠𝜔 𝑛 𝑡 − 𝑥 𝑑𝑡 • As 𝑙 → ∞, 1 𝑙 = 0 and ∆𝜔 𝑛 = 𝜋 𝑙 → 0, the infinite series in above equation becomes an integral from 0 𝑡𝑜 ∞ 𝑓 𝑥 = 1 𝜋 0 ∞ −∞ ∞ 𝑓 𝑡 cos 𝜔 𝑡 − 𝑥 𝑑𝑡 𝑑𝜔 • Now expanding 𝑐𝑜𝑠𝜔(𝑡 − 𝑥) in above equation.
  6. 6. 𝑓 𝑥 = 1 𝜋 0 ∞ ( −∞ ∞ 𝑓 𝑡 𝑐𝑜𝑠𝜔𝑡 𝑐𝑜𝑠𝜔𝑥 + 𝑠𝑖𝑛𝜔𝑡 𝑠𝑖𝑛𝜔𝑥) 𝑑𝜔 = 1 𝜋 0 ∞ −∞ ∞ 𝑓 𝑡 𝑐𝑜𝑠𝜔𝑡𝑑𝑡 𝑐𝑜𝑠𝜔𝑥𝑑𝜔 + 1 𝜋 0 ∞ −∞ ∞ 𝑓 𝑡 𝑠𝑖𝑛𝜔𝑡𝑑𝑡 𝑠𝑖𝑛𝜔𝑥𝑑𝜔 = 0 ∞ 𝐴 𝜔 𝑐𝑜𝑠𝜔𝑥𝑑𝜔 + 0 ∞ 𝐵 𝜔 𝑠𝑖𝑛𝜔𝑥𝑑𝜔 • Where: • 𝐴 𝜔 = 1 𝜋 −∞ ∞ 𝑓 𝑡 𝑐𝑜𝑠𝜔𝑡𝑑𝑡 • B 𝜔 = 1 𝜋 −∞ ∞ 𝑓 𝑡 𝑠𝑖𝑛𝜔𝑡𝑑𝑡
  7. 7. Fourier cosine integrals • When 𝑓(𝑥) is an even function: • 𝐴 𝜔 = 2 𝜋 0 ∞ 𝑓 𝑡 𝑐𝑜𝑠𝜔𝑡𝑑𝑡 and B 𝜔 = 0 • So the fourier integrals of an even function is given by: • 𝑓(𝑥) = 0 ∞ 𝐴 𝜔 𝑐𝑜𝑠𝜔𝑥𝑑𝜔
  8. 8. Fourier sin integral • When 𝑓(𝑥) is an odd function: • 𝐴 𝜔 = 0 and B 𝜔 = 2 𝜋 0 ∞ 𝑓 𝑡 𝑠𝑖𝑛𝜔𝑡𝑑𝑡 • So the fourier integral of odd function is given by: • 𝑓(𝑥) = 0 ∞ 𝐵 𝜔 𝑠𝑖𝑛𝜔𝑥𝑑𝜔
  9. 9. Fourier cosine sum • Find the fourier cosine integral of 𝒇 𝒙 = 𝒆−𝒌𝒙, where 𝒙 > 𝟎, 𝒌 > 𝟎 hence show that 𝟎 ∞ 𝒄𝒐𝒔𝝎𝒙 𝒂 𝟐+𝝎 𝟐 𝒅𝝎 = 𝝅 𝟐𝒂 𝒆−𝒂𝒙 The fourier cosine integral of 𝑓 𝑥 is given by: 𝑓 𝑥 = 0 ∞ 𝐴 𝜔 𝑐𝑜𝑠𝜔𝑥𝑑𝜔 𝐴 𝜔 = 2 𝜋 0 ∞ 𝑓 𝑡 𝑐𝑜𝑠𝜔𝑡𝑑𝑡 = 2 𝜋 0 ∞ 𝑒−𝑘𝑡 𝑐𝑜𝑠𝜔𝑡𝑑𝑡 = 2 𝜋 𝑒−𝑘𝑡 𝑘2 + 𝜔2 (−𝑘𝑐𝑜𝑠𝜔𝑡 + 𝜔𝑠𝑖𝑛𝜔𝑡 (𝑓𝑟𝑜𝑚 0 𝑡𝑜∞) = 2 𝜋 ( 𝑎 𝑎2 + 𝜔2)
  10. 10. • Hence: 𝑓 𝑥 = 2𝑎 𝜋 0 ∞ 1 𝑎2 + 𝜔2 𝑐𝑜𝑠𝜔𝑥𝑑𝜔 0 ∞ 𝑐𝑜𝑠𝜔𝑥 𝑎2 + 𝜔2 𝑑𝜔 = 𝜋 2𝑎 𝑓(𝑥) = 𝜋 2𝑎 𝑒−𝑎𝑥 (x > 0, 𝑎 > 0)
  11. 11. Fourier sine integral sum • Find the sine integral of 𝑓 𝑥 = 𝑒−𝑏𝑥 , hence show that 𝜋 2 𝑒−𝑏𝑥 = 0 ∞ 𝜔𝑠𝑖𝑛𝜔𝑥 𝑏2+𝜔2 𝑑𝜔 The fourier sine integral of 𝑓 𝑥 is given by: 𝑓(𝑥) = 0 ∞ 𝐵 𝜔 𝑠𝑖𝑛𝜔𝑥𝑑𝜔
  12. 12. 𝐵 𝜔 = 2 𝜋 0 ∞ 𝑓 𝑡 𝑠𝑖𝑛𝜔𝑡𝑑𝑡 = 2 𝜋 0 ∞ 𝑒−𝜔𝑡 𝑠𝑖𝑛𝜔𝑡𝑑𝑡 = 2 𝜋 𝑒−𝑏𝑡 𝑏2 + 𝜔2 (−𝑏𝑠𝑖𝑛𝜔𝑡 − 𝜔𝑐𝑜𝑠𝜔𝑡) (𝑓𝑟𝑜𝑚 0 𝑡𝑜 ∞) = 2 𝜋 ( 𝜔 𝑏2 + 𝜔2 )
  13. 13. • Hence: 𝑓 𝑥 = 2 𝜋 0 ∞ 𝜔𝑠𝑖𝑛𝜔𝑥 𝑏2 + 𝜔2 𝑑𝜔 0 ∞ 𝜔𝑠𝑖𝑛𝜔𝑥 𝑏2 + 𝜔2 𝑑𝜔 = 𝜋 2 𝑓 𝑥 0 ∞ 𝜔𝑠𝑖𝑛𝜔𝑥 𝑏2 + 𝜔2 𝑑𝜔 = 𝜋 2 𝑒−𝑏𝑥(x > 0, 𝑏 > 0)
  14. 14. References • Advanced engineering mathematics ofTATA McGraw Hill • https://www.wikipedia.org>wiki>fourier_integral • https://mathonline.wikidot.com
  15. 15. ThankYou

×