Diese Präsentation wurde erfolgreich gemeldet.
Wir verwenden Ihre LinkedIn Profilangaben und Informationen zu Ihren Aktivitäten, um Anzeigen zu personalisieren und Ihnen relevantere Inhalte anzuzeigen. Sie können Ihre Anzeigeneinstellungen jederzeit ändern.

Ouma - Technology adoption in banana-legume systems of Central Africa

Presentation delivered at the CIALCA international conference 'Challenges and Opportunities to the agricultural intensification of the humid highland systems of sub-Saharan Africa'. Kigali, Rwanda, October 24-27 2011.

  • Als Erste(r) kommentieren

  • Gehören Sie zu den Ersten, denen das gefällt!

Ouma - Technology adoption in banana-legume systems of Central Africa

  1. 1. Technology adoption in banana-legume systems of Central Africa
  2. 2. General framework Inputs/Activities Boundary partners: change agents (extension services, NGOs, farmer associations) Outcomes: Farmer awareness, adoption, productivity, profitability Impact: food security, incomes, nutrition Outputs Partnerships (NARS), capacity building Identification of best bet technologies (CIALCA products)
  3. 3. Categorisation of CIALCA products Category CIALCA product Productivity enhancing (ISFM) <ul><li>Improved germplasm. </li></ul><ul><li>Integrated crop components, </li></ul><ul><li>maize x legume, </li></ul><ul><li>cassava x legume, </li></ul><ul><li>banana x legume, </li></ul><ul><li>banana x coffee. </li></ul><ul><li>Management practices, </li></ul><ul><li>Banana zero-tillage mulch </li></ul><ul><li>Seed multiplication </li></ul><ul><li>Organic and inorganic fertilizer application </li></ul>Pest and disease risk mitigation (IPM) <ul><li>BXW control </li></ul><ul><li>BBTV control </li></ul>
  4. 4. Categorisation of CIALCA products Category CIALCA product Income enhancing <ul><li>Business plans </li></ul><ul><li>Strengthening farmer associations </li></ul><ul><li>Soybean transformation </li></ul>Nutrition improving <ul><li>Dietary diversification </li></ul><ul><li>Soybean enriched foods </li></ul>
  5. 5. Marketing framework for technology adoption Research Policy <ul><li>Private sector </li></ul><ul><li>Institutions of micro finances </li></ul><ul><li>Distributors, sellers of inputs </li></ul><ul><li>Bulk traders, buyers and processors </li></ul><ul><li>ICT/Information service providers </li></ul><ul><li>Infrastructure service providers (e.g. warehousing) </li></ul>Business plans Warrantage credit <ul><li>Input Kiosks </li></ul><ul><li>Fertilizers </li></ul><ul><li>Materials </li></ul><ul><li>Seeds </li></ul>MUSO Members’ guarantee Credit for input + Labour Credit for produce Financial capacity empowerment External credit External-Synergy Internal -Synergy
  6. 6. Approaches for improved marketing <ul><li>Business plan development </li></ul><ul><ul><li>Training of facilitators - CIALCA, NARS, NGO partners. </li></ul></ul><ul><ul><li>Total of 8 business plans prepared and implemented by farmer associations in Rwanda and Sud-Kivu (beans, maize, soybean, cassava and sorghum). </li></ul></ul><ul><ul><li>Several still under development in Burundi and Nord-Kivu. </li></ul></ul><ul><li>Outcomes </li></ul><ul><ul><li>Bulking, storage and collective sales, </li></ul></ul><ul><ul><li>Linkages with MFIs </li></ul></ul><ul><ul><li>Increase in sales revenue (50% for 1 association in Sud-Kivu) through strategic storage facilitated by warrantage credit schemes. </li></ul></ul>
  7. 7. <ul><li>Assessing level of farmer awareness of CIALCA products, adoption rates and outcomes </li></ul>
  8. 8. Data <ul><li>Farm level cross sectional surveys in 7 out of 10 CIALCA mandate areas in July-Aug 2011, </li></ul><ul><ul><li>Purposive selection of mandate areas based on intensity of dissemination of CIALCA technologies and crop types. </li></ul></ul><ul><ul><li>Stratification of villages per mandate area, 3 strata: </li></ul></ul><ul><ul><ul><li>Action site </li></ul></ul></ul><ul><ul><ul><li>Satellite site </li></ul></ul></ul><ul><ul><ul><li>Control site </li></ul></ul></ul><ul><ul><li>Random selection of 5 villages per mandate area per stratum. </li></ul></ul><ul><ul><li>Random sample of households per stratum from village level lists proportional to size yielding a total N = 945 hh. </li></ul></ul>
  9. 9. Methods <ul><li>ATE estimation framework proposed by Diagne and Demont (2007) </li></ul><ul><ul><li>accounting for selection and non-exposure biases. </li></ul></ul><ul><li>Adoption context, “treatment” -> “exposure to a technology” </li></ul><ul><li>Adoption - use of 2 or more of the CIALCA technologies. </li></ul><ul><li>Exposure - awareness of the CIALCA technology </li></ul>
  10. 10. Proportion of households exposed to and adopting CIALCA technologies Mandate area % of exposed farmers % of sample adopters Adoption intensity (#adopted/ #disseminated) n Rusizi 73 34 0.47 124 Gitega 70 56 0.48 100 Kigali-Kibungo 81 72 0.61 140 Umutara 68 50 0.74 127 Bas-Congo 64 42 0.56 133
  11. 11. Mode of technology acquisition n =143 163 44 63 107
  12. 12. Sources of CIALCA technology for adopters
  13. 13. Household characteristics Variable Adopters N = 303 (56%) Non-adopters N = 234 (44%) Difference t-values Farming experience 21.9 22.7 -2.8 ** -1.9 Secondary education of head of hh (dummy) 0.2 0.1 0.1 *** 3.3 Credit access (dummy) 0.2 0.3 -0.1 *** -2.8 Radio ownership (dummy) 0.8 0.6 0.2 *** 1.9 Off farm income (dummy) 0.3 0.5 -0.1 ** -2.7 Extension contact frequency 4.4 2.6 1.9 *** 3.2 Contact with CIALCA 0.5 0.2 0.2 *** 5.8 Membership to farmer group (dummy) 0.5 0.2 0.3 *** 7.5
  14. 14. Determinants of probability of exposure to CIALCA technologies Dependent variable Dummy variable 1=ever heard of CIALCA technology Explanatory variables Coefficient Gender of head of hh 0.40 Value of asset owned (US$) 0.01* Membership to farmer group 1.05*** Radio 0.30 Credit access -0.61** Awareness of CIALCA 0.68** Participate in CIALCA tech evaluation 0.33** Extension contact frequency 0.03 Gitega -0.69** Rusizi -0.45 Bas-Congo -0.26 Pseudo R 2 =0.297; n=413; LR Chi 2 =79.29; P>Chi 2 =0.000
  15. 15. Determinants of CIALCA technologies adoption Variables ATE adoption coefficients No formal education-hh head (dummy) -0.94* Primary education-hh head (dummy) 0.19 Secondary education-hh head (dummy) 1.09** Off-farm income (dummy) -0.39** Credit access -0.44* No. of extension visits -year 0.03** Member of farmer group 0.17* Participate in CIALCA tech evaluation 0.21 Rusizi -0.89*** Gitega -0.23 Bas-Congo -0.18* Pseudo-R2;LRChi2 0.34;66.6
  16. 16. Predicted adoption rates of CIALCA technologies Awareness exposure Estimate S. E. ATE-corrected popn estimates Predicted adoption rate-full popn – ATE 0.44*** 0.21 Predicted adoption rate-exposed sub-popn-ATT 0.46*** 0.02 Predicted adoption rate unexposed sub-popn-ATE0 0.29*** 0.04
  17. 17. Enabling agricultural policy environment Country Policy document Elements Rwanda (Vision 2020) <ul><li>Poverty Reduction Strategy Paper (PRSP), 2001. </li></ul><ul><li>Strategic Plan for Agricultural Transformation in Rwanda, 2004. </li></ul><ul><li>- Intensification of agriculture, </li></ul><ul><li>- Zero grazing policy and guardianage system, </li></ul><ul><li>- Promotion of soil fertility and protection, </li></ul><ul><li>Improved marketing initiatives. </li></ul>Burundi <ul><li>National Agricultural Policy (2006-2010). </li></ul>- Improving availability of fertilizer and CPPs - Capacity building of producer associations. DRC a) Lack of solid agricultural policy (post-colonial period) to guide agricultural production. <ul><li>- Governance centralized and concentrated in Kinshasa, </li></ul><ul><li>Poor enforcement at the local level. </li></ul>
  18. 18. Agricultural advisory services Country Attributes Rwanda <ul><li>Effective government extension system. </li></ul>Burundi <ul><li>Weak government extension system (human, technical and financial capacity lacking). </li></ul><ul><li>NGOs involved in extension </li></ul>DRC <ul><li>Agricultural extension – NGOs – uncoordinated, operating under emergency framework. </li></ul>
  19. 19. Adoption constraints for exposed non-adopters
  20. 20. Fertilizer retail prices in selected countries MONO-PHOSPHATE International price 08/2011
  21. 21. Human nutrition and health <ul><li>Trainings on processing of soybeans and other legumes for improved nutrition and diet diversification. </li></ul><ul><ul><li>Soy milk </li></ul></ul><ul><ul><li>Soy bean curd (Tofu) </li></ul></ul><ul><ul><li>Soy bean flour </li></ul></ul><ul><li>Soybean product acceptability studies. </li></ul>Nutritional composition of soybean products Malnutrition prevalence among 2-5 year olds Calories (kcal) Protein (g) Soybean, dry roasted, ½ cup 386 32.0 Tofu, firm, raw, 120g 116 11.8 Soymilk,½ cup 162 3.2
  22. 22. Summary-adoption drivers <ul><li>Awareness of CIALCA products mainly influenced by information access variables: </li></ul><ul><ul><li>social networks </li></ul></ul><ul><ul><li>participation in technology evaluation </li></ul></ul><ul><li>Adoption is influenced by a number of factors; </li></ul><ul><ul><li>binding capital constraints </li></ul></ul><ul><ul><li>institutional and location factors </li></ul></ul><ul><ul><li>farmer perceived attributes of the technology. </li></ul></ul>
  23. 23. Outlook <ul><li>Resource constraints </li></ul><ul><ul><li>Financial - implications on affordability of inputs (fertilizer and seeds) </li></ul></ul><ul><ul><li>Institutional – supportive policy environment </li></ul></ul><ul><li>Long term measures to accelerate productivity growth and achieve impact at scale. </li></ul><ul><ul><li>Support to farmers through subsidies? Credit policy? </li></ul></ul><ul><li>How to unlock poverty traps for small scale farmers </li></ul><ul><ul><li>Mix of underlying challenges and a mix of interventions for different categories of farmers – not “one size fits all” </li></ul></ul>
  24. 24. Thank You
  25. 25. Adoption and Exposure <ul><li>Determinants of adoption conditional on exposure – corresponds to the conditional ATE( x ). </li></ul><ul><li>Parametric estimation procedure of ATE (x): </li></ul><ul><li>w = binary exposure variable, w=f(z) </li></ul><ul><li>y = adoption outcome variable, y=f(x) </li></ul><ul><li>g= linear or non-linear function of the vector covariates and β unknown estimated parameter vector. </li></ul><ul><li>Conditional independence assumption </li></ul><ul><li>ATE, ATT an ATE0 are estimated. </li></ul>
  26. 26. Proportion of households (%) adopting CIALCA technologies, per mandate area Mandate area Banana germplasm Banana systems Banana IPM Legume germplasm Legume systems Market Rusizi 10 16 13 Gitega 15 30 44 53 7 Kig-Kib 17 56 8 43 72 23 Umutara 6 38 59 11 Bas-Congo 63 54 29

×