SlideShare ist ein Scribd-Unternehmen logo
1 von 54
Идеи, набирающие силу
Биология 2010-2020
http://nature-wonder.livejournal.com/192600.html
Егор Воронин
Global HIV Vaccine Enterprise (США)
1. Меняется роль модельных организмов в изучении биологии человека. Человек – идеальный организм для
исследований деталей человеческой биологии. Экспериментам на мышах, приматах и пр. отводится более
базовая роль – изучение общих принципов устройства организмов. Среди иммунологов даже ходит поговорка
«мыши врут, обезьяны преувеличивают». Никакой модельный организм не заменит нам знаний, полученных
напрямую из экспериментов человеческого организма.
2. Биологические системы требуют передачи сигналов на разных уровнях, от молекулы к молекуле, от клетки к
клетке и т.д. Начальный подход к описанию таких систем, который до сих пор доминирует во многих
областях, брал за основу детерминистскую систему: «молекула А передает сигнал молекуле Б, которая
выполняет некую функцию в ответ на сигнал». Общее видение такой системы можно уподобить шестеренкам,
которые все жестко связаны друг с другом, или бильярдным шарам в ньютоновской механике. Однако
практически все процессы, лежащие в основе передачи сигналов, имеют стохастическую природу. Регулятор
транскрипции не является жестким переключателем с абсолютными состояниями «Вкл-Выкл» - это белок, чьи
параметры связывания с ДНК меняются количественно, а не качественно. При таком подходе молекула А не
передает сигнал молекуле Б, она меняет вероятность того, что молекула Б выполнит некую функцию. Нужная
функция может быть выполнена, а может и нет. Стохастичность этих процессов ведет к тому, что в сложных
системах, вроде иммунной, мы имеем дело не с четко определенными событиями, а с вероятностными
распределениями. Не существует «идеальной» CD4 клетки с четко-определенным набором функций,
существует распределение CD4 клеток с разными фенотипами. У этого распределения есть максимум,
который мы обычно ассоциируем с «типичной» CD4 клеткой, но вокруг максимума есть и очень длинные
хвосты, в которых CD4 клетки имеют нетипичные фенотипы. Эти концепции до сих пор не нашли своего
применения на практике. Отчасти это связано с тем, что до сих пор «первое приближение» было достаточным
для описания исследуемых процессов, а отчасти с тем, что такие системы очень сложны и не было
технических возможностей их моделировать и предсказывать. Но сейчас это начинает меняться и, я думаю, в
ближайшие лет десять серьезно изменит то, как подобные системы изучаются – иммунология существенно
преобразится.
Евгений Кунин
National Center for Biotechnology Information (NCBI) (США)
1. Самые удивительные достижения в микробиологии связаны с изучением мира вирусов, а
также бактериальных механизмов антивирусной защиты, которые оказались на удивление
сложны и разнообразны. Новые данные в области метагеномики вирусов и иммунных
систем микроорганизмов приобретают первостепенное значение для нашего понимания
эволюции.
Прежде всего, вирусы оказались самыми распространенными объектами в биосфере, а их
генетическое разнообразие намного превосходит разнообразие клеточных форм жизни.
Большая часть этого разнообразия - генетическая «темная материя», то есть состоит из
генов, не имеющих явных гомологов. Более того, среди генов, для которых гомологи все же
найдены, большая часть выглядит как более или менее случайные комбинации генов
бактерий. Природа этой темной материи, доминирующей в мире вирусов, неизвестна.
Выяснение этого вопроса будет целью ближайших лет.
Чрезвычайно интересны особые частицы, похожие на вирусы – агенты переноса генов (gene
transfer agents, GTAs). В этих частицах упакованы случайные фрагменты бактериальных
хромосом. Было показано, что GTAs весьма эффективно заражают бактериальные маты и
служат средством горизонтального переноса генов. Таким образом, масштабы
горизонтального переноса в природе могут оказаться намного больше, чем считают
сегодня. Можно предположить, что «темная материя» состоит преимущественно из GTAs.
Подробности биологии этих частиц и природа «темной материи» будут выяснены в
ближайшие годы. Результатом этого, вероятно, станет серьезная ревизия наших взглядов на
структуру биосферы.
GTAs в качестве специализированных агентов горизонтального переноса помогут разрешить
фундаментальный спор в эволюционной биологии: может ли способность к эволюции
эволюционировать? В мире микробов горизонтальный перенос является главным механизмом
эволюции. Эволюция оптимальной интенсивности горизонтального переноса может оказаться
условием выживания микроорганизмов, обходящихся без полового размножения.
На противоположной стороне вечного противостояния вирусов и клеток находятся механизмы
адаптивной иммунной защиты - CRISPR/Cas система. Пока остается загадочной стадия
встраивания чужеродной ДНК в CRISPR локусы. Да и про следующий этап избавления от вируса
нам известно немногое. В ближайшие годы появится подробная картина молекулярных
взаимодействий CRISPR/Cas системы, и мы узнаем о ее новых, возможно, очень необычных
механизмах. Что менее очевидно, есть ли у этой системы дополнительные функции, скажем,
регуляции экспрессии генов или их репарации? CRISPR/Cas система представляет особый
интерес с точки зрения понимания эволюции, поскольку реализует ламарковский принцип
наследования, что до сих пор рассматривается как табу в эволюционной биологии. В мире
бактерий и архей существуют и другие системы антивирусной защиты, но еще большее
количество таких систем будет открыто в ближайшем будущем.
Сочетание исследований вирусов в масштабах всей биосферы с изучением внутриклеточных
защитных механизмов позволит нам взглянуть на глобальную картину гонки вооружений между
паразитами и их хозяевами, которая идет с самого возникновения жизни и, весьма вероятно,
является одним из ключевых эволюционных факторов. Для меня красота этих открытий, помимо
удивительных молекулярных механизмов, в том, что они видоизменяют наши основополагающие
идеи относительно эволюции.
Евгений Кунин
National Center for Biotechnology Information (NCBI) (США)
СRISPR/Cas система
The CRISPR System Protects Microbes
against Phages, Plasmids
Palindromic DNA repeat sequences immunize
microorganisms against phages and plasmids, while
also directing their evolution.
Rodolphe Barrangou and Philippe Horvath
Сочетание исследований вирусов в
масштабах всей биосферы с изучением
внутриклеточных защитных механизмов
позволит нам взглянуть на глобальную
картину гонки вооружений между
паразитами и их хозяевами, которая идет
с самого возникновения жизни и, весьма
вероятно, является одним из ключевых
эволюционных факторов. Для меня
красота этих открытий, помимо
удивительных молекулярных
механизмов, в том, что они
видоизменяют наши основополагающие
идеи относительно эволюции. Е. Кунин.
Руслана Радчук
The Leibniz Institute of Plant Genetics and Crop Plant Research (Германия)
Если говорить о глобальной тенденции в молекулярной биологии растений, то мы
столкнулись с парадоксальным фактом, когда технологические возможности,
связанные с секвенированием геномов и генноинженерными методами переноса
генов в растения, существенно опережают знания о конкретной роли тех или иных
генов. Таким образом, развитие отрасли идет в двух направлениях, которые на
самом деле дополняют друг друга, причем одно из них значительно отстает.
-Удешевление секвенирования приводит к накоплению огромного количества
генных и геномных последовательностей. Громадные массивы полученных данных
зачастую остаются необработанными и невостребованными. Прочитано большое
количество геномов, причем по нескольку раз, но последовательности не
скомпилированы и не доступны для работы. Причин этому несколько – наличие
большого числа повторов, которые не поддаются обработке стандартными
алгоритмами, отсутствие технических мощностей. Проблема также кроется в
особой роли биоинформатиков. Сегодняшняя специфика работы биоинформатиков
заключается в том, что перед ними ставится задача формирования принципиально
нового научного знания. До сих пор таким считалась разработка алгоритмов и
статистических методов обработки нуклеотидных последовательностей. Но,
похоже, в этой области происходит насыщение знаниями, поэтому роль
бионформатиков будет сдвигаться в сторону сервиса.
Подобная участь постигла в свое время специалистов в культуре in vitro. Еще каких-
то 15 лет тому назад культуральщики занимали важную нишу в растительной
биологии. Открытие нового состава среды и введение нового растения in vitro
считалось научным прорывом. Этому предшествовало осознание роли гормонов в
регуляции клеточной дифференциации и формированию целого ряда
основополагающих биологических принципов. Однако сейчас эта отрасль
справедливо перекочевала из науки в технологию. То же самое произойдет в
будущем и с биоинформатикой.
Другое направление в молекулярной биологии – изучение роли отдельных генов.
Треть генов растений вообще не изучены никак. Еще у половины генов роль можно
теоретически предсказать, но пока экспериментальных подтверждений нет. При
этом речь идет всего о нескольких видах растений. Больше всего изучен геном
арабидопсиса, а черпать оттуда сведения для пшеницы малопродуктивно.
Постепенно будет сворачиваться арабидопсисная эра, и это происходит уже сейчас.
Будет продолжаться изучение роли и функций отдельных генов у разных видов
растений и генные взаимодействия. Насколько прорывными будут знания, зависит
от многого.
Руслана Радчук
The Leibniz Institute of Plant Genetics and Crop Plant Research (Германия)
Мода на тотальное секвенирование через некоторое время пройдет, во всяком случае
в академических учреждениях, но при этом наберет обороты в коммерческих
фирмах. Уже сейчас государственные фонды, финансирующие науку, неохотно
финансируют технологичные и дорогие проекты и делают упор на оригинальные
исследования. При этом все больше фирм предлагают готовое технологичное
решение, от ученых требуется осознание и интерпретация полученных
результатов.
Прорыв произойдет там, где наткнутся на важный решающий ген, причем вероятнее
всего случайно. Это может быть расшифровка механизма фиксирования азота.
Похоже, что молекулярные компоненты для этого процесса присутствуют у
многих растений, но или поломаны, или рассинхронизированы во времени. Есть
еще один селекционный парадокс, связанный с соотношением углерода и азота в
композиции семени и отражающий содержания белка. Селекция на повышение
урожайности зерновых приводит к повышению содержания углеводородов, как
менее энергозатратных запасающих веществ и коррелирует с понижением
содержания белка. И наоборот, злаковые с повышенным содержанием белка, как
правило, малоурожайные. Регуляция соотношения C к N - ключевая задача не
только в производстве зерна, но также очень важна для контроля биодоступности
биомассы для энергопроизводства или при компостировании. Молекулярный
механизм, регулирующий это соотношение, неизвестен.
Руслана Радчук
The Leibniz Institute of Plant Genetics and Crop Plant Research (Германия)
Владимир Фридман
Биологический ф-т МГУ
В общем случае можно сказать, что «идеи, которые набирают силу», связаны с поиском
альтернатив в решении тех до сих пор не решённых общебиологических проблем, которые
уже 30-40 лет как пытаются решить при помощи, условно говоря, «программы Гамильтона-
Вилсона-Докинза» - радикального редукционизма, пытающегося понять разные
эволюционные феномены (как возможны групповые адаптации? устойчивые системы вроде
организма и популяции? и т.п.) «снизу вверх», через отбор «эгоистических» и
«независимых» элементов, которые могут быть «склеены» им в некое общее целое, но
каким-то метафизическим образом сохраняют эту самую «эгоистичность».
1. Идея радикального редукционизма в этологии, популяционной и эволюционной биологии,
будучи радикально высказанной, после короткого периода торжества начинает отрицать
самоё себя. Это видно уже по попыткам отказаться от отдельных частных концепций, вроде
родственного отбора, которые явно не подтверждаются фактами. Явно не оправдываются
утверждения Бэйтмена и Трайверса об универсальности различий инвестирования разных
полов в половое поведение и заботу о потомстве, на котором покоятся господствующие
сейчас представления о половом отборе. Какой пол инвестирует больше, какой меньше (и
соответственно, самки конкурируют за внимание самцов, а самцы выбирают, или наоборот),
определяется конкретной "конструкцией" социальной системы разных видов и
филогенетической историей группы, определяющей не общие, а локальные причины
перехода от одной "конструкции" к другой. Более общая идея – социальный отбор.
После таких работ как 1
и 2
, по генным сетям и гомологическим рядам Вавилова
на молекулярном уровне, станет всё более ясно, что генотип – это отнюдь не
стохастическая система, вроде людей в толпе, а иерархически организованная
система. И в плане жёсткости-многоэтажности организации и управления
«сверху вниз» (от организма к генам разных органов и тканей, но не
наоборот) генные сети, в общем, не отличаются от прочих морфоструктур,
скажем, «рассеянных тканей». Так что будет набирать силу представление,
что ген не существует как некая отдельность, которую можно выделить
независимо от организма и его функционирования, от напряжений/стрессов,
которые испытывает организм в борьбе за существование.
Владимир Фридман
Биологический ф-т МГУ
1. К.В. Гунбин, В.В. Суслов, Н.А. Колчанов. АРОМОРФОЗЫ И АДАПТИВНАЯ МОЛЕКУЛЯРНАЯ ЭВОЛЮЦИЯ
Вестник ВОГиС, 2007, Том 11, № 2
2. В.В. Cуслов, Н.А. Колчанов. ДАРВИНОВСКАЯ ЭВОЛЮЦИЯ
И РЕГУЛЯТОРНЫЕ ГЕНЕТИЧЕСКИЕ СИСТЕМЫ. Вестник ВОГиС, 2009, Том 13, № 2
2. Поскольку «программа Гамильтона-Вилсона-Докинза» интеллектуально
привлекательна – стройна, логична, красива, последовательна, как всякая замкнутая
концепция, её легко принять и отказываться от неё не хочется, то приведение её в
соответствие с новыми данными позволит понять её действительно полезную роль –
не онтологии и не теории, а аналитического инструмента и нулевой гипотезы. То
есть если задать себе вопрос: откуда столь высокая популярность идей
«эгоистичных генов» и «отбора генов», высказанных людьми, которые никогда
исследований генов не проводили, почему многие биологи так держатся за их
концепцию, несмотря на множество частных опровержений, то единственный
разумный ответ будет то, что они предложили хорошую методологическую идею.
Необходимо продумать в чём действительно она состоит, и продумав, сменить
способ её использования – не как рабочей гипотезы, а как гипотезы нулевой,
которую надо опровергать, чтобы убедиться в том, что перед нами «хорошо
выделенная система», с которой происходит нечто существенное в плане
функционирования и/или эволюции. То есть «программа Гамильтона-Вилсона-
Докинза» не исчезнет совсем, но сохранится как полезный приём, позволяющий
допущением предельной «эгоистичности частей» «проверить на излом»
соответствующую биосистему – сохранит ли она хороший устойчивость и
целостности при такой интенсивности «обмана» и такой концентрации
«обманщиков», справятся ли с ними существующие механизмы регуляции и
контроля?
Владимир Фридман
Биологический ф-т МГУ
3. Будет набирать силу «морфологический подход» к стохастическими
системам, прежде всего к популяциям, социуму и виду как системе
популяций, определённым образом структурированной в пространстве ареала
и отграниченной от аналогичных популяционных систем, составляющих
другие виды. Это даст новую жизнь исследованиям процессов регуляции -
каким образом система управляет своими элементами - вроде бы
независимыми индивидами, чтобы иметь возможность устойчиво
воспроизводить присущий ей специфический паттерн системной структуры
вопреки возмущениям извне и напряжениям изнутри? Это позволит
распространить на популяцию и социум те представления о структуре,
архетипе, форме и гомологии, которые оказались исключительно плодотворны
для идеалистической морфологии.
……………………….
Владимир Фридман
Биологический ф-т МГУ
Биоинформатика – это способ заниматься биологией, не наблюдая живые
существа, как зоологи, не делая опытов в пробирке, как экспериментальные
биологи, а анализируя результаты массовых данных или целых проектов.
Там есть два аспекта. Один – чисто практический. Оказывается, глядя на
буковки, или на структуры белков, или на карты белковых взаимодействий,
которые получены из таких массовых экспериментов, вы можете делать
совершенно конкретные, проверяемые биологические утверждения.
…………………
Вторая вещь. Это началось с чистой техники. Размер генома человека – 3
миллиарда нуклеотидов, 3 миллиарда букв. Их надо где-то хранить, ими
надо уметь манипулировать. Это чисто техническая сторона. Но очень
важная. ……… Этими колоссальными объемами данных надо уметь
манипулировать. Кроме того, оказалось, что можно делать утверждения
уже не настолько частные, что «этот белок делает это», а строить
утверждения о системе взаимодействия белков в клетке. Описания общих
свойств на уровне целой клетки.
М.Гельфанд.
Третий аспект биоинформатики, с моей точки зрения, самый интересный, потому
что самая правильная биоинформатика – это биоинформатика эволюционная.
Интереснее всего описывать не то, как клетка устроена сейчас, а то, как она
такой получилась. Что происходило, что породило такие механизмы внутри
клетки и т. д. Эволюционная биология - наука очень старая, а молекулярная
эволюция, то есть использование молекулярных данных для реконструкции
эволюционных событий, – вещь более новая. Она стала возможной, когда такие
данные стали приходить в эволюционную биологию. Происходят, по-
видимому, некие культурные войны между классическими эволюционными
биологами и молекулярными эволюционистами. Причем они происходят в
одну сторону.
М.Гельфанд.
15
Bio-Informatics Tools Laboratory
Bio-Informatics (overview).
16
Bioinformatics - A New Discipline
Taken from: D. Gilberts & C. Tan, 2002
http://www.brc.dcs.gla.ac.uk/~drg/courses/bioinformatics_city/slides/slides1/sld018.htm
Large scale analysis and interpretation of genomics data.
Computing
Math&
Stats
Life
sciences
Physical
sciences
17
CGCCAGCTGGACGGGCACACCATGAGGCTGCTGACCCTCCTGGGCCTTCTG
TGTGGCTCGGTGGCCACCCCCTTAGGCCCGAAGTGGCCTGAACCTGTGTTC
GGGCGCCTGGCATCCCCCGGCTTTCCAGGGGAGTATGCCAATGACCAGGAG
CGGCGCTGGACCCTGACTGCACCCCCCGGCTACCGCCTGCGCCTCTACTTC
ACCCACTTCGACCTGGAGCTCTCCCACCTCTGCGAGTACGACTTCGTCAAG
From
Chromosomes to
Sequence Data
Large scale
DNA sequencing
http://www.ornl.gov/hgmis/graphics/slides/images/01-0085.tif
18
Different genes are activated in different cells, creating the
specific proteins that give a particular cell type its character.
Different Eukaryotic Cell Types
http://www.accessexcellence.org/AE/AEPC/NIH/gene03.html
4 Nucleotides (bases)
Adenine (A)
Cytosine (C)
Guanine (G)
Thymine (T)
triplet codons
genetic code
20 amino acids
(A, L, V, S etc.)
Sequence data =
Strings of letters
Eukaryotic Genome
Structure
DNA
Translation in Eukaryotes
http://www1.imim.es/courses/Lisboa01/slide1.6_translation.html
Animation: http://cbms.st-and.ac.uk/academics/ryan/Teaching/medsci/Medsci6.htm
Proteins Determines Cell
Structure and Function
• Unique protein expression
by each cell type.
• Proteins are ~60% of
dry mass of living cell.
• Proteins determine function.
http://www.library.csi.cuny.edu/~davis/Bioinfo_326/lectures/centralDogmaProteins/centralDogma.html
Transcription
mRNA
Cells express different subset of the
genes in different tissues and under
different conditions.
Gene (DNA)
Translation
Protein
DNA RNA Protein
Symptomes
(Phenotype)
The Central Dogma
23
The BIG Goal
“The greatest challenge, however, is analytical. … Deeper
biological insight is likely to emerge from examining datasets
with scores of samples.”
Eric Lander, “array of hope” Nat. Gen.
volume 21 supplement pp 3 - 4, 1999.
Bio-informatics:
Provide methodologies for
elucidating biological knowledge
from biological data.
24
Goal: Enable the discovery of new
biological insights and create a global
perspective for life sciences.
Data produced by
bio-labs and
stored in database.
Better biological
and medical
understanding.Bio-InformaticsBio-Informatics
AlgorithmsAlgorithms
and Toolsand Tools
Computational methods for
global understanding of biological data.
What is Bio-Informatics ?
Computer Science Tools are Crucial
• New bio-technologies create huge amounts of data.
• It is impossible to analyze data
by manual inspection.
• Novel mathematical, statistical,
algorithmic and computational
tools are necessary !
• An emerging interdisciplinary
research area, bringing together
experimental and computational
approaches to biology and bio-
medicine.
• Deals with the computational management
and analysis of biological information:
genes, genomes, proteins, cells, clinical information.
• Used terms: Bioinformatics, Computational biology.
http://www.library.csi.cuny.edu/~davis/Bioinfo_326/lectures/lect14/lect_14.html
Bioinformatics:
Research, development, or application of computational tools and
approaches for expanding the use of biological, medical, behavioral
or health data, including those to acquire, store, organize, archive,
analyze, or visualize such data.
Computational biology:
The development and application of data-analytical and theoretical
methods, mathematical modeling and computational simulation
techniques to the study of biological,behavioral, and social systems.
Bio-Informatics working
definition (NIH; National
Institute of Health, USA)
Important Bio-Info. Topics
• Sequence comparison and alignment.
• Gene finding analysis.
• Finding regulatory motifs.
• Structural biology: 3D protein structure,
correlated to function.
• Constructing phylogeny trees from sequences.
28
• A more global view of experimental design.
(from “one scientist = one gene/protein/
disease” paradigm to whole organism
consideration).
• Data mining - functional/structural
information is important for studying
the molecular basis of diseases,
diagnostics, developing drugs
(personal medicine), evolutionary
patterns, etc.
Why Use Bio-Informatics ?
http://www.sanger.ac.uk/PostGenomics/S_pombe/presentations/EMBOCopenhagenWebsite.pdf
29
The Next Step
Locate all the genes
and describe their function.
This will probably take another 15-20 years !
Future ofFuture of
Bio-InformaticsBio-Informatics
30
One can efficiently find information:
• E-mail.
• Web - information and software.
How likely are you to use a
free bio-informatics library
of accessible software ?
http://www.cryst.bbk.ac.uk/classlib/BBSRC_poster/potential.html
The Job of Biologists is Changing…
31
Types of
Data
(Databases)
Primary (Raw) Databases
ibbons
Cylinders
Secondary
(analyzed)
Databases
Publications
ENTREZ –
PubMed
NCBI
33
The Globin Story
Bio-informatics
Tour: Highlights
Red Blood Cells
• Carry oxygen from the lungs.
• Carry carbon dioxide back to the lungs.
• Contain hemoglobin.
• Made from iron, folic acid and
vitamin B12, in the bone marrow.
35
Similarity / Analogy
Examples:
If looks like an elephant,
and smells like an elephant–
it’s an elephant.
If walks like a duck,
and quacks like a duck–
it’s a duck.
http://cbms.st-and.ac.uk/academics/ryan/Teaching/molbiol/Bioinf_files/v3_document.htm
36
Similarity Search in Databanks
Find similar sequences
to a working draft.
As databanks grow,
homologies get harder,
and quality is reduced.
Alignment Tools:
BLAST & FASTA
(time saving
heuristics-
approximations).
Pairwise alignment:
37
The Globin Family:
Multiple Sequence Alignment (MSA)
All globin molecules have a similar 3D structure, despite large sequence
differences. Globins amino acid sequence identities range from 99% (very similar)
to 16% (very different).
Multiple alignment:
find protein families and functional domains.
• Possible in principle.
• Astronomical, highly under-constrained search space.
• Biophysics complex and incomplete.
• Next to impossible in practice.
The Structural Prediction Problem
“Given a protein sequence, compute its structure”.
GCTCCTCACTGTCTGTGT
TTATTCTTTTAGCTTCTTC
AGATCTTTTAGTCTGAGG
AAGCCTGGCATGTGCAAA
TGAAGTTAACCTAA...
Structure - Function
Relationships
structure
function
sequence
40
Human α−Globin Whale Myoglobin Yellow Lupine
Leghemoglobin
3D Structure of Globins
41
Phylogeny
Evolution - a process in
which small changes occur
within species over time.
These changes could be
monitored today using
molecular techniques.
The Tree of Life:
A classical, basic
science problem,
since Darwin’s 1859
“Origin of Species”.
42
How Did the Globin Gene Family Evolve ?
43
Origin of the universe ?
Formation of the
solar system
First self replicating
systems
Prokaryotes/
eukaryotes
Plant/
animals
Invertebrates/
vertebrates
Mammalian
radiation
Tree of Life: Searching Protein Sequence Databases -
How far can we see back ?
What is a Gene ?
DNA contains various recognition sites:
• Promoter signals.
• Transcription start signals.
• Start codon.
• Exon, intron boundaries.
• Transcription termination signal.
Start codon Terminal codon
Transcribed region Un-coded
region
Un-coded
region
exon exon exon
intron intron
promotor
45
Gene Finding
• Only 2% of the human genome encodes for
functional genes.
• Genes are found along large non-coding
DNA regions.
• Repeats, pseudo-genes, introns, contamination
of vectors, are confusing.
46
Existing programs for locating genes within
genomic sequences utilize a number of statistical
signals and employ statistical models such as
hidden Markov models (HMMs).
The problem is
not solved yet !
Gene Finding
47
48
A map - graphic representation that provides information about the location
of sites and the spacing between them.
Maps for the genome provide the relative order of items (“markers”) along
the chromosome.
Genomic Mapping
Two Major Types of
Genomic Maps :
• Genetic maps.
• Physical maps.
49
50
Microarrays (“DNA Chips”)
Leading edge, future technologies (since 1988):
In a single experiment, measure expression level of
thousands of genes.
• Find informative genes that may
have predictive power for
medical diagnosis.
• Potential for personalized
medicine, e.g. kits for identifying
cancer types and prescribe
“personal” treatment.
51
Clustering algorithms:
Identify:
1. Biological function.
2. Similar regulation.
Microarray (“DNA Chip”) Analysis
Discover meaningful relationships among genes:
Pharmaco-genomics
• Use DNA information to measure and predict
the reaction to drugs.
• Personalized medicine.
• Faster clinical trials: selected populations.
• Less drug side-effects.
53
SEQUENCE
ALIGNMENT
ORTHOLOG
GENES
(Taxonomy)
CONSERVED
DOMAINS
CODING
REGIONS
3-D
STRUCTURE
GENE
FAMILIES
MUTATIONS &
POLYMORPHISMGENOME
MAPS
CELLULAR
LOCATION
SIGNAL
PEPTIDE
Putting it all together: Bio-Informatics
SEQUENCES
& LITERATURE
54
GENE EXPRESSION,
GENES FUNCTION,
DRUG & PERSONAL
THERAPY
CODING
REGIONS
SEQUENCE
ALIGNMENT
ORTHOLOG
GENES
(Taxonomy)
CONSERVED
DOMAINS
GENE
FAMILIES
MUTATIONS &
POLYMORPHISMGENOME
MAPS
CELLULAR
LOCATION
SIGNAL
PEPTIDE
3-D
STRUCTURE
Putting it all together: Bio-Informatics

Weitere ähnliche Inhalte

Was ist angesagt?

Chernobyl
ChernobylChernobyl
ChernobylGogoltv
 
Исследования бактериальных геномов на платформе Иллюмина.Новые приложения.
Исследования бактериальных геномов на платформе Иллюмина.Новые приложения.Исследования бактериальных геномов на платформе Иллюмина.Новые приложения.
Исследования бактериальных геномов на платформе Иллюмина.Новые приложения.Ilya Klabukov
 
Вперед в прошлое. Методы генетической диагностики древней днк
Вперед в прошлое. Методы генетической диагностики древней днкВперед в прошлое. Методы генетической диагностики древней днк
Вперед в прошлое. Методы генетической диагностики древней днкBioinformaticsInstitute
 
нанотехнологии лекция 08_2
нанотехнологии лекция 08_2нанотехнологии лекция 08_2
нанотехнологии лекция 08_2galinahurtina
 
Эукариогенез
ЭукариогенезЭукариогенез
ЭукариогенезAlexander Zenin
 
новости технологий за декабрь и весь 2008 год - выпуск10
новости технологий за декабрь и весь 2008 год - выпуск10новости технологий за декабрь и весь 2008 год - выпуск10
новости технологий за декабрь и весь 2008 год - выпуск10Valerija Pride (Udalova)
 
Геропротекторная медицина сегодня
Геропротекторная медицина сегодняГеропротекторная медицина сегодня
Геропротекторная медицина сегодняDanila Medvedev
 
gцитология как наука
gцитология как наукаgцитология как наука
gцитология как наукаmonchered
 
Stem ap 14.11.2012
Stem ap 14.11.2012Stem ap 14.11.2012
Stem ap 14.11.2012Evgeny Buk
 
миелодиспластический синдром – заболевание ск
миелодиспластический синдром – заболевание скмиелодиспластический синдром – заболевание ск
миелодиспластический синдром – заболевание скEvgeny Buk
 
Живой звездолет
Живой звездолетЖивой звездолет
Живой звездолетIlya Klabukov
 
презентация2
презентация2презентация2
презентация2ku3ne4ik
 
Отдаленные популяционно-генетические проблемы Чернобыля
Отдаленные популяционно-генетические проблемы ЧернобыляОтдаленные популяционно-генетические проблемы Чернобыля
Отдаленные популяционно-генетические проблемы Чернобыляrorbic
 
Индуцированные плюрипотентные клетки человека в регенеративной медицине
Индуцированные плюрипотентные клетки человека в регенеративной медицине Индуцированные плюрипотентные клетки человека в регенеративной медицине
Индуцированные плюрипотентные клетки человека в регенеративной медицине Ilya Klabukov
 
Новости науки и технологий. Клеточный уровень
Новости науки и технологий. Клеточный уровеньНовости науки и технологий. Клеточный уровень
Новости науки и технологий. Клеточный уровеньMikhail Kryzhanovskiy
 

Was ist angesagt? (20)

825
825825
825
 
Chernobyl
ChernobylChernobyl
Chernobyl
 
Исследования бактериальных геномов на платформе Иллюмина.Новые приложения.
Исследования бактериальных геномов на платформе Иллюмина.Новые приложения.Исследования бактериальных геномов на платформе Иллюмина.Новые приложения.
Исследования бактериальных геномов на платформе Иллюмина.Новые приложения.
 
Вперед в прошлое. Методы генетической диагностики древней днк
Вперед в прошлое. Методы генетической диагностики древней днкВперед в прошлое. Методы генетической диагностики древней днк
Вперед в прошлое. Методы генетической диагностики древней днк
 
нанотехнологии лекция 08_2
нанотехнологии лекция 08_2нанотехнологии лекция 08_2
нанотехнологии лекция 08_2
 
Эукариогенез
ЭукариогенезЭукариогенез
Эукариогенез
 
новости технологий за декабрь и весь 2008 год - выпуск10
новости технологий за декабрь и весь 2008 год - выпуск10новости технологий за декабрь и весь 2008 год - выпуск10
новости технологий за декабрь и весь 2008 год - выпуск10
 
Геропротекторная медицина сегодня
Геропротекторная медицина сегодняГеропротекторная медицина сегодня
Геропротекторная медицина сегодня
 
gцитология как наука
gцитология как наукаgцитология как наука
gцитология как наука
 
685
685685
685
 
Stem ap 14.11.2012
Stem ap 14.11.2012Stem ap 14.11.2012
Stem ap 14.11.2012
 
миелодиспластический синдром – заболевание ск
миелодиспластический синдром – заболевание скмиелодиспластический синдром – заболевание ск
миелодиспластический синдром – заболевание ск
 
Живой звездолет
Живой звездолетЖивой звездолет
Живой звездолет
 
605
605605
605
 
презентация2
презентация2презентация2
презентация2
 
Отдаленные популяционно-генетические проблемы Чернобыля
Отдаленные популяционно-генетические проблемы ЧернобыляОтдаленные популяционно-генетические проблемы Чернобыля
Отдаленные популяционно-генетические проблемы Чернобыля
 
884
884884
884
 
Индуцированные плюрипотентные клетки человека в регенеративной медицине
Индуцированные плюрипотентные клетки человека в регенеративной медицине Индуцированные плюрипотентные клетки человека в регенеративной медицине
Индуцированные плюрипотентные клетки человека в регенеративной медицине
 
Новости науки и технологий. Клеточный уровень
Новости науки и технологий. Клеточный уровеньНовости науки и технологий. Клеточный уровень
Новости науки и технологий. Клеточный уровень
 
837
837837
837
 

Andere mochten auch

профилактика гриппа
профилактика гриппапрофилактика гриппа
профилактика гриппаodisei
 
AEFIS Assessment Solution Overview
AEFIS Assessment Solution OverviewAEFIS Assessment Solution Overview
AEFIS Assessment Solution OverviewMustafa Sualp
 
Parasitic infection and immunomodulation: A possible explanation for the hygi...
Parasitic infection and immunomodulation: A possible explanation for the hygi...Parasitic infection and immunomodulation: A possible explanation for the hygi...
Parasitic infection and immunomodulation: A possible explanation for the hygi...Apollo Hospitals
 
The immune system and anxiety disorders
The immune system and anxiety disordersThe immune system and anxiety disorders
The immune system and anxiety disordersYasir Hameed
 
Evans ageing 2010
Evans ageing 2010Evans ageing 2010
Evans ageing 2010tcha163
 
IMMUNITY AGAINST HELMINTHS
IMMUNITY AGAINST HELMINTHSIMMUNITY AGAINST HELMINTHS
IMMUNITY AGAINST HELMINTHSDr. Aquil Mohmad
 
Post traumatic stress disorder (PTSD): The new epidemic
Post traumatic stress disorder (PTSD): The new epidemicPost traumatic stress disorder (PTSD): The new epidemic
Post traumatic stress disorder (PTSD): The new epidemicYasir Hameed
 
Immunology: Cell mediated immunity
Immunology: Cell mediated immunityImmunology: Cell mediated immunity
Immunology: Cell mediated immunityBiochemistry Den
 
Immunity Against Parasite
Immunity Against ParasiteImmunity Against Parasite
Immunity Against ParasiteOsama Zahid
 
Humoral Immunity Lecture
Humoral Immunity LectureHumoral Immunity Lecture
Humoral Immunity LectureMD Specialclass
 
Bacterial meningitis 2012
Bacterial meningitis  2012Bacterial meningitis  2012
Bacterial meningitis 2012Sosoo Byambaa
 
Cell mediated immune response
Cell mediated immune responseCell mediated immune response
Cell mediated immune responsesufihannan
 
Host pathogen interactions
Host pathogen interactionsHost pathogen interactions
Host pathogen interactionsthuphan95
 
Humoral immune response
Humoral immune responseHumoral immune response
Humoral immune responsesufihannan
 
Immunity against Helminths:role of Interleukins
Immunity against Helminths:role of InterleukinsImmunity against Helminths:role of Interleukins
Immunity against Helminths:role of InterleukinsIshfaq Maqbool
 
What is Immunity? Explain the types of Immunity? (Presentation)
What is Immunity? Explain the types of Immunity? (Presentation)What is Immunity? Explain the types of Immunity? (Presentation)
What is Immunity? Explain the types of Immunity? (Presentation)Biochemistry Den
 

Andere mochten auch (20)

28457ip
28457ip28457ip
28457ip
 
профилактика гриппа
профилактика гриппапрофилактика гриппа
профилактика гриппа
 
AEFIS Assessment Solution Overview
AEFIS Assessment Solution OverviewAEFIS Assessment Solution Overview
AEFIS Assessment Solution Overview
 
Parasitic infection and immunomodulation: A possible explanation for the hygi...
Parasitic infection and immunomodulation: A possible explanation for the hygi...Parasitic infection and immunomodulation: A possible explanation for the hygi...
Parasitic infection and immunomodulation: A possible explanation for the hygi...
 
The immune system and anxiety disorders
The immune system and anxiety disordersThe immune system and anxiety disorders
The immune system and anxiety disorders
 
Evans ageing 2010
Evans ageing 2010Evans ageing 2010
Evans ageing 2010
 
IMMUNITY AGAINST HELMINTHS
IMMUNITY AGAINST HELMINTHSIMMUNITY AGAINST HELMINTHS
IMMUNITY AGAINST HELMINTHS
 
Post traumatic stress disorder (PTSD): The new epidemic
Post traumatic stress disorder (PTSD): The new epidemicPost traumatic stress disorder (PTSD): The new epidemic
Post traumatic stress disorder (PTSD): The new epidemic
 
Human parasite vaccines
Human parasite vaccinesHuman parasite vaccines
Human parasite vaccines
 
Immunology: Cell mediated immunity
Immunology: Cell mediated immunityImmunology: Cell mediated immunity
Immunology: Cell mediated immunity
 
Immunity Against Parasite
Immunity Against ParasiteImmunity Against Parasite
Immunity Against Parasite
 
Humoral Immunity Lecture
Humoral Immunity LectureHumoral Immunity Lecture
Humoral Immunity Lecture
 
Bacterial meningitis 2012
Bacterial meningitis  2012Bacterial meningitis  2012
Bacterial meningitis 2012
 
Cell-mediated immune responses
Cell-mediated immune responsesCell-mediated immune responses
Cell-mediated immune responses
 
Lyme disease
Lyme diseaseLyme disease
Lyme disease
 
Cell mediated immune response
Cell mediated immune responseCell mediated immune response
Cell mediated immune response
 
Host pathogen interactions
Host pathogen interactionsHost pathogen interactions
Host pathogen interactions
 
Humoral immune response
Humoral immune responseHumoral immune response
Humoral immune response
 
Immunity against Helminths:role of Interleukins
Immunity against Helminths:role of InterleukinsImmunity against Helminths:role of Interleukins
Immunity against Helminths:role of Interleukins
 
What is Immunity? Explain the types of Immunity? (Presentation)
What is Immunity? Explain the types of Immunity? (Presentation)What is Immunity? Explain the types of Immunity? (Presentation)
What is Immunity? Explain the types of Immunity? (Presentation)
 

Ähnlich wie Obzornaya lekciya

Novosibirsk 55 anniversary talk
Novosibirsk 55 anniversary talkNovosibirsk 55 anniversary talk
Novosibirsk 55 anniversary talkEcolife Journal
 
П.П.Гаряев Лингвистико-Волновой геном. Теория и практика
П.П.Гаряев Лингвистико-Волновой геном. Теория и практикаП.П.Гаряев Лингвистико-Волновой геном. Теория и практика
П.П.Гаряев Лингвистико-Волновой геном. Теория и практикаAloha Bulgaria Ltd
 
Сколько хромосом у человека
Сколько хромосом у человекаСколько хромосом у человека
Сколько хромосом у человекаСлава Коломак
 
Применение технологий секвенирования Illumina для исследований человека
Применение технологий секвенирования Illumina для исследований человекаПрименение технологий секвенирования Illumina для исследований человека
Применение технологий секвенирования Illumina для исследований человекаIlya Klabukov
 
информация в ....
информация в ....информация в ....
информация в ....Sofja28
 
П.П.Гаряев Волновой генетический код
П.П.Гаряев Волновой генетический кодП.П.Гаряев Волновой генетический код
П.П.Гаряев Волновой генетический кодAloha Bulgaria Ltd
 
зельман From 1 2012
зельман From 1 2012зельман From 1 2012
зельман From 1 2012Ecolife Journal
 

Ähnlich wie Obzornaya lekciya (20)

Novosibirsk 55 anniversary talk
Novosibirsk 55 anniversary talkNovosibirsk 55 anniversary talk
Novosibirsk 55 anniversary talk
 
П.П.Гаряев Лингвистико-Волновой геном. Теория и практика
П.П.Гаряев Лингвистико-Волновой геном. Теория и практикаП.П.Гаряев Лингвистико-Волновой геном. Теория и практика
П.П.Гаряев Лингвистико-Волновой геном. Теория и практика
 
Сколько хромосом у человека
Сколько хромосом у человекаСколько хромосом у человека
Сколько хромосом у человека
 
Применение технологий секвенирования Illumina для исследований человека
Применение технологий секвенирования Illumina для исследований человекаПрименение технологий секвенирования Illumina для исследований человека
Применение технологий секвенирования Illumina для исследований человека
 
Petr Gariaev
Petr GariaevPetr Gariaev
Petr Gariaev
 
Biodb 2011-01
Biodb 2011-01Biodb 2011-01
Biodb 2011-01
 
Biodb 2011-everything
Biodb 2011-everythingBiodb 2011-everything
Biodb 2011-everything
 
информация в ....
информация в ....информация в ....
информация в ....
 
850
850850
850
 
POLISH JOURNAL OF SCIENCE №53 (2022)
POLISH JOURNAL OF SCIENCE №53 (2022)POLISH JOURNAL OF SCIENCE №53 (2022)
POLISH JOURNAL OF SCIENCE №53 (2022)
 
Medicine
MedicineMedicine
Medicine
 
П.П.Гаряев Волновой генетический код
П.П.Гаряев Волновой генетический кодП.П.Гаряев Волновой генетический код
П.П.Гаряев Волновой генетический код
 
643
643643
643
 
643
643643
643
 
зельман From 1 2012
зельман From 1 2012зельман From 1 2012
зельман From 1 2012
 
585
585585
585
 
678
678678
678
 
678
678678
678
 
602
602602
602
 
461
461461
461
 

Mehr von BioinformaticsInstitute

Comparative Genomics and de Bruijn graphs
Comparative Genomics and de Bruijn graphsComparative Genomics and de Bruijn graphs
Comparative Genomics and de Bruijn graphsBioinformaticsInstitute
 
Биоинформатический анализ данных полноэкзомного секвенирования: анализ качес...
 Биоинформатический анализ данных полноэкзомного секвенирования: анализ качес... Биоинформатический анализ данных полноэкзомного секвенирования: анализ качес...
Биоинформатический анализ данных полноэкзомного секвенирования: анализ качес...BioinformaticsInstitute
 
"Зачем биологам суперкомпьютеры", Александр Предеус
"Зачем биологам суперкомпьютеры", Александр Предеус"Зачем биологам суперкомпьютеры", Александр Предеус
"Зачем биологам суперкомпьютеры", Александр ПредеусBioinformaticsInstitute
 
Иммунотерапия раковых опухолей: взгляд со стороны системной биологии. Максим ...
Иммунотерапия раковых опухолей: взгляд со стороны системной биологии. Максим ...Иммунотерапия раковых опухолей: взгляд со стороны системной биологии. Максим ...
Иммунотерапия раковых опухолей: взгляд со стороны системной биологии. Максим ...BioinformaticsInstitute
 
Секвенирование как инструмент исследования сложных фенотипов человека: от ген...
Секвенирование как инструмент исследования сложных фенотипов человека: от ген...Секвенирование как инструмент исследования сложных фенотипов человека: от ген...
Секвенирование как инструмент исследования сложных фенотипов человека: от ген...BioinformaticsInstitute
 
Инвестиции в биоинформатику и биотех (Андрей Афанасьев)
Инвестиции в биоинформатику и биотех (Андрей Афанасьев)Инвестиции в биоинформатику и биотех (Андрей Афанасьев)
Инвестиции в биоинформатику и биотех (Андрей Афанасьев)BioinformaticsInstitute
 

Mehr von BioinformaticsInstitute (20)

Graph genome
Graph genome Graph genome
Graph genome
 
Nanopores sequencing
Nanopores sequencingNanopores sequencing
Nanopores sequencing
 
A superglue for string comparison
A superglue for string comparisonA superglue for string comparison
A superglue for string comparison
 
Comparative Genomics and de Bruijn graphs
Comparative Genomics and de Bruijn graphsComparative Genomics and de Bruijn graphs
Comparative Genomics and de Bruijn graphs
 
Биоинформатический анализ данных полноэкзомного секвенирования: анализ качес...
 Биоинформатический анализ данных полноэкзомного секвенирования: анализ качес... Биоинформатический анализ данных полноэкзомного секвенирования: анализ качес...
Биоинформатический анализ данных полноэкзомного секвенирования: анализ качес...
 
Knime & bioinformatics
Knime & bioinformaticsKnime & bioinformatics
Knime & bioinformatics
 
"Зачем биологам суперкомпьютеры", Александр Предеус
"Зачем биологам суперкомпьютеры", Александр Предеус"Зачем биологам суперкомпьютеры", Александр Предеус
"Зачем биологам суперкомпьютеры", Александр Предеус
 
Иммунотерапия раковых опухолей: взгляд со стороны системной биологии. Максим ...
Иммунотерапия раковых опухолей: взгляд со стороны системной биологии. Максим ...Иммунотерапия раковых опухолей: взгляд со стороны системной биологии. Максим ...
Иммунотерапия раковых опухолей: взгляд со стороны системной биологии. Максим ...
 
Секвенирование как инструмент исследования сложных фенотипов человека: от ген...
Секвенирование как инструмент исследования сложных фенотипов человека: от ген...Секвенирование как инструмент исследования сложных фенотипов человека: от ген...
Секвенирование как инструмент исследования сложных фенотипов человека: от ген...
 
Инвестиции в биоинформатику и биотех (Андрей Афанасьев)
Инвестиции в биоинформатику и биотех (Андрей Афанасьев)Инвестиции в биоинформатику и биотех (Андрей Афанасьев)
Инвестиции в биоинформатику и биотех (Андрей Афанасьев)
 
Biodb 2011-05
Biodb 2011-05Biodb 2011-05
Biodb 2011-05
 
Biodb 2011-04
Biodb 2011-04Biodb 2011-04
Biodb 2011-04
 
Biodb 2011-03
Biodb 2011-03Biodb 2011-03
Biodb 2011-03
 
Biodb 2011-02
Biodb 2011-02Biodb 2011-02
Biodb 2011-02
 
Ngs 3 1
Ngs 3 1Ngs 3 1
Ngs 3 1
 
Ngs 1 0_0
Ngs 1 0_0Ngs 1 0_0
Ngs 1 0_0
 
Ngs 2 0_0
Ngs 2 0_0Ngs 2 0_0
Ngs 2 0_0
 
Ngs 7
Ngs 7Ngs 7
Ngs 7
 
Ngs 6
Ngs 6Ngs 6
Ngs 6
 
Ngs 4
Ngs 4Ngs 4
Ngs 4
 

Obzornaya lekciya

  • 1. Идеи, набирающие силу Биология 2010-2020 http://nature-wonder.livejournal.com/192600.html
  • 2. Егор Воронин Global HIV Vaccine Enterprise (США) 1. Меняется роль модельных организмов в изучении биологии человека. Человек – идеальный организм для исследований деталей человеческой биологии. Экспериментам на мышах, приматах и пр. отводится более базовая роль – изучение общих принципов устройства организмов. Среди иммунологов даже ходит поговорка «мыши врут, обезьяны преувеличивают». Никакой модельный организм не заменит нам знаний, полученных напрямую из экспериментов человеческого организма. 2. Биологические системы требуют передачи сигналов на разных уровнях, от молекулы к молекуле, от клетки к клетке и т.д. Начальный подход к описанию таких систем, который до сих пор доминирует во многих областях, брал за основу детерминистскую систему: «молекула А передает сигнал молекуле Б, которая выполняет некую функцию в ответ на сигнал». Общее видение такой системы можно уподобить шестеренкам, которые все жестко связаны друг с другом, или бильярдным шарам в ньютоновской механике. Однако практически все процессы, лежащие в основе передачи сигналов, имеют стохастическую природу. Регулятор транскрипции не является жестким переключателем с абсолютными состояниями «Вкл-Выкл» - это белок, чьи параметры связывания с ДНК меняются количественно, а не качественно. При таком подходе молекула А не передает сигнал молекуле Б, она меняет вероятность того, что молекула Б выполнит некую функцию. Нужная функция может быть выполнена, а может и нет. Стохастичность этих процессов ведет к тому, что в сложных системах, вроде иммунной, мы имеем дело не с четко определенными событиями, а с вероятностными распределениями. Не существует «идеальной» CD4 клетки с четко-определенным набором функций, существует распределение CD4 клеток с разными фенотипами. У этого распределения есть максимум, который мы обычно ассоциируем с «типичной» CD4 клеткой, но вокруг максимума есть и очень длинные хвосты, в которых CD4 клетки имеют нетипичные фенотипы. Эти концепции до сих пор не нашли своего применения на практике. Отчасти это связано с тем, что до сих пор «первое приближение» было достаточным для описания исследуемых процессов, а отчасти с тем, что такие системы очень сложны и не было технических возможностей их моделировать и предсказывать. Но сейчас это начинает меняться и, я думаю, в ближайшие лет десять серьезно изменит то, как подобные системы изучаются – иммунология существенно преобразится.
  • 3. Евгений Кунин National Center for Biotechnology Information (NCBI) (США) 1. Самые удивительные достижения в микробиологии связаны с изучением мира вирусов, а также бактериальных механизмов антивирусной защиты, которые оказались на удивление сложны и разнообразны. Новые данные в области метагеномики вирусов и иммунных систем микроорганизмов приобретают первостепенное значение для нашего понимания эволюции. Прежде всего, вирусы оказались самыми распространенными объектами в биосфере, а их генетическое разнообразие намного превосходит разнообразие клеточных форм жизни. Большая часть этого разнообразия - генетическая «темная материя», то есть состоит из генов, не имеющих явных гомологов. Более того, среди генов, для которых гомологи все же найдены, большая часть выглядит как более или менее случайные комбинации генов бактерий. Природа этой темной материи, доминирующей в мире вирусов, неизвестна. Выяснение этого вопроса будет целью ближайших лет. Чрезвычайно интересны особые частицы, похожие на вирусы – агенты переноса генов (gene transfer agents, GTAs). В этих частицах упакованы случайные фрагменты бактериальных хромосом. Было показано, что GTAs весьма эффективно заражают бактериальные маты и служат средством горизонтального переноса генов. Таким образом, масштабы горизонтального переноса в природе могут оказаться намного больше, чем считают сегодня. Можно предположить, что «темная материя» состоит преимущественно из GTAs. Подробности биологии этих частиц и природа «темной материи» будут выяснены в ближайшие годы. Результатом этого, вероятно, станет серьезная ревизия наших взглядов на структуру биосферы.
  • 4. GTAs в качестве специализированных агентов горизонтального переноса помогут разрешить фундаментальный спор в эволюционной биологии: может ли способность к эволюции эволюционировать? В мире микробов горизонтальный перенос является главным механизмом эволюции. Эволюция оптимальной интенсивности горизонтального переноса может оказаться условием выживания микроорганизмов, обходящихся без полового размножения. На противоположной стороне вечного противостояния вирусов и клеток находятся механизмы адаптивной иммунной защиты - CRISPR/Cas система. Пока остается загадочной стадия встраивания чужеродной ДНК в CRISPR локусы. Да и про следующий этап избавления от вируса нам известно немногое. В ближайшие годы появится подробная картина молекулярных взаимодействий CRISPR/Cas системы, и мы узнаем о ее новых, возможно, очень необычных механизмах. Что менее очевидно, есть ли у этой системы дополнительные функции, скажем, регуляции экспрессии генов или их репарации? CRISPR/Cas система представляет особый интерес с точки зрения понимания эволюции, поскольку реализует ламарковский принцип наследования, что до сих пор рассматривается как табу в эволюционной биологии. В мире бактерий и архей существуют и другие системы антивирусной защиты, но еще большее количество таких систем будет открыто в ближайшем будущем. Сочетание исследований вирусов в масштабах всей биосферы с изучением внутриклеточных защитных механизмов позволит нам взглянуть на глобальную картину гонки вооружений между паразитами и их хозяевами, которая идет с самого возникновения жизни и, весьма вероятно, является одним из ключевых эволюционных факторов. Для меня красота этих открытий, помимо удивительных молекулярных механизмов, в том, что они видоизменяют наши основополагающие идеи относительно эволюции. Евгений Кунин National Center for Biotechnology Information (NCBI) (США)
  • 5. СRISPR/Cas система The CRISPR System Protects Microbes against Phages, Plasmids Palindromic DNA repeat sequences immunize microorganisms against phages and plasmids, while also directing their evolution. Rodolphe Barrangou and Philippe Horvath Сочетание исследований вирусов в масштабах всей биосферы с изучением внутриклеточных защитных механизмов позволит нам взглянуть на глобальную картину гонки вооружений между паразитами и их хозяевами, которая идет с самого возникновения жизни и, весьма вероятно, является одним из ключевых эволюционных факторов. Для меня красота этих открытий, помимо удивительных молекулярных механизмов, в том, что они видоизменяют наши основополагающие идеи относительно эволюции. Е. Кунин.
  • 6. Руслана Радчук The Leibniz Institute of Plant Genetics and Crop Plant Research (Германия) Если говорить о глобальной тенденции в молекулярной биологии растений, то мы столкнулись с парадоксальным фактом, когда технологические возможности, связанные с секвенированием геномов и генноинженерными методами переноса генов в растения, существенно опережают знания о конкретной роли тех или иных генов. Таким образом, развитие отрасли идет в двух направлениях, которые на самом деле дополняют друг друга, причем одно из них значительно отстает. -Удешевление секвенирования приводит к накоплению огромного количества генных и геномных последовательностей. Громадные массивы полученных данных зачастую остаются необработанными и невостребованными. Прочитано большое количество геномов, причем по нескольку раз, но последовательности не скомпилированы и не доступны для работы. Причин этому несколько – наличие большого числа повторов, которые не поддаются обработке стандартными алгоритмами, отсутствие технических мощностей. Проблема также кроется в особой роли биоинформатиков. Сегодняшняя специфика работы биоинформатиков заключается в том, что перед ними ставится задача формирования принципиально нового научного знания. До сих пор таким считалась разработка алгоритмов и статистических методов обработки нуклеотидных последовательностей. Но, похоже, в этой области происходит насыщение знаниями, поэтому роль бионформатиков будет сдвигаться в сторону сервиса.
  • 7. Подобная участь постигла в свое время специалистов в культуре in vitro. Еще каких- то 15 лет тому назад культуральщики занимали важную нишу в растительной биологии. Открытие нового состава среды и введение нового растения in vitro считалось научным прорывом. Этому предшествовало осознание роли гормонов в регуляции клеточной дифференциации и формированию целого ряда основополагающих биологических принципов. Однако сейчас эта отрасль справедливо перекочевала из науки в технологию. То же самое произойдет в будущем и с биоинформатикой. Другое направление в молекулярной биологии – изучение роли отдельных генов. Треть генов растений вообще не изучены никак. Еще у половины генов роль можно теоретически предсказать, но пока экспериментальных подтверждений нет. При этом речь идет всего о нескольких видах растений. Больше всего изучен геном арабидопсиса, а черпать оттуда сведения для пшеницы малопродуктивно. Постепенно будет сворачиваться арабидопсисная эра, и это происходит уже сейчас. Будет продолжаться изучение роли и функций отдельных генов у разных видов растений и генные взаимодействия. Насколько прорывными будут знания, зависит от многого. Руслана Радчук The Leibniz Institute of Plant Genetics and Crop Plant Research (Германия)
  • 8. Мода на тотальное секвенирование через некоторое время пройдет, во всяком случае в академических учреждениях, но при этом наберет обороты в коммерческих фирмах. Уже сейчас государственные фонды, финансирующие науку, неохотно финансируют технологичные и дорогие проекты и делают упор на оригинальные исследования. При этом все больше фирм предлагают готовое технологичное решение, от ученых требуется осознание и интерпретация полученных результатов. Прорыв произойдет там, где наткнутся на важный решающий ген, причем вероятнее всего случайно. Это может быть расшифровка механизма фиксирования азота. Похоже, что молекулярные компоненты для этого процесса присутствуют у многих растений, но или поломаны, или рассинхронизированы во времени. Есть еще один селекционный парадокс, связанный с соотношением углерода и азота в композиции семени и отражающий содержания белка. Селекция на повышение урожайности зерновых приводит к повышению содержания углеводородов, как менее энергозатратных запасающих веществ и коррелирует с понижением содержания белка. И наоборот, злаковые с повышенным содержанием белка, как правило, малоурожайные. Регуляция соотношения C к N - ключевая задача не только в производстве зерна, но также очень важна для контроля биодоступности биомассы для энергопроизводства или при компостировании. Молекулярный механизм, регулирующий это соотношение, неизвестен. Руслана Радчук The Leibniz Institute of Plant Genetics and Crop Plant Research (Германия)
  • 9. Владимир Фридман Биологический ф-т МГУ В общем случае можно сказать, что «идеи, которые набирают силу», связаны с поиском альтернатив в решении тех до сих пор не решённых общебиологических проблем, которые уже 30-40 лет как пытаются решить при помощи, условно говоря, «программы Гамильтона- Вилсона-Докинза» - радикального редукционизма, пытающегося понять разные эволюционные феномены (как возможны групповые адаптации? устойчивые системы вроде организма и популяции? и т.п.) «снизу вверх», через отбор «эгоистических» и «независимых» элементов, которые могут быть «склеены» им в некое общее целое, но каким-то метафизическим образом сохраняют эту самую «эгоистичность». 1. Идея радикального редукционизма в этологии, популяционной и эволюционной биологии, будучи радикально высказанной, после короткого периода торжества начинает отрицать самоё себя. Это видно уже по попыткам отказаться от отдельных частных концепций, вроде родственного отбора, которые явно не подтверждаются фактами. Явно не оправдываются утверждения Бэйтмена и Трайверса об универсальности различий инвестирования разных полов в половое поведение и заботу о потомстве, на котором покоятся господствующие сейчас представления о половом отборе. Какой пол инвестирует больше, какой меньше (и соответственно, самки конкурируют за внимание самцов, а самцы выбирают, или наоборот), определяется конкретной "конструкцией" социальной системы разных видов и филогенетической историей группы, определяющей не общие, а локальные причины перехода от одной "конструкции" к другой. Более общая идея – социальный отбор.
  • 10. После таких работ как 1 и 2 , по генным сетям и гомологическим рядам Вавилова на молекулярном уровне, станет всё более ясно, что генотип – это отнюдь не стохастическая система, вроде людей в толпе, а иерархически организованная система. И в плане жёсткости-многоэтажности организации и управления «сверху вниз» (от организма к генам разных органов и тканей, но не наоборот) генные сети, в общем, не отличаются от прочих морфоструктур, скажем, «рассеянных тканей». Так что будет набирать силу представление, что ген не существует как некая отдельность, которую можно выделить независимо от организма и его функционирования, от напряжений/стрессов, которые испытывает организм в борьбе за существование. Владимир Фридман Биологический ф-т МГУ 1. К.В. Гунбин, В.В. Суслов, Н.А. Колчанов. АРОМОРФОЗЫ И АДАПТИВНАЯ МОЛЕКУЛЯРНАЯ ЭВОЛЮЦИЯ Вестник ВОГиС, 2007, Том 11, № 2 2. В.В. Cуслов, Н.А. Колчанов. ДАРВИНОВСКАЯ ЭВОЛЮЦИЯ И РЕГУЛЯТОРНЫЕ ГЕНЕТИЧЕСКИЕ СИСТЕМЫ. Вестник ВОГиС, 2009, Том 13, № 2
  • 11. 2. Поскольку «программа Гамильтона-Вилсона-Докинза» интеллектуально привлекательна – стройна, логична, красива, последовательна, как всякая замкнутая концепция, её легко принять и отказываться от неё не хочется, то приведение её в соответствие с новыми данными позволит понять её действительно полезную роль – не онтологии и не теории, а аналитического инструмента и нулевой гипотезы. То есть если задать себе вопрос: откуда столь высокая популярность идей «эгоистичных генов» и «отбора генов», высказанных людьми, которые никогда исследований генов не проводили, почему многие биологи так держатся за их концепцию, несмотря на множество частных опровержений, то единственный разумный ответ будет то, что они предложили хорошую методологическую идею. Необходимо продумать в чём действительно она состоит, и продумав, сменить способ её использования – не как рабочей гипотезы, а как гипотезы нулевой, которую надо опровергать, чтобы убедиться в том, что перед нами «хорошо выделенная система», с которой происходит нечто существенное в плане функционирования и/или эволюции. То есть «программа Гамильтона-Вилсона- Докинза» не исчезнет совсем, но сохранится как полезный приём, позволяющий допущением предельной «эгоистичности частей» «проверить на излом» соответствующую биосистему – сохранит ли она хороший устойчивость и целостности при такой интенсивности «обмана» и такой концентрации «обманщиков», справятся ли с ними существующие механизмы регуляции и контроля? Владимир Фридман Биологический ф-т МГУ
  • 12. 3. Будет набирать силу «морфологический подход» к стохастическими системам, прежде всего к популяциям, социуму и виду как системе популяций, определённым образом структурированной в пространстве ареала и отграниченной от аналогичных популяционных систем, составляющих другие виды. Это даст новую жизнь исследованиям процессов регуляции - каким образом система управляет своими элементами - вроде бы независимыми индивидами, чтобы иметь возможность устойчиво воспроизводить присущий ей специфический паттерн системной структуры вопреки возмущениям извне и напряжениям изнутри? Это позволит распространить на популяцию и социум те представления о структуре, архетипе, форме и гомологии, которые оказались исключительно плодотворны для идеалистической морфологии. ………………………. Владимир Фридман Биологический ф-т МГУ
  • 13. Биоинформатика – это способ заниматься биологией, не наблюдая живые существа, как зоологи, не делая опытов в пробирке, как экспериментальные биологи, а анализируя результаты массовых данных или целых проектов. Там есть два аспекта. Один – чисто практический. Оказывается, глядя на буковки, или на структуры белков, или на карты белковых взаимодействий, которые получены из таких массовых экспериментов, вы можете делать совершенно конкретные, проверяемые биологические утверждения. ………………… Вторая вещь. Это началось с чистой техники. Размер генома человека – 3 миллиарда нуклеотидов, 3 миллиарда букв. Их надо где-то хранить, ими надо уметь манипулировать. Это чисто техническая сторона. Но очень важная. ……… Этими колоссальными объемами данных надо уметь манипулировать. Кроме того, оказалось, что можно делать утверждения уже не настолько частные, что «этот белок делает это», а строить утверждения о системе взаимодействия белков в клетке. Описания общих свойств на уровне целой клетки. М.Гельфанд.
  • 14. Третий аспект биоинформатики, с моей точки зрения, самый интересный, потому что самая правильная биоинформатика – это биоинформатика эволюционная. Интереснее всего описывать не то, как клетка устроена сейчас, а то, как она такой получилась. Что происходило, что породило такие механизмы внутри клетки и т. д. Эволюционная биология - наука очень старая, а молекулярная эволюция, то есть использование молекулярных данных для реконструкции эволюционных событий, – вещь более новая. Она стала возможной, когда такие данные стали приходить в эволюционную биологию. Происходят, по- видимому, некие культурные войны между классическими эволюционными биологами и молекулярными эволюционистами. Причем они происходят в одну сторону. М.Гельфанд.
  • 16. 16 Bioinformatics - A New Discipline Taken from: D. Gilberts & C. Tan, 2002 http://www.brc.dcs.gla.ac.uk/~drg/courses/bioinformatics_city/slides/slides1/sld018.htm Large scale analysis and interpretation of genomics data. Computing Math& Stats Life sciences Physical sciences
  • 18. 18 Different genes are activated in different cells, creating the specific proteins that give a particular cell type its character. Different Eukaryotic Cell Types http://www.accessexcellence.org/AE/AEPC/NIH/gene03.html
  • 19. 4 Nucleotides (bases) Adenine (A) Cytosine (C) Guanine (G) Thymine (T) triplet codons genetic code 20 amino acids (A, L, V, S etc.) Sequence data = Strings of letters Eukaryotic Genome Structure DNA
  • 20. Translation in Eukaryotes http://www1.imim.es/courses/Lisboa01/slide1.6_translation.html Animation: http://cbms.st-and.ac.uk/academics/ryan/Teaching/medsci/Medsci6.htm
  • 21. Proteins Determines Cell Structure and Function • Unique protein expression by each cell type. • Proteins are ~60% of dry mass of living cell. • Proteins determine function. http://www.library.csi.cuny.edu/~davis/Bioinfo_326/lectures/centralDogmaProteins/centralDogma.html
  • 22. Transcription mRNA Cells express different subset of the genes in different tissues and under different conditions. Gene (DNA) Translation Protein DNA RNA Protein Symptomes (Phenotype) The Central Dogma
  • 23. 23 The BIG Goal “The greatest challenge, however, is analytical. … Deeper biological insight is likely to emerge from examining datasets with scores of samples.” Eric Lander, “array of hope” Nat. Gen. volume 21 supplement pp 3 - 4, 1999. Bio-informatics: Provide methodologies for elucidating biological knowledge from biological data.
  • 24. 24 Goal: Enable the discovery of new biological insights and create a global perspective for life sciences. Data produced by bio-labs and stored in database. Better biological and medical understanding.Bio-InformaticsBio-Informatics AlgorithmsAlgorithms and Toolsand Tools Computational methods for global understanding of biological data. What is Bio-Informatics ?
  • 25. Computer Science Tools are Crucial • New bio-technologies create huge amounts of data. • It is impossible to analyze data by manual inspection. • Novel mathematical, statistical, algorithmic and computational tools are necessary ! • An emerging interdisciplinary research area, bringing together experimental and computational approaches to biology and bio- medicine. • Deals with the computational management and analysis of biological information: genes, genomes, proteins, cells, clinical information. • Used terms: Bioinformatics, Computational biology. http://www.library.csi.cuny.edu/~davis/Bioinfo_326/lectures/lect14/lect_14.html
  • 26. Bioinformatics: Research, development, or application of computational tools and approaches for expanding the use of biological, medical, behavioral or health data, including those to acquire, store, organize, archive, analyze, or visualize such data. Computational biology: The development and application of data-analytical and theoretical methods, mathematical modeling and computational simulation techniques to the study of biological,behavioral, and social systems. Bio-Informatics working definition (NIH; National Institute of Health, USA)
  • 27. Important Bio-Info. Topics • Sequence comparison and alignment. • Gene finding analysis. • Finding regulatory motifs. • Structural biology: 3D protein structure, correlated to function. • Constructing phylogeny trees from sequences.
  • 28. 28 • A more global view of experimental design. (from “one scientist = one gene/protein/ disease” paradigm to whole organism consideration). • Data mining - functional/structural information is important for studying the molecular basis of diseases, diagnostics, developing drugs (personal medicine), evolutionary patterns, etc. Why Use Bio-Informatics ? http://www.sanger.ac.uk/PostGenomics/S_pombe/presentations/EMBOCopenhagenWebsite.pdf
  • 29. 29 The Next Step Locate all the genes and describe their function. This will probably take another 15-20 years ! Future ofFuture of Bio-InformaticsBio-Informatics
  • 30. 30 One can efficiently find information: • E-mail. • Web - information and software. How likely are you to use a free bio-informatics library of accessible software ? http://www.cryst.bbk.ac.uk/classlib/BBSRC_poster/potential.html The Job of Biologists is Changing…
  • 31. 31 Types of Data (Databases) Primary (Raw) Databases ibbons Cylinders Secondary (analyzed) Databases Publications
  • 34. Red Blood Cells • Carry oxygen from the lungs. • Carry carbon dioxide back to the lungs. • Contain hemoglobin. • Made from iron, folic acid and vitamin B12, in the bone marrow.
  • 35. 35 Similarity / Analogy Examples: If looks like an elephant, and smells like an elephant– it’s an elephant. If walks like a duck, and quacks like a duck– it’s a duck. http://cbms.st-and.ac.uk/academics/ryan/Teaching/molbiol/Bioinf_files/v3_document.htm
  • 36. 36 Similarity Search in Databanks Find similar sequences to a working draft. As databanks grow, homologies get harder, and quality is reduced. Alignment Tools: BLAST & FASTA (time saving heuristics- approximations). Pairwise alignment:
  • 37. 37 The Globin Family: Multiple Sequence Alignment (MSA) All globin molecules have a similar 3D structure, despite large sequence differences. Globins amino acid sequence identities range from 99% (very similar) to 16% (very different). Multiple alignment: find protein families and functional domains.
  • 38. • Possible in principle. • Astronomical, highly under-constrained search space. • Biophysics complex and incomplete. • Next to impossible in practice. The Structural Prediction Problem “Given a protein sequence, compute its structure”. GCTCCTCACTGTCTGTGT TTATTCTTTTAGCTTCTTC AGATCTTTTAGTCTGAGG AAGCCTGGCATGTGCAAA TGAAGTTAACCTAA...
  • 40. 40 Human α−Globin Whale Myoglobin Yellow Lupine Leghemoglobin 3D Structure of Globins
  • 41. 41 Phylogeny Evolution - a process in which small changes occur within species over time. These changes could be monitored today using molecular techniques. The Tree of Life: A classical, basic science problem, since Darwin’s 1859 “Origin of Species”.
  • 42. 42 How Did the Globin Gene Family Evolve ?
  • 43. 43 Origin of the universe ? Formation of the solar system First self replicating systems Prokaryotes/ eukaryotes Plant/ animals Invertebrates/ vertebrates Mammalian radiation Tree of Life: Searching Protein Sequence Databases - How far can we see back ?
  • 44. What is a Gene ? DNA contains various recognition sites: • Promoter signals. • Transcription start signals. • Start codon. • Exon, intron boundaries. • Transcription termination signal. Start codon Terminal codon Transcribed region Un-coded region Un-coded region exon exon exon intron intron promotor
  • 45. 45 Gene Finding • Only 2% of the human genome encodes for functional genes. • Genes are found along large non-coding DNA regions. • Repeats, pseudo-genes, introns, contamination of vectors, are confusing.
  • 46. 46 Existing programs for locating genes within genomic sequences utilize a number of statistical signals and employ statistical models such as hidden Markov models (HMMs). The problem is not solved yet ! Gene Finding
  • 47. 47
  • 48. 48 A map - graphic representation that provides information about the location of sites and the spacing between them. Maps for the genome provide the relative order of items (“markers”) along the chromosome. Genomic Mapping Two Major Types of Genomic Maps : • Genetic maps. • Physical maps.
  • 49. 49
  • 50. 50 Microarrays (“DNA Chips”) Leading edge, future technologies (since 1988): In a single experiment, measure expression level of thousands of genes. • Find informative genes that may have predictive power for medical diagnosis. • Potential for personalized medicine, e.g. kits for identifying cancer types and prescribe “personal” treatment.
  • 51. 51 Clustering algorithms: Identify: 1. Biological function. 2. Similar regulation. Microarray (“DNA Chip”) Analysis Discover meaningful relationships among genes:
  • 52. Pharmaco-genomics • Use DNA information to measure and predict the reaction to drugs. • Personalized medicine. • Faster clinical trials: selected populations. • Less drug side-effects.
  • 54. 54 GENE EXPRESSION, GENES FUNCTION, DRUG & PERSONAL THERAPY CODING REGIONS SEQUENCE ALIGNMENT ORTHOLOG GENES (Taxonomy) CONSERVED DOMAINS GENE FAMILIES MUTATIONS & POLYMORPHISMGENOME MAPS CELLULAR LOCATION SIGNAL PEPTIDE 3-D STRUCTURE Putting it all together: Bio-Informatics