Ch15p

Chapter 15
Exercise Solutions

EX15.1
For the circuit shown in Figure 15.7
            1
 f 3dB =
          2π RC
or
            1          1
RC =            =                = 3.979 × 10−6
         2π f3dB 2π ( 40 × 103 )
For R = 75 K
Then
C = 5.31×10−11 = 53.1 pF
We have C3 = 1.414C = 75.1 pF
        C4 = 0.707C = 37.5 pF

EX15.2
       1
 fC =
      CReq
or
           1            1
C=             =
        f c Req (105 )( 20 × 106 )
C = 0.5 pF

EX15.3
                                   C1    30
Low-frequency gain: T = −             =−    = −6
                                   C2     5
            fC C2 (100 × 10 )( 5 × 10 )
                           3         −12

 f 3dB =         =                       ⇒ f 3dB = 6.63 kHz
           2π CF     2π (12 × 10−12 )

EX15.4
             1
 f0 =
     2π 3RC
         1              1
RC =           =               = 6.13 × 10−6
      2π f 0 3 2π (15 × 10 ) 3
                          3


Let C = 0.001 μF = 1 nF
Then R = 6.13 kΩ so R2 = 8R = 49 kΩ

EX15.5
          1          1
 f0 =         ⇒C =
        2π RC      2π f 0 R
                 1
C=                          ⇒ C ≅ 0.02 μ F
        2π ( 800 ) (104 )
R2 = 2 R1 = 2 (10 ) ⇒ R2 = 20 kΩ

EX15.6
⎛ R1 ⎞
VTH = ⎜         ⎟ VH
      ⎝ R1 + R2 ⎠
     ⎛ R1 ⎞
2=⎜             ⎟ (12)
     ⎝ R1 + 20 ⎠
2 ( R1 + 20 ) = 12 R1
40 = 10 R1 ⇒ R1 = 4 kΩ

EX15.7
            ⎛ R1 ⎞
VTH − VTL = ⎜         ⎟ (VH − VL )
            ⎝ R1 + R2 ⎠
       ⎛ R1 ⎞
0.10 = ⎜         ⎟ (10 − [ −10])
       ⎝ R1 + R2 ⎠
     R2   20        R
1+      =    = 200 ⇒ 2 = 199
     R1 0.10        R1
     ⎛ R2 ⎞
VS = ⎜         ⎟ VREF
     ⎝ R1 + R2 ⎠
       ⎛    R ⎞       ⎛    1 ⎞
VREF = ⎜1 + 1 ⎟ VS = ⎜ 1 +   ⎟ (1) ⇒ VREF = 1.005 V
       ⎝    R2 ⎠      ⎝ 199 ⎠
     VH − VBE ( on ) − Vγ
I=
          R + 0.1
          10 − 0.7 − 0.7
R + 0.1 =                = 43 kΩ
               0.2
R = 42.9 kΩ

EX15.8
At t = 0− , let v0 = −5 so v X = −2.5. For t > 0
                             ⎛ −t ⎞
v X = 10 + ( −2.5 − 10 ) exp ⎜ ⎟
                             ⎝ rX ⎠
When v X = 5.0, output switches
                    ⎛ t ⎞
5.0 = 10 − 12.5 exp ⎜ − 1 ⎟
                    ⎝ rX ⎠
     ⎛ t ⎞ 10 − 5 5.0
exp ⎜ − 1 ⎟ =         =
     ⎝ rX ⎠ 12.5 12.5
     ⎛ t ⎞ 12.5                      ⎛ 12.5 ⎞
exp ⎜ + 1 ⎟ =         ⇒ t1 = rX ⋅ ln ⎜      ⎟ ⇒ t1 = rX ( 0.916 )
     ⎝ rX ⎠ 5.0                      ⎝ 5.0 ⎠
During the next part of the cycle
                            ⎛ t ⎞
v X = −5 + ( 5 − [ −5]) exp ⎜ − ⎟
                            ⎝ rX ⎠
When v X = −2.5, output switches
⎛ t ⎞
−2.5 = −5 + 10 exp ⎜ − 2 ⎟
                   ⎝ rX ⎠
    ⎛ t ⎞ 5 − 2.5 2.5
exp ⎜ − 2 ⎟ =    =
    ⎝ rX ⎠    10   10
    ⎛ t ⎞ 10                   ⎛ 10 ⎞
exp ⎜ + 2 ⎟ =   ⇒ t2 = rX ⋅ ln ⎜     ⎟ ⇒ t2 = rX (1.39 )
    ⎝  rX ⎠ 2.5                ⎝ 2.5 ⎠
                                                                           1
Period = t1 + t2 = T = ⎡( 0.916 ) + (1.39 ) ⎤ rX = 2.31rX ⇒ Frequency =
                       ⎣                    ⎦                           2.31rX
rX = ( 50 × 103 )( 0.01× 10 −6 ) = 5 × 10 −4 s ⇒ f = 866 Hz
                  t1                 ( 0.916 )
Duty cycle =           × 100% =                     × 100% ⇒ Duty cycle = 39.7%
               t1 + t2          ( 0.916 ) + (1.39 )




EX15.9
a.
rX = RX C X
     ⎛ R1 ⎞           ⎛ 10 ⎞
vY = ⎜         ⎟ v0 = ⎜         ⎟ (12 ) = 1.2 V
     ⎝ R1 + R2 ⎠      ⎝ 10 + 90 ⎠
        R1
β=           = 0.10
     R1 + R2
                                ⎡     0.7 ⎤
          ⎡1 + Vγ /VP ⎤         ⎢ 1 + 12 ⎥
T = rX ln ⎢           ⎥ = rX ln ⎢           ⎥
          ⎣ 1− β ⎦              ⎢1 − (0.10) ⎥
                                ⎢
                                ⎣           ⎥
                                            ⎦
T = 50 × 10−6 = rX ln [1.18] = (0.162) rX
            50 × 10−6
RX =                       ⇒ RX = 3.09 kΩ
       (0.1× 10−6 )(0.162)
b.        Recovery time
                            ⎛ t ⎞
v X = VP + (−1.2 − VP ) exp ⎜ − ⎟
                            ⎝ rX ⎠
When v X = Vγ , t = t2
⎛ t ⎞
0.7 = 12 + ( −1.2 − 12 ) exp ⎜ − 2 ⎟
                             ⎝ rX ⎠
     ⎛ t ⎞ 12 − 0.7
exp ⎜ − 2 ⎟ =            = 0.856
     ⎝ rX ⎠      13.2
           ⎛ 1 ⎞
t2 = rX ln ⎜       ⎟ = ( 0.155 ) rX
           ⎝ 0.856 ⎠
rX = ( 3.09 × 103 )( 0.1× 10−6 ) = 3.09 × 10−4 ⇒ t2 = 48.0 μ s

EX15.10
T = 1.1 RC
T = 75 × 10−6
Let C = 10 nF
Then
        75 × 10−6
R=                    = 6.82 K
    (1.1) (10 ×10−9 )

EX15.11
             1                                    1
 f =                      =                                                 ⇒ f = 802 Hz
    0.693 ( RA + 2 RB ) C ( 0.693) ⎡ 20 + 2 ( 80 ) ⎤ × 103 × ( 0.01× 10−6 )
                                   ⎣               ⎦
               R + RB               20 + 80
Duty cycle = A           × 100% =               × 100% ⇒ Duty cycle = 55.6%
              RA + 2 RB           20 + 2 ( 80 )

EX15.12
                  1 VP2
a.          P=     ⋅
                  2 RL
          VP = 2 RL P = 2 ( 8 )(1) ⇒ VP = 4 V
                  VP 4
           IP =     = ⇒ I P = 0.5 A
                  RL 8
b.        VCE = 12 − 4 = 8 V
           I C ≈ 0.5 A
So P = I C ⋅ VCE = ( 0.5 )( 8 ) ⇒ P = 4 W

EX15.13
VP = 2 RL PL = 2 ( 8 )(10 ) = 12.65 V
        ⎛ V ⎞
PS = VS ⎜ P ⎟
        ⎝ π RL ⎠
       PS π R2 (10 ) π ( 8 )
VS =          =
         VP      12.65
VS = 19.9 V

EX15.14
                     dV0   dV dV
Line regulation =       +
                          = 0 ⋅ Z+
                     dV    dVZ dV
Now
dV0 ⎛ 10 ⎞
               = ⎜1 + ⎟ = 2
            dVZ ⎝ 10 ⎠
 dVZ ⎛ rZ ⎞             10
   +
     =⎜          ⎟=             = 0.00227
dV     ⎝ rZ + R1 ⎠ 10 + 4400
So Line regulation = ( 2 )( 0.00227 ) = 0.00454
0.454%

EX15.15




V1 V0 − V1      ⎛1 1⎞ V
   =       ⇒ V1 ⎜ + ⎟ = 0
10   10         ⎝ 10 10 ⎠ 10
   ⎛ 2⎞ V                       V
V1 ⎜ ⎟ = 0 ⇒ V0 = 2V1 ⇒ V1 = 0
   ⎝ 10 ⎠ 10                    2
V0 − V1 V0 V0 − A0 L (VZ − V1 )
         +    +                 =0
   10      RL       R0
    V0 V0 V0 A0 LVZ V1 A0 LV1
      +  +   −     = −
    10 RL R0   R0   10  R0
                                   V0   A V
                              =        − 0L 0
                                  2(10) 2 R0
V0       V 1000 ( 6.3) V0 (1000 ) V0
   + I0 + 0 −         =    −
10       0.5  0.5       20   2 ( 0.5 )
V0 [0.10 + 2.0 − 0.05 + 1000] + I 0 = 12, 600
V0 (1002.05) + I 0 = 12, 600
For I 0 = 1 mA ⇒ V0 = 12.5732
For I 0 = 100 mA ⇒ V0 = 12.4744
                V0 ( NL ) − V0 ( FL )
Load reg =                              × 100%
                     V0 ( NL )
             12.5732 − 12.4744
            =                  × 100%
                  12.5732
            Load reg = 0.786%

EX15.16
a.
VZ − 3VBE ( on )
IC 3 =
            R1 + R2 + R3
             5.6 − 3 ( 0.6 )           3.8
IC 3 =                             =        ⇒ I C 3 = 0.482 mA
         3.9 + 3.4 + 0.576             7.88
                  ⎛I ⎞
I C 4 R4 = VT ln ⎜ C 3 ⎟
                  ⎝ IC 4 ⎠
                           ⎛ 0.482 ⎞
I C 4 (0.1) = (0.026) ln ⎜         ⎟
                           ⎝ IC 4 ⎠
By trial and error
                 I C 4 = 0.213 mA
VB 7 = 2(0.6) + (0.482)(3.9) ⇒ VB 7 = 3.08 V
b.
⎛ R13 ⎞
⎜           ⎟ V0 = VB 8 = VB 7
⎝ R13 + R12 ⎠
⎛ 2.23 ⎞
⎜             ⎟ (5) = 3.08
⎝ 2.23 + R12 ⎠
( 2.23)( 5 ) = ( 3.08 )( 2.23) + ( 3.08) R12
11.15 = 6.868 = 3.08R12 ⇒ R12 = 1.39 kΩ

TYU15.1
        1
 f 3dB =
      2π RC
        1        1
RC =        =          = 1.59 × 10−5
     2π f3dB 2π (104 )
Let C = 0.01 μ F ⇒ R = 1.59 kΩ
Then
C1 = 0.03546 μ F
C2 = 0.01392 μ F
C3 = 0.002024 μ F
                1                      1
T =                         =
                        6                   6
         ⎛ f ⎞        ⎛ 20 ⎞
      1+ ⎜     ⎟   1+ ⎜ ⎟
         ⎝ f3d ⎠      ⎝ 10 ⎠
T = 0.124 or T = −18.1 dB

TYU15.2
             1            1
 f 3dB =         ⇒ RC =
           2π RC        2π f3dB
                    1
RC =                            = 3.18 × 10−6
           2π ( 50 × 103 )
Let C = 0.001 μ F = 1 nF ⇒ R = 3.18 kΩ
Then
R1 = 2.94 kΩ
R2 = 3.44 kΩ
R3 = 1.22 kΩ
R4 = 8.31 kΩ
                        1
T = 0.01 =
                                     8
                       ⎛ f     ⎞
                   1 + ⎜ 3− dB ⎟
                       ⎝ f ⎠
              8              2
    ⎛ f     ⎞ ⎛ 1 ⎞       4
1 + ⎜ 3− dB ⎟ = ⎜  ⎟ = 10
    ⎝   f ⎠ ⎝ 0.01 ⎠
         2
⎛ f3− dB ⎞            f 3dB
⎜        ⎟ ≅ 10 ⇒ f =       ⇒ f ≅ 15.8 kHz
⎝ f ⎠                   10

TYU15.3
                         1
1-pole       T =                         ⇒ −3.87 dB
                                 2
                        ⎛ 12 ⎞
                     1+ ⎜ ⎟
                        ⎝ 10 ⎠
                        1
2-pole       T =                         ⇒ −4.88 dB
                                 4
                        ⎛ 12 ⎞
                     1+ ⎜ ⎟
                        ⎝ 10 ⎠
                        1
3-pole       T =                         ⇒ −6.0 dB
                                 6
                        ⎛ 12 ⎞
                     1+ ⎜ ⎟
                        ⎝ 10 ⎠
                         1
4-pole       T =                         ⇒ −7.24 dB
                                 8
                        ⎛ 12 ⎞
                     1+ ⎜ ⎟
                        ⎝ 10 ⎠

TYU15.4
       1
Req =
      fC C
              1     1
or f C C =      =        = 2 × 10−7
             Req 5 × 106
If C = 10 pF ⇒ fC = 20 kHz

TYU15.5
         1              1
 f0 =        =                         ⇒ f 0 ≅ 65 kHz
      2π 6 RC 2π 6 (10 )(100 × 10−12 )
                      4



R2 = 29 R = 29 (104 ) ⇒ R2 = 290 kΩ

TYU15.6
1                             1
 f0 =                        =                               ⇒ f 0 = 7.12 MHz
               ⎛ CC ⎞                     ⎡ (10−9 ) 2    ⎤
        2π L ⋅ ⎜ 1 2 ⎟           2π (10 ) ⎢
                                         −6
                                                   −9
                                                        ⋅⎥
               ⎝ C1 + C2 ⎠                ⎣ 2 × 10       ⎦
C2
   = gm R
C1
       C2 1          1
gm =      ⋅ =             ⇒ g m = 0.25 mA / V
       C1 R 4 × 103
We have
        ⎛ k ′ ⎞⎛ W ⎞
g m = 2 ⎜ ⎟⎜ ⎟ (VGS − VTh )
        ⎝ 2 ⎠⎝ L ⎠
k ′ ≅ 20 μ A / V 2 , VGS − VTh ≅ 1 V
     W   0.25 × 10−3
So     =                 = 12.5
     L ( 20 × 10−6 ) (1)
and a value of W / L = 12.5 is certainly reasonable.

TYU15.7
        ⎛R ⎞
VTH = − ⎜ 1 ⎟ VL
        ⎝ R2 ⎠
         ⎛R ⎞           R
0.10 = − ⎜ 1 ⎟ ( −10 ) ⇒ 1 = 0.010
         ⎝ R2 ⎠         R2
Let R1 = 0.10 kΩ then R2 = 10 kΩ

TYU15.8
a.
      ⎛ R2 ⎞             ⎛ 10 ⎞
VS = ⎜          ⎟ VREF = ⎜        ⎟ ( 2)
      ⎝ R1 + R2 ⎠        ⎝ 1 + 10 ⎠
     VS = 1.82 V
           ⎛ R1 ⎞                  ⎛ 1 ⎞
VTH = VS + ⎜         ⎟ VH = 1.82 + ⎜        ⎟ (10 )
           ⎝ R1 + R2 ⎠             ⎝ 1 + 10 ⎠
      VTH = 2.73 V
              ⎛ R1 ⎞                  ⎛ 1 ⎞
VTL =    VS + ⎜         ⎟ VL = 1.82 + ⎜        ⎟ ( −10 )
              ⎝ R1 + R2 ⎠             ⎝ 1 + 10 ⎠
         VTL = 0.91 V
b.
TYU15.9
     ⎛    R ⎞
VS = ⎜ 1 + 1 ⎟ VREF
     ⎝ R2 ⎠
           ⎛R ⎞                    ⎛R ⎞
VTH = VS − ⎜ 1 ⎟ VL and VTL = VS − ⎜ 1 ⎟ VH
           ⎝ R2 ⎠                  ⎝ R2 ⎠
                               ⎛R ⎞
Hysteresis Width = VTH − VTL = ⎜ 1 ⎟ (VH − VL )
                               ⎝ R2 ⎠
      ⎛R ⎞                    ⎛R ⎞
2.5 = ⎜ 1 ⎟ ( 5 − [ −5]) = 10 ⎜ 1 ⎟
      ⎝ R2 ⎠                  ⎝ R2 ⎠
    R
So 1 = 0.25
    R2
Then
          ⎛     R ⎞
VS = −1 = ⎜ 1 + 1 ⎟ VREF = (1 + 0.25)VREF ⇒ VREF = −0.8 V
          ⎝     R2 ⎠
Then
VTH = −1 − ( 0.25 )( −5 ) ⇒ VTH = 0.25 V
VTL = −1 − ( 0.25 )( 5 ) ⇒ VTL = −2.25 V

TYU15.10
      ⎛ R1 ⎞           ⎛ 10 ⎞          1
vX = ⎜          ⎟ v0 = ⎜         ⎟ v0 = v0
      ⎝ R1 + R2 ⎠      ⎝ 10 + 20 ⎠     3
                   10
t = 0,     vX = −
                    3
           ⎛ 10        ⎞      ⎛ t ⎞
v X = 10 + ⎜ − − 10 ⎟ exp ⎜ − ⎟
           ⎝ 3         ⎠      ⎝ rX ⎠
                                10
Output switches when v X =
                                 3
10                    ⎛ t1 ⎞
   = 10 − 13.33 exp   ⎜− ⎟
 3                    ⎝ rX ⎠
    ⎛ t ⎞ 10 − 3.33 6.67
exp ⎜ − 1 ⎟ =       =
    ⎝ rX ⎠    13.33   13.33
      ⎛ t ⎞ 13.33
exp ⎜ + 1 ⎟ =         ≅2
      ⎝ rX ⎠ 6.67
t1 = rX ln (2) = (0.693)rX
T = 2(0.693)rX
           1
f =
      2(0.693)rX
rX = RX C X = (104 )( 0.1×10 −6 ) = 1×10 −3 ⇒ f = 722 Hz ⇒ Duty cycle = 50%




TYU15.11
   ⎛ R1 ⎞        20
β =⎜         ⎟=        = 0.333
   ⎝ R1 + R2 ⎠ 20 + 40
rX = RX C X = (104 )( 0.01× 10−6 ) = 1× 10−4
                                          ⎡     0.7 ⎤
          ⎛ 1 + Vγ / VP   ⎞               ⎢ 1+ 8 ⎥
                          ⎟ = (1× 10 ) ln ⎢          ⎥ ⇒ T = 48.9 μ s
                                    −4
T = rX ln ⎜
          ⎝ 1− β          ⎠               ⎢1 − 0.333 ⎥
                                          ⎢
                                          ⎣          ⎥
                                                     ⎦
Recovery time
⎛ R1 ⎞           ⎛ 20 ⎞
vY = ⎜         ⎟ v0 = ⎜         ⎟ (8) = 2.667 V
     ⎝ R1 + R2 ⎠      ⎝ 20 + 40 ⎠
                              ⎛ t ⎞
0.7 = 8 + ( −2.667 − 8 ) exp ⎜ − 2 ⎟
                              ⎝ rX ⎠
     ⎛ t ⎞ 8 − 0.7
exp ⎜ − 2 ⎟ =         = 0.6844
     ⎝ rX ⎠ 10.66
           ⎛ 1 ⎞
t2 = rX ln ⎜       ⎟ ⇒ t2 = 37.9 μ s
           ⎝ 0.685 ⎠

TYU15.12
                1
 f =
       ( 0.693)( RA + RB ) C
                   1
RA + RB =
             ( 0.693) fC
Let C = 0.01 μ F,        f = 1kHz
                                1
RA + RB =                                    = 1.443 × 105
             ( 0.693) (103 )( 0.01×10−6 )
                         RA + RB
Duty cycle = 55 =                  × 100%
                         RA + 2 RB

55 =
        (1.443 ×10 ) (100 )
                    5



        (1.443 ×10 ) + R
                    5
                            B



RB    =
         (1.443 ×10 ) (100 − 55) ⇒ R
                    5

                                            = 118 kΩ so RA = 26.2 kΩ
                                       B
                    55

TYU15.13
       v01 ⎛ R2 ⎞ ⎛ 30 ⎞
a.         = ⎜ 1 + ⎟ = ⎜1 + ⎟ = 2.5
       vI ⎝        R1 ⎠ ⎝ 20 ⎠
       v02      R      50
           =− 4 =−        = −2.5
       vI       R3     20
                1 VL2 1 [12 − (−12)]2
(b)        P=    ⋅   = ⋅              = 240 mW
                2 RL 2       1.2
Or
P = 0.24 W
            12
c.              = V pi = 4.8 V
            2.5

Recomendados

Ch14p von
Ch14pCh14p
Ch14pBilal Sarwar
259 views6 Folien
Ch02p von
Ch02pCh02p
Ch02pBilal Sarwar
285 views7 Folien
Ch12p von
Ch12pCh12p
Ch12pBilal Sarwar
443 views15 Folien
Ch02s von
Ch02sCh02s
Ch02sBilal Sarwar
633 views18 Folien
Solutions manual for engineering mechanics dynamics 13th edition by hibbeler von
Solutions manual for engineering mechanics dynamics 13th edition by hibbelerSolutions manual for engineering mechanics dynamics 13th edition by hibbeler
Solutions manual for engineering mechanics dynamics 13th edition by hibbelertable3252
12.2K views31 Folien
Ch09p von
Ch09pCh09p
Ch09pBilal Sarwar
249 views9 Folien

Más contenido relacionado

Was ist angesagt?

Ch15s von
Ch15sCh15s
Ch15sBilal Sarwar
593 views46 Folien
Sect2 3 von
Sect2 3Sect2 3
Sect2 3inKFUPM
509 views7 Folien
Ch11s von
Ch11sCh11s
Ch11sBilal Sarwar
746 views69 Folien
Ch08s von
Ch08sCh08s
Ch08sBilal Sarwar
463 views24 Folien
Hibbeler engineering mechanics_dynamics_12th_solucionario von
Hibbeler engineering mechanics_dynamics_12th_solucionarioHibbeler engineering mechanics_dynamics_12th_solucionario
Hibbeler engineering mechanics_dynamics_12th_solucionarioCaleb Rangel
8.6K views1048 Folien
Ultrasound lecture 1 post von
Ultrasound lecture 1 postUltrasound lecture 1 post
Ultrasound lecture 1 postlucky shumail
1K views58 Folien

Was ist angesagt?(17)

Sect2 3 von inKFUPM
Sect2 3Sect2 3
Sect2 3
inKFUPM509 views
Hibbeler engineering mechanics_dynamics_12th_solucionario von Caleb Rangel
Hibbeler engineering mechanics_dynamics_12th_solucionarioHibbeler engineering mechanics_dynamics_12th_solucionario
Hibbeler engineering mechanics_dynamics_12th_solucionario
Caleb Rangel8.6K views
Capitulo 6, 7ma edición von Sohar Carr
Capitulo 6, 7ma ediciónCapitulo 6, 7ma edición
Capitulo 6, 7ma edición
Sohar Carr7K views
Mecánica para ingeniería dinámica bedford - 5ed (sol) von sneydergustavo diaz
Mecánica para ingeniería  dinámica   bedford - 5ed (sol)Mecánica para ingeniería  dinámica   bedford - 5ed (sol)
Mecánica para ingeniería dinámica bedford - 5ed (sol)
sneydergustavo diaz33.8K views
Dinamica estructural 170614215831 von Miguel Ángel
Dinamica estructural 170614215831Dinamica estructural 170614215831
Dinamica estructural 170614215831
Miguel Ángel278 views
Capitulo 10, 7ma edición von Sohar Carr
Capitulo 10, 7ma ediciónCapitulo 10, 7ma edición
Capitulo 10, 7ma edición
Sohar Carr6.1K views
Gate 2013 complete solutions of ec electronics and communication engineering von manish katara
Gate 2013 complete solutions of ec  electronics and communication engineeringGate 2013 complete solutions of ec  electronics and communication engineering
Gate 2013 complete solutions of ec electronics and communication engineering
manish katara30.6K views
Capitulo 9, 7ma edición von Sohar Carr
Capitulo 9, 7ma ediciónCapitulo 9, 7ma edición
Capitulo 9, 7ma edición
Sohar Carr5.7K views
Problemas (13 Pág. - 37 Probl.) de Carga Eléctrica y Ley de Coulomb Tippens von LUIS POWELL
Problemas (13 Pág. - 37 Probl.) de Carga Eléctrica y Ley de Coulomb   TippensProblemas (13 Pág. - 37 Probl.) de Carga Eléctrica y Ley de Coulomb   Tippens
Problemas (13 Pág. - 37 Probl.) de Carga Eléctrica y Ley de Coulomb Tippens
LUIS POWELL21.8K views
Capitulo 2, 7ma edición von Sohar Carr
Capitulo 2, 7ma ediciónCapitulo 2, 7ma edición
Capitulo 2, 7ma edición
Sohar Carr2.6K views
solucionario del capitulo 12 von jasson silva
solucionario del capitulo 12 solucionario del capitulo 12
solucionario del capitulo 12
jasson silva18.5K views

Destacado

Ch09s von
Ch09sCh09s
Ch09sBilal Sarwar
396 views27 Folien
Ch06s von
Ch06sCh06s
Ch06sBilal Sarwar
767 views56 Folien
Ch10s von
Ch10sCh10s
Ch10sBilal Sarwar
576 views34 Folien
Ch11p von
Ch11pCh11p
Ch11pBilal Sarwar
535 views12 Folien
Ch08p von
Ch08pCh08p
Ch08pBilal Sarwar
277 views8 Folien
Ch05p von
Ch05pCh05p
Ch05pBilal Sarwar
434 views11 Folien

Destacado(14)

Новый IT для нового enterprise / Александр Титов (Экспресс 42) von Ontico
Новый IT для нового enterprise / Александр Титов (Экспресс 42)Новый IT для нового enterprise / Александр Титов (Экспресс 42)
Новый IT для нового enterprise / Александр Титов (Экспресс 42)
Ontico711 views
Мобильное приложение как способ изменить корпоративный мир / Андрей Тимербаев... von Ontico
Мобильное приложение как способ изменить корпоративный мир / Андрей Тимербаев...Мобильное приложение как способ изменить корпоративный мир / Андрей Тимербаев...
Мобильное приложение как способ изменить корпоративный мир / Андрей Тимербаев...
Ontico559 views
Agile в кровавом энтерпрайзе / Асхат Уразбаев (ScrumTrek) von Ontico
Agile в кровавом энтерпрайзе / Асхат Уразбаев (ScrumTrek)Agile в кровавом энтерпрайзе / Асхат Уразбаев (ScrumTrek)
Agile в кровавом энтерпрайзе / Асхат Уразбаев (ScrumTrek)
Ontico787 views
Быстрое прототипирование бэкенда игры с геолокацией на OpenResty, Redis и Doc... von Ontico
Быстрое прототипирование бэкенда игры с геолокацией на OpenResty, Redis и Doc...Быстрое прототипирование бэкенда игры с геолокацией на OpenResty, Redis и Doc...
Быстрое прототипирование бэкенда игры с геолокацией на OpenResty, Redis и Doc...
Ontico928 views

Similar a Ch15p

Ch13s von
Ch13sCh13s
Ch13sBilal Sarwar
304 views25 Folien
Ch07p von
Ch07pCh07p
Ch07pBilal Sarwar
312 views13 Folien
Ch14s von
Ch14sCh14s
Ch14sBilal Sarwar
433 views28 Folien
Ch07s von
Ch07sCh07s
Ch07sBilal Sarwar
626 views37 Folien
Ch06p von
Ch06pCh06p
Ch06pBilal Sarwar
407 views25 Folien
Ch04s von
Ch04sCh04s
Ch04sBilal Sarwar
506 views30 Folien

Similar a Ch15p(20)

Solutions manual for microelectronic circuits analysis and design 3rd edition... von Gallian394
Solutions manual for microelectronic circuits analysis and design 3rd edition...Solutions manual for microelectronic circuits analysis and design 3rd edition...
Solutions manual for microelectronic circuits analysis and design 3rd edition...
Gallian3942.4K views
Solutions tohc vermasconceptsofphysics2 von nayakq
Solutions tohc vermasconceptsofphysics2Solutions tohc vermasconceptsofphysics2
Solutions tohc vermasconceptsofphysics2
nayakq2.1K views
SolutionsPlease see answer in bold letters.Note pi = 3.14.docx von rafbolet0
SolutionsPlease see answer in bold letters.Note pi = 3.14.docxSolutionsPlease see answer in bold letters.Note pi = 3.14.docx
SolutionsPlease see answer in bold letters.Note pi = 3.14.docx
rafbolet07 views
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o... von Ansal Valappil
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Ansal Valappil91 views
Capítulo 04 carga e análise de tensão von Jhayson Carvalho
Capítulo 04   carga e análise de tensãoCapítulo 04   carga e análise de tensão
Capítulo 04 carga e análise de tensão
Jhayson Carvalho474 views

Más de Bilal Sarwar

Rameysoft-ftp client server, and others+ von
Rameysoft-ftp client server, and others+Rameysoft-ftp client server, and others+
Rameysoft-ftp client server, and others+Bilal Sarwar
526 views1 Folie
Ramey soft von
Ramey soft Ramey soft
Ramey soft Bilal Sarwar
599 views1 Folie
Ramey soft von
Ramey softRamey soft
Ramey softBilal Sarwar
479 views1 Folie
Ch12s von
Ch12sCh12s
Ch12sBilal Sarwar
413 views69 Folien
Ch05s von
Ch05sCh05s
Ch05sBilal Sarwar
606 views33 Folien
Ch03s von
Ch03sCh03s
Ch03sBilal Sarwar
429 views22 Folien

Más de Bilal Sarwar(6)

Último

JORNADA 4 LIGA MURO 2023.pdf von
JORNADA 4 LIGA MURO 2023.pdfJORNADA 4 LIGA MURO 2023.pdf
JORNADA 4 LIGA MURO 2023.pdfArturo Pacheco Alvarez
537 views3 Folien
INMOTION PRODUCTS von
INMOTION PRODUCTSINMOTION PRODUCTS
INMOTION PRODUCTSMark Zhang
13 views37 Folien
Constitution Quiz.pptx von
Constitution Quiz.pptxConstitution Quiz.pptx
Constitution Quiz.pptxDanPaulJacob
15 views27 Folien
Michael Jordan and the Three-Point Shot von
Michael Jordan and the Three-Point ShotMichael Jordan and the Three-Point Shot
Michael Jordan and the Three-Point ShotSohrab Tebyanian
6 views5 Folien
LUDO GAME DEVELOPMENT COMPANY.pptx von
LUDO GAME DEVELOPMENT COMPANY.pptxLUDO GAME DEVELOPMENT COMPANY.pptx
LUDO GAME DEVELOPMENT COMPANY.pptxpurvidadliwork
6 views9 Folien

Ch15p

  • 1. Chapter 15 Exercise Solutions EX15.1 For the circuit shown in Figure 15.7 1 f 3dB = 2π RC or 1 1 RC = = = 3.979 × 10−6 2π f3dB 2π ( 40 × 103 ) For R = 75 K Then C = 5.31×10−11 = 53.1 pF We have C3 = 1.414C = 75.1 pF C4 = 0.707C = 37.5 pF EX15.2 1 fC = CReq or 1 1 C= = f c Req (105 )( 20 × 106 ) C = 0.5 pF EX15.3 C1 30 Low-frequency gain: T = − =− = −6 C2 5 fC C2 (100 × 10 )( 5 × 10 ) 3 −12 f 3dB = = ⇒ f 3dB = 6.63 kHz 2π CF 2π (12 × 10−12 ) EX15.4 1 f0 = 2π 3RC 1 1 RC = = = 6.13 × 10−6 2π f 0 3 2π (15 × 10 ) 3 3 Let C = 0.001 μF = 1 nF Then R = 6.13 kΩ so R2 = 8R = 49 kΩ EX15.5 1 1 f0 = ⇒C = 2π RC 2π f 0 R 1 C= ⇒ C ≅ 0.02 μ F 2π ( 800 ) (104 ) R2 = 2 R1 = 2 (10 ) ⇒ R2 = 20 kΩ EX15.6
  • 2. ⎛ R1 ⎞ VTH = ⎜ ⎟ VH ⎝ R1 + R2 ⎠ ⎛ R1 ⎞ 2=⎜ ⎟ (12) ⎝ R1 + 20 ⎠ 2 ( R1 + 20 ) = 12 R1 40 = 10 R1 ⇒ R1 = 4 kΩ EX15.7 ⎛ R1 ⎞ VTH − VTL = ⎜ ⎟ (VH − VL ) ⎝ R1 + R2 ⎠ ⎛ R1 ⎞ 0.10 = ⎜ ⎟ (10 − [ −10]) ⎝ R1 + R2 ⎠ R2 20 R 1+ = = 200 ⇒ 2 = 199 R1 0.10 R1 ⎛ R2 ⎞ VS = ⎜ ⎟ VREF ⎝ R1 + R2 ⎠ ⎛ R ⎞ ⎛ 1 ⎞ VREF = ⎜1 + 1 ⎟ VS = ⎜ 1 + ⎟ (1) ⇒ VREF = 1.005 V ⎝ R2 ⎠ ⎝ 199 ⎠ VH − VBE ( on ) − Vγ I= R + 0.1 10 − 0.7 − 0.7 R + 0.1 = = 43 kΩ 0.2 R = 42.9 kΩ EX15.8 At t = 0− , let v0 = −5 so v X = −2.5. For t > 0 ⎛ −t ⎞ v X = 10 + ( −2.5 − 10 ) exp ⎜ ⎟ ⎝ rX ⎠ When v X = 5.0, output switches ⎛ t ⎞ 5.0 = 10 − 12.5 exp ⎜ − 1 ⎟ ⎝ rX ⎠ ⎛ t ⎞ 10 − 5 5.0 exp ⎜ − 1 ⎟ = = ⎝ rX ⎠ 12.5 12.5 ⎛ t ⎞ 12.5 ⎛ 12.5 ⎞ exp ⎜ + 1 ⎟ = ⇒ t1 = rX ⋅ ln ⎜ ⎟ ⇒ t1 = rX ( 0.916 ) ⎝ rX ⎠ 5.0 ⎝ 5.0 ⎠ During the next part of the cycle ⎛ t ⎞ v X = −5 + ( 5 − [ −5]) exp ⎜ − ⎟ ⎝ rX ⎠ When v X = −2.5, output switches
  • 3. ⎛ t ⎞ −2.5 = −5 + 10 exp ⎜ − 2 ⎟ ⎝ rX ⎠ ⎛ t ⎞ 5 − 2.5 2.5 exp ⎜ − 2 ⎟ = = ⎝ rX ⎠ 10 10 ⎛ t ⎞ 10 ⎛ 10 ⎞ exp ⎜ + 2 ⎟ = ⇒ t2 = rX ⋅ ln ⎜ ⎟ ⇒ t2 = rX (1.39 ) ⎝ rX ⎠ 2.5 ⎝ 2.5 ⎠ 1 Period = t1 + t2 = T = ⎡( 0.916 ) + (1.39 ) ⎤ rX = 2.31rX ⇒ Frequency = ⎣ ⎦ 2.31rX rX = ( 50 × 103 )( 0.01× 10 −6 ) = 5 × 10 −4 s ⇒ f = 866 Hz t1 ( 0.916 ) Duty cycle = × 100% = × 100% ⇒ Duty cycle = 39.7% t1 + t2 ( 0.916 ) + (1.39 ) EX15.9 a. rX = RX C X ⎛ R1 ⎞ ⎛ 10 ⎞ vY = ⎜ ⎟ v0 = ⎜ ⎟ (12 ) = 1.2 V ⎝ R1 + R2 ⎠ ⎝ 10 + 90 ⎠ R1 β= = 0.10 R1 + R2 ⎡ 0.7 ⎤ ⎡1 + Vγ /VP ⎤ ⎢ 1 + 12 ⎥ T = rX ln ⎢ ⎥ = rX ln ⎢ ⎥ ⎣ 1− β ⎦ ⎢1 − (0.10) ⎥ ⎢ ⎣ ⎥ ⎦ T = 50 × 10−6 = rX ln [1.18] = (0.162) rX 50 × 10−6 RX = ⇒ RX = 3.09 kΩ (0.1× 10−6 )(0.162) b. Recovery time ⎛ t ⎞ v X = VP + (−1.2 − VP ) exp ⎜ − ⎟ ⎝ rX ⎠ When v X = Vγ , t = t2
  • 4. ⎛ t ⎞ 0.7 = 12 + ( −1.2 − 12 ) exp ⎜ − 2 ⎟ ⎝ rX ⎠ ⎛ t ⎞ 12 − 0.7 exp ⎜ − 2 ⎟ = = 0.856 ⎝ rX ⎠ 13.2 ⎛ 1 ⎞ t2 = rX ln ⎜ ⎟ = ( 0.155 ) rX ⎝ 0.856 ⎠ rX = ( 3.09 × 103 )( 0.1× 10−6 ) = 3.09 × 10−4 ⇒ t2 = 48.0 μ s EX15.10 T = 1.1 RC T = 75 × 10−6 Let C = 10 nF Then 75 × 10−6 R= = 6.82 K (1.1) (10 ×10−9 ) EX15.11 1 1 f = = ⇒ f = 802 Hz 0.693 ( RA + 2 RB ) C ( 0.693) ⎡ 20 + 2 ( 80 ) ⎤ × 103 × ( 0.01× 10−6 ) ⎣ ⎦ R + RB 20 + 80 Duty cycle = A × 100% = × 100% ⇒ Duty cycle = 55.6% RA + 2 RB 20 + 2 ( 80 ) EX15.12 1 VP2 a. P= ⋅ 2 RL VP = 2 RL P = 2 ( 8 )(1) ⇒ VP = 4 V VP 4 IP = = ⇒ I P = 0.5 A RL 8 b. VCE = 12 − 4 = 8 V I C ≈ 0.5 A So P = I C ⋅ VCE = ( 0.5 )( 8 ) ⇒ P = 4 W EX15.13 VP = 2 RL PL = 2 ( 8 )(10 ) = 12.65 V ⎛ V ⎞ PS = VS ⎜ P ⎟ ⎝ π RL ⎠ PS π R2 (10 ) π ( 8 ) VS = = VP 12.65 VS = 19.9 V EX15.14 dV0 dV dV Line regulation = + = 0 ⋅ Z+ dV dVZ dV Now
  • 5. dV0 ⎛ 10 ⎞ = ⎜1 + ⎟ = 2 dVZ ⎝ 10 ⎠ dVZ ⎛ rZ ⎞ 10 + =⎜ ⎟= = 0.00227 dV ⎝ rZ + R1 ⎠ 10 + 4400 So Line regulation = ( 2 )( 0.00227 ) = 0.00454 0.454% EX15.15 V1 V0 − V1 ⎛1 1⎞ V = ⇒ V1 ⎜ + ⎟ = 0 10 10 ⎝ 10 10 ⎠ 10 ⎛ 2⎞ V V V1 ⎜ ⎟ = 0 ⇒ V0 = 2V1 ⇒ V1 = 0 ⎝ 10 ⎠ 10 2 V0 − V1 V0 V0 − A0 L (VZ − V1 ) + + =0 10 RL R0 V0 V0 V0 A0 LVZ V1 A0 LV1 + + − = − 10 RL R0 R0 10 R0 V0 A V = − 0L 0 2(10) 2 R0 V0 V 1000 ( 6.3) V0 (1000 ) V0 + I0 + 0 − = − 10 0.5 0.5 20 2 ( 0.5 ) V0 [0.10 + 2.0 − 0.05 + 1000] + I 0 = 12, 600 V0 (1002.05) + I 0 = 12, 600 For I 0 = 1 mA ⇒ V0 = 12.5732 For I 0 = 100 mA ⇒ V0 = 12.4744 V0 ( NL ) − V0 ( FL ) Load reg = × 100% V0 ( NL ) 12.5732 − 12.4744 = × 100% 12.5732 Load reg = 0.786% EX15.16 a.
  • 6. VZ − 3VBE ( on ) IC 3 = R1 + R2 + R3 5.6 − 3 ( 0.6 ) 3.8 IC 3 = = ⇒ I C 3 = 0.482 mA 3.9 + 3.4 + 0.576 7.88 ⎛I ⎞ I C 4 R4 = VT ln ⎜ C 3 ⎟ ⎝ IC 4 ⎠ ⎛ 0.482 ⎞ I C 4 (0.1) = (0.026) ln ⎜ ⎟ ⎝ IC 4 ⎠ By trial and error I C 4 = 0.213 mA VB 7 = 2(0.6) + (0.482)(3.9) ⇒ VB 7 = 3.08 V b. ⎛ R13 ⎞ ⎜ ⎟ V0 = VB 8 = VB 7 ⎝ R13 + R12 ⎠ ⎛ 2.23 ⎞ ⎜ ⎟ (5) = 3.08 ⎝ 2.23 + R12 ⎠ ( 2.23)( 5 ) = ( 3.08 )( 2.23) + ( 3.08) R12 11.15 = 6.868 = 3.08R12 ⇒ R12 = 1.39 kΩ TYU15.1 1 f 3dB = 2π RC 1 1 RC = = = 1.59 × 10−5 2π f3dB 2π (104 ) Let C = 0.01 μ F ⇒ R = 1.59 kΩ Then C1 = 0.03546 μ F C2 = 0.01392 μ F C3 = 0.002024 μ F 1 1 T = = 6 6 ⎛ f ⎞ ⎛ 20 ⎞ 1+ ⎜ ⎟ 1+ ⎜ ⎟ ⎝ f3d ⎠ ⎝ 10 ⎠ T = 0.124 or T = −18.1 dB TYU15.2 1 1 f 3dB = ⇒ RC = 2π RC 2π f3dB 1 RC = = 3.18 × 10−6 2π ( 50 × 103 ) Let C = 0.001 μ F = 1 nF ⇒ R = 3.18 kΩ Then
  • 7. R1 = 2.94 kΩ R2 = 3.44 kΩ R3 = 1.22 kΩ R4 = 8.31 kΩ 1 T = 0.01 = 8 ⎛ f ⎞ 1 + ⎜ 3− dB ⎟ ⎝ f ⎠ 8 2 ⎛ f ⎞ ⎛ 1 ⎞ 4 1 + ⎜ 3− dB ⎟ = ⎜ ⎟ = 10 ⎝ f ⎠ ⎝ 0.01 ⎠ 2 ⎛ f3− dB ⎞ f 3dB ⎜ ⎟ ≅ 10 ⇒ f = ⇒ f ≅ 15.8 kHz ⎝ f ⎠ 10 TYU15.3 1 1-pole T = ⇒ −3.87 dB 2 ⎛ 12 ⎞ 1+ ⎜ ⎟ ⎝ 10 ⎠ 1 2-pole T = ⇒ −4.88 dB 4 ⎛ 12 ⎞ 1+ ⎜ ⎟ ⎝ 10 ⎠ 1 3-pole T = ⇒ −6.0 dB 6 ⎛ 12 ⎞ 1+ ⎜ ⎟ ⎝ 10 ⎠ 1 4-pole T = ⇒ −7.24 dB 8 ⎛ 12 ⎞ 1+ ⎜ ⎟ ⎝ 10 ⎠ TYU15.4 1 Req = fC C 1 1 or f C C = = = 2 × 10−7 Req 5 × 106 If C = 10 pF ⇒ fC = 20 kHz TYU15.5 1 1 f0 = = ⇒ f 0 ≅ 65 kHz 2π 6 RC 2π 6 (10 )(100 × 10−12 ) 4 R2 = 29 R = 29 (104 ) ⇒ R2 = 290 kΩ TYU15.6
  • 8. 1 1 f0 = = ⇒ f 0 = 7.12 MHz ⎛ CC ⎞ ⎡ (10−9 ) 2 ⎤ 2π L ⋅ ⎜ 1 2 ⎟ 2π (10 ) ⎢ −6 −9 ⋅⎥ ⎝ C1 + C2 ⎠ ⎣ 2 × 10 ⎦ C2 = gm R C1 C2 1 1 gm = ⋅ = ⇒ g m = 0.25 mA / V C1 R 4 × 103 We have ⎛ k ′ ⎞⎛ W ⎞ g m = 2 ⎜ ⎟⎜ ⎟ (VGS − VTh ) ⎝ 2 ⎠⎝ L ⎠ k ′ ≅ 20 μ A / V 2 , VGS − VTh ≅ 1 V W 0.25 × 10−3 So = = 12.5 L ( 20 × 10−6 ) (1) and a value of W / L = 12.5 is certainly reasonable. TYU15.7 ⎛R ⎞ VTH = − ⎜ 1 ⎟ VL ⎝ R2 ⎠ ⎛R ⎞ R 0.10 = − ⎜ 1 ⎟ ( −10 ) ⇒ 1 = 0.010 ⎝ R2 ⎠ R2 Let R1 = 0.10 kΩ then R2 = 10 kΩ TYU15.8 a. ⎛ R2 ⎞ ⎛ 10 ⎞ VS = ⎜ ⎟ VREF = ⎜ ⎟ ( 2) ⎝ R1 + R2 ⎠ ⎝ 1 + 10 ⎠ VS = 1.82 V ⎛ R1 ⎞ ⎛ 1 ⎞ VTH = VS + ⎜ ⎟ VH = 1.82 + ⎜ ⎟ (10 ) ⎝ R1 + R2 ⎠ ⎝ 1 + 10 ⎠ VTH = 2.73 V ⎛ R1 ⎞ ⎛ 1 ⎞ VTL = VS + ⎜ ⎟ VL = 1.82 + ⎜ ⎟ ( −10 ) ⎝ R1 + R2 ⎠ ⎝ 1 + 10 ⎠ VTL = 0.91 V b.
  • 9. TYU15.9 ⎛ R ⎞ VS = ⎜ 1 + 1 ⎟ VREF ⎝ R2 ⎠ ⎛R ⎞ ⎛R ⎞ VTH = VS − ⎜ 1 ⎟ VL and VTL = VS − ⎜ 1 ⎟ VH ⎝ R2 ⎠ ⎝ R2 ⎠ ⎛R ⎞ Hysteresis Width = VTH − VTL = ⎜ 1 ⎟ (VH − VL ) ⎝ R2 ⎠ ⎛R ⎞ ⎛R ⎞ 2.5 = ⎜ 1 ⎟ ( 5 − [ −5]) = 10 ⎜ 1 ⎟ ⎝ R2 ⎠ ⎝ R2 ⎠ R So 1 = 0.25 R2 Then ⎛ R ⎞ VS = −1 = ⎜ 1 + 1 ⎟ VREF = (1 + 0.25)VREF ⇒ VREF = −0.8 V ⎝ R2 ⎠ Then VTH = −1 − ( 0.25 )( −5 ) ⇒ VTH = 0.25 V VTL = −1 − ( 0.25 )( 5 ) ⇒ VTL = −2.25 V TYU15.10 ⎛ R1 ⎞ ⎛ 10 ⎞ 1 vX = ⎜ ⎟ v0 = ⎜ ⎟ v0 = v0 ⎝ R1 + R2 ⎠ ⎝ 10 + 20 ⎠ 3 10 t = 0, vX = − 3 ⎛ 10 ⎞ ⎛ t ⎞ v X = 10 + ⎜ − − 10 ⎟ exp ⎜ − ⎟ ⎝ 3 ⎠ ⎝ rX ⎠ 10 Output switches when v X = 3
  • 10. 10 ⎛ t1 ⎞ = 10 − 13.33 exp ⎜− ⎟ 3 ⎝ rX ⎠ ⎛ t ⎞ 10 − 3.33 6.67 exp ⎜ − 1 ⎟ = = ⎝ rX ⎠ 13.33 13.33 ⎛ t ⎞ 13.33 exp ⎜ + 1 ⎟ = ≅2 ⎝ rX ⎠ 6.67 t1 = rX ln (2) = (0.693)rX T = 2(0.693)rX 1 f = 2(0.693)rX rX = RX C X = (104 )( 0.1×10 −6 ) = 1×10 −3 ⇒ f = 722 Hz ⇒ Duty cycle = 50% TYU15.11 ⎛ R1 ⎞ 20 β =⎜ ⎟= = 0.333 ⎝ R1 + R2 ⎠ 20 + 40 rX = RX C X = (104 )( 0.01× 10−6 ) = 1× 10−4 ⎡ 0.7 ⎤ ⎛ 1 + Vγ / VP ⎞ ⎢ 1+ 8 ⎥ ⎟ = (1× 10 ) ln ⎢ ⎥ ⇒ T = 48.9 μ s −4 T = rX ln ⎜ ⎝ 1− β ⎠ ⎢1 − 0.333 ⎥ ⎢ ⎣ ⎥ ⎦ Recovery time
  • 11. ⎛ R1 ⎞ ⎛ 20 ⎞ vY = ⎜ ⎟ v0 = ⎜ ⎟ (8) = 2.667 V ⎝ R1 + R2 ⎠ ⎝ 20 + 40 ⎠ ⎛ t ⎞ 0.7 = 8 + ( −2.667 − 8 ) exp ⎜ − 2 ⎟ ⎝ rX ⎠ ⎛ t ⎞ 8 − 0.7 exp ⎜ − 2 ⎟ = = 0.6844 ⎝ rX ⎠ 10.66 ⎛ 1 ⎞ t2 = rX ln ⎜ ⎟ ⇒ t2 = 37.9 μ s ⎝ 0.685 ⎠ TYU15.12 1 f = ( 0.693)( RA + RB ) C 1 RA + RB = ( 0.693) fC Let C = 0.01 μ F, f = 1kHz 1 RA + RB = = 1.443 × 105 ( 0.693) (103 )( 0.01×10−6 ) RA + RB Duty cycle = 55 = × 100% RA + 2 RB 55 = (1.443 ×10 ) (100 ) 5 (1.443 ×10 ) + R 5 B RB = (1.443 ×10 ) (100 − 55) ⇒ R 5 = 118 kΩ so RA = 26.2 kΩ B 55 TYU15.13 v01 ⎛ R2 ⎞ ⎛ 30 ⎞ a. = ⎜ 1 + ⎟ = ⎜1 + ⎟ = 2.5 vI ⎝ R1 ⎠ ⎝ 20 ⎠ v02 R 50 =− 4 =− = −2.5 vI R3 20 1 VL2 1 [12 − (−12)]2 (b) P= ⋅ = ⋅ = 240 mW 2 RL 2 1.2 Or P = 0.24 W 12 c. = V pi = 4.8 V 2.5