Ch13s

Chapter 13
Problem Solutions

13.1        Computer Simulation

13.2        Computer Simulation

13.3
(a)                       (
             Ad = g m1 ro 2 ro 4 Ri 6      )
          I C1   20
g m1 =         =    ⇒ 0.769 mA / V
          VT 0.026
          VA 2 80
 ro 2 =        =   = 4 MΩ
          I C 2 20
          VA 4 80
 ro 4 =        =   = 4 MΩ
          I C 2 20
 Ri 6 = rπ 6 + (1 + β n ) ⎡ R1 rπ 7 ⎤
                          ⎣         ⎦
        (120)(0.026)
 rπ 7 =                    = 15.6 k Ω
               0.2
        V (on) 0.6
 I C 6 ≅ BE        =         = 0.030 mA
             R1        20
          (120)(0.026)
 rπ 6 =                = 104 k Ω
             0.030
Then
Ri 6 = 104 + (121) ⎡ 20 15.6 ⎤ ⇒ 1.16 M Ω
                   ⎣         ⎦
Then
             (
Ad = 769 4 4 1.16 ⇒ Ad = 565  )
Now
                                                    ⎛ R1          ⎞
Vo = − I c 7 ro 7 = −( β n I b 7 )ro 7 = − β n ro 7 ⎜             ⎟ Ic6
                                                    ⎝ R1 + rπ 7   ⎠
                       ⎛ R1 ⎞                          Vo1
= − β n (1 + β n )ro 7 ⎜           ⎟ I b 6 and I b 6 =
                       ⎝ R1 + rπ 7 ⎠                   Ri 6
Then
        V      − β n (1 + β n )ro 7 ⎛ R1 ⎞
Av 2 = o =                          ⎜             ⎟
       Vo1               Ri 6       ⎝ R1 + rπ 7 ⎠
          VA     80
ro 7 =         =    = 400 k Ω
          I C 7 0.2
So
          −(120)(121)(400) ⎛ 20 ⎞
Av 2 =                     ⎜           ⎟ ⇒ Av 2 = −2813
               1160        ⎝ 20 + 15.6 ⎠
Overall gain = Ad ⋅ Av 2 = (565)(−2813) ⇒ A = −1.59 ×106
                                          (80)(0.026)
(b)          Rid = 2rπ 1 and rπ 1 =                   = 104 k Ω
                                             0.020
Rid = 208 k Ω
                          1
(c)          f PD =             and CM = (10)(1 + 2813) = 28,140 pF
                      2π Req CM
 Req = ro 2 ro 4 Ri 6 = 4 4 1.16 = 0.734 M Ω
                         1
 f PD =                                     = 7.71 Hz
          2π (0.734 × 10 )(28,140 × 10−12 )
                                  6
Gain-Bandwidth Product = (7.71)(1.59 × 106 ) ⇒ 12.3 MHz

13.4
a.        Q3 acts as the protection device.
b.        Same as part (a).

13.5
If we assume VBE (on) = 0.7 V, then Vin = 0.7 + 0.7 + 50 + 5
So breakdown voltage ≈ 56.4 V.

13.6
                    15 − 0.6 − 0.6 − (−15)
(a)       I REF =                          = 0.50 ⇒ R5 = 57.6 k Ω
                              R5
                 ⎛I ⎞
I C10 R4 = VT ln ⎜ REF ⎟
                 ⎝ I C10 ⎠
       0.026 ⎛ 0.50 ⎞
R4 =          ln ⎜         ⎟ ⇒ R4 = 2.44 k Ω
       0.030 ⎝ 0.030 ⎠
                   5 − 0.6 − 0.6 − (−5)
(b)       I REF =                       ⇒ I REF = 0.153 mA
                           57.6
                          ⎛ 0.153 ⎞
I C10 (2.44) = (0.026) ln ⎜        ⎟
                          ⎝ I C10 ⎠
By trial and error, I C10 ≅ 21.1 μ A

13.7
(a)       I REF ≅ 0.50 mA
            ⎛I ⎞                   ⎛ 0.50 × 10−3 ⎞
VBE = VT ln ⎜ REF ⎟ = (0.026) ln ⎜        −14    ⎟ ⇒ VBE11 = 0.641V = VEB12
            ⎝ IS ⎠                 ⎝ 10          ⎠
Then
      15 − 0.641 − 0.641 − (−15)
R5 =                                ⇒ R5 = 57.4 k Ω
                  0.50
      0.026 ⎛ 0.50 ⎞
R4 =         ln ⎜       ⎟ ⇒ R4 = 2.44 k Ω
      0.030 ⎝ 0.030 ⎠
                  ⎛ 0.030 × 10−3 ⎞
VBE10 = 0.026 ln ⎜        −14    ⎟ ⇒ VBE10 = 0.567 V
                  ⎝ 10           ⎠
(b)       From Problem 13.6, I REF ≅ 0.15 mA
                         ⎛ 0.15 × 10−3 ⎞
VBE11 = VEB12 = 0.026 ln ⎜      −14    ⎟ = 0.609 V
                         ⎝ 10          ⎠
              5 − 0.609 − 0.609 − (−5)
Then I REF =                             ⇒ I REF = 0.153 mA
                        57.4
Then I C10 ≅ 21.1 μ A from Problem 13.6

13.8
                   5 − 0.6 − 0.6 − (−5)
a.        I REF =                       ⇒ I REF = 0.22 mA
                            40
                 ⎛I ⎞
I C10 R4 = VT ln ⎜ REF ⎟
                 ⎝ I C10 ⎠
                       ⎛ 0.22 ⎞
I C10 (5) = (0.026) ln ⎜       ⎟
                       ⎝ I C10 ⎠
By trial and error;
I C10 ≅ 14.2 μ A
          I C10
IC 6 ≅          ⇒ I C 6 = 7.10 μ A
            2
I C17   = 0.75 I REF ⇒ I C17 = 0.165 mA
I C13 A = 0.25I REF ⇒ I C13 A = 0.055 mA
(b)        Using Example 13.4
 rπ 17 = 31.5 kΩ
     ′
  RE = 50 [31.5 + (201)(0.1)] = 50 51.6 = 25.4 kΩ
           β nVT
 rπ 16 =           and
           I C16
         0.165 (0.165)(0.1) + 0.6
I C16 =         +                   = 0.0132 mA
           200            50
 rπ 16 = 394 kΩ
Then
 Ri 2 = 394 + (201)(25.4) ⇒ 5.5 MΩ
  rπ 6 = 732 kΩ
         0.00710
gm6 =              = 0.273 mA / V
           0.026
            50
  r06 =          = 7.04 MΩ
         0.0071
Then
Ract1 = 7.04[1 + (0.273)(1 732)] = 8.96 MΩ
            50
   r04 =          = 7.04 MΩ
          0.0071
Then
          ⎛ 7.1 ⎞
 Ad = − ⎜         ⎟ (7.04 8.96 5.5)
          ⎝ 0.026 ⎠
or
 Ad = −627 Gain of differential amp stage
Using Example 13.5, and neglecting the input resistance to the output stage:
         V       50
Ract 2 = A =          = 303 kΩ
        I C13 B 0.165
            −(200)(201)(50)(303) (303)
  Av 2 =
         (5500)[50 + 31.5 + (201)(0.1)]
or
 Av 2 = −545 Gain of second stage

13.9
I C10 = 19 μ A
From Equation (13.6)
            ⎡ β 2 + 2β P + 2 ⎤      ⎡ (10) 2 + 2(10) + 2 ⎤
I C10 = 2 I ⎢ P              ⎥ = 2I ⎢                    ⎥
            ⎣ β P + 3β P + 2 ⎦      ⎣ (10) + 3(10) + 2 ⎦
                2                          2


             ⎡122 ⎤
        = 2I ⎢    ⎥
             ⎣132 ⎦
So
            ⎛ 132 ⎞
2 I = (19) ⎜      ⎟ = 20.56 μ A
            ⎝ 122 ⎠
I C 2 = I = 10.28 μ A
2I             20.56
IC 9 =               =           ⇒ I C 9 = 17.13 μ A
        ⎛    2 ⎞         ⎛    2⎞
        ⎜1 +    ⎟        ⎜ 1+ ⎟
        ⎝    βP ⎠        ⎝ 10 ⎠
        I     17.13
I B9   = C9 =       ⇒ I B 9 = 1.713 μ A
         βP     10
             I        10.28
IB4 =               =       ⇒ I B 4 = 0.9345 μ A
         (1 + β P )    11
         ⎛ β       ⎞           ⎛ 10 ⎞
IC 4 = I ⎜ P       ⎟ = (10.28) ⎜ ⎟ ⇒ I C 4 = 9.345 μ A
         ⎝1+ βP    ⎠           ⎝ 11 ⎠

13.10
VB 5 − V − = VBE (on) + I C 5 (1)
             = 0.6 + (0.0095)(1) = 0.6095
        0.6095
IC 7 =            ⇒ I C 7 = 12.2 μ A
            50
I C 8 = I C 9 = 19 μ A
I REF = 0.72 mA
I E13 = I REF = 0.72 mA
I C14 = 138 μ A
Power = (V + − V − ) [ I C 7 + I C 8 + I C 9 + I REF + I E13 + I C14 ]
= 30[0.0122 + 0.019 + 0.019 + 0.72 + 0.72 + 0.138]
⇒ Power = 48.8 mW
Current supplied by V + and V − = I C 7 + I C 8 + I C 9 + I REF + I E13 + I C14
                                        = 1.63 mA

13.11
(a)         vcm (min) = −15 + 0.6 + 0.6 + 0.6 + 0.6 = −12.6 V
vcm (max) = +15 − .6 = 14.4 V
So − 12.6 ≤ vcm ≤ 14.4 V
(b)         vcm (min) = −5 + 4(0.6) = −2.6 V
vcm (max) = 5 − 0.6 = 4.4 V
So − 2.6 ≤ vcm ≤ 4.4 V

13.12
If v0 = V − = −15 V , the base voltage of Q14 is pulled low, and Q18 and Q19 are effectively cut off. As
a first approximation
           0.6
 I C14 =           = 22.2 mA
         0.027
         22.2
 I B14 =         = 0.111 mA
         200
Then
 I C15 = I C13 A − I B14 = 0.18 − 0.111 = 0.069 mA
Now
                  ⎛I ⎞
VBE15 = VT ln ⎜ C15 ⎟
                  ⎝ 15 ⎠
                        ⎛ 0.069 × 10−3 ⎞
        = (0.026) ln ⎜          −14    ⎟
                        ⎝ 10           ⎠
         = 0.589 V
As a second approximation
         0.589
I C14 =        ⇒ I C14 = 21.8 mA
         0.027
         21.8
 I B14 =      = 0.109 mA
         200
and
I C15 = 0.18 − 0.109 ⇒ I C15 = 0.071 mA

13.13
a.         Neglecting base currents:
I D = I BIAS
Then
                      ⎛I ⎞
VBB = 2VD = 2VT ln ⎜ D ⎟
                      ⎝ IS ⎠
                              ⎛ 0.25 × 10−3 ⎞
                = 2(0.026) ln ⎜         −14 ⎟
                              ⎝ 2 × 10      ⎠
or
VBB = 1.2089 V
                      ⎛V / 2⎞
I CN = I CP = I S exp ⎜ BB ⎟
                      ⎝ VT ⎠
                     ⎛ 1.2089 ⎞
     = 5 × 10−14 exp ⎜          ⎟
                     ⎝ 2(0.026) ⎠
So
I CN = I CP = 0.625 mA
b.         For vI = 5 V, v0 ≅ 5 V
     5
iL ≅    = 1.25 mA
     4
As a first approximation
I CN ≈ iL = 1.25 mA
                  ⎛ 1.25 × 10−3 ⎞
VBEN = (0.026) ln ⎜         −14 ⎟
                                  = 0.6225 V
                  ⎝ 5 × 10      ⎠
Neglecting base currents,
VBB = 1.2089 V
Then VEBP = 1.2089 − 0.6225 = 0.5864 V
                     ⎛ 0.5864 ⎞
I CP = 5 × 10−14 exp ⎜        ⎟ ⇒ I CP = 0.312 mA
                     ⎝ 0.026 ⎠
As a second approximation,
I CN = iL + I CP = 1.25 + 0.31 ⇒ I CN ≅ 1.56 mA

13.14
                VBB        1.157
R1 + R2 =                =       = 64.28 kΩ
             (0.1) I BIAS 0.018
            ⎛I     ⎞              ⎛ (0.9) I BIAS ⎞
VBE = VT ln ⎜ C    ⎟ = (0.026) ln ⎜              ⎟
            ⎝ IS   ⎠              ⎝     IS       ⎠
                    ⎛ 0.162 × 10−3 ⎞
       = (0.026) ln ⎜      −14     ⎟
                    ⎝ 10           ⎠
VBE = 0.6112 V
      ⎛ R2 ⎞
VBE = ⎜         ⎟ VBB
      ⎝ R1 + R2 ⎠
          ⎛ R ⎞
0.6112 = ⎜ 2 ⎟ (1.157)
          ⎝ 64.28 ⎠
So
R2 = 33.96 kΩ
Then
R1 = 30.32 kΩ

13.15
(a)                        (
            Ad = − g m ro 4 ro 6 Ri 2    )
From example 13.4
          9.5
gm =            = 365 μ A / V , ro 4 = 5.26 M Ω
        0.026
Now
ro 6 = ro 4 = 5.26 M Ω
Assuming R8 = 0, we find
                           ′
Ri 2 = rπ 16 + (1 + β n ) RE
      = 329 + (201) ( 50 9.63) ⇒ 1.95 M Ω
Then
                  (                  )
Ad = −(365) 5.26 5.26 1.95 ⇒ Ad = −409
(b)         From Equation (13.20),

Av 2 =
                               (
         − β n (1 + β n ) R9 Ract 2 Ri 3 R017    )
              {
          Ri 2 R9 + ⎡ rπ 17 + (1 + β n ) Rg ⎤
                    ⎣                       ⎦}
For Rg = 0, Ri 2 = 1.95 M Ω
Using the results of Example 13.5

Av 2 =
                               (
         −200(201)(50) 92.6 4050 92.6                )⇒A    = −792
                      (1950){50 + 9.63}
                                                       v2




13.16
Let I C10 = 40 μ A, then I C1 = I C 2 = 20 μ A. Using Example 13.5,
Ri 2 = 4.07 MΩ
       (200)(0.026)
rπ 6 =               = 260 kΩ
           0.020
        0.020
gm6 =          = 0.769 mA/V
        0.026
        50
r06 =       ⇒ 2.5 MΩ
      0.02
Then
Ract1 = 2.5[1 + (0.769)(1 260)] = 4.42 MΩ
        50
r06 =       ⇒ 2.5 MΩ
      0.02
Then
⎛ I CQ ⎞
Ad = − ⎜      ⎟ (r04 Ract1 Ri 2 )
       ⎝ VT ⎠
       ⎛ 20 ⎞
   = −⎜          ⎟ (2.5 4.42 4.07)
       ⎝ 0.026 ⎠
So
Ad = −882

13.17
From Problem 13.8
I1 = I 2 = 7.10 μ A, I C17 = 0.165 mA, I C13 A = 0.055 mA
                  I E17 R8 + VBE17        0.165 (0.165)(0.1) + 0.6
I C16 ≈ I B17 +                       =        +
                         R9                200         50
                                      = 0.000825 + 0.01233
I C16 = 0.0132 mA
      (200)(0.026)
rπ 17 =                 = 31.5 K
         0.165
 RE = R9 [ rπ 17 + (1 + β ) R8 ] = 50 [31.5 + (201)(0.1)]
  1


     = 50 51.6 = 25.4 K
          (200)(0.026)
rπ 16 =                = 394 K
             0.0132
Then
Ri 2 = rπ 16 + (1 + β ) RE = 394 + (201)(25.4) ⇒ 5.50 MΩ
                           1


Now
         (200)(0.026)
  rπ 6 =                     = 732 K
              0.0071
         0.0071
 gm6 =             = 0.273 mA/V
          0.026
            50
  ro 6 =           ⇒ 7.04 MΩ
         0.0071
Ract1 = ro 6 [1 + g m 6 ( R rπ 6 )]
       = 7.04[1 + (0.273)(1 732)] = 8.96 MΩ
            50
  ro 4 =           ⇒ 7.04 MΩ
         0.0071
Then
Ad = − g m1 (ro 4 Ract1 Ri 2 )
      ⎛ 7.10 ⎞
   = −⎜       ⎟ (7.04 8.96 5.5)
      ⎝ 0.026 ⎠
Ad = −627
             50                      50
Now Ract 2 =       ⇒ 303 K Ro17 =         = 303 K
            0.165                   0.165
From Eq. (13.20), assuming Ri 3 → ∞
              β (1 + β ) R9 ( Ract 2 R017 )
Av 2 ≅ −
           Ri 2 { R9 + [rπ 17 + (1 + β ) R8 ]}
           −(200)(201)(50)(303 303)                  −3.045 × 108
    =                                            =
       (5500)[50 + 31.5 + (201)(0.1)]                5.588 × 105
Av 2 = −545
Overall gain Av = (−627)(−545) = 341, 715
13.18
Using results from 13.17
                         ⎛ 100 ⎞
Ri 2 = 5.50 MΩ, Ract1 ⎜           ⎟ [1 + (0.273)(1 732)] ⇒ 17.93 MΩ
                         ⎝ 0.0071 ⎠
          100
ro 4 =          ⇒ 14.08 MΩ
        0.0071
          ⎛ 7.10 ⎞
 Ad = − ⎜         ⎟ (14.08 17.93 5.50)
          ⎝ 0.026 ⎠
 Ad = −885
Now
           100                        100
Ract 2 =         = 606 K Ro17 =             = 606 K
          0.165                      0.165
           −(200)(201)(50)(606 606)          −6.09 × 108
 Av 2 =                                    =
         (5500)[50 + 31.5 + (201)(0.1)] 5.588 × 105
 Av 2 = −1090
Overall gain
 Av = (−885)(−1090) = 964, 650

13.19
Now
         rπ 14 + R01
Re14 =               and R0 = R6 + Re14
           1+ βP
Assume series resistance of Q18 and Q19 is small. Then
R01 = r013 A Re 22
                 rπ 22 + R017 r013 B
where Re 22 =
                      1+ βP
and R017 = r017 [1 + g m17 ( R8 rπ 17 )]
Using results from Example 13.6,
rπ 17 = 9.63 kΩ         rπ 22 = 7.22 kΩ
g m17 = 20.8 mA/V r017 = 92.6 kΩ
Then
R017 = 92.6[1 + (20.8)(0.1 9.63)] = 283 kΩ
          50
r013 B =       = 92.6 kΩ
         0.54
Then
         7.22 + 283 92.6
Re 22 =                     = 1.51 kΩ
                51
R01 = r013 A Re 22 = 278 1.51 = 1.50 kΩ
        (50)(0.026)
rπ 14 =               = 0.65 kΩ
              2
Then
         0.65 + 1.50
Re14 =               = 0.0422 kΩ
             51
or
Re14 = 42.2 Ω
Then
R0 = 42.2 + 27 ⇒ R0 = 69.2 Ω

13.20
⎡                  ⎛ r       ⎞⎤
 Rid = 2 ⎢ rπ 1 + (1 + β n ) ⎜ π 3     ⎟⎥
          ⎣                  ⎝ 1+ βP   ⎠⎦
 β n = 200, β P = 10
(a)
 I C1 = 9.5 μ A
       (200)(0.026)
rπ 1 =              = 547 K
           0.0095
       (10)(0.026)
rπ 3 =             = 27.4 K
         0.0095
Then
         ⎡      (201)(27.4) ⎤
Rid = 2 ⎢547 +              ⎥
         ⎣          11      ⎦
Rid ⇒ 2.095 MΩ
(b)
 I C1 = 7.10 μ A
        (200)(0.026)
 rπ 1 =              = 732 K
            0.0071
        (10)(0.026)
 rπ 3 =             = 36.6 K
           0.0071
          ⎡      (201)(36.6) ⎤
 Rid = 2 ⎢ 732 +             ⎥
          ⎣          11      ⎦
 Rid ⇒ 2.80 MΩ

13.21
We can write
                     A0
A( f ) =
        ⎛          f ⎞⎛          f ⎞
        ⎜1 + j        ⎟⎜ 1 + j ⎟
        ⎝        f PD ⎠⎝         f1 ⎠
                 181, 260
      =
        ⎛          f ⎞⎛           f ⎞
        ⎜1 + j         ⎟ ⎜1 + j ⎟
        ⎝       10.7 ⎠ ⎝          f1 ⎠
Phase:
             ⎛ f ⎞           −1 ⎛ f ⎞
φ = − tan −1 ⎜       ⎟ − tan ⎜ ⎟
             ⎝ 10.7 ⎠           ⎝ f1 ⎠
For a Phase margin = 70°, φ = −110°
So
                 ⎛ f ⎞         −1 ⎛ f ⎞
−110° = − tan −1 ⎜      ⎟ − tan ⎜ ⎟
                 ⎝ 10.7 ⎠         ⎝ f1 ⎠
Assuming f          10.7, we have
       ⎛ f ⎞        f
tan −1 ⎜ ⎟ = 20° ⇒ = 0.364
       ⎝ f1 ⎠       f1
At this frequency, A( f ) = 1, so
181, 260
1=
                    2
          ⎛ f ⎞
       1+ ⎜      ⎟ ⋅ 1 + (0.364)
                                 2

          ⎝ 10.7 ⎠
        170,327
  =
                    2
           ⎛ f ⎞
       1+ ⎜       ⎟
           ⎝ 10.7 ⎠
      f
or        = 170,327 ⇒ f = 1.82 MHz
    10.7
Then, second pole at
         f
 f1 =         ⇒ f1 = 5 MHz
      0.364

13.22
a.        Original g m1 and g m 2
               ⎛W ⎞⎛ μ C ⎞
K p1 = K p 2 = ⎜ ⎟⎜ P ox ⎟ = (12.5)(10)
               ⎝ L ⎠⎝ 2 ⎠
                           = 125 μ A / V 2
So
                      ⎛ IQ ⎞
g m1 = g m 2 = 2 K p1 ⎜ ⎟      = 2 (0.125)(10)
                      ⎝ 2⎠
                               = 0.09975 mA/V
   ⎛W ⎞
If ⎜ ⎟ is increased to 50, then
   ⎝L⎠
 K p1 = K p 2 = (50)(10) = 500 μ A / V 2
So
g m1 = g m 2 = 2 (0.5)(0.0199) = 0.1995 mA/V
b.        Gain of first stage
 Ad = g m1 (r02 r04 ) = (0.1995)(5025 5025)
or
 Ad = 501
Voltage gain of second stage remains the same, or
 Av 2 = 251
Then Av = Ad ⋅ Av 2 = (501)(251)
or
 Ad = 125, 751

13.24
a.          K p = (10)(20) = 200 μ A / V 2 = 0.2 mA / V 2
                  10 − VSG − (−10)
I REF = I SET   =
                          200
                = k P (VSG − 1.5) 2
20 − VSG = (0.2)(200)(VSG − 3VSG + 2.25)
                        2


40VSG − 119VSG + 70 = 0
    2


        119 ± (119) 2 − 4(40)(70)
VSG =                             ⇒ VSG = 2.17 V
                 2(40)
Then
20 − 2.17
I REF =          ⇒ I REF = 89.2 μ A
           200
M 5 , M 6 , M 8 matched transistors so that
I Q = I D 7 = I REF = 89.2 μ A
b.      Small-signal voltage gain of input stage:
 Ad = 2 K p1 I Q ⋅ ( ro 2 ro 4 )
          1           1
r02 =          =               = 1.12 MΩ
        λP I D        ⎛ 89.2 ⎞
               (0.02) ⎜      ⎟
                      ⎝ 2 ⎠
        1            1
r04 =        =                 = 2.24 MΩ
      λn I D          ⎛ 89.2 ⎞
               (0.01) ⎜      ⎟
                      ⎝ 2 ⎠
Then
Ad = 2(200)(89.2) ⋅ (1.12 2.24)
or
 Ad = 141
Small-signal voltage gain of second stage:
Av 2 = g m 7 (r07 r08 )
K n 7 = (20)(20) = 400 μ A / V 2
So
g m 7 = 2 K n 7 I D 7 = 2 (0.4)(0.0892) = 0.378 mA/V
         1               1
r08 =           =                 = 561 kΩ
       λP I D 7 (0.02)(0.0892)
           1                  1
r07 =              =                  = 1121 kΩ
        λn I D 7       (0.01)(0.0892)
So
Av 2 = (0.378)(1121 561) ⇒ Av 2 = 141
Then overall voltage gain
Av = Ad ⋅ Av 2 = (141)(141) ⇒ Av = 19,881

13.25
Small-signal voltage gain of input stage:
 Ad = 2 K p1 I Q ⋅ ( ro 2 ro 4 )
K p1 = (10)(10) = 100 μ A / V 2
          1            1
r02 =           =                = 1000 kΩ
         ⎛ IQ ⎞         ⎛ 0.2 ⎞
      λP ⎜ ⎟ (0.01) ⎜         ⎟
         ⎝ 2⎠           ⎝ 2 ⎠
          1             1
r04 =           =                 = 2000 kΩ
         ⎛ IQ ⎞           ⎛ 0.2 ⎞
      λn ⎜ ⎟      (0.005) ⎜     ⎟
         ⎝ 2⎠             ⎝ 2 ⎠
Then
Ad = 2(0.1)(0.2) ⋅ (1000 2000)
or
 Ad = 133
Small-signal voltage gain of second stage:
Av 2 = g m 7 ( r07 r08 )
K n 7 = (20)(20) = 400 μ A / V 2
So
g m 7 = 2 K n 7 I D 7 = 2 (0.4)(0.2) = 0.566 mA/V
         1             1
r08 =          =              = 500 kΩ
       λP I D 7 (0.01)(0.2)
           1                1
r07 =              =                = 1000 kΩ
        λn I D 7       (0.005)(0.2)
So
Av 2 = (0.566)(1000 500) ⇒ Av 2 = 189
Then overall voltage gain is
Av = Ad ⋅ Av 2 = (133)(189) ⇒ Av = 25,137

13.26
             1
 f PD =
          2π Req Ci
where Req = r04 r02 and Ci = C1 (1 + Av 2 )
We can find that
Av 2 = 251 and r04 = r02 = 5.025 MΩ
Now
Req = 5.025 5.025 = 2.51 MΩ
and
Ci = 12(1 + 251) = 3024 pF
So
                      1
 f PD =
        2π (2.51× 106 )(3024 × 10−12 )
or
 f PD = 21.0 Hz

13.27
             1
 f PD =
          2π Req Ci
where Req = r04 r02
From Problem 13.22,
r02 = 1.12 MΩ, r04 = 2.24 MΩ and Av 2 = 141
So
                1
8=
     2π (1.12 2.24) × 106 × Ci
or
Ci = 2.66 × 10−8 = C1 (1 + Av 2 ) = C1 (142)
or
C1 = 188 pF

13.28
R0 = r07 r08
We can find that
r07 = r08 = 2.52 MΩ
Then
R0 = 2.52 2.52
or
R0 = 1.26 MΩ
13.29
a.




V0 = ( g m1Vgs1 )(r01 r02 )
VI = Vgs1 + V0
Then V0 = g m1 (r01 r02 )(VI − V0 )
or
         g m1 (r01 r02 )
Av =
       1 + g m1 (r01 r02 )
                                VX VX
b.          I X + g m1Vgs1 =       +    and Vgs1 = −VX
                                r02 r01
                                     1
                             R0 =        r r
                                    g m1 01 02

13.30
                    ⎛ 80 ⎞
            I Q 2 = ⎜ ⎟ (20) [1.1737 − 0.7 ]
                                            2
(a)
                    ⎝ 2⎠
            I Q 2 = 180 μ A
                    ⎛ 80 ⎞
            I D 6 = ⎜ ⎟ (25) (VGS 6 − 0.7 ) = 25 ⇒ VGS 6 = 0.8581 V
                                           2
(b)
                    ⎝ 2⎠
                    ⎛ 40 ⎞
            I D 7 = ⎜ ⎟ (50) (VSG 7 − 0.7 ) = 25 ⇒ VSG 7 = 0.8581 V
                                           2

                    ⎝  2 ⎠
Set
VSG 8 P = VGS 8 N = 0.8581 V
      ⎛ 40 ⎞ ⎛ W ⎞               ⎛W ⎞
180 = ⎜ ⎟ ⎜ ⎟ (0.8581 − 0.7) 2 ⇒ ⎜ ⎟ = 360
      ⎝ 2 ⎠ ⎝ L ⎠8 P             ⎝ L ⎠8 P
      ⎛ 80 ⎞ ⎛ W ⎞               ⎛W ⎞
180 = ⎜ ⎟ ⎜ ⎟ (0.8581 − 0.7) 2 ⇒ ⎜ ⎟ = 180
      ⎝ 2 ⎠ ⎝ L ⎠8 N             ⎝ L ⎠8 N

13.31
⎛ 80 ⎞
VGS11 ⇒      200 = ⎜ ⎟ (20) (VGS 11 − 0.7 )
                                            2

                     ⎝ 2⎠
            VGS 11 = 1.20 V
Let M 12 = 2 transistors in series. Than
       5 − 1.20
VGS12 =         = 1.90 V
           2
       ⎛ 80 ⎞⎛ W ⎞            ⎛W ⎞      ⎛W ⎞
 200 = ⎜ ⎟⎜ ⎟ (1.90 − 0.7 ) ⇒ ⎜ ⎟ = ⎜ ⎟ = 3.47
                           2

       ⎝  2 ⎠⎝ L ⎠12          ⎝ L ⎠12 A ⎝ L ⎠12 B

13.32
(a)
                     ⎛ 80 ⎞
 I Q 2 = 250μ A = ⎜ ⎟ (5) (VGS 8 − 0.7 )
                                         2

                     ⎝ 2⎠
      ⇒ VGS 8 = 1.818 V
                          1.818
      ⇒ VGS 6 = VSG 7 =         = 0.909 V
                            2
                 ⎛ 80 ⎞
 I D 6 = I D 7 = ⎜ ⎟ (25)(0.909 − 0.7) 2 = 43.7 μ A
                 ⎝ 2⎠
(b)
            ⎛ 80 ⎞   ⎛ 250 ⎞
g m1 = 2 ⎜ ⎟ (15) ⎜        ⎟ ⇒ 0.5477 mA/V
            ⎝ 2⎠     ⎝ 2 ⎠
               1
ro 2 =                 = 800 K
       ( 0.01)( 0.125)
               1
r04 =                      = 533.3K
      ( 0.015)( 0.125)
Ad 1 = g m1 ( ro 2 ro 4 ) = ( 0.5477 ) ( 800   533.3)
Ad 1 = 175
Second stage:
A2 = − g m 5 (ro 5 ro 9 )
           ⎛ 40 ⎞
g m 5 = 2 ⎜ ⎟ (80)(250) ⇒ 1.265 mA/V
           ⎝ 2 ⎠
               1
 r05 =                 = 266.7 K
        (0.015)(0.25)
              1
 r09 =               = 400 K
        (0.01)(0.25)
 A2 = −(1.265)(266.7 400)
 A2 = −202
Assume the gain of the output stage ≈ 1, then
Av = Ad 1 ⋅ A2 = (175)(−202)
Av = −35,350

13.33
(a)            Ad = g m1 ( Ro 6 Ro8 )
g m1 = 2 K n I DQ = 2 (0.5)(0.025) ⇒ 224 μ A / V
g m1 = g m8
g m 6 = 2 (0.5)(0.025) ⇒ 224 μ A / V
                               1         1
ro1 = ro 6 = ro8 = ro10 =          =            = 2.67 M Ω
                             λ I DQ (0.015)(25)
           1           1
ro 4 =          =                ⇒ 1.33 M Ω
         λ I D 4 ( 0.015 )( 50 )
Now
Ro8 = g m8 (ro8 ro10 ) = (224)(2.67)(2.67) = 1597 M Ω
Ro 6 = g m 6 (ro 6 )(ro 4 ro1 ) = (224)(2.67)(2.67 1.33) ⇒ Ro 6 = 531 M Ω
Then
Ad = (224)(531 1597) ⇒ Ad = 89, 264
(b)            Ro = Ro 6 Ro8 = 531 1597 ⇒ Ro = 398 M Ω
                           1                  1
(c)            f PD =           =                              ⇒ f PD = 80 Hz
                        2π Ro CL 2π ( 398 × 106 )( 5 × 10−12 )
GBW = (89, 264)(80) ⇒ GBW = 7.14 MHz

13.34
(a)
                          1         1
ro1 = ro8 = ro10 =             =           = 2 MΩ
                        λ p I D (0.02)(25)
           1               1
ro 6 =            =               = 2.67 M Ω
         λn I D       (0.015)(25)
           1           1
ro 4 =           =            = 1.33 M Ω
         λn I D 4 (0.015)(50)
         ⎛ 35 ⎞ ⎛ W ⎞        ⎛W ⎞
g m1 = 2 ⎜ ⎟ ⎜ ⎟ (25) = 41.8 ⎜ ⎟ = g m8
         ⎝ 2 ⎠ ⎝ L ⎠1        ⎝ L ⎠1
          ⎛ 80 ⎞⎛ W ⎞        ⎛W ⎞
g m 6 = 2 ⎜ ⎟⎜ ⎟ (25) = 63.2 ⎜ ⎟
          ⎝ 2 ⎠⎝ L ⎠6        ⎝ L ⎠6
Ro = Ro 6 Ro8 = [ g m 6 (ro 6 )(ro 4 ro1 )] [ g m8 (ro8 ro10 )]
⎛W ⎞                   ⎛W ⎞
Define X 1 = ⎜ ⎟ and X 6 = ⎜ ⎟
                 ⎝ L ⎠1                 ⎝ L ⎠6
Then
Ro = ⎣ 63.2 X 6 ( 2.67 ) (1.33 2 ) ⎦ ⎡ 41.8 X 1 ( 2 )( 2 ) ⎤
     ⎡                             ⎤ ⎣                     ⎦
                                  22,539 X 1 X 6
   = 134.8 X 6 167.2 X 1 =
                              134.8 X 6 + 167.2 X 1
                                 ⎛ 22,539 X 1 X 6        ⎞
Ad = g m1 Ro       = (41.8 X 1 ) ⎜                       ⎟
                                 ⎝ 134.8 X 6 + 167.2 X 1 ⎠
                   = 10, 000
              ⎛W ⎞      1 ⎛W ⎞
Now X 6 = ⎜ ⎟ =            ⎜ ⎟ = 0.674 X 1
              ⎝ L ⎠6   2.2 ⎝ L ⎠1
We then find
       ⎛W ⎞          ⎛W ⎞
X 12 = ⎜ ⎟ = 4.06 = ⎜ ⎟
       ⎝ L ⎠1        ⎝ L ⎠p
and
⎛W ⎞
⎜ ⎟ = 1.85
⎝ L ⎠n

13.35
Let V + = 5V , V − = −5V
P = IT (10) = 3 ⇒ IT = 0.3 mA ⇒ I REF = 0.1 mA = 100 μ A
                        1
ro1 = ro8 = ro10 =            = 1 MΩ
                   (0.02)(50)
             1
ro 6 =               = 1.33 MΩ
       (0.015)(50)
             1
ro 4 =                = 0.667 M Ω
       (0.015)(100)
         ⎛ 35 ⎞ ⎛ W ⎞
g m1 = 2 ⎜ ⎟ ⎜ ⎟ (50) = 59.2 X 1 = g m8
         ⎝ 2 ⎠ ⎝ L ⎠1
               ⎛W ⎞
where X 1 = ⎜ ⎟
               ⎝ L ⎠1
Assume all width-to-length ratios are the same.
          ⎛ 80 ⎞ ⎛ W ⎞
g m 6 = 2 ⎜ ⎟ ⎜ ⎟ (50) = 89.4 X 1
          ⎝ 2 ⎠⎝ L ⎠
Now
Ro = Ro 6 Ro8 = ⎡ g m 6 ( ro 6 ) ( ro 4 ro1 ) ⎤ ⎡ g m8 ( ro8 ro10 ) ⎤
                  ⎣                           ⎦ ⎣                   ⎦
     = ⎡89.4 X 1 (1.33) ( 0.667 1) ⎤ ⎡59.2 X 1 (1)(1) ⎤
       ⎣                              ⎦ ⎣                  ⎦
                                  ( 47.6 X 1 )( 59.2 X 1 )
     = [ 47.6 X 1 ] [59.2 X 1 ] =
                                    47.6 X 1 + 59.2 X 1
So Ro = 26.4 X 1
Now
Ad = g m1 Ro = ( 59.2 X 1 )( 26.4 X 1 ) = 25, 000
                   W
So that X 12 =       = 16 for all transistors
                   L

13.36
(a)       Ad = Bg m1 (ro 6 ro8 )
                           1         1
          ro 6 = ro8 =         =            = 0.741 M Ω
                         λ I DQ (0.015)(90)
                  ⎛ k ′ ⎞⎛ W ⎞
         g m1 = 2 ⎜ n ⎟ ⎜ ⎟ I D1 = 2 (500)(30) = 245 μ A / V
                  ⎝ 2 ⎠⎝ L ⎠
          Ad = (3)(245)(0.741 0.741) ⇒ Ad = 272

(b)      Ro = ro 6 ro8 = 0.741 0.741 ⇒ Ro = 371 k Ω
                      1              1
(c)      f PD =           =                           ⇒ f PD = 85.8 kHz
                   2π Ro C 2π (371× 103 )(5 × 10−12 )
GBW = (272)(85.8 × 103 ) ⇒ GBW = 23.3 MHz

13.37
                        1
(a)       ro 6 =                  = 0.5 M Ω
                (0.02)(2.5)(40)
                         1
          ro8 =                    = 0.667 M Ω
                (0.015)(2.5)(40)
          Ad = Bg m1 ( ro 6 ro8 )
         400 = (2.5) g m1 ( 0.5 0.667 ) ⇒ g m1 = 560 μ A / V

                        ⎛ 80 ⎞ ⎛ W ⎞       ⎛W ⎞
         g m1 = 560 = 2 ⎜ ⎟ ⎜ ⎟ (40) ⇒ ⎜ ⎟ = 49
                        ⎝ 2 ⎠⎝ L ⎠         ⎝L⎠
Assume all (W/L) ratios are the same except for
              ⎛W ⎞ ⎛W ⎞
M 5 and M 6 . ⎜ ⎟ = ⎜ ⎟ = 122.5
              ⎝ L ⎠5 ⎝ L ⎠ 6
(b)      Assume the bias voltages are
V + = 5V , V − = −5V .




          ⎛W ⎞      ⎛W ⎞
Assume ⎜ ⎟ = ⎜ ⎟ = 49
          ⎝ L ⎠ A ⎝ L ⎠B
      ⎛ 80 ⎞
I Q = ⎜ ⎟ (49)(VGSA − 0.5) 2 = 80 ⇒ VGSA = 0.702 V
      ⎝ 2⎠
Then
             ⎛ 80 ⎞ ⎛ W ⎞
I REF = 80 = ⎜ ⎟ ⎜ ⎟ (VGSC − 0.5) 2
             ⎝ 2 ⎠ ⎝ L ⎠C
For four transistors
10 − 0.702
VGSC =            = 2.325 V
             4
     ⎛ 80 ⎞ ⎛ W ⎞              ⎛W ⎞
80 = ⎜ ⎟ ⎜ ⎟ (2.325 − 0.5) 2 ⇒ ⎜ ⎟ = 0.60
     ⎝ 2 ⎠ ⎝ L ⎠C              ⎝ L ⎠C
                             1
(c)           f 3− dB =             Ro = 0.5 0.667 = 0.286 M Ω
                          2π Ro C
                1
 f 3− dB =                       = 185 kHz
     2π (286 × 103 )(3 × 10−12 )
GBW = (400)(185 × 103 ) ⇒ 74 MHz

13.38
(a)       From previous results, we can write
 Ro10 = g m10 (ro10 ro 6 )
 Ro12 = g m12 (ro12 ro8 )
 Ad = Bg m1 ( Ro10 Ro12 )
Now
                     1                    1
ro10 = ro 6 =                    =                 = 0.5 M Ω
                λP B ( I Q / 2 )   (0.02)(2.5)(40)
                      1                   1
ro12 = ro8 =                     =                  = 0.667 M Ω
                λn B ( I Q / 2 )   (0.015)(2.5)(40)
Assume all transistors have the same width-to-length ratios except for M 5 and M 6 .
    ⎛W       ⎞
             ⎟= X
                  2
Let ⎜
    ⎝L       ⎠
Then
           ⎛ k′ ⎞⎛ W ⎞           ⎛ 35 ⎞
g m10 = 2 ⎜ ⎟ ⎜ ⎟ ( I DQ10 ) = 2 ⎜ ⎟ X 2 (2.5)(40)
              p

           ⎝ 2 ⎠ ⎝ L ⎠10         ⎝ 2⎠
      = 83.67 X
           ⎛ k′ ⎞⎛ W ⎞             ⎛ 80 ⎞
g m12 = 2 ⎜ n ⎟ ⎜ ⎟ ( I DQ12 ) = 2 ⎜ ⎟ X 2 (2.5)(40)
           ⎝ 2 ⎠ ⎝ L ⎠12           ⎝ 2⎠
      = 126.5 X
          ⎛ 80 ⎞
 g m1 = 2 ⎜ ⎟ X 2 (40) = 80 X
          ⎝ 2⎠
Then
Ro10 = (83.67 X )(0.5)(0.5) = 20.9 X M Ω
Ro12 = (126.5 X )(0.667)(0.667) = 56.3 X M Ω
We want
20, 000 = (2.5)(80 X )[20.9 X 56.3 X ]
                     ⎡ (20.9 X )(56.3 X ) ⎤
             = 200 X ⎢                    ⎥ = 3048 X
                                                     2

                     ⎣ 20.9 X + 56.3 X ⎦
Then
             ⎛W ⎞
X 2 = 6.56 = ⎜ ⎟
             ⎝L⎠
Then
⎛W ⎞ ⎛W ⎞
⎜ ⎟ = ⎜ ⎟ = (2.5)(6.56) = 16.4
⎝ L ⎠ 6 ⎝ L ⎠5
(b)          Assume bias voltages are V + = 5V , V − = −5V
⎛W ⎞      ⎛W ⎞
Assume ⎜ ⎟ = ⎜ ⎟ = 6.56
          ⎝ L ⎠ A ⎝ L ⎠B
           ⎛ 80 ⎞
I Q = 80 = ⎜ ⎟ (6.56)(VGSA − 0.5) 2 ⇒ VGSA = 1.052 V
           ⎝ 2⎠
Need 5 transistors in series
        10 − 1.052
VGSC =               = 1.79 V
             5
Then
             ⎛ 80 ⎞ ⎛ W ⎞               ⎛W ⎞
I REF = 80 = ⎜ ⎟ ⎜ ⎟ (1.79 − 0.5) 2 ⇒ ⎜ ⎟ = 1.20
             ⎝ 2 ⎠ ⎝ L ⎠C               ⎝ L ⎠C
                              1
(c)            f 3− dB =           where Ro = Ro10 Ro12
                           2π Ro C
Now
Ro10 = 20.9 6.56 = 53.5 M Ω
Ro12 = 56.3 6.56 = 144 M Ω
Then
Ro = 53.5 144 = 39 M Ω
                1
 f 3− dB =                      = 1.36 kHz
     2π (39 × 106 )(3 × 10−12 )
GBW = (20, 000)(1.36 x103 ) ⇒ GBW = 27.2 MHz

13.39
 Ad = g m ( M 2 ) ⋅ ⎡ ro 2 ( M 2 ) ro 2 (Q2 ) ⎤
                    ⎣                         ⎦
                   ⎛ 40 ⎞
g m ( M 2 ) = 2 ⎜ ⎟ (25)(100) = 447 μ A / V
                   ⎝ 2 ⎠
                 1         1
ro 2 ( M 2 ) =        =           = 500 k Ω
               λ I DQ (0.02)(0.1)
               VA 120
ro 2 (Q2 ) =       =    = 1200 k Ω
               I CQ 0.1
Then
Ad = 447(0.5 1.2) ⇒ Ad = 158

13.40
Ad = g m ( M 2 ) ⋅ ⎡ ro 2 ( M 2 ) ro 2 (Q2 ) ⎤
                   ⎣                         ⎦
                   ⎛ 80 ⎞
g m ( M 2 ) = 2 ⎜ ⎟ (25)(100) = 632 μ A / V
                   ⎝ 2⎠
                 1         1
ro 2 ( M 2 ) =        =            = 667 k Ω
               λ I DQ (0.015)(0.1)
                  VA    80
ro 2 (Q2 ) =          =    = 800 k Ω
                  I CQ 0.1
Ad = (632) ( 0.667 0.80 ) ⇒ Ad = 230

13.41
(a)            I REF = 200 μ A            K n = K p = 0.5 mA / V 2
                                          λn = λ p = 0.015 V −1
               Ad = g m1 ( Ro 6 Ro8 )
where
Ro8 = g m8 (ro8 ro10 )
Ro 6 = g m 6 (ro 6 ) ( ro 4 ro1 )
Now
g m8 = 2 K P I D 8 = 2 (0.5)(0.1) = 0.447 mA/V
         1            1
 ro8 =         =              = 667 k Ω
       λP I D 8 (0.015)(0.1)
             1
 ro10 =             = 667 k Ω
           λP I D 8
           IC 6    0.1
gm6 =           =       = 3.846 mA/V
           VT     0.026
           VA     80
  ro 6 =        =    = 800 k Ω
           I C 6 0.1
             1           1
  ro 4 =           =             = 333 k Ω
           λn I D 4 (0.015)(0.2)
              1                1
  ro1 =               =                = 667 k Ω
           λ p I D1       (0.015)(0.1)
 g m1 = 2 K P I D1 = 2 (0.5)(0.1) = 0.447 mA/V
So
Ro8 = (0.447)(667)(667) ⇒ 198.9 M Ω
Ro 6 = (3.846)(800)(333 667) ⇒ 683.4 M Ω
Then
Ad = 447(198.9 683.4) ⇒ Ad = 68,865

13.42
Assume biased at V + = 10V , V − = −10V .
  P = 3I REF (20) = 10 ⇒ I REF = 167 μ A
 Ad = g m1 ( Ro 6 Ro8 ) = 25, 000
 kn = 80 μ A / V 2 , k ′ = 35 μ A / V 2
  ′                    p

 λn = 0.015V −1 , λ p = 0.02 V −1
       ⎛W ⎞      ⎛W ⎞
Assume ⎜ ⎟ = 2.2 ⎜ ⎟
       ⎝ L ⎠p    ⎝ L ⎠n
Ro8 = g m8 ( ro8 ro10 )
Ro 6 = g m 6 (ro 6 )(ro 4 ro1 )
             1                1
 ro8 =               =                = 0.60 M Ω
          λP I D 8       (0.02)(83.3)
             1
ro10 =               = 0.60 M Ω
          λP I D 8
          ⎛ k′ ⎞⎛ W ⎞      ⎛ 35 ⎞
g m8 = 2 ⎜ ⎟ ⎜ ⎟ I D 8 = 2 ⎜ ⎟ (2.2) X 2 (83.3)
             p

          ⎝ 2 ⎠ ⎝ L ⎠8     ⎝ 2⎠
     = 113.3 X
               ⎛W ⎞
where X 2 = ⎜ ⎟
               ⎝ L ⎠n
        VA      80
 ro 6 =      =      = 0.960 M Ω
        I C 6 83.3
             1                1
 ro 4 =              =                = 0.40 M Ω
          λn I D 4       (0.015)(167)
             1          1
 ro1 =            =             = 0.60 M Ω
          λ p I D1 (0.02)(83.3)
          IC 6   83.3
gm6 =          =       = 3204 μ A / V
          VT     0.026
             ′
          ⎛ kp ⎞⎛ W ⎞         ⎛ 35 ⎞
g m1 = 2 ⎜ ⎟ ⎜ ⎟ I D1 = 2 ⎜ ⎟ (2.2) X 2 (83.3)
          ⎝ 2 ⎠ ⎝ L ⎠1        ⎝ 2⎠
     = 113.3 X
Now
Ro 6 = (3204)(0.960) ⎡0.40 0.60 ⎤ = 738 M Ω
                      ⎣         ⎦
Ro8 = (113.3 X )(0.60)(0.60) = 40.8 X M Ω
Then
Ad = 25, 000 = (113.3 X ) ⎡ 738 40.8 X ⎤
                           ⎣           ⎦
                             ⎡ 30,110 X ⎤
                = (113.3 X ) ⎢              ⎥
                             ⎣ 738 + 40.8 X ⎦
which yields X = 2.48
or
              ⎛W ⎞
 X 2 = 6.16 = ⎜ ⎟
              ⎝ L ⎠n
and
⎛W ⎞
⎜ ⎟ + (2.2)(6.16) = 12.3
⎝ L ⎠P

13.43
For vcm (max), assume VCB (Q5 ) = 0. Then
VS = 15 − 0.6 − 0.6 = 13.8 V
                0.236
I D 9 = I D10 =       = 0.118 mA
                  2
Using parameters given in Example 13.11
           I            0.118
VSG = D 9 − VTP =             + 1.4 = 2.17 V
           KP            0.20
Then
vcm (max) = 13.8 − 2.17 ⇒ vcm (max) = 11.6 V
For
vcm (min) , assume
VSD ( M 9 ) = VSD ( sat ) = VSG + VTP = 2.17 − 1.4 = 0.77 V
Now
VD10 = I D10 (0.5) + 0.6 + I D10 (0.5) − 15
      = 0.118 + 0.6 − 15 ⇒ VD10 = −14.28 V
Then
vcm (min) = −14.28 + VSD (sat) − VSG
            = −14.28 + 0.77 − 2.17 = −15.68 V
Then, common-mode voltage range
−15.68 ≤ vcm ≤ 11.6
Or, assuming the input is limited to ±15 V, then
−15 ≤ vcm ≤ 11.6 V

13.44
For I1 = I 2 = 300 μ A,
VSG = VBE + (0.3)(8) = 0.6 + 2.4 = 3.0 V
Then
I 2 = K P (VSG + VTP ) 2
0.3 = K P (3 − 1.4)2 ⇒ K P = 0.117 mA / V 2

13.45
For VCB = 0 for both Q6 and Q7 , then
VS = 0.6 + 0.6 + VSG + (−VS )
So 2VS = 1.2 + VSG
Now
                      I1
0.6 + I 2 R1 = VSG =     + VTP and I1 = I 2
                     KP
Also I1 = I 2 = K P (VSG + VTP ) 2 so
0.6 + (0.25)(8)(VSG − 1.4) 2 = VSG
0.6 + 2(VSG − 2.8VSG + 1.96) = VSG
          2


2VSG − 6.6VSG + 4.52 = 0
   2


      6.6 ± (6.6) 2 − 4(2)(4.52)
VSG =                            = 2.33 V
                 2(2)
Then     2VS = 1.2 + 2.33 = 3.53 and
VS = 1.765 V

13.46
I C 5 = I C 4 = 300 μ A
Using the parameters from Examples 13.12 and 13.13, we have
                βV      (200)(0.026)
Ri 2 = rπ 13 = n T =                 = 17.3 kΩ
                 I C13      0.3
Ad = 2 K n I Q 5 ⋅ ( Ri 2 ) = 2(0.6)(0.3) ⋅ (17.3)
or
 Ad = 10.38
Now
I C13    0.3
g m13 =            =       = 11.5 mA/V
             VT      0.026
          VA     50
r013 =         =    = 167 kΩ
          I C13 0.3
Then
| Av 2 | = g m13 ⋅ r013 = (11.5)(167)
or
 Av 2 = 1917
Overall gain:
 Av = (10.38)(1917) = 19,895
13.47         Assuming the resistances looking into Q4 and into the output stage are very large, we have
                     β R013
| Av 2 | =
             rπ 13 + (1 + β ) RE13
where R013 = r013 ⎡1 + g m13 ( RE13 rπ 13 ) ⎤
                  ⎣                         ⎦
                              50
I C13 = 300 μ A, r013 =           = 167 kΩ
                              0.3
            0.3
g m13 =          = 11.5 mA / V
           0.026
          (200)(0.026)
rπ 13   =              = 17.3 kΩ
               0.3
So
R013 = (167) ⎡1 + (11.5) (1 17.3) ⎤ ⇒ 1.98 MΩ
             ⎣                    ⎦
Then
              (200)(1980)
| Av 2 | =                   = 1814
             17.3 + (201)(1)
Now
Ci = C1 (1 + Av 2 ) = 12 [1 + 1814]
        ⇒ Ci = 21, 780 pF
           1
 f PD =
        2π Req Ci
Req = Ri 2 r012 r010
Neglecting R3 ,
             1         1
r010 =           =             = 333 kΩ
          λ I D10 (0.02)(0.15)
Neglecting R5 ,
         50
r012 =         = 333 kΩ
       0.15
Ri 2 = rπ 13 + (1 + β ) RE13         = 17.3 + (201)(1)
                                     = 218 kΩ
Then
                             1
 f PD =
          2π ⎡ 218 333 333⎤ × 103 × ( 21, 780 ) × 10−12
             ⎣            ⎦
or
 f PD = 77.4 Hz
Unity-Gain Bandwidth
Gain of first stage:
Ad = 2 K n I Qs ⋅ ( R12 ro12 ro10 )
       = 2(0.6)(0.3) ⋅ (218 333 333)
       = (0.6)(218 333 333)
or        Ad = 56.6
Overall gain:
 Av = (56.6)(1814) = 102, 672
Then unity-gain bandwidth = (77.4)(102, 672)
⇒ 7.95 MHz

13.48
Since VGS = 0 in J 6 , I REF = I DSS
⇒ I DSS = 0.8 mA

13.49
a.           Ri 2 = rπ 5 + (1 + β ) [ rπ 6 + (1 + β ) RE ]
        (100)(0.026)
rπ 6 =               = 13 kΩ
            0.2
         I    200 μ A
IC 5   ≅ C6 =          = 2 μA
          β     100
So
         (100)(0.026)
rπ 5 =                = 1300 kΩ
            0.002
Then
Ri 2 = 1300 + (101) [13 + (101)(0.3) ]
or
Ri 2 = 5.67 MΩ
b.           Av = g m 2 ( r02 r04 Ri 2 )
          2                       2
gm2 =       ⋅ I D ⋅ I DSS     =     ⋅ (0.1)(0.2)
         VP                       3
                              = 0.0943 mA / V
          1         1
r02 =         =            = 500 kΩ
         λ I D (0.02)(0.1)
         VA 5.0
r04 =         =    = 500 kΩ
         I C 4 0.1
Then
 Av = (0.0943)[500 || 500 || 5670]
or
 Av = 22.6

13.50
a.          Need VSD (QE ) ≥ VSD ( sat ) = VP For minimum bias ±3 V
Set VP = 3 V and VZK = 3 V
            VZK − VD1
I REF 2 =
               R3
             3 − 0.6
so that R3 =         ⇒ R3 = 24 kΩ
               0.1
Set bias in QE = I REF 2 + I Z 2 = 0.1 + 0.1 = 0.2 mA
Therefore,
I DSS = 0.2 mA
b.          Neglecting base currents
                           12 − 0.6
 I 01 = I REF 1 = 0.5 mA =
                              R4
so that
 R4 = 22.8 kΩ

13.51
a.         We have
           2                       2
gm2   =        ⋅ I D ⋅ I DSS   =     ⋅ (0.5)(1)
        | VP |                     4
                               = 0.354 mA/V
          1              1
 r02 =          =               = 100 kΩ
         λ ID       (0.02)(0.5)
         VA 100
 r04 =      =    = 200 kΩ
         I D 0.5
         0.5
gm4 =          = 19.23 mA/V
        0.026
        (200)(0.026)
 rπ 4 =                    = 10.4 kΩ
             0.5
So
R04 = r04 ⎡1 + g m 4 ( rπ 4 R2 ) ⎤
          ⎣                      ⎦
      = 200 ⎡1 + (19.23) (10.4 0.5 ) ⎤
            ⎣                        ⎦
      = 2035 kΩ
 Ad = g m 2 ( r02 R04 RL )
For RL → ∞
    Ad = 0.354 (100 || 2035 ) = 33.7
           With these parameter values, gain can never reach 500.
b.         Similarly for this part, gain can never reach 700.

Recomendados

Ch09sCh09s
Ch09sBilal Sarwar
396 views27 Folien
Ch12pCh12p
Ch12pBilal Sarwar
443 views15 Folien
Ch05sCh05s
Ch05sBilal Sarwar
606 views33 Folien
Ch14pCh14p
Ch14pBilal Sarwar
259 views6 Folien
Ch11sCh11s
Ch11sBilal Sarwar
746 views69 Folien
Ch09pCh09p
Ch09pBilal Sarwar
249 views9 Folien

Más contenido relacionado

Was ist angesagt?

Ch14sCh14s
Ch14sBilal Sarwar
433 views28 Folien
Ch08pCh08p
Ch08pBilal Sarwar
277 views8 Folien
Ch10pCh10p
Ch10pBilal Sarwar
363 views10 Folien

Was ist angesagt?(20)

Ch14sCh14s
Ch14s
Bilal Sarwar433 views
Ch08pCh08p
Ch08p
Bilal Sarwar277 views
Kanodia murolia previousyearsKanodia murolia previousyears
Kanodia murolia previousyears
Anwesa Roy1.4K views
A.gate by-rk-kanodiaA.gate by-rk-kanodia
A.gate by-rk-kanodia
Venugopala Rao P1.6K views
Ch10pCh10p
Ch10p
Bilal Sarwar363 views
Ch15pCh15p
Ch15p
Bilal Sarwar302 views
Ch06sCh06s
Ch06s
Bilal Sarwar767 views
Gate ee 2012 with solutionsGate ee 2012 with solutions
Gate ee 2012 with solutions
khemraj29815.2K views
Gate ee 2008 with solutionsGate ee 2008 with solutions
Gate ee 2008 with solutions
khemraj29826.5K views
Budynas sm ch20Budynas sm ch20
Budynas sm ch20
luisorellano125613 views
Gate ee 2009 with solutionsGate ee 2009 with solutions
Gate ee 2009 with solutions
khemraj29820.9K views
Ch08sCh08s
Ch08s
Bilal Sarwar463 views
Ch01pCh01p
Ch01p
Bilal Sarwar276 views
Ch17p 3rd NaemenCh17p 3rd Naemen
Ch17p 3rd Naemen
Bilal Sarwar308 views
Gate ee 2007 with solutionsGate ee 2007 with solutions
Gate ee 2007 with solutions
khemraj29832.4K views
Gate ee 2003 with solutionsGate ee 2003 with solutions
Gate ee 2003 with solutions
khemraj29835.9K views

Destacado

Ch16pCh16p
Ch16pBilal Sarwar
325 views11 Folien
Ch13pCh13p
Ch13pBilal Sarwar
250 views11 Folien
Ch07pCh07p
Ch07pBilal Sarwar
312 views13 Folien
Ch03pCh03p
Ch03pBilal Sarwar
329 views15 Folien
Ch07sCh07s
Ch07sBilal Sarwar
626 views37 Folien
Ch01sCh01s
Ch01sBilal Sarwar
502 views19 Folien

Destacado(10)

Ch16pCh16p
Ch16p
Bilal Sarwar325 views
Ch13pCh13p
Ch13p
Bilal Sarwar250 views
Ch07pCh07p
Ch07p
Bilal Sarwar312 views
Ch03pCh03p
Ch03p
Bilal Sarwar329 views
Ch07sCh07s
Ch07s
Bilal Sarwar626 views
Ch01sCh01s
Ch01s
Bilal Sarwar502 views
Ch12sCh12s
Ch12s
Bilal Sarwar413 views
Ch04sCh04s
Ch04s
Bilal Sarwar506 views
Ch15sCh15s
Ch15s
Bilal Sarwar593 views
Ch03sCh03s
Ch03s
Bilal Sarwar429 views

Similar a Ch13s

Ch10sCh10s
Ch10sBilal Sarwar
576 views34 Folien
Ch11pCh11p
Ch11pBilal Sarwar
535 views12 Folien
Ch05pCh05p
Ch05pBilal Sarwar
434 views11 Folien
Ch17s 3rd NaemenCh17s 3rd Naemen
Ch17s 3rd NaemenBilal Sarwar
532 views20 Folien
Ch16sCh16s
Ch16sBilal Sarwar
425 views43 Folien

Similar a Ch13s(17)

Ch10sCh10s
Ch10s
Bilal Sarwar576 views
Ch11pCh11p
Ch11p
Bilal Sarwar535 views
Ch05pCh05p
Ch05p
Bilal Sarwar434 views
Ch17s 3rd NaemenCh17s 3rd Naemen
Ch17s 3rd Naemen
Bilal Sarwar532 views
Ch16sCh16s
Ch16s
Bilal Sarwar425 views
W ee network_theory_10-06-17_ls2-solW ee network_theory_10-06-17_ls2-sol
W ee network_theory_10-06-17_ls2-sol
Ankit Chaurasia62 views
Ejercicios - Pauta.pdfEjercicios - Pauta.pdf
Ejercicios - Pauta.pdf
Rodrigofuentes7934084 views
Solucionario_Diseno_en_Ingenieria_Mecani.pdfSolucionario_Diseno_en_Ingenieria_Mecani.pdf
Solucionario_Diseno_en_Ingenieria_Mecani.pdf
franciscoantoniomonr13 views
Capítulo 04   carga e análise de tensãoCapítulo 04   carga e análise de tensão
Capítulo 04 carga e análise de tensão
Jhayson Carvalho474 views
Chapter 04 isChapter 04 is
Chapter 04 is
SHUBHAMMittal1861.3K views
Capítulo 03   materiaisCapítulo 03   materiais
Capítulo 03 materiais
Jhayson Carvalho378 views

Ch13s

  • 1. Chapter 13 Problem Solutions 13.1 Computer Simulation 13.2 Computer Simulation 13.3 (a) ( Ad = g m1 ro 2 ro 4 Ri 6 ) I C1 20 g m1 = = ⇒ 0.769 mA / V VT 0.026 VA 2 80 ro 2 = = = 4 MΩ I C 2 20 VA 4 80 ro 4 = = = 4 MΩ I C 2 20 Ri 6 = rπ 6 + (1 + β n ) ⎡ R1 rπ 7 ⎤ ⎣ ⎦ (120)(0.026) rπ 7 = = 15.6 k Ω 0.2 V (on) 0.6 I C 6 ≅ BE = = 0.030 mA R1 20 (120)(0.026) rπ 6 = = 104 k Ω 0.030 Then Ri 6 = 104 + (121) ⎡ 20 15.6 ⎤ ⇒ 1.16 M Ω ⎣ ⎦ Then ( Ad = 769 4 4 1.16 ⇒ Ad = 565 ) Now ⎛ R1 ⎞ Vo = − I c 7 ro 7 = −( β n I b 7 )ro 7 = − β n ro 7 ⎜ ⎟ Ic6 ⎝ R1 + rπ 7 ⎠ ⎛ R1 ⎞ Vo1 = − β n (1 + β n )ro 7 ⎜ ⎟ I b 6 and I b 6 = ⎝ R1 + rπ 7 ⎠ Ri 6 Then V − β n (1 + β n )ro 7 ⎛ R1 ⎞ Av 2 = o = ⎜ ⎟ Vo1 Ri 6 ⎝ R1 + rπ 7 ⎠ VA 80 ro 7 = = = 400 k Ω I C 7 0.2 So −(120)(121)(400) ⎛ 20 ⎞ Av 2 = ⎜ ⎟ ⇒ Av 2 = −2813 1160 ⎝ 20 + 15.6 ⎠ Overall gain = Ad ⋅ Av 2 = (565)(−2813) ⇒ A = −1.59 ×106 (80)(0.026) (b) Rid = 2rπ 1 and rπ 1 = = 104 k Ω 0.020 Rid = 208 k Ω 1 (c) f PD = and CM = (10)(1 + 2813) = 28,140 pF 2π Req CM Req = ro 2 ro 4 Ri 6 = 4 4 1.16 = 0.734 M Ω 1 f PD = = 7.71 Hz 2π (0.734 × 10 )(28,140 × 10−12 ) 6
  • 2. Gain-Bandwidth Product = (7.71)(1.59 × 106 ) ⇒ 12.3 MHz 13.4 a. Q3 acts as the protection device. b. Same as part (a). 13.5 If we assume VBE (on) = 0.7 V, then Vin = 0.7 + 0.7 + 50 + 5 So breakdown voltage ≈ 56.4 V. 13.6 15 − 0.6 − 0.6 − (−15) (a) I REF = = 0.50 ⇒ R5 = 57.6 k Ω R5 ⎛I ⎞ I C10 R4 = VT ln ⎜ REF ⎟ ⎝ I C10 ⎠ 0.026 ⎛ 0.50 ⎞ R4 = ln ⎜ ⎟ ⇒ R4 = 2.44 k Ω 0.030 ⎝ 0.030 ⎠ 5 − 0.6 − 0.6 − (−5) (b) I REF = ⇒ I REF = 0.153 mA 57.6 ⎛ 0.153 ⎞ I C10 (2.44) = (0.026) ln ⎜ ⎟ ⎝ I C10 ⎠ By trial and error, I C10 ≅ 21.1 μ A 13.7 (a) I REF ≅ 0.50 mA ⎛I ⎞ ⎛ 0.50 × 10−3 ⎞ VBE = VT ln ⎜ REF ⎟ = (0.026) ln ⎜ −14 ⎟ ⇒ VBE11 = 0.641V = VEB12 ⎝ IS ⎠ ⎝ 10 ⎠ Then 15 − 0.641 − 0.641 − (−15) R5 = ⇒ R5 = 57.4 k Ω 0.50 0.026 ⎛ 0.50 ⎞ R4 = ln ⎜ ⎟ ⇒ R4 = 2.44 k Ω 0.030 ⎝ 0.030 ⎠ ⎛ 0.030 × 10−3 ⎞ VBE10 = 0.026 ln ⎜ −14 ⎟ ⇒ VBE10 = 0.567 V ⎝ 10 ⎠ (b) From Problem 13.6, I REF ≅ 0.15 mA ⎛ 0.15 × 10−3 ⎞ VBE11 = VEB12 = 0.026 ln ⎜ −14 ⎟ = 0.609 V ⎝ 10 ⎠ 5 − 0.609 − 0.609 − (−5) Then I REF = ⇒ I REF = 0.153 mA 57.4 Then I C10 ≅ 21.1 μ A from Problem 13.6 13.8 5 − 0.6 − 0.6 − (−5) a. I REF = ⇒ I REF = 0.22 mA 40 ⎛I ⎞ I C10 R4 = VT ln ⎜ REF ⎟ ⎝ I C10 ⎠ ⎛ 0.22 ⎞ I C10 (5) = (0.026) ln ⎜ ⎟ ⎝ I C10 ⎠
  • 3. By trial and error; I C10 ≅ 14.2 μ A I C10 IC 6 ≅ ⇒ I C 6 = 7.10 μ A 2 I C17 = 0.75 I REF ⇒ I C17 = 0.165 mA I C13 A = 0.25I REF ⇒ I C13 A = 0.055 mA (b) Using Example 13.4 rπ 17 = 31.5 kΩ ′ RE = 50 [31.5 + (201)(0.1)] = 50 51.6 = 25.4 kΩ β nVT rπ 16 = and I C16 0.165 (0.165)(0.1) + 0.6 I C16 = + = 0.0132 mA 200 50 rπ 16 = 394 kΩ Then Ri 2 = 394 + (201)(25.4) ⇒ 5.5 MΩ rπ 6 = 732 kΩ 0.00710 gm6 = = 0.273 mA / V 0.026 50 r06 = = 7.04 MΩ 0.0071 Then Ract1 = 7.04[1 + (0.273)(1 732)] = 8.96 MΩ 50 r04 = = 7.04 MΩ 0.0071 Then ⎛ 7.1 ⎞ Ad = − ⎜ ⎟ (7.04 8.96 5.5) ⎝ 0.026 ⎠ or Ad = −627 Gain of differential amp stage Using Example 13.5, and neglecting the input resistance to the output stage: V 50 Ract 2 = A = = 303 kΩ I C13 B 0.165 −(200)(201)(50)(303) (303) Av 2 = (5500)[50 + 31.5 + (201)(0.1)] or Av 2 = −545 Gain of second stage 13.9 I C10 = 19 μ A From Equation (13.6) ⎡ β 2 + 2β P + 2 ⎤ ⎡ (10) 2 + 2(10) + 2 ⎤ I C10 = 2 I ⎢ P ⎥ = 2I ⎢ ⎥ ⎣ β P + 3β P + 2 ⎦ ⎣ (10) + 3(10) + 2 ⎦ 2 2 ⎡122 ⎤ = 2I ⎢ ⎥ ⎣132 ⎦ So ⎛ 132 ⎞ 2 I = (19) ⎜ ⎟ = 20.56 μ A ⎝ 122 ⎠ I C 2 = I = 10.28 μ A
  • 4. 2I 20.56 IC 9 = = ⇒ I C 9 = 17.13 μ A ⎛ 2 ⎞ ⎛ 2⎞ ⎜1 + ⎟ ⎜ 1+ ⎟ ⎝ βP ⎠ ⎝ 10 ⎠ I 17.13 I B9 = C9 = ⇒ I B 9 = 1.713 μ A βP 10 I 10.28 IB4 = = ⇒ I B 4 = 0.9345 μ A (1 + β P ) 11 ⎛ β ⎞ ⎛ 10 ⎞ IC 4 = I ⎜ P ⎟ = (10.28) ⎜ ⎟ ⇒ I C 4 = 9.345 μ A ⎝1+ βP ⎠ ⎝ 11 ⎠ 13.10 VB 5 − V − = VBE (on) + I C 5 (1) = 0.6 + (0.0095)(1) = 0.6095 0.6095 IC 7 = ⇒ I C 7 = 12.2 μ A 50 I C 8 = I C 9 = 19 μ A I REF = 0.72 mA I E13 = I REF = 0.72 mA I C14 = 138 μ A Power = (V + − V − ) [ I C 7 + I C 8 + I C 9 + I REF + I E13 + I C14 ] = 30[0.0122 + 0.019 + 0.019 + 0.72 + 0.72 + 0.138] ⇒ Power = 48.8 mW Current supplied by V + and V − = I C 7 + I C 8 + I C 9 + I REF + I E13 + I C14 = 1.63 mA 13.11 (a) vcm (min) = −15 + 0.6 + 0.6 + 0.6 + 0.6 = −12.6 V vcm (max) = +15 − .6 = 14.4 V So − 12.6 ≤ vcm ≤ 14.4 V (b) vcm (min) = −5 + 4(0.6) = −2.6 V vcm (max) = 5 − 0.6 = 4.4 V So − 2.6 ≤ vcm ≤ 4.4 V 13.12 If v0 = V − = −15 V , the base voltage of Q14 is pulled low, and Q18 and Q19 are effectively cut off. As a first approximation 0.6 I C14 = = 22.2 mA 0.027 22.2 I B14 = = 0.111 mA 200 Then I C15 = I C13 A − I B14 = 0.18 − 0.111 = 0.069 mA Now ⎛I ⎞ VBE15 = VT ln ⎜ C15 ⎟ ⎝ 15 ⎠ ⎛ 0.069 × 10−3 ⎞ = (0.026) ln ⎜ −14 ⎟ ⎝ 10 ⎠ = 0.589 V
  • 5. As a second approximation 0.589 I C14 = ⇒ I C14 = 21.8 mA 0.027 21.8 I B14 = = 0.109 mA 200 and I C15 = 0.18 − 0.109 ⇒ I C15 = 0.071 mA 13.13 a. Neglecting base currents: I D = I BIAS Then ⎛I ⎞ VBB = 2VD = 2VT ln ⎜ D ⎟ ⎝ IS ⎠ ⎛ 0.25 × 10−3 ⎞ = 2(0.026) ln ⎜ −14 ⎟ ⎝ 2 × 10 ⎠ or VBB = 1.2089 V ⎛V / 2⎞ I CN = I CP = I S exp ⎜ BB ⎟ ⎝ VT ⎠ ⎛ 1.2089 ⎞ = 5 × 10−14 exp ⎜ ⎟ ⎝ 2(0.026) ⎠ So I CN = I CP = 0.625 mA b. For vI = 5 V, v0 ≅ 5 V 5 iL ≅ = 1.25 mA 4 As a first approximation I CN ≈ iL = 1.25 mA ⎛ 1.25 × 10−3 ⎞ VBEN = (0.026) ln ⎜ −14 ⎟ = 0.6225 V ⎝ 5 × 10 ⎠ Neglecting base currents, VBB = 1.2089 V Then VEBP = 1.2089 − 0.6225 = 0.5864 V ⎛ 0.5864 ⎞ I CP = 5 × 10−14 exp ⎜ ⎟ ⇒ I CP = 0.312 mA ⎝ 0.026 ⎠ As a second approximation, I CN = iL + I CP = 1.25 + 0.31 ⇒ I CN ≅ 1.56 mA 13.14 VBB 1.157 R1 + R2 = = = 64.28 kΩ (0.1) I BIAS 0.018 ⎛I ⎞ ⎛ (0.9) I BIAS ⎞ VBE = VT ln ⎜ C ⎟ = (0.026) ln ⎜ ⎟ ⎝ IS ⎠ ⎝ IS ⎠ ⎛ 0.162 × 10−3 ⎞ = (0.026) ln ⎜ −14 ⎟ ⎝ 10 ⎠
  • 6. VBE = 0.6112 V ⎛ R2 ⎞ VBE = ⎜ ⎟ VBB ⎝ R1 + R2 ⎠ ⎛ R ⎞ 0.6112 = ⎜ 2 ⎟ (1.157) ⎝ 64.28 ⎠ So R2 = 33.96 kΩ Then R1 = 30.32 kΩ 13.15 (a) ( Ad = − g m ro 4 ro 6 Ri 2 ) From example 13.4 9.5 gm = = 365 μ A / V , ro 4 = 5.26 M Ω 0.026 Now ro 6 = ro 4 = 5.26 M Ω Assuming R8 = 0, we find ′ Ri 2 = rπ 16 + (1 + β n ) RE = 329 + (201) ( 50 9.63) ⇒ 1.95 M Ω Then ( ) Ad = −(365) 5.26 5.26 1.95 ⇒ Ad = −409 (b) From Equation (13.20), Av 2 = ( − β n (1 + β n ) R9 Ract 2 Ri 3 R017 ) { Ri 2 R9 + ⎡ rπ 17 + (1 + β n ) Rg ⎤ ⎣ ⎦} For Rg = 0, Ri 2 = 1.95 M Ω Using the results of Example 13.5 Av 2 = ( −200(201)(50) 92.6 4050 92.6 )⇒A = −792 (1950){50 + 9.63} v2 13.16 Let I C10 = 40 μ A, then I C1 = I C 2 = 20 μ A. Using Example 13.5, Ri 2 = 4.07 MΩ (200)(0.026) rπ 6 = = 260 kΩ 0.020 0.020 gm6 = = 0.769 mA/V 0.026 50 r06 = ⇒ 2.5 MΩ 0.02 Then Ract1 = 2.5[1 + (0.769)(1 260)] = 4.42 MΩ 50 r06 = ⇒ 2.5 MΩ 0.02 Then
  • 7. ⎛ I CQ ⎞ Ad = − ⎜ ⎟ (r04 Ract1 Ri 2 ) ⎝ VT ⎠ ⎛ 20 ⎞ = −⎜ ⎟ (2.5 4.42 4.07) ⎝ 0.026 ⎠ So Ad = −882 13.17 From Problem 13.8 I1 = I 2 = 7.10 μ A, I C17 = 0.165 mA, I C13 A = 0.055 mA I E17 R8 + VBE17 0.165 (0.165)(0.1) + 0.6 I C16 ≈ I B17 + = + R9 200 50 = 0.000825 + 0.01233 I C16 = 0.0132 mA (200)(0.026) rπ 17 = = 31.5 K 0.165 RE = R9 [ rπ 17 + (1 + β ) R8 ] = 50 [31.5 + (201)(0.1)] 1 = 50 51.6 = 25.4 K (200)(0.026) rπ 16 = = 394 K 0.0132 Then Ri 2 = rπ 16 + (1 + β ) RE = 394 + (201)(25.4) ⇒ 5.50 MΩ 1 Now (200)(0.026) rπ 6 = = 732 K 0.0071 0.0071 gm6 = = 0.273 mA/V 0.026 50 ro 6 = ⇒ 7.04 MΩ 0.0071 Ract1 = ro 6 [1 + g m 6 ( R rπ 6 )] = 7.04[1 + (0.273)(1 732)] = 8.96 MΩ 50 ro 4 = ⇒ 7.04 MΩ 0.0071 Then Ad = − g m1 (ro 4 Ract1 Ri 2 ) ⎛ 7.10 ⎞ = −⎜ ⎟ (7.04 8.96 5.5) ⎝ 0.026 ⎠ Ad = −627 50 50 Now Ract 2 = ⇒ 303 K Ro17 = = 303 K 0.165 0.165 From Eq. (13.20), assuming Ri 3 → ∞ β (1 + β ) R9 ( Ract 2 R017 ) Av 2 ≅ − Ri 2 { R9 + [rπ 17 + (1 + β ) R8 ]} −(200)(201)(50)(303 303) −3.045 × 108 = = (5500)[50 + 31.5 + (201)(0.1)] 5.588 × 105 Av 2 = −545 Overall gain Av = (−627)(−545) = 341, 715
  • 8. 13.18 Using results from 13.17 ⎛ 100 ⎞ Ri 2 = 5.50 MΩ, Ract1 ⎜ ⎟ [1 + (0.273)(1 732)] ⇒ 17.93 MΩ ⎝ 0.0071 ⎠ 100 ro 4 = ⇒ 14.08 MΩ 0.0071 ⎛ 7.10 ⎞ Ad = − ⎜ ⎟ (14.08 17.93 5.50) ⎝ 0.026 ⎠ Ad = −885 Now 100 100 Ract 2 = = 606 K Ro17 = = 606 K 0.165 0.165 −(200)(201)(50)(606 606) −6.09 × 108 Av 2 = = (5500)[50 + 31.5 + (201)(0.1)] 5.588 × 105 Av 2 = −1090 Overall gain Av = (−885)(−1090) = 964, 650 13.19 Now rπ 14 + R01 Re14 = and R0 = R6 + Re14 1+ βP Assume series resistance of Q18 and Q19 is small. Then R01 = r013 A Re 22 rπ 22 + R017 r013 B where Re 22 = 1+ βP and R017 = r017 [1 + g m17 ( R8 rπ 17 )] Using results from Example 13.6, rπ 17 = 9.63 kΩ rπ 22 = 7.22 kΩ g m17 = 20.8 mA/V r017 = 92.6 kΩ Then R017 = 92.6[1 + (20.8)(0.1 9.63)] = 283 kΩ 50 r013 B = = 92.6 kΩ 0.54 Then 7.22 + 283 92.6 Re 22 = = 1.51 kΩ 51 R01 = r013 A Re 22 = 278 1.51 = 1.50 kΩ (50)(0.026) rπ 14 = = 0.65 kΩ 2 Then 0.65 + 1.50 Re14 = = 0.0422 kΩ 51 or Re14 = 42.2 Ω Then R0 = 42.2 + 27 ⇒ R0 = 69.2 Ω 13.20
  • 9. ⎛ r ⎞⎤ Rid = 2 ⎢ rπ 1 + (1 + β n ) ⎜ π 3 ⎟⎥ ⎣ ⎝ 1+ βP ⎠⎦ β n = 200, β P = 10 (a) I C1 = 9.5 μ A (200)(0.026) rπ 1 = = 547 K 0.0095 (10)(0.026) rπ 3 = = 27.4 K 0.0095 Then ⎡ (201)(27.4) ⎤ Rid = 2 ⎢547 + ⎥ ⎣ 11 ⎦ Rid ⇒ 2.095 MΩ (b) I C1 = 7.10 μ A (200)(0.026) rπ 1 = = 732 K 0.0071 (10)(0.026) rπ 3 = = 36.6 K 0.0071 ⎡ (201)(36.6) ⎤ Rid = 2 ⎢ 732 + ⎥ ⎣ 11 ⎦ Rid ⇒ 2.80 MΩ 13.21 We can write A0 A( f ) = ⎛ f ⎞⎛ f ⎞ ⎜1 + j ⎟⎜ 1 + j ⎟ ⎝ f PD ⎠⎝ f1 ⎠ 181, 260 = ⎛ f ⎞⎛ f ⎞ ⎜1 + j ⎟ ⎜1 + j ⎟ ⎝ 10.7 ⎠ ⎝ f1 ⎠ Phase: ⎛ f ⎞ −1 ⎛ f ⎞ φ = − tan −1 ⎜ ⎟ − tan ⎜ ⎟ ⎝ 10.7 ⎠ ⎝ f1 ⎠ For a Phase margin = 70°, φ = −110° So ⎛ f ⎞ −1 ⎛ f ⎞ −110° = − tan −1 ⎜ ⎟ − tan ⎜ ⎟ ⎝ 10.7 ⎠ ⎝ f1 ⎠ Assuming f 10.7, we have ⎛ f ⎞ f tan −1 ⎜ ⎟ = 20° ⇒ = 0.364 ⎝ f1 ⎠ f1 At this frequency, A( f ) = 1, so
  • 10. 181, 260 1= 2 ⎛ f ⎞ 1+ ⎜ ⎟ ⋅ 1 + (0.364) 2 ⎝ 10.7 ⎠ 170,327 = 2 ⎛ f ⎞ 1+ ⎜ ⎟ ⎝ 10.7 ⎠ f or = 170,327 ⇒ f = 1.82 MHz 10.7 Then, second pole at f f1 = ⇒ f1 = 5 MHz 0.364 13.22 a. Original g m1 and g m 2 ⎛W ⎞⎛ μ C ⎞ K p1 = K p 2 = ⎜ ⎟⎜ P ox ⎟ = (12.5)(10) ⎝ L ⎠⎝ 2 ⎠ = 125 μ A / V 2 So ⎛ IQ ⎞ g m1 = g m 2 = 2 K p1 ⎜ ⎟ = 2 (0.125)(10) ⎝ 2⎠ = 0.09975 mA/V ⎛W ⎞ If ⎜ ⎟ is increased to 50, then ⎝L⎠ K p1 = K p 2 = (50)(10) = 500 μ A / V 2 So g m1 = g m 2 = 2 (0.5)(0.0199) = 0.1995 mA/V b. Gain of first stage Ad = g m1 (r02 r04 ) = (0.1995)(5025 5025) or Ad = 501 Voltage gain of second stage remains the same, or Av 2 = 251 Then Av = Ad ⋅ Av 2 = (501)(251) or Ad = 125, 751 13.24 a. K p = (10)(20) = 200 μ A / V 2 = 0.2 mA / V 2 10 − VSG − (−10) I REF = I SET = 200 = k P (VSG − 1.5) 2 20 − VSG = (0.2)(200)(VSG − 3VSG + 2.25) 2 40VSG − 119VSG + 70 = 0 2 119 ± (119) 2 − 4(40)(70) VSG = ⇒ VSG = 2.17 V 2(40) Then
  • 11. 20 − 2.17 I REF = ⇒ I REF = 89.2 μ A 200 M 5 , M 6 , M 8 matched transistors so that I Q = I D 7 = I REF = 89.2 μ A b. Small-signal voltage gain of input stage: Ad = 2 K p1 I Q ⋅ ( ro 2 ro 4 ) 1 1 r02 = = = 1.12 MΩ λP I D ⎛ 89.2 ⎞ (0.02) ⎜ ⎟ ⎝ 2 ⎠ 1 1 r04 = = = 2.24 MΩ λn I D ⎛ 89.2 ⎞ (0.01) ⎜ ⎟ ⎝ 2 ⎠ Then Ad = 2(200)(89.2) ⋅ (1.12 2.24) or Ad = 141 Small-signal voltage gain of second stage: Av 2 = g m 7 (r07 r08 ) K n 7 = (20)(20) = 400 μ A / V 2 So g m 7 = 2 K n 7 I D 7 = 2 (0.4)(0.0892) = 0.378 mA/V 1 1 r08 = = = 561 kΩ λP I D 7 (0.02)(0.0892) 1 1 r07 = = = 1121 kΩ λn I D 7 (0.01)(0.0892) So Av 2 = (0.378)(1121 561) ⇒ Av 2 = 141 Then overall voltage gain Av = Ad ⋅ Av 2 = (141)(141) ⇒ Av = 19,881 13.25 Small-signal voltage gain of input stage: Ad = 2 K p1 I Q ⋅ ( ro 2 ro 4 ) K p1 = (10)(10) = 100 μ A / V 2 1 1 r02 = = = 1000 kΩ ⎛ IQ ⎞ ⎛ 0.2 ⎞ λP ⎜ ⎟ (0.01) ⎜ ⎟ ⎝ 2⎠ ⎝ 2 ⎠ 1 1 r04 = = = 2000 kΩ ⎛ IQ ⎞ ⎛ 0.2 ⎞ λn ⎜ ⎟ (0.005) ⎜ ⎟ ⎝ 2⎠ ⎝ 2 ⎠ Then Ad = 2(0.1)(0.2) ⋅ (1000 2000) or Ad = 133 Small-signal voltage gain of second stage: Av 2 = g m 7 ( r07 r08 ) K n 7 = (20)(20) = 400 μ A / V 2 So
  • 12. g m 7 = 2 K n 7 I D 7 = 2 (0.4)(0.2) = 0.566 mA/V 1 1 r08 = = = 500 kΩ λP I D 7 (0.01)(0.2) 1 1 r07 = = = 1000 kΩ λn I D 7 (0.005)(0.2) So Av 2 = (0.566)(1000 500) ⇒ Av 2 = 189 Then overall voltage gain is Av = Ad ⋅ Av 2 = (133)(189) ⇒ Av = 25,137 13.26 1 f PD = 2π Req Ci where Req = r04 r02 and Ci = C1 (1 + Av 2 ) We can find that Av 2 = 251 and r04 = r02 = 5.025 MΩ Now Req = 5.025 5.025 = 2.51 MΩ and Ci = 12(1 + 251) = 3024 pF So 1 f PD = 2π (2.51× 106 )(3024 × 10−12 ) or f PD = 21.0 Hz 13.27 1 f PD = 2π Req Ci where Req = r04 r02 From Problem 13.22, r02 = 1.12 MΩ, r04 = 2.24 MΩ and Av 2 = 141 So 1 8= 2π (1.12 2.24) × 106 × Ci or Ci = 2.66 × 10−8 = C1 (1 + Av 2 ) = C1 (142) or C1 = 188 pF 13.28 R0 = r07 r08 We can find that r07 = r08 = 2.52 MΩ Then R0 = 2.52 2.52 or R0 = 1.26 MΩ
  • 13. 13.29 a. V0 = ( g m1Vgs1 )(r01 r02 ) VI = Vgs1 + V0 Then V0 = g m1 (r01 r02 )(VI − V0 ) or g m1 (r01 r02 ) Av = 1 + g m1 (r01 r02 ) VX VX b. I X + g m1Vgs1 = + and Vgs1 = −VX r02 r01 1 R0 = r r g m1 01 02 13.30 ⎛ 80 ⎞ I Q 2 = ⎜ ⎟ (20) [1.1737 − 0.7 ] 2 (a) ⎝ 2⎠ I Q 2 = 180 μ A ⎛ 80 ⎞ I D 6 = ⎜ ⎟ (25) (VGS 6 − 0.7 ) = 25 ⇒ VGS 6 = 0.8581 V 2 (b) ⎝ 2⎠ ⎛ 40 ⎞ I D 7 = ⎜ ⎟ (50) (VSG 7 − 0.7 ) = 25 ⇒ VSG 7 = 0.8581 V 2 ⎝ 2 ⎠ Set VSG 8 P = VGS 8 N = 0.8581 V ⎛ 40 ⎞ ⎛ W ⎞ ⎛W ⎞ 180 = ⎜ ⎟ ⎜ ⎟ (0.8581 − 0.7) 2 ⇒ ⎜ ⎟ = 360 ⎝ 2 ⎠ ⎝ L ⎠8 P ⎝ L ⎠8 P ⎛ 80 ⎞ ⎛ W ⎞ ⎛W ⎞ 180 = ⎜ ⎟ ⎜ ⎟ (0.8581 − 0.7) 2 ⇒ ⎜ ⎟ = 180 ⎝ 2 ⎠ ⎝ L ⎠8 N ⎝ L ⎠8 N 13.31
  • 14. ⎛ 80 ⎞ VGS11 ⇒ 200 = ⎜ ⎟ (20) (VGS 11 − 0.7 ) 2 ⎝ 2⎠ VGS 11 = 1.20 V Let M 12 = 2 transistors in series. Than 5 − 1.20 VGS12 = = 1.90 V 2 ⎛ 80 ⎞⎛ W ⎞ ⎛W ⎞ ⎛W ⎞ 200 = ⎜ ⎟⎜ ⎟ (1.90 − 0.7 ) ⇒ ⎜ ⎟ = ⎜ ⎟ = 3.47 2 ⎝ 2 ⎠⎝ L ⎠12 ⎝ L ⎠12 A ⎝ L ⎠12 B 13.32 (a) ⎛ 80 ⎞ I Q 2 = 250μ A = ⎜ ⎟ (5) (VGS 8 − 0.7 ) 2 ⎝ 2⎠ ⇒ VGS 8 = 1.818 V 1.818 ⇒ VGS 6 = VSG 7 = = 0.909 V 2 ⎛ 80 ⎞ I D 6 = I D 7 = ⎜ ⎟ (25)(0.909 − 0.7) 2 = 43.7 μ A ⎝ 2⎠ (b) ⎛ 80 ⎞ ⎛ 250 ⎞ g m1 = 2 ⎜ ⎟ (15) ⎜ ⎟ ⇒ 0.5477 mA/V ⎝ 2⎠ ⎝ 2 ⎠ 1 ro 2 = = 800 K ( 0.01)( 0.125) 1 r04 = = 533.3K ( 0.015)( 0.125) Ad 1 = g m1 ( ro 2 ro 4 ) = ( 0.5477 ) ( 800 533.3) Ad 1 = 175 Second stage:
  • 15. A2 = − g m 5 (ro 5 ro 9 ) ⎛ 40 ⎞ g m 5 = 2 ⎜ ⎟ (80)(250) ⇒ 1.265 mA/V ⎝ 2 ⎠ 1 r05 = = 266.7 K (0.015)(0.25) 1 r09 = = 400 K (0.01)(0.25) A2 = −(1.265)(266.7 400) A2 = −202 Assume the gain of the output stage ≈ 1, then Av = Ad 1 ⋅ A2 = (175)(−202) Av = −35,350 13.33 (a) Ad = g m1 ( Ro 6 Ro8 ) g m1 = 2 K n I DQ = 2 (0.5)(0.025) ⇒ 224 μ A / V g m1 = g m8 g m 6 = 2 (0.5)(0.025) ⇒ 224 μ A / V 1 1 ro1 = ro 6 = ro8 = ro10 = = = 2.67 M Ω λ I DQ (0.015)(25) 1 1 ro 4 = = ⇒ 1.33 M Ω λ I D 4 ( 0.015 )( 50 ) Now Ro8 = g m8 (ro8 ro10 ) = (224)(2.67)(2.67) = 1597 M Ω Ro 6 = g m 6 (ro 6 )(ro 4 ro1 ) = (224)(2.67)(2.67 1.33) ⇒ Ro 6 = 531 M Ω Then Ad = (224)(531 1597) ⇒ Ad = 89, 264 (b) Ro = Ro 6 Ro8 = 531 1597 ⇒ Ro = 398 M Ω 1 1 (c) f PD = = ⇒ f PD = 80 Hz 2π Ro CL 2π ( 398 × 106 )( 5 × 10−12 ) GBW = (89, 264)(80) ⇒ GBW = 7.14 MHz 13.34 (a) 1 1 ro1 = ro8 = ro10 = = = 2 MΩ λ p I D (0.02)(25) 1 1 ro 6 = = = 2.67 M Ω λn I D (0.015)(25) 1 1 ro 4 = = = 1.33 M Ω λn I D 4 (0.015)(50) ⎛ 35 ⎞ ⎛ W ⎞ ⎛W ⎞ g m1 = 2 ⎜ ⎟ ⎜ ⎟ (25) = 41.8 ⎜ ⎟ = g m8 ⎝ 2 ⎠ ⎝ L ⎠1 ⎝ L ⎠1 ⎛ 80 ⎞⎛ W ⎞ ⎛W ⎞ g m 6 = 2 ⎜ ⎟⎜ ⎟ (25) = 63.2 ⎜ ⎟ ⎝ 2 ⎠⎝ L ⎠6 ⎝ L ⎠6 Ro = Ro 6 Ro8 = [ g m 6 (ro 6 )(ro 4 ro1 )] [ g m8 (ro8 ro10 )]
  • 16. ⎛W ⎞ ⎛W ⎞ Define X 1 = ⎜ ⎟ and X 6 = ⎜ ⎟ ⎝ L ⎠1 ⎝ L ⎠6 Then Ro = ⎣ 63.2 X 6 ( 2.67 ) (1.33 2 ) ⎦ ⎡ 41.8 X 1 ( 2 )( 2 ) ⎤ ⎡ ⎤ ⎣ ⎦ 22,539 X 1 X 6 = 134.8 X 6 167.2 X 1 = 134.8 X 6 + 167.2 X 1 ⎛ 22,539 X 1 X 6 ⎞ Ad = g m1 Ro = (41.8 X 1 ) ⎜ ⎟ ⎝ 134.8 X 6 + 167.2 X 1 ⎠ = 10, 000 ⎛W ⎞ 1 ⎛W ⎞ Now X 6 = ⎜ ⎟ = ⎜ ⎟ = 0.674 X 1 ⎝ L ⎠6 2.2 ⎝ L ⎠1 We then find ⎛W ⎞ ⎛W ⎞ X 12 = ⎜ ⎟ = 4.06 = ⎜ ⎟ ⎝ L ⎠1 ⎝ L ⎠p and ⎛W ⎞ ⎜ ⎟ = 1.85 ⎝ L ⎠n 13.35 Let V + = 5V , V − = −5V P = IT (10) = 3 ⇒ IT = 0.3 mA ⇒ I REF = 0.1 mA = 100 μ A 1 ro1 = ro8 = ro10 = = 1 MΩ (0.02)(50) 1 ro 6 = = 1.33 MΩ (0.015)(50) 1 ro 4 = = 0.667 M Ω (0.015)(100) ⎛ 35 ⎞ ⎛ W ⎞ g m1 = 2 ⎜ ⎟ ⎜ ⎟ (50) = 59.2 X 1 = g m8 ⎝ 2 ⎠ ⎝ L ⎠1 ⎛W ⎞ where X 1 = ⎜ ⎟ ⎝ L ⎠1 Assume all width-to-length ratios are the same. ⎛ 80 ⎞ ⎛ W ⎞ g m 6 = 2 ⎜ ⎟ ⎜ ⎟ (50) = 89.4 X 1 ⎝ 2 ⎠⎝ L ⎠ Now Ro = Ro 6 Ro8 = ⎡ g m 6 ( ro 6 ) ( ro 4 ro1 ) ⎤ ⎡ g m8 ( ro8 ro10 ) ⎤ ⎣ ⎦ ⎣ ⎦ = ⎡89.4 X 1 (1.33) ( 0.667 1) ⎤ ⎡59.2 X 1 (1)(1) ⎤ ⎣ ⎦ ⎣ ⎦ ( 47.6 X 1 )( 59.2 X 1 ) = [ 47.6 X 1 ] [59.2 X 1 ] = 47.6 X 1 + 59.2 X 1 So Ro = 26.4 X 1 Now Ad = g m1 Ro = ( 59.2 X 1 )( 26.4 X 1 ) = 25, 000 W So that X 12 = = 16 for all transistors L 13.36
  • 17. (a) Ad = Bg m1 (ro 6 ro8 ) 1 1 ro 6 = ro8 = = = 0.741 M Ω λ I DQ (0.015)(90) ⎛ k ′ ⎞⎛ W ⎞ g m1 = 2 ⎜ n ⎟ ⎜ ⎟ I D1 = 2 (500)(30) = 245 μ A / V ⎝ 2 ⎠⎝ L ⎠ Ad = (3)(245)(0.741 0.741) ⇒ Ad = 272 (b) Ro = ro 6 ro8 = 0.741 0.741 ⇒ Ro = 371 k Ω 1 1 (c) f PD = = ⇒ f PD = 85.8 kHz 2π Ro C 2π (371× 103 )(5 × 10−12 ) GBW = (272)(85.8 × 103 ) ⇒ GBW = 23.3 MHz 13.37 1 (a) ro 6 = = 0.5 M Ω (0.02)(2.5)(40) 1 ro8 = = 0.667 M Ω (0.015)(2.5)(40) Ad = Bg m1 ( ro 6 ro8 ) 400 = (2.5) g m1 ( 0.5 0.667 ) ⇒ g m1 = 560 μ A / V ⎛ 80 ⎞ ⎛ W ⎞ ⎛W ⎞ g m1 = 560 = 2 ⎜ ⎟ ⎜ ⎟ (40) ⇒ ⎜ ⎟ = 49 ⎝ 2 ⎠⎝ L ⎠ ⎝L⎠ Assume all (W/L) ratios are the same except for ⎛W ⎞ ⎛W ⎞ M 5 and M 6 . ⎜ ⎟ = ⎜ ⎟ = 122.5 ⎝ L ⎠5 ⎝ L ⎠ 6 (b) Assume the bias voltages are V + = 5V , V − = −5V . ⎛W ⎞ ⎛W ⎞ Assume ⎜ ⎟ = ⎜ ⎟ = 49 ⎝ L ⎠ A ⎝ L ⎠B ⎛ 80 ⎞ I Q = ⎜ ⎟ (49)(VGSA − 0.5) 2 = 80 ⇒ VGSA = 0.702 V ⎝ 2⎠ Then ⎛ 80 ⎞ ⎛ W ⎞ I REF = 80 = ⎜ ⎟ ⎜ ⎟ (VGSC − 0.5) 2 ⎝ 2 ⎠ ⎝ L ⎠C For four transistors
  • 18. 10 − 0.702 VGSC = = 2.325 V 4 ⎛ 80 ⎞ ⎛ W ⎞ ⎛W ⎞ 80 = ⎜ ⎟ ⎜ ⎟ (2.325 − 0.5) 2 ⇒ ⎜ ⎟ = 0.60 ⎝ 2 ⎠ ⎝ L ⎠C ⎝ L ⎠C 1 (c) f 3− dB = Ro = 0.5 0.667 = 0.286 M Ω 2π Ro C 1 f 3− dB = = 185 kHz 2π (286 × 103 )(3 × 10−12 ) GBW = (400)(185 × 103 ) ⇒ 74 MHz 13.38 (a) From previous results, we can write Ro10 = g m10 (ro10 ro 6 ) Ro12 = g m12 (ro12 ro8 ) Ad = Bg m1 ( Ro10 Ro12 ) Now 1 1 ro10 = ro 6 = = = 0.5 M Ω λP B ( I Q / 2 ) (0.02)(2.5)(40) 1 1 ro12 = ro8 = = = 0.667 M Ω λn B ( I Q / 2 ) (0.015)(2.5)(40) Assume all transistors have the same width-to-length ratios except for M 5 and M 6 . ⎛W ⎞ ⎟= X 2 Let ⎜ ⎝L ⎠ Then ⎛ k′ ⎞⎛ W ⎞ ⎛ 35 ⎞ g m10 = 2 ⎜ ⎟ ⎜ ⎟ ( I DQ10 ) = 2 ⎜ ⎟ X 2 (2.5)(40) p ⎝ 2 ⎠ ⎝ L ⎠10 ⎝ 2⎠ = 83.67 X ⎛ k′ ⎞⎛ W ⎞ ⎛ 80 ⎞ g m12 = 2 ⎜ n ⎟ ⎜ ⎟ ( I DQ12 ) = 2 ⎜ ⎟ X 2 (2.5)(40) ⎝ 2 ⎠ ⎝ L ⎠12 ⎝ 2⎠ = 126.5 X ⎛ 80 ⎞ g m1 = 2 ⎜ ⎟ X 2 (40) = 80 X ⎝ 2⎠ Then Ro10 = (83.67 X )(0.5)(0.5) = 20.9 X M Ω Ro12 = (126.5 X )(0.667)(0.667) = 56.3 X M Ω We want 20, 000 = (2.5)(80 X )[20.9 X 56.3 X ] ⎡ (20.9 X )(56.3 X ) ⎤ = 200 X ⎢ ⎥ = 3048 X 2 ⎣ 20.9 X + 56.3 X ⎦ Then ⎛W ⎞ X 2 = 6.56 = ⎜ ⎟ ⎝L⎠ Then ⎛W ⎞ ⎛W ⎞ ⎜ ⎟ = ⎜ ⎟ = (2.5)(6.56) = 16.4 ⎝ L ⎠ 6 ⎝ L ⎠5 (b) Assume bias voltages are V + = 5V , V − = −5V
  • 19. ⎛W ⎞ ⎛W ⎞ Assume ⎜ ⎟ = ⎜ ⎟ = 6.56 ⎝ L ⎠ A ⎝ L ⎠B ⎛ 80 ⎞ I Q = 80 = ⎜ ⎟ (6.56)(VGSA − 0.5) 2 ⇒ VGSA = 1.052 V ⎝ 2⎠ Need 5 transistors in series 10 − 1.052 VGSC = = 1.79 V 5 Then ⎛ 80 ⎞ ⎛ W ⎞ ⎛W ⎞ I REF = 80 = ⎜ ⎟ ⎜ ⎟ (1.79 − 0.5) 2 ⇒ ⎜ ⎟ = 1.20 ⎝ 2 ⎠ ⎝ L ⎠C ⎝ L ⎠C 1 (c) f 3− dB = where Ro = Ro10 Ro12 2π Ro C Now Ro10 = 20.9 6.56 = 53.5 M Ω Ro12 = 56.3 6.56 = 144 M Ω Then Ro = 53.5 144 = 39 M Ω 1 f 3− dB = = 1.36 kHz 2π (39 × 106 )(3 × 10−12 ) GBW = (20, 000)(1.36 x103 ) ⇒ GBW = 27.2 MHz 13.39 Ad = g m ( M 2 ) ⋅ ⎡ ro 2 ( M 2 ) ro 2 (Q2 ) ⎤ ⎣ ⎦ ⎛ 40 ⎞ g m ( M 2 ) = 2 ⎜ ⎟ (25)(100) = 447 μ A / V ⎝ 2 ⎠ 1 1 ro 2 ( M 2 ) = = = 500 k Ω λ I DQ (0.02)(0.1) VA 120 ro 2 (Q2 ) = = = 1200 k Ω I CQ 0.1 Then Ad = 447(0.5 1.2) ⇒ Ad = 158 13.40
  • 20. Ad = g m ( M 2 ) ⋅ ⎡ ro 2 ( M 2 ) ro 2 (Q2 ) ⎤ ⎣ ⎦ ⎛ 80 ⎞ g m ( M 2 ) = 2 ⎜ ⎟ (25)(100) = 632 μ A / V ⎝ 2⎠ 1 1 ro 2 ( M 2 ) = = = 667 k Ω λ I DQ (0.015)(0.1) VA 80 ro 2 (Q2 ) = = = 800 k Ω I CQ 0.1 Ad = (632) ( 0.667 0.80 ) ⇒ Ad = 230 13.41 (a) I REF = 200 μ A K n = K p = 0.5 mA / V 2 λn = λ p = 0.015 V −1 Ad = g m1 ( Ro 6 Ro8 ) where Ro8 = g m8 (ro8 ro10 ) Ro 6 = g m 6 (ro 6 ) ( ro 4 ro1 ) Now g m8 = 2 K P I D 8 = 2 (0.5)(0.1) = 0.447 mA/V 1 1 ro8 = = = 667 k Ω λP I D 8 (0.015)(0.1) 1 ro10 = = 667 k Ω λP I D 8 IC 6 0.1 gm6 = = = 3.846 mA/V VT 0.026 VA 80 ro 6 = = = 800 k Ω I C 6 0.1 1 1 ro 4 = = = 333 k Ω λn I D 4 (0.015)(0.2) 1 1 ro1 = = = 667 k Ω λ p I D1 (0.015)(0.1) g m1 = 2 K P I D1 = 2 (0.5)(0.1) = 0.447 mA/V So Ro8 = (0.447)(667)(667) ⇒ 198.9 M Ω Ro 6 = (3.846)(800)(333 667) ⇒ 683.4 M Ω Then Ad = 447(198.9 683.4) ⇒ Ad = 68,865 13.42 Assume biased at V + = 10V , V − = −10V . P = 3I REF (20) = 10 ⇒ I REF = 167 μ A Ad = g m1 ( Ro 6 Ro8 ) = 25, 000 kn = 80 μ A / V 2 , k ′ = 35 μ A / V 2 ′ p λn = 0.015V −1 , λ p = 0.02 V −1 ⎛W ⎞ ⎛W ⎞ Assume ⎜ ⎟ = 2.2 ⎜ ⎟ ⎝ L ⎠p ⎝ L ⎠n
  • 21. Ro8 = g m8 ( ro8 ro10 ) Ro 6 = g m 6 (ro 6 )(ro 4 ro1 ) 1 1 ro8 = = = 0.60 M Ω λP I D 8 (0.02)(83.3) 1 ro10 = = 0.60 M Ω λP I D 8 ⎛ k′ ⎞⎛ W ⎞ ⎛ 35 ⎞ g m8 = 2 ⎜ ⎟ ⎜ ⎟ I D 8 = 2 ⎜ ⎟ (2.2) X 2 (83.3) p ⎝ 2 ⎠ ⎝ L ⎠8 ⎝ 2⎠ = 113.3 X ⎛W ⎞ where X 2 = ⎜ ⎟ ⎝ L ⎠n VA 80 ro 6 = = = 0.960 M Ω I C 6 83.3 1 1 ro 4 = = = 0.40 M Ω λn I D 4 (0.015)(167) 1 1 ro1 = = = 0.60 M Ω λ p I D1 (0.02)(83.3) IC 6 83.3 gm6 = = = 3204 μ A / V VT 0.026 ′ ⎛ kp ⎞⎛ W ⎞ ⎛ 35 ⎞ g m1 = 2 ⎜ ⎟ ⎜ ⎟ I D1 = 2 ⎜ ⎟ (2.2) X 2 (83.3) ⎝ 2 ⎠ ⎝ L ⎠1 ⎝ 2⎠ = 113.3 X Now Ro 6 = (3204)(0.960) ⎡0.40 0.60 ⎤ = 738 M Ω ⎣ ⎦ Ro8 = (113.3 X )(0.60)(0.60) = 40.8 X M Ω Then Ad = 25, 000 = (113.3 X ) ⎡ 738 40.8 X ⎤ ⎣ ⎦ ⎡ 30,110 X ⎤ = (113.3 X ) ⎢ ⎥ ⎣ 738 + 40.8 X ⎦ which yields X = 2.48 or ⎛W ⎞ X 2 = 6.16 = ⎜ ⎟ ⎝ L ⎠n and ⎛W ⎞ ⎜ ⎟ + (2.2)(6.16) = 12.3 ⎝ L ⎠P 13.43 For vcm (max), assume VCB (Q5 ) = 0. Then VS = 15 − 0.6 − 0.6 = 13.8 V 0.236 I D 9 = I D10 = = 0.118 mA 2 Using parameters given in Example 13.11 I 0.118 VSG = D 9 − VTP = + 1.4 = 2.17 V KP 0.20 Then vcm (max) = 13.8 − 2.17 ⇒ vcm (max) = 11.6 V
  • 22. For vcm (min) , assume VSD ( M 9 ) = VSD ( sat ) = VSG + VTP = 2.17 − 1.4 = 0.77 V Now VD10 = I D10 (0.5) + 0.6 + I D10 (0.5) − 15 = 0.118 + 0.6 − 15 ⇒ VD10 = −14.28 V Then vcm (min) = −14.28 + VSD (sat) − VSG = −14.28 + 0.77 − 2.17 = −15.68 V Then, common-mode voltage range −15.68 ≤ vcm ≤ 11.6 Or, assuming the input is limited to ±15 V, then −15 ≤ vcm ≤ 11.6 V 13.44 For I1 = I 2 = 300 μ A, VSG = VBE + (0.3)(8) = 0.6 + 2.4 = 3.0 V Then I 2 = K P (VSG + VTP ) 2 0.3 = K P (3 − 1.4)2 ⇒ K P = 0.117 mA / V 2 13.45 For VCB = 0 for both Q6 and Q7 , then VS = 0.6 + 0.6 + VSG + (−VS ) So 2VS = 1.2 + VSG Now I1 0.6 + I 2 R1 = VSG = + VTP and I1 = I 2 KP Also I1 = I 2 = K P (VSG + VTP ) 2 so 0.6 + (0.25)(8)(VSG − 1.4) 2 = VSG 0.6 + 2(VSG − 2.8VSG + 1.96) = VSG 2 2VSG − 6.6VSG + 4.52 = 0 2 6.6 ± (6.6) 2 − 4(2)(4.52) VSG = = 2.33 V 2(2) Then 2VS = 1.2 + 2.33 = 3.53 and VS = 1.765 V 13.46 I C 5 = I C 4 = 300 μ A Using the parameters from Examples 13.12 and 13.13, we have βV (200)(0.026) Ri 2 = rπ 13 = n T = = 17.3 kΩ I C13 0.3 Ad = 2 K n I Q 5 ⋅ ( Ri 2 ) = 2(0.6)(0.3) ⋅ (17.3) or Ad = 10.38 Now
  • 23. I C13 0.3 g m13 = = = 11.5 mA/V VT 0.026 VA 50 r013 = = = 167 kΩ I C13 0.3 Then | Av 2 | = g m13 ⋅ r013 = (11.5)(167) or Av 2 = 1917 Overall gain: Av = (10.38)(1917) = 19,895 13.47 Assuming the resistances looking into Q4 and into the output stage are very large, we have β R013 | Av 2 | = rπ 13 + (1 + β ) RE13 where R013 = r013 ⎡1 + g m13 ( RE13 rπ 13 ) ⎤ ⎣ ⎦ 50 I C13 = 300 μ A, r013 = = 167 kΩ 0.3 0.3 g m13 = = 11.5 mA / V 0.026 (200)(0.026) rπ 13 = = 17.3 kΩ 0.3 So R013 = (167) ⎡1 + (11.5) (1 17.3) ⎤ ⇒ 1.98 MΩ ⎣ ⎦ Then (200)(1980) | Av 2 | = = 1814 17.3 + (201)(1) Now Ci = C1 (1 + Av 2 ) = 12 [1 + 1814] ⇒ Ci = 21, 780 pF 1 f PD = 2π Req Ci Req = Ri 2 r012 r010 Neglecting R3 , 1 1 r010 = = = 333 kΩ λ I D10 (0.02)(0.15) Neglecting R5 , 50 r012 = = 333 kΩ 0.15 Ri 2 = rπ 13 + (1 + β ) RE13 = 17.3 + (201)(1) = 218 kΩ Then 1 f PD = 2π ⎡ 218 333 333⎤ × 103 × ( 21, 780 ) × 10−12 ⎣ ⎦ or f PD = 77.4 Hz Unity-Gain Bandwidth Gain of first stage:
  • 24. Ad = 2 K n I Qs ⋅ ( R12 ro12 ro10 ) = 2(0.6)(0.3) ⋅ (218 333 333) = (0.6)(218 333 333) or Ad = 56.6 Overall gain: Av = (56.6)(1814) = 102, 672 Then unity-gain bandwidth = (77.4)(102, 672) ⇒ 7.95 MHz 13.48 Since VGS = 0 in J 6 , I REF = I DSS ⇒ I DSS = 0.8 mA 13.49 a. Ri 2 = rπ 5 + (1 + β ) [ rπ 6 + (1 + β ) RE ] (100)(0.026) rπ 6 = = 13 kΩ 0.2 I 200 μ A IC 5 ≅ C6 = = 2 μA β 100 So (100)(0.026) rπ 5 = = 1300 kΩ 0.002 Then Ri 2 = 1300 + (101) [13 + (101)(0.3) ] or Ri 2 = 5.67 MΩ b. Av = g m 2 ( r02 r04 Ri 2 ) 2 2 gm2 = ⋅ I D ⋅ I DSS = ⋅ (0.1)(0.2) VP 3 = 0.0943 mA / V 1 1 r02 = = = 500 kΩ λ I D (0.02)(0.1) VA 5.0 r04 = = = 500 kΩ I C 4 0.1 Then Av = (0.0943)[500 || 500 || 5670] or Av = 22.6 13.50 a. Need VSD (QE ) ≥ VSD ( sat ) = VP For minimum bias ±3 V Set VP = 3 V and VZK = 3 V VZK − VD1 I REF 2 = R3 3 − 0.6 so that R3 = ⇒ R3 = 24 kΩ 0.1 Set bias in QE = I REF 2 + I Z 2 = 0.1 + 0.1 = 0.2 mA Therefore,
  • 25. I DSS = 0.2 mA b. Neglecting base currents 12 − 0.6 I 01 = I REF 1 = 0.5 mA = R4 so that R4 = 22.8 kΩ 13.51 a. We have 2 2 gm2 = ⋅ I D ⋅ I DSS = ⋅ (0.5)(1) | VP | 4 = 0.354 mA/V 1 1 r02 = = = 100 kΩ λ ID (0.02)(0.5) VA 100 r04 = = = 200 kΩ I D 0.5 0.5 gm4 = = 19.23 mA/V 0.026 (200)(0.026) rπ 4 = = 10.4 kΩ 0.5 So R04 = r04 ⎡1 + g m 4 ( rπ 4 R2 ) ⎤ ⎣ ⎦ = 200 ⎡1 + (19.23) (10.4 0.5 ) ⎤ ⎣ ⎦ = 2035 kΩ Ad = g m 2 ( r02 R04 RL ) For RL → ∞ Ad = 0.354 (100 || 2035 ) = 33.7 With these parameter values, gain can never reach 500. b. Similarly for this part, gain can never reach 700.