Ch09s

Chapter 9
Problem Solutions

9.1
(a)
 vO = Ad ( v2 − v1 )
          (                  )
  1 = Ad 10−3 − ( −10−3 ) ⇒ Ad = 500
(b)
1 = 500 ( v2 − 10−3 ) = 1 + 0.5 = 500v2
                 v2 = 3 mV
(c)
5 = 500 (1 − v1 ) ⇒ 500v1 = 495
         v1 = 0.990 V
(d)           vO = 0
(e)
       − 3 = 500 ( v2 − ( −0.5 ) )
−250 − 3 = 500v2
      v2 = −0.506 V

9.2
(a)
     ⎛          ⎞
                ⎟ vI = ( 0.49975 × 10 ) ( 3)
           1                         −3
v2 = ⎜
     ⎝ 1 + 2000 ⎠
v2 = 1.49925 × 10−3
vO = Aod ( v2 − v1 ) = ( 5 × 103 )(1.49925 × 10−3 − 0 )
vO = 7.49625 V
(b)
 vO = Aod ( v2 − v1 )
3 = Aod (1.49925 × 10−3 − 0 )
Aod = 2 × 103

9.3
         R2
Av = −      = −12 ⇒ R2 = 12 R1
         R1
Ri = R1 = 25 kΩ ⇒ R2 = (12 )( 25 ) = 300 kΩ

9.3
(a)           v2 = 3.00 V
(b)
   vO = Aod ( v2 − v1 )
2.500 = Aod ( 3.010 − 3.00 )
  Aod = 250

9.4
⎛ Ri ⎞
vid = ⎜         ⎟ vI
      ⎝ Ri + 25 ⎠
         ⎛ Ri ⎞
0.790 = ⎜          ⎟ ( 0.80 )
         ⎝ Ri + 25 ⎠
0.9875 ( Ri + 25 ) = Ri
24.6875 = 0.0125 Ri
Ri = 1975 K

9.5
       200       ⎫
Av = −     = −10 ⎪
        20
                 ⎪
and              ⎬ for each case
Ri = 20 kΩ       ⎪
                 ⎪
                 ⎭

9.6
a.
        100
Av = −       = −10
         10
Ri = R1 = 10 kΩ
b.
        100 100
 Av = −           = −5
            10
Ri = R1 = 10 kΩ
c.
          100
 Av = −         = −5
        10 + 10
Ri = 10 + 10 = 20 K

9.7
vI        0.5
I1 =      ⇒ R1 =     ⇒ R1 = 5 K
       R1        0.1
R2
   = 15 ⇒ R2 = 75 K
R1

9.8
         R2
Av = −
         R1
(a)        Av = −10
(b)        Av = −1
(c)        Av = −0.20
(d)        Av = −10
(e)        Av = −2
(f)        Av = −1

9.9
         R2
Av = −
         R1
(a)       R1 = 20 K, R2 = 40 K
(b)       R1 = 20 K, R2 = 200 K
(c)       R1 = 20 K, R2 = 1000 K
(d)       R1 = 80 K, R2 = 20 K

9.10
         R2
Av = −      = −8 ⇒ R2 = 8 R1
         R1
                     1
For vI = −1, i1 =       = 15 μ A ⇒ R1 = 66.7 kΩ ⇒ R2 = 533.3 kΩ
                     R1

9.11
         R2
Av = −      = −30 ⇒ R2 = 30 R1
         R1
Set R2 = 1 MΩ ⇒ R1 = 33.3 kΩ

9.12
a.
       R2   1.05R2          ⎛R ⎞
Av =      ⇒         = 1.105 ⎜ 2 ⎟
       R1   0.95 R1         ⎝ R1 ⎠
0.95R2         ⎛R ⎞
       = 0.905 ⎜ 2 ⎟
1.05R1         ⎝ R1 ⎠
Deviation in gain is +10.5% and − 9.5%
b.
      1.01R2         ⎛R ⎞    0.99 R2        ⎛R ⎞
 Av ⇒         = 1.02 ⎜ 2 ⎟ ⇒         = 0.98 ⎜ 2 ⎟
      0.99 R1        ⎝ R1 ⎠  1.01R1         ⎝ R1 ⎠
Deviation in gain = ±2%

9.13
(a)
vO −15
Av =       =   = −15
        vl   1
vO = −15vl ⇒ vO = −150sin ω t ( mV )
(b)
            vI
i2 = i1 =      = 10sin ω t ( μ A )
            R1
       vO
iL =      ⇒ iL = −37.5sin ω t ( μ A )
       RL
iO = iL − i2
iO = −47.5sin ω t ( μ A )

9.14
            R2
Av = −
          R1 + R5
Av = −30 ± 2.5% ⇒ 29.25 ≤ Av ≤ 30.75
        R2                 R2
So            = 29.25 and        = 30.75
       R1 + 2             R1 + 1
We have 29.25 ( R1 + 2 ) = 30.75 ( R1 + 1)
Which yields R1 = 18.5 k Ω and R2 = 599.6 k Ω
For vI = 25 mV , then 0.731 ≤ vO ≤ 0.769 V

9.15
            R2          120
vO1 = −        , vI = −     ( 0.2 ) ⇒ vO1 = −1.2 V
            R1           20
         R4         ⎛ −75 ⎞
 vO = −     , vO1 = ⎜     ⎟ ( −1.2 ) ⇒ vO = +6 V
         R3         ⎝ 15 ⎠
          0.2
i1 = i2 =     ⇒ i1 = i2 = 10 μ A
          20
          v     −1.2
i3 = i4 = O1 =        ⇒ i3 = i4 = −80 μ A
          R3      15
1st op-amp: 90 μ A into output terminal
2nd op-amp: 80 μ A out of output terminal.

9.16
(a)
       R2     22
Av = −    =−     ⇒ Av = −22
       R1     1
(b)     From Eq. (9.23)
       R2         1                         1
 Av = − ⋅                    = −22 ⋅
       R1 ⎡     1 ⎛ R2 ⎞ ⎤           ⎡     1        ⎤
          ⎢1 +    ⎜1 + ⎟ ⎥           ⎢1 + 104 ( 23) ⎥
                                     ⎣              ⎦
          ⎣ Aod ⎝     R1 ⎠ ⎦
 Av = −21.95
(c)
Want Av = −22 ( 0.98 ) = −21.56
                    −22
 So − 21.56 =
                     1
                 1+     ( 23)
                    Aod
       1           22
1+        ( 23) =
      Aod         21.56
       1
          ( 23) = 0.020408 ⇒ Aod = 1127
      Aod

9.17
(a)
       R2              1
Av = −    ⋅
       R1 ⎡        1 ⎛ R2 ⎞ ⎤
            ⎢1 +       ⎜1 + ⎟ ⎥
            ⎣ Aod ⎝          R1 ⎠ ⎦
      100             1
   =−       ⋅
       25 ⎡           1          ⎤
              ⎢1 + 5 × 103 ( 5 ) ⎥
              ⎣                  ⎦
Av = −3.9960
(b)        vO = −3.9960 (1.00 ) ⇒ vO = −3.9960 V
            4 − 3.9960
(c)                    × 100% = 0.10%
                 4
(d)
 vO = Aod ( v2 − v1 ) = − Aod v1
         vO    − ( −3.9960 )
v1 = −       =
         Aod      5 × 10+3
v1 = 0.7992 mV

9.18
vO = Aod ( v2 − v1 ) = − Aod v1
      v          −5
v1 = − O =
      Aod 5 × 10+3
v1 = −1 mV

9.19
         R2 ⎛ R3 R3 ⎞
Av = −      ⎜1 + + ⎟
         R1 ⎝ R4 R2 ⎠
a.
           R2 ⎛ 100 100 ⎞
−10 = −       ⎜1 + +    ⎟
          100 ⎝ 100 R2 ⎠
         2 R2
  10 =        + 1 ⇒ R2 = 450 kΩ
         100
                  2R
b.          100 = 2 + 1 ⇒ R2 = 4.95 MΩ
                  100

9.20
a.
R2 ⎛ R3 R3 ⎞
Av = −    ⎜1 + + ⎟
       R1 ⎝ R4 R2 ⎠
R1 = 500 kΩ
     R2 ⎛ R3 R3 ⎞
80 =    ⎜1 +    + ⎟
    500 ⎝ R4 R2 ⎠
Set R2 = R3 = 500 kΩ
        ⎛ 500 ⎞             500
80 = 1⎜ 1 +      + 1⎟ = 2 +       ⇒ R4 = 6.41 kΩ
        ⎝    R4     ⎠        R4
b.
For vI = −0.05 V
           −0.05
i1 = i2 =          ⇒ i1 = i2 = −0.1 μ A
          500 kΩ
v X = −i2 R2 = − ( −0.1× 10−6 )( 500 × 103 ) = 0.05
         vX    0.05
i4 = −      =−      ⇒ i4 = −7.80 μ A
         R4    6.41
i3 = i2 + i4 = −0.1 − 7.80 ⇒ i3 = −7.90 μ A

9.21
(a)
                  − R2 −500
Av = −1000 =          =
                   R1   R1
R1 = 0.5 K
(b)
      − R2 ⎛ R3 R3 ⎞
Av =       ⎜1 +    + ⎟
       R1 ⎝ R4 R2 ⎠
          −250 ⎛ 500 500 ⎞ −1250
−1000 =         ⎜1 +   + ⎟=
            R1 ⎝ 250 250 ⎠   R1
R1 = 1.25 K

9.22




        vI
 i1 =      = i2
        R
                ⎛v ⎞
v A = −i2 R = − ⎜ I ⎟ R = −vI
                ⎝R⎠
        v     v
 i3 = − A = I
        R R
vA vA         2v       2v
 i4 = i2 + i3 = −   −     =− A = I
                  R R            R       R
                        ⎛ 2vI ⎞
vB = v A − i4 R = −vI − ⎜     ⎟ ( R ) = −3vI
                        ⎝ R ⎠
         vB      ( −3vI ) 3vI
 i5 = −      =−          =
         R          R        R
                2vI 3vI 5vI
 i6 = i4 + i5 =      +      =
                 R      R      R
                          ⎛ 5vI ⎞     v0
v0 = vB − i6 R = −3vI − ⎜       ⎟ R ⇒ v = −8
                          ⎝ R ⎠        I

From Figure 9.12 ⇒ Av = −3

9.23
(a)
        R2          1
Av = −     ⋅
        R1 ⎡      1 ⎛ R2 ⎞ ⎤
             ⎢1 +   ⎜1 + ⎟ ⎥
             ⎣ Aod ⎝       R1 ⎠ ⎦
        50            1
      =− ⋅                           ⇒ Av = −4.99985
        10 ⎡       1 ⎛ 50 ⎞ ⎤
              1+          1 + ⎟⎥
             ⎢ 2 × 105 ⎜ 10
             ⎣          ⎝         ⎠⎦
(b)        vO = − ( 4.99985 ) (100 × 10−3 ) ⇒ vO = −499.985 mV
                     0.5 − 0.499985
(c)        Error =                  × 100% ⇒ 0.003%
                           0.5

9.24
a.     From Equation (9.23)
      R2           1
Av = − ⋅
      R1 ⎡      1 ⎛ R2 ⎞ ⎤
          ⎢1 +     ⎜1 + ⎟ ⎥
          ⎣ Aod ⎝       R1 ⎠ ⎦
      100            1
   =−     ⋅                      = −0.9980
      100 ⎡      1 ⎛ 100 ⎞ ⎤
             1 + 3 ⎜1 +
            ⎢ 10              ⎟⎥
            ⎣       ⎝ 100 ⎠ ⎦
Then v0 = Av ⋅ vI = ( −0.9980 )( 2 ) ⇒ v0 = −1.9960 V
b.




 v0 = Aod ( v A − vB )
vB v0 − vB         ⎛ 1  1 ⎞ v
   =          ⇒ vB ⎜ + ⎟ = 0
R1     R2          ⎝ R1 R2 ⎠ R2
         v0
vB =
     ⎛ R2 ⎞
     ⎜1 + ⎟
     ⎝     R1 ⎠
Aod v0
Then v0 = Aod v A −
                       ⎛ R2 ⎞
                       ⎜1 + ⎟
                       ⎝   R1 ⎠
   ⎡           ⎤
   ⎢           ⎥
v0 ⎢1 +
        Aod ⎥
                 = Aod v A
   ⎢ ⎛ R ⎞⎥
   ⎢ ⎜1 + ⎟ ⎥
           2

   ⎢ ⎝
   ⎣      R1 ⎠ ⎥
               ⎦
   ⎡ ⎛ R2 ⎞             ⎤
   ⎢ ⎜ 1 + ⎟ + Aod ⎥
v0 ⎢ ⎝
           R1 ⎠         ⎥=A v
   ⎢ ⎛ R ⎞ ⎥                od A

   ⎢ ⎜1 + 2 ⎟ ⎥
   ⎢ ⎝
   ⎣           R1 ⎠ ⎥   ⎦
            ⎛ R2 ⎞
       Aod ⎜ 1 + ⎟ v A
v0 =        ⎝     R1 ⎠
              ⎛ R ⎞
        Aod + ⎜ 1 + 2 ⎟
              ⎝      R1 ⎠
          ⎛ R2 ⎞
          ⎜1 + ⎟ vA
v0 = ⎝
                R1 ⎠
             1 ⎛ R2 ⎞
       1+       ⎜1 + ⎟
           Aod ⎝      R1 ⎠
            ⎛ 10 ⎞ ⎛ vI ⎞
            ⎜1 + ⎟ ⎜ ⎟
So v0 = ⎝
                 10 ⎠ ⎝ 2 ⎠
                             = 0.9980vI
                1 ⎛ 10 ⎞
           1 + 3 ⎜1 + ⎟
               10 ⎝ 10 ⎠
For vI = 2 V
v0 = 1.9960 V

9.25
                   vl         v   v     R
(a)         ii =      = i2 = − O ⇒ O = − 2
                   R1         R2   vl   R1
(b)
        vl        v         1 ⎛ R2      ⎞
i2 = i1 =   = i3 + O = i3 +    ⎜ − ⋅ vl ⎟
        R1        RL        RL ⎝ R1     ⎠
           v ⎛ R ⎞
Then i3 = l ⎜ 1 + 2 ⎟
           R1 ⎝ RL ⎠

9.26
          ⎛ R3 R1 ⎞ + ⎛ 0.1 1 ⎞
                           ⎜ 0.1 1 + 10 ⎟ ( )
VX .max = ⎜           ⋅V = ⎜               10 ⇒ VX .max = 0.09008 V
          ⎜R R +R ⎟ ⎟                   ⎟
          ⎝ 3 1   4 ⎠      ⎝            ⎠
        R
vO = 2 ⋅ VX .max
        R1
       R2              R
10 =      ( 0.09008 ) ⇒ 2 = 111
       R1              R1
So R2 = 111 k Ω

9.27
(a)
⎛R           R           R          ⎞
vO = − ⎜ F ⋅ vI 1 + F ⋅ vI 2 + F ⋅ vI 3 ⎟
       ⎝ R1          R2          R3        ⎠
       ⎡⎛ 100 ⎞           ⎛ 100 ⎞            ⎛ 100 ⎞         ⎤
   = − ⎢⎜     ⎟ ( 0.5 ) + ⎜     ⎟ ( 0.75 ) + ⎜     ⎟ ( 2.5 ) ⎥
       ⎣ ⎝ 50 ⎠           ⎝ 20 ⎠             ⎝ 100 ⎠         ⎦
      = − [1 + 3.75 + 2.5]
vO = −7.25 V
(b)
       ⎡⎛ 100 ⎞       ⎛ 100 ⎞           ⎛ 100 ⎞ ⎤
−2 = − ⎢⎜     ⎟ (1) + ⎜     ⎟ ( 0.8 ) + ⎜     ⎟ vI 3 ⎥
       ⎣⎝ 50 ⎠        ⎝ 20 ⎠            ⎝ 100 ⎠ ⎦
 2 = 2 + 4 + vI 3
vI 3 = −4 V

9.28
        − RF         R          R
vo =         ⋅ vI 1 − F ⋅ vI 2 − F ⋅ vI 3
         R1          R2         R3
      = −4vI 1 − 8vI 2 − 2vI 3
RF            RF          RF
   =4            =8          =2
R1            R2          R3
Largest resistance = RF = 250 K ⇒ R1 = 62.5 K                    R2 = 31.25 K   R3 = 125 K

9.29
                                 RF       R
v0 = −4vI 1 − 0.5vI 2 = −           vI 1 − F vI 2
                                 R1       R2
RF            RF
   =4            = 0.5 ⇒ R1 is the smallest resistor
R1            R2
                    vI   2
i = 100 μ A =          =           ⇒ R1 = 20 kΩ
                    R1 R1
                                   ⇒ RF = 80 kΩ
                                   ⇒ R2 = 160 kΩ

9.30
vI 1 = ( 0.05 ) 2 sin ( 2π ft ) = 0.0707 sin ( 2π ft )
                        1                             1
  f = 1 kHz ⇒ T = 3 ⇒ 1 ms vI 2 ⇒ T2 =                  ⇒ 10 ms
                      10                           100
          R         R             10       10
vO = − F ⋅ vI 1 − F ⋅ vI 2 = − ⋅ vI 1 − ⋅ vI 2
          R1        R2             1        5
vO = − (10 ) ( 0.0707 sin ( 2π ft ) ) − ( 2 )( ±1 V )
vO = −0.707 sin ( 2π ft ) − ( ±2 V )
9.31
         RF         R          R
vO = −      ⋅ vI 1 − F ⋅ vI 2 − F ⋅ vI 3
         R1         R2         R3
       20          20         20
vO = −     ⋅ vI 1 − ⋅ vI 2 − ⋅ vI 3
       10          5           2
K sin ω t = −2vI 1 − 4 [ 2 + 100sin ω t ] − 0
Set vI 1 = −4 mV

9.32
Only two inputs.
       ⎡R          R         ⎤
vO = − ⎢ F ⋅ vI 1 + F ⋅ vI 2 ⎥
       ⎣ R1        R2        ⎦
        ⎡        1      ⎤
    = − ⎢3vI 1 + ⋅ vI 2 ⎥
        ⎣        4      ⎦
 RF        RF 1
     =3         =
 R1        R2 4
Smallest resistor = 10 K = R1
RF = 30 K       R2 = 120 K

9.33
       ⎡R           R        ⎤
vO = − ⎢ F ⋅ vI 1 + F ⋅ vI 2 ⎥
       ⎣ R1         R2       ⎦
                 − RF               −R          R               RF
−5 − 5sin ω t =       ( 2.5sin ω t ) F ⋅ ( 2 ) ⇒ F = 2             = 2.5
                  R1                 R2          R1             R2
RF = largest resistor ⇒ RF = 200 K
R1 = 100 K        R2 = 80 K

9.34
a.
         RF              R               R               R
v0 = −      ⋅ a3 ( −5 ) − F ⋅ a2 ( −5 ) − F ⋅ a1 ( −5 ) − F ⋅ a0 ( −5 )
         R3              R2              R1              R0
          RF ⎡ a3 a2 a1 a0 ⎤
So v0 =           + + +          ( 5)
          10 ⎢ 2 4 8 16 ⎥
              ⎣                ⎦
                     R 1
b.         v0 = 2.5 = F ⋅ ⋅ 5 ⇒ RF = 10 kΩ
                     10 2
c.
                  10 1
i.         v0 =     ⋅ ⋅ 5 ⇒ v0 = 0.3125 V
                  10 16
10 ⎡ 1 1 1 1 ⎤
ii.         v0 =         + + +     ( 5 ) ⇒ v0 = 4.6875 V
                   10 ⎢ 2 4 8 16 ⎥
                      ⎣          ⎦

9.35
(a)
       10
vO1 = −   ⋅ vI 1
        1
       20        20
vO = − ⋅ vO1 − ⋅ vI 2 = − ( 20 )( −10 ) vI 1 − ( 20 ) vI 2
       1          1
vO = 200vI 1 − 20vI 2
(b)
 vI 1 = 1 + 2sin ω t ( mV )
 vI 2 = −10 mV
 Then vO = 200 (1 + 2sin ω t ) − 20 ( −10 )
So vO = 0.4 + 0.4sin ω t (V )

9.36
For one-input




         v0
v1 = −
         Aod
vI 1 − v1     v1   v −v
          =       + 1 0
    R1      R2 R3    RF
VI 1      ⎡1     1    1 ⎤ v0
     = v1 ⎢ +       +   ⎥−
R1        ⎣ R1 R2 R3 RF ⎦ RF
           v0    ⎡1     1    1 ⎤ v0
      =−         ⎢ +       +   ⎥−
           Aod   ⎣ R1 R2 R3 RF ⎦ RF
            ⎧ 1
            ⎪         1   1 ⎛ 1    1 ⎞⎫  ⎪
      = −v0 ⎨       +   +   ⎜ +        ⎟⎬
            ⎪ Aod RF RF Aod ⎝ R1 R2 R3 ⎠ ⎪
            ⎩                            ⎭
           v0 ⎧ 1        1     RF    ⎫
      =−      ⎨     +1+    ⋅         ⎬
           RF ⎩ Aod     Aod R1 R2 R3 ⎭
                    ⎧             ⎫
                    ⎪             ⎪
        R           ⎪      1      ⎪
  v0 = − F ⋅ vI 1 ⋅ ⎨             ⎬ where RP = R1 R2 R3
        R1          ⎪1 + 1 ⎛ RF ⎞ ⎪
                             1+
                    ⎪ Aod ⎜ RP ⎟ ⎪
                           ⎝    ⎠⎭
                    ⎩
                                           −1       ⎛R          R          R         ⎞
Therefore, for three-inputs v0 =                  × ⎜ F ⋅ vI 1 + F ⋅ vI 2 + F ⋅ vI 3 ⎟
                                        1 ⎛ RF ⎞ ⎝ R1           R2         R3        ⎠
                                    1+     ⎜1 + ⎟
                                       Aod ⎝ RP ⎠

9.37
⎛ R ⎞        R
Av = 12 = ⎜ 1 + 2 ⎟ ⇒ 2 = 11
          ⎝    R1 ⎠    R1
       v           v     0.5
  i1 = I ⇒ R1 = I =
       R1           i1 0.15
          R1 = 3.33 K
          R2 = 36.7 K

9.38




     ⎛ 1 ⎞                      ⎛ 1 ⎞
vB = ⎜         ⎟ vI  v0 = Aod ⎜       ⎟ vi
     ⎝ 1 + 500 ⎠                ⎝ 501 ⎠
                    ⎛ 1 ⎞
a.        2.5 = Aod ⎜     ⎟ ( 5 ) ⇒ Aod = 250.5
                    ⎝ 501 ⎠
                     ⎛ 1 ⎞
b.        v0 = 5000 ⎜      ⎟ ( 5 ) ⇒ v0 = 49.9 V
                     ⎝ 501 ⎠

9.39
      ⎛ R ⎞
 Av = ⎜ 1 + 2 ⎟
      ⎝    R1 ⎠
(a)        Av = 11
(b)        Av = 2
(c)        Av = 1.2
(d)        Av = 11
(e)        Av = 3
(f)        Av = 2

9.40
           R2
(a)           = 1 ⇒ R1 = R2 = 20 K
           R1
           R2
(b)           = 9 ⇒ R1 = 20 K, R2 = 180 K
           R1
           R2
(c)           = 49 ⇒ R1 = 20 K, R2 = 980 K
           R1
           R2
(d)           = 0 can set R2 = 20 K, R1 = ∞ (open circuit)
           R1

9.41
     ⎛ 50 ⎞ ⎡⎛ 20 ⎞                ⎛ 40 ⎞ ⎤
v0 = ⎜ 1 + ⎟ ⎢⎜           ⎟ vI 2 + ⎜         ⎟ vI 1 ⎥
     ⎝ 50 ⎠ ⎣⎝ 20 + 40 ⎠           ⎝ 20 + 40 ⎠ ⎦
v0 = 1.33vI 1 + 0.667vI 2

9.42
(a)
vI 1 − v2 vI 2 − v2 v2
         +          =
    20        40      10
       ⎛ 100 ⎞
vO = ⎜ 1 +     ⎟ v2 = 3v2
       ⎝   50 ⎠
Now 2vI 1 − 2v2 + vI 2 − v2 = 4v2
                       ⎛v ⎞
2vI 1 + vI 2 = 7v2 = 7 ⎜ o ⎟
                       ⎝3⎠
            6      3
So vO = ⋅ vI 1 + ⋅ vI 2
            7      7

                 ( 0.2 ) + ⎛ ⎞ ( 0.3) ⇒ vO = 0.3 V
               6             3
(b)       vO =             ⎜ ⎟
               7           ⎝ 7⎠
               ⎛6⎞             ⎛ 3⎞
(c)       vO = ⎜ ⎟ ( 0.25 ) + ⎜ ⎟ ( −0.4 ) ⇒ vO = 42.86 mV
               ⎝7⎠             ⎝7⎠

9.43
     ⎛ R4 ⎞
v2 = ⎜         ⎟ vI
     ⎝ R3 + R4 ⎠
     ⎛ R ⎞         ⎛ R ⎞ ⎛ R4 ⎞
vO = ⎜1 + 2 ⎟ v2 = ⎜ 1 + 2 ⎟ ⎜        ⎟ vI
     ⎝   R1 ⎠      ⎝    R1 ⎠⎝ R3 + R4 ⎠
       vO ⎛ R2 ⎞ ⎛ R4 ⎞
Av =     = ⎜1 + ⎟ ⎜           ⎟
       vI ⎝    R1 ⎠ ⎝ R3 + R4 ⎠

9.44
(a)
 vO ⎛      50 x ⎞
    = ⎜1 +
      ⎜ (1 − x ) 50 ⎟
                    ⎟
 vI ⎝               ⎠
 vO ⎛         x ⎞ 1− x + x
    = ⎜1 +       ⎟=
 vI ⎝ 1 − x ⎠          1− x
      v        1
 Av = O =
      vI 1 − x
(b)       1 ≤ Av ≤ ∞
(c)       If x = 1, gain goes to infinity.

9.45
Change resister values as shown.
vI
i1 =      = i2
       R
                   ⎛v ⎞
vx = i2 2 R + vI = ⎜ I ⎟ 2 R + vI = 3vI
                   ⎝R⎠
     v x 3I
i3 = =
      R R
               v 3v        4v
i4 = i2 + i3 = I + I = I
               R     R       R
                   ⎛ 4vI ⎞
v0 = i4 2 R + vx = ⎜     ⎟ 2 R + 3vI
                   ⎝ R ⎠
v0
    = 11
vI

9.46
            vO
(a)             =1
             vI
(b)         From Exercise TYU9.7
              ⎛ R2 ⎞
              ⎜1 + ⎟
vO
   =          ⎝   R1 ⎠
vI ⎡       1 ⎛ R2 ⎞ ⎤
     ⎢1 +     ⎜1 + ⎟ ⎥
     ⎣ Aod ⎝      R1 ⎠ ⎦
But R2 = 0, R1 = ∞
vO     1           1        v
   =        =              ⇒ O = 0.999993
vI 1 +   1           1       vI
              1+
        Aod      1.5 × 105
                   vO              1
(b)         Want      = 0.990 =         ⇒ Aod = 99
                   vI                1
                                1+
                                    Aod

9.47
v0 = Aod ( vI − v0 )
⎛ 1      ⎞
⎜     + 1⎟ v0 = vI
⎝ Aod    ⎠
v0         1
   =
vI ⎛         1 ⎞
      ⎜1 +       ⎟
      ⎝     Aod ⎠
              v
Aod = 104 ; 0 = 0.99990
              vI
              v0
Aod = 103 ;      = 0.9990
              vI
               v0
Aod = 102 ;       = 0.990
               vI
              v0
Aod = 10;        = 0.909
              vI

9.48
       ⎛ R ⎞
v0 A = ⎜ 1 + 2 ⎟ vI
       ⎝    R1 ⎠
      ⎛ R ⎞                 ⎛ R ⎞
v01 = ⎜1 + 2 ⎟ vI , v02 = − ⎜ 1 + 2 ⎟ vI
      ⎝     R1 ⎠            ⎝    R1 ⎠
So v01 = −v02

9.49
                   vI
(a)         iL =
                   R1
(b)
 vO1 = iL RL + vI = iL RL + iL R1
 vOI ( max ) ≅ 10 V = iL (1 + 9 ) = 10iL
So iL ( max ) ≅ 1 mA
Then vI ( max ) ≅ iL R1 = (1)( 9 ) ⇒ vI ( max ) ≅ 9 V

9.50
(a)
     ⎛ 20 ⎞             ⎛ 20 ⎞
vX = ⎜         ⎟ ⋅ vI = ⎜ ⎟ ( 6 ) = 2
     ⎝ 20 + 40 ⎠        ⎝ 60 ⎠
vO = 2 V
(b)       Same as (a)
(c)
     ⎛ 6 ⎞
vX = ⎜        ⎟ ( 6 ) = 0.666 V
     ⎝ 6 + 48 ⎠
     ⎛ 10 ⎞
vO = ⎜ 1 + ⎟ ⋅ v X ⇒ vO = 1.33 V
     ⎝ 10 ⎠

9.51
a.
v1    v −v
Rin =      and 1 0 = i1 and v0 = − Aod v1
        i1      RF
          v1 − ( − Aod v1 )       v1 (1 + Aod )
So i1 =                       =
                RF                    RF
               v1   RF
Then Rin =        =
               i1 1 + Aod
b.
     ⎛ RS ⎞                               RF
i1 = ⎜          ⎟ iS and v0 = − Aod ⋅         ⋅ i1
     ⎝ RS + Rin ⎠                     1 + Aod
              ⎛ A ⎞⎛ RS ⎞
So v0 = − RF ⎜ od ⎟⎜                 ⎟ iS
              ⎝ 1 + Aod ⎠⎝ RS + Rin ⎠
          RF     10
Rin =          =     = 0.009990
        1 + Aod 1001
          ⎛ 1000 ⎞ ⎛       RS      ⎞
v0 = − RF ⎜      ⎟⎜                ⎟ iS
          ⎝ 1001 ⎠ ⎝ RS + 0.009990 ⎠
     ⎛ 1000 ⎞ ⎛       RS      ⎞
Want ⎜      ⎟⎜                ⎟ ≤ 0.990
     ⎝ 1001 ⎠ ⎝ RS + 0.009990 ⎠
which yields RS ≥ 1.099 kΩ

9.52




vO = iC RF , 0 ≤ iC ≤ 8 mA
For vO ( max ) = 8 V, Then RF = 1 k Ω

9.53
    v         10
i = I so 1 =     ⇒ R = 10 kΩ
     R         R
In the ideal op-amp, R1 has no influence.
                     ⎛ R ⎞
Output voltage: v0 = ⎜1 + 2 ⎟ vI
                     ⎝    R⎠
v0 must remain within the bias voltages of the op-amp; the larger the R2, the smaller the range of input
voltage vI in which the output is valid.

9.54
(a)
− vI
iL =
       R2
              − ( −10V )
10mA =
                 R2
R2 = 1 K
        1   R
Also      = F
        R2 R1 R3
vL = (10mA )( 0.05k ) = 0.5 V
      0.5
i2 =      = 0.5 mA
       1
iR 3 = 10 + 0.5 = 10.5 mA
                          v −v   13 − 0.5
Limit vo to 13V ⇒ R3 = O L =              R3 = 1.19 K
                            iR 3  10.5
         RF R3 1.19         R
Then       =   =    = 1.19 = F
         R1 R2   1           R1
For example, RF = 119 K, R1 = 100 K
(b)           From part (a), vO = 13 V when vI = −10 V

9.55
(a)
                      vx
i1 = i2 and i2 =         + iD , vx = −i2 RF
                      R2
               ⎛R       ⎞
Then i1 = −i1 ⎜ F       ⎟ + iD
               ⎝ R2     ⎠
           ⎛     R      ⎞
Or iD = i1 ⎜ 1 + F      ⎟
           ⎝     R2     ⎠
(b)
       vI 5
R1 =     = ⇒ R1 = 5 k Ω
       i1 1
         ⎛    R ⎞   R
12 = (1) ⎜ 1 + F ⎟ ⇒ F = 11
         ⎝    R2 ⎠  R2
For example, R2 = 5 k Ω, RF = 55 k Ω

9.56
                     VX VX − vO
(1)           IX =      +
                     R2   R3
              VX VX − vO
(2)              +       =0
              R1   RF
⎛ R ⎞
From (2) vO = VX ⎜ 1 + F ⎟
                 ⎝    R1 ⎠
                  ⎛ 1   1 ⎞ 1    ⎛ R ⎞
Then (1) I X = VX ⎜ + ⎟ − ⋅ VX ⎜1 + F ⎟
                  ⎝ R2 R3 ⎠ R3   ⎝   R1 ⎠
IX    1      1    1   1    R   1   R
   =     =     +     − − F =     − F
VX R0 R2 R3 R3 R1 R3 R2 R1 R3
           R1 R3 − R2 RF
       =
              R1 R2 R3
                 R1 R2 R3
or Ro =
              R1 R3 − R2 RF
                RF    1
Note: If            =   ⇒ R2 RF = R1 R3 then Ro = ∞, which corresponds to an ideal current source.
               R1 R3 R2

9.57
      R2 R4
Ad =     =     =5
      R1 R3
Minimum resistance seen by vI1 is R1.
Set R1 = R3 = 25 kΩ Then R2 = R4 = 125 kΩ
       v0
iL =      ⇒ v0 = iL RL = ( 0.5 )( 5 ) = 2.5 V
       RL
v0 = 5 ( vI 2 − vI 1 )
2.5 = 5 ( vI 2 − 2 ) ⇒ vI 2 = 2.5 V

9.58
           R2
vO =          ( vI 2 − vI 1 )
           R1
       R2      R     R
Ad =       and 2 = 4 with R2 = R4 and R1 = R3
       R1       R1 R3
Differential input resistance
                  R 20
 Ri = 2 R1 ⇒ R1 = i =      = 10 K
                   2     2
           R2
(a)           = 50 ⇒ R2 = R4 = 500 K
           R1
                                 R1 = R3 = 10 K
                R2
(b)                = 20 ⇒ R2 = R4 = 200 K
                R1
                                 R1 = R3 = 10 K
                R2
(c)                = 2 ⇒ R2 = R4 = 20 K
                R1
                                R1 = R3 = 10 K
                R2
(d)                = 0.5 ⇒ R2 = R4 = 5 K
                R1
                                 R1 = R3 = 10 K

9.59
We have
     ⎛ R ⎞⎛ R / R ⎞                 ⎛R ⎞         ⎛ R ⎞⎛           1      ⎞        ⎛ R2 ⎞
vO = ⎜ 1 + 2 ⎟ ⎜ 4 3 ⎟ vI 2 − ⎜ 2 ⎟ vI 1 or vO = ⎜ 1 + 2 ⎟ ⎜             ⎟ vI 2 − ⎜ ⎟ vI 1
     ⎝    R1 ⎠ ⎝ 1 + R4 / R3 ⎠      ⎝ R1 ⎠       ⎝    R1 ⎠ ⎝ 1 + R3 / R4 ⎠        ⎝ R1 ⎠
Set R2 = 50 (1 + x ) , R1 = 50 (1 − x )
      R3 = 50 (1 − x ) , R4 = 50 (1 + x )
                      ⎡              ⎤
     ⎡ ⎛ 1 + x ⎞⎤     ⎢              ⎥          1+ x ⎞
                                     ⎥ vI 2 − ⎛
                             1
vO = ⎢1 + ⎜       ⎟⎥ ⎢                        ⎜      ⎟ vI 1
     ⎣    ⎝ 1 − x ⎠ ⎦ ⎢1 + ⎛ 1 − x ⎞ ⎥        ⎝ 1− x ⎠
                      ⎢ ⎜ 1+ x ⎟ ⎥
                      ⎣ ⎝          ⎠⎦
     ⎡1 − x + (1 + x ) ⎤ ⎡         1+ x      ⎤        ⎛ 1+ x ⎞
vO = ⎢                   ⎥⋅⎢                 ⎥ vI 2 − ⎜      ⎟ vI 1
     ⎣      1− x         ⎦ ⎢1 + x + (1 − x ) ⎥
                           ⎣                 ⎦        ⎝ 1− x ⎠
     ⎛ 1+ x ⎞          ⎛1+ x ⎞
   =⎜         ⎟ vI 2 − ⎜      ⎟ vI 1
     ⎝1− x ⎠           ⎝ 1− x ⎠
For vI 1 = vI 2 ⇒ vO = 0
Set     R2 = 50 (1 + x )       R1 = 50 (1 − x )
        R3 = 50 (1 + x ) R4 = 50 (1 − x )
                     ⎛         ⎞
        ⎛ 1+ x ⎞⎜            1 ⎟      ⎛ 1+ x ⎞
 vO = ⎜1 +         ⎟ ⎜ 1 + x ⎟ vI 2 − ⎜      ⎟ vI 1
        ⎝ 1− x ⎠⎜1+            ⎟      ⎝ 1− x ⎠
                     ⎜         ⎟
                     ⎝ 1− x ⎠
               ⎛ 1+ x ⎞
      = vI 2 − ⎜      ⎟ vI 1
               ⎝ 1− x ⎠
 vI 1 = vI 2 = vcm
vO       1 + x 1 − x − (1 + x ) −2 x
    = 1−      =                =
vcm      1− x       1− x         1− x
Set     R2 = 50 (1 − x )       R1 = 50 (1 + x )
        R3 = 50 (1 − x ) R4 = 50 (1 + x )
               ⎛       ⎞
      ⎛ 1− x ⎞⎜    1 ⎟          ⎛ 1− x ⎞
 vO = ⎜ 1 +  ⎟ ⎜ 1 − x ⎟ vI 2 − ⎜      ⎟ vI 1
      ⎝ 1+ x ⎠⎜ 1+     ⎟        ⎝ 1+ x ⎠
               ⎜       ⎟
               ⎝ 1+ x ⎠
      ⎛ 1− x ⎞
    = ⎜1 −   ⎟ vcm
      ⎝ 1+ x ⎠
        1 + x − (1 − x )
                  2x
Acm =                      =
         1+ x    1+ x
Worst common-mode gain
        −2 x
Acm =
        1− x
(b)
−2 x −2 ( 0.01)
For x = 0.01,      Acm =      =           = −0.0202
                       1 − x 1 − 0.01
                       −2 ( 0.02 )
For x = 0.02, Acm =                = −0.04082
                        1 − 0.02
                       −2 ( 0.05 )
For x = 0.05, Acm =                = −0.1053
                        1 − 0.05
                                1          1
For this condition, set vI 2 = + , vI 1 = − ⇒ vd = 1 V
                                2          2
      1 ⎡ ⎛ 1 + x ⎞ ⎤ 1 ⎡1 − x + (1 + x ) ⎤ 1 2        1
Ad = ⎢1 + ⎜       ⎟⎥ = ⎢                  ⎥= ⋅      =
      2 ⎣ ⎝ 1 − x ⎠⎦ 2 ⎣        1− x      ⎦ 2 1− x 1− x
                                                              1.010
For x = 0.01 Ad = 1.010                C M R RdB = 20 log10          = 33.98 dB
                                                              0.0202
                       1                                       1.020
For x = 0.02, Ad =         = 1.020     C M R RdB = 20 log10           = 27.96 dB
                      0.98                                    0.04082
                       1                                 1.0526
For x = 0.05 Ad =          = 1.0526 C M R RdB = 20 log10        ≅ 20 dB
                      0.95                               0.1053

9.60
      ⎛ 10R ⎞          ⎛ 10 ⎞
vy = ⎜          ⎟ v2 = ⎜ ⎟ ( 2.65 ) ⇒ v y = vx = 2.40909 V
      ⎝ 10R+R ⎠        ⎝ 11 ⎠
           v2 − v y 2.65 − 2.40909
 i3 = i4 =          =                  = 0.0120 mA
              R               20
           v −v       2.50 − 2.40909
 i1 = i2 = 1 x =                       = 0.0045455 mA
              R              20
vO = vx − i2 (10R ) = ( 2.40909 ) − ( 0.0045455 )( 200 )
vO = 1.50 V

9.61
                                              10
iE = (1 + β )( iB ) = ( 81)( 2 ) = 162 mA =
                                               R
                 R = 61.73 Ω

9.62
a.      From superposition:
       R2
v01 = − ⋅ vI 1
       R1
      ⎛ R ⎞ ⎛ R1 ⎞
v02 = ⎜ 1 + 2 ⎟ ⎜          ⎟ vI 2
      ⎝     R1 ⎠ ⎝ R3 + R4 ⎠
Setting vI 1 = vI 2 = vcm
                 ⎡          ⎛         ⎞     ⎤
                 ⎢⎛ R ⎞ ⎜ 1           ⎟ R ⎥
v0 = v01 + v02 = ⎢⎜ 1 + 2 ⎟ ⎜         ⎟ − 2 ⎥ vcm
                 ⎢⎝    R1 ⎠ ⎜    R3   ⎟ R1 ⎥
                 ⎢          ⎜ 1+ R    ⎟     ⎥
                 ⎣          ⎝     4   ⎠     ⎦
⎛                ⎞
      v    R ⎛ R ⎞⎜ 1                    ⎟ R
Acm = 0 = 4 ⋅ ⎜ 1 + 2 ⎟ ⎜                ⎟− 2
     vcm R3 ⎝      R1 ⎠ ⎜    R4          ⎟ R1
                        ⎜ 1+ R           ⎟
                        ⎝     3          ⎠
     R4 ⎛ R2 ⎞ R2 ⎛ R4 ⎞
        ⎜1 + ⎟ − ⎜1 + ⎟
    = 3⎝
     R      R1 ⎠ R1 ⎝ R3 ⎠
            ⎛ R4 ⎞
            ⎜1 + ⎟
            ⎝ R3 ⎠
      R4 R2
         −
      R    R1
Acm = 3
     ⎛ R4 ⎞
     ⎜1 + ⎟
     ⎝ R3 ⎠
                                R4         R
b.         Max. Acm ⇒ Min.         and Max. 2
                                R3         R1
              47.5 52.5
                  −
Max. Acm    = 10.5 9.5 = 4.5238 − 5.5263 ⇒ A                = 0.1815
                            1 + 4.5238
                                            cm
                  47.5                                max
               1+
                  10.5

9.63




vI 1 − v A v A − vB vA − v0
          =        +                            (1)
R1 + R2       Rv      R2
vI 2 − vB vB − v A vB
         =        +                             (2)
R1 + R2     Rv      R2
     ⎛ R1 ⎞           ⎛ R2 ⎞
v− = ⎜         ⎟ vA + ⎜         ⎟ vI 1          (3)
     ⎝ R1 + R2 ⎠      ⎝ R1 + R2 ⎠
     ⎛ R1 ⎞           ⎛ R2 ⎞
v+ = ⎜         ⎟ vB + ⎜         ⎟ vI 2          (4)
     ⎝ R1 + R2 ⎠      ⎝ R1 + R2 ⎠
Now v− = v+ ⇒ R1vA + R2 vI 1 = R1vB + R2 vI 2
                  R
So that v A = vB + 2 ( vI 2 − vI 1 )
                  R1
  vI 1       ⎛ 1        1  1 ⎞ v  v
        = vA ⎜        +   + ⎟− B − 0                                                                (1)
R1 + R2      ⎝ R1 + R2 RV R2 ⎠ RV R2
  vI 2       ⎛ 1        1  1 ⎞ v
        = vB ⎜        +   + ⎟− A                                                                    ( 2)
R1 + R2      ⎝ R1 + R2 RV R2 ⎠ RV
Then
   vI 1          ⎛ 1            1      1 ⎞ v      v ⎛ R ⎞⎛ 1                1   1 ⎞
         = vB ⎜              +      + ⎟ − B − 0 + ⎜ 2 ⎟⎜                  +   + ⎟ ( vI 2 − vI 1 )   (1)
 R1 + R2         ⎝ R1 + R2 RV R2 ⎠ RV R2 ⎝ R1 ⎠ ⎝ R1 + R2 RV R2 ⎠
   vI 2          ⎛ 1            1      1 ⎞ 1 ⎡        R2              ⎤
         = vB ⎜              +      + ⎟−       ⎢ vB + ( vI 2 − vI 1 ) ⎥                             (2)
 R1 + R2         ⎝ R1 + R2 RV R2 ⎠ RV ⎣               R1              ⎦
Subtract (2) from (1)
    1                      ⎛ R ⎞⎛ 1          1      1 ⎞                 v    1 R2
         ( vI 1 − vI 2 ) = ⎜ 2 ⎟ ⎜         +     + ⎟ ( vI 2 − vI 1 ) − 0 +     ⋅ ( vI 2 − vI 1 )
 R1 + R2                   ⎝ R1 ⎠ ⎝ R1 + R2 RV R2 ⎠                     R2 RV R1
v0                   ⎧⎛ R ⎞ ⎛ 1
                     ⎪                  1  1 ⎞    1          ⎫
                                                        1 R2 ⎪
   = ( vI 2 − vI 1 ) ⎨⎜ 2 ⎟ ⎜         +   + ⎟+        +   ⋅ ⎬
R2                   ⎪⎝ R1 ⎠ ⎝ R1 + R2 RV R2 ⎠ R1 + R2 RV R1 ⎪
                     ⎩                                       ⎭
                     ⎛ R ⎞ ⎧ R2       R         R1   R ⎫
v0 = ( vI 2 − vI 1 ) ⎜ 2 ⎟ ⎨         + 2 +1+        + 2⎬
                     ⎝ R1 ⎠ ⎩ R1 + R2 RV     R1 + R2 RV ⎭
       2 R2 ⎛    R2 ⎞
v0 =        ⎜1 +    ⎟ ( vI 2 − vI 1 )
        R1 ⎝ RV ⎠

9.64
vI 1 − vI 2 ( 0.50 − 0.030sin ω t ) − ( 0.50 + 0.030sin ω t )
i1 =              =
            R1                            20
     −0.060sin ω t
  =
            20
i1 = −3sin ω t ( μ A )
vO1 = i1 R2 + vI 1 = ( −0.0030sin ω t )(115 ) + 0.50 − 0.030sin ω t
vO1 = 0.50 − 0.375sin ω t
vO 2 = vI 2 − i1 R2 = 0.50 + 0.030sin ω t − ( −0.003sin ω t )(115 )
vO 2 = 0.50 + 0.375sin ω t
        R4                  200
vO =       ( vO 2 − vO1 ) =     ⎡ 0.50 + 0.375sin ω t − ( 0.50 − 0.375sin ω t ) ⎤
        R3                  50 ⎣                                                ⎦
vO = 3sin ω t ( V )
         vO 2    0.50 + 0.375sin ω t
i3 =           =
       R3 + R4        50 + 200
i3 = 2 + 1.5sin ω t ( μ A )
       vO1 − vO ( 0.5 − 0.375sin ω t ) − ( 3sin ω t )
i2 =           =
       R3 + R4                250
i2 = 2 − 13.5sin ω t ( μ A )

9.65
                  ⎛ 40 ⎞
(a)         vOB = ⎜1 + ⎟ vI = 2.1667 sin ω t
                  ⎝ 12 ⎠
                    30
(b)         vOC = − vI = −1.25sin ω t
                    12
(c)
 vO = vOB − vOC = 2.1667 sin ω t − ( −1.25sin ω t )
vO = 3.417 sin ω t
            vO 3.417
(d)            =     = 6.83
            vI   0.5

9.66
       vI
iO =
       R

9.67
         vO      R ⎛ 2R ⎞
Ad =            = 4 ⎜1 + 2 ⎟
     vI 2 − vI 1 R3 ⎝       R1 ⎠
      200 ⎛ 2 (115 ) ⎞
vO =        ⎜1 +        ⎟ ( 0.06sin ω t )
      50 ⎝        R1 ⎠
                 230
For vO = 0.5          = 1.0833 ⇒ R1 = 212.3 K
                  R1
                    230
vO = 8 V                = 32.33 ⇒ R1 = 7.11 K ⇒ R1 f = 7.11 K, R1 (potentiometer) = 205.2 K
                     R1

9.68
⎛ 2 R2 ⎞
       R4
vO =    ⎜1 +    ⎟ ( vI 2 − vI 1 )
        ⎝
       R3    R1 ⎠
Set R2 = 15 K, Set R1 = 2 K + 100 k ( Rot )
         R4
Want        ≈8       Set R3 = 10 K
         R3
                     R 4 = 75 K
Now
                   75 ⎛ 2 (15 ) ⎞
 Gain (min) =         ⎜1 +      ⎟ = 9.71
                   10 ⎝    102 ⎠
                   75 ⎛ 2 (15 ) ⎞
Gain ( max ) =        ⎜1 +      ⎟ = 120
                   10 ⎝    2 ⎠

9.69
For a common-mode gain, vcm = vI 1 = vI 2
Then
      ⎛ R ⎞          R
v01 = ⎜ 1 + 2 ⎟ vcm − 2 vcm = vcm
      ⎝    R1 ⎠      R1
      ⎛ R ⎞          R
v02 = ⎜ 1 + 2 ⎟ vcm − 2 vcm = vcm
      ⎝    R1 ⎠      R1
From Problem 9.62 we can write
        R4 R4
           −
        R3 R3  ′
Acm =
       ⎛    R4 ⎞
       ⎜1 + ⎟
       ⎝    R3 ⎠
                    ′
R3 = R4 = 20 kΩ, R3 = 20 kΩ ± 5%
          20
      1−
          R3 1 ⎛ 20 ⎞
            ′
Acm =         = ⎜1 − ⎟
      (1 + 1) 2 ⎝     ′
                     R3 ⎠
     ′
For R3 = 20 kΩ − 5% = 19 kΩ
      1 ⎛ 20 ⎞
Acm =    ⎜ 1 − ⎟ = −0.0263
       2 ⎝ 19 ⎠
     ′
For R3 = 20 kΩ + 5% = 21 kΩ
     1 ⎛ 20 ⎞
Acm =  ⎜ 1 − ⎟ = 0.0238
     2⎝      21 ⎠
So Acm max = 0.0263

9.70
a.
         1
           ⋅ vI ( t ′ ) dt ′
       R1C2 ∫
v0 =

                       0.5
∫ 0.5sin ω t dt = − ω          cos ω t

                 1 ( 0.5 )      0.5
v0 = 0.5 =         ⋅       =
               R1C2 ω        2π R1C2 f
          1                 1
f =           =                             ⇒ f = 31.8 Hz
       2π R1C2 2π ( 50 × 103 )( 0.1× 10−6 )
Output signal lags input signal by 90°
b.
                                   0.5
i.            f =                                   ⇒ f = 15.9 Hz
                    2π ( 50 × 103 )( 0.1× 10−6 )
                                         0.5
ii.           f =                                          ⇒ f = 159 Hz
                    ( 0.1)( 2π ) ( 50 ×103 )( 0.1×10−6 )

9.71
        1                − vI ⋅ t
vO = −
       RC ∫ vI ( t ) dt = RC
vI = −0.2
Now
      − ( −0.2 )( 2 )
8=
           RC
(a)         RC = 0.05 s
                    ( 0.2 ) t
(b)         14 =                ⇒ t = 3.5 s
                     0.05

9.72
a.
                 1                          1
       − R2                        R2 ⋅
v0             jω C2                      jω C2
   =                    =−
vI            R1                   ⎛        1 ⎞
                                R1 ⎜ R2 +       ⎟
                                   ⎝      jω C2 ⎠
v0   R       1
   =− 2⋅
vI   R1 1 + jω R2 C2
              v0   R
b.               =− 2
              vI   R1
                       1
c.            f =
                    2π R2 C2

9.73
a.
 v0     − R2      R ( jω C1 )
    =           =− 2
 vI R + 1         1 + jω R1C1
          jω C1
      1


v0   R     jω R1C1
   =− 2⋅
vI   R1 1 + jω R1C1
              v0   R
b.               =− 2
              vI   R1
                       1
c.            f =
                    2π R1C1

9.74
Assuming the Zener diode is in breakdown,
R2         1
vO = −      ⋅ Vz = − ( 6.8 ) ⇒ vO = −6.8 V
         R1         1
        0 − vO 0 − ( −6.8 )
 i2 =         =             ⇒ i2 = 6.8 mA
          R2        1
     10 − Vz         10 − 6.8
 iz =         − i2 =          − 6.8 ⇒ iz = −6.2 mA!!!
        Rs              5.6
Circuit is not in breakdown. Now
 10 − 0            10
         = i2 =         ⇒ i2 = 1.52 mA
Rs + R1         5.6 + 1
vO = −i2 R2 = − (1.52 )(1) ⇒ vO = −1.52 V
iz = 0

9.75
            ⎛ v ⎞                  ⎡     v      ⎤               ⎛ vI ⎞
vO = −VT ln ⎜ I ⎟ = − ( 0.026 ) ln ⎢ −14 I 4 ⎥ ⇒ vO = −0.026 ln ⎜ −10 ⎟
            ⎝ I s R1 ⎠             ⎢ (10 )(10 ) ⎥
                                   ⎣            ⎦               ⎝ 10 ⎠
For vI = 20 mV , vO = 0.497 V
For vI = 2 V , vO = 0.617 V




9.76
⎛ 333 ⎞
v0 = ⎜     ⎟ ( v01 − v02 ) = 16.65 ( v01 − v02 )
     ⎝ 20 ⎠
                        ⎛i ⎞
v01 = −vBE1 = −VT ln ⎜ C1 ⎟
                        ⎝ IS ⎠
                        ⎛i ⎞
v02 = −vBE 2 = −VT ln ⎜ C 2 ⎟
                        ⎝ IS ⎠
                   ⎛i ⎞           ⎛i ⎞
v01 − v02 = −VT ln ⎜ C1 ⎟ = VT ln ⎜ C 2 ⎟
                   ⎝ iC 2 ⎠       ⎝ iC1 ⎠
       v           v
iC 2 = 2 , iC1 = 1
       R2          R1
                     ⎛v R ⎞
So v01 − v02 = VT ln ⎜ 2 ⋅ 1 ⎟
                     ⎝ R2 v1 ⎠
Then
                          ⎛v R ⎞
v0 = (16.65 )( 0.026 ) ln ⎜ 2 ⋅ 1 ⎟
                          ⎝ v1 R2 ⎠
                ⎛v R ⎞
v0 = 0.4329 ln ⎜ 2 ⋅ 1 ⎟
                ⎝ v1 R2 ⎠
ln ( x ) = log e ( x ) = ⎡ log10 ( x ) ⎤ ⋅ ⎡log e (10 ) ⎤
                         ⎣             ⎦ ⎣              ⎦
        = 2.3026 log10 ( x )
                       ⎛v R ⎞
Then v0 ≅ (1.0 ) log10 ⎜ 2 ⋅ 1 ⎟
                       ⎝ v1 R2 ⎠

9.77
              (            )
vO = − I s R evI / VT = − (10−14 )(104 ) evI / VT
 vO = (10   −10
                  )e   vI / 0.026



For vI = 0.30 V ,               vo = 1.03 × 10−5 V
For vI = 0.60 V ,               vo = 1.05 V

Recomendados

Ch09p von
Ch09pCh09p
Ch09pBilal Sarwar
249 views9 Folien
Ch13s von
Ch13sCh13s
Ch13sBilal Sarwar
304 views25 Folien
Ch13p von
Ch13pCh13p
Ch13pBilal Sarwar
250 views11 Folien
Ch14s von
Ch14sCh14s
Ch14sBilal Sarwar
433 views28 Folien
Deber 11 von
Deber 11Deber 11
Deber 11Diana Curicama
313 views8 Folien
Kanodia murolia previousyears von
Kanodia murolia previousyearsKanodia murolia previousyears
Kanodia murolia previousyearsAnwesa Roy
1.4K views250 Folien

Más contenido relacionado

Was ist angesagt?

Ejercicio 9 y 10 libro de baldor von
Ejercicio 9 y 10 libro de baldorEjercicio 9 y 10 libro de baldor
Ejercicio 9 y 10 libro de baldorIvan Lobato Baltazar
138.7K views13 Folien
ejercicio 130 libro de baldor von
ejercicio 130 libro de baldorejercicio 130 libro de baldor
ejercicio 130 libro de baldorIvan Lobato Baltazar
28.1K views5 Folien
Capítulo 05 deflexão e rigidez von
Capítulo 05   deflexão e rigidezCapítulo 05   deflexão e rigidez
Capítulo 05 deflexão e rigidezJhayson Carvalho
3.1K views43 Folien
An empirical investigation of economic growth and debt von
An empirical investigation of economic growth and debtAn empirical investigation of economic growth and debt
An empirical investigation of economic growth and debtAngela Ouroutsi
875 views43 Folien
Kuncisoal mtk-un-smk-prwsta von
Kuncisoal mtk-un-smk-prwstaKuncisoal mtk-un-smk-prwsta
Kuncisoal mtk-un-smk-prwstamardiyanto83
737 views5 Folien
BS1501 tutorial 2 von
BS1501 tutorial 2BS1501 tutorial 2
BS1501 tutorial 2Champ Pairach
799 views28 Folien

Was ist angesagt?(10)

Destacado

Ch12p von
Ch12pCh12p
Ch12pBilal Sarwar
443 views15 Folien
Ch04p von
Ch04pCh04p
Ch04pBilal Sarwar
455 views16 Folien
Ch17s 3rd Naemen von
Ch17s 3rd NaemenCh17s 3rd Naemen
Ch17s 3rd NaemenBilal Sarwar
532 views20 Folien
Ch06s von
Ch06sCh06s
Ch06sBilal Sarwar
767 views56 Folien
Ch10p von
Ch10pCh10p
Ch10pBilal Sarwar
363 views10 Folien
Ch08s von
Ch08sCh08s
Ch08sBilal Sarwar
463 views24 Folien

Destacado(19)

Новый IT для нового enterprise / Александр Титов (Экспресс 42) von Ontico
Новый IT для нового enterprise / Александр Титов (Экспресс 42)Новый IT для нового enterprise / Александр Титов (Экспресс 42)
Новый IT для нового enterprise / Александр Титов (Экспресс 42)
Ontico711 views
Мобильное приложение как способ изменить корпоративный мир / Андрей Тимербаев... von Ontico
Мобильное приложение как способ изменить корпоративный мир / Андрей Тимербаев...Мобильное приложение как способ изменить корпоративный мир / Андрей Тимербаев...
Мобильное приложение как способ изменить корпоративный мир / Андрей Тимербаев...
Ontico559 views
Agile в кровавом энтерпрайзе / Асхат Уразбаев (ScrumTrek) von Ontico
Agile в кровавом энтерпрайзе / Асхат Уразбаев (ScrumTrek)Agile в кровавом энтерпрайзе / Асхат Уразбаев (ScrumTrek)
Agile в кровавом энтерпрайзе / Асхат Уразбаев (ScrumTrek)
Ontico787 views
Быстрое прототипирование бэкенда игры с геолокацией на OpenResty, Redis и Doc... von Ontico
Быстрое прототипирование бэкенда игры с геолокацией на OpenResty, Redis и Doc...Быстрое прототипирование бэкенда игры с геолокацией на OpenResty, Redis и Doc...
Быстрое прототипирование бэкенда игры с геолокацией на OpenResty, Redis и Doc...
Ontico928 views

Similar a Ch09s

Ch11s von
Ch11sCh11s
Ch11sBilal Sarwar
746 views69 Folien
Ch02p von
Ch02pCh02p
Ch02pBilal Sarwar
285 views7 Folien
Ch06p von
Ch06pCh06p
Ch06pBilal Sarwar
407 views25 Folien
Solutions manual for microelectronic circuits analysis and design 3rd edition... von
Solutions manual for microelectronic circuits analysis and design 3rd edition...Solutions manual for microelectronic circuits analysis and design 3rd edition...
Solutions manual for microelectronic circuits analysis and design 3rd edition...Gallian394
2.4K views51 Folien
Ch16p von
Ch16pCh16p
Ch16pBilal Sarwar
325 views11 Folien
งานคณิตศาสตร์อาจารย์เค von
งานคณิตศาสตร์อาจารย์เคงานคณิตศาสตร์อาจารย์เค
งานคณิตศาสตร์อาจารย์เคkrookay2012
286 views78 Folien

Similar a Ch09s(19)

Solutions manual for microelectronic circuits analysis and design 3rd edition... von Gallian394
Solutions manual for microelectronic circuits analysis and design 3rd edition...Solutions manual for microelectronic circuits analysis and design 3rd edition...
Solutions manual for microelectronic circuits analysis and design 3rd edition...
Gallian3942.4K views
งานคณิตศาสตร์อาจารย์เค von krookay2012
งานคณิตศาสตร์อาจารย์เคงานคณิตศาสตร์อาจารย์เค
งานคณิตศาสตร์อาจารย์เค
krookay2012286 views
William hyatt-7th-edition-drill-problems-solution von Salman Salman
William hyatt-7th-edition-drill-problems-solutionWilliam hyatt-7th-edition-drill-problems-solution
William hyatt-7th-edition-drill-problems-solution
Salman Salman38.3K views
6161103 2.9 dot product von etcenterrbru
6161103 2.9 dot product6161103 2.9 dot product
6161103 2.9 dot product
etcenterrbru719 views
Capítulo 04 carga e análise de tensão von Jhayson Carvalho
Capítulo 04   carga e análise de tensãoCapítulo 04   carga e análise de tensão
Capítulo 04 carga e análise de tensão
Jhayson Carvalho474 views
Electic circuits fundamentals thomas floyd, david buchla 8th edition von 명중 김
Electic circuits fundamentals thomas floyd, david buchla 8th editionElectic circuits fundamentals thomas floyd, david buchla 8th edition
Electic circuits fundamentals thomas floyd, david buchla 8th edition
명중 김2.2K views
Electic circuits fundamentals thomas floyd, david buchla 8th edition von 명중 김
Electic circuits fundamentals thomas floyd, david buchla 8th editionElectic circuits fundamentals thomas floyd, david buchla 8th edition
Electic circuits fundamentals thomas floyd, david buchla 8th edition
명중 김8.1K views
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1 von cideni
Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
cideni1.4K views

Más de Bilal Sarwar

Rameysoft-ftp client server, and others+ von
Rameysoft-ftp client server, and others+Rameysoft-ftp client server, and others+
Rameysoft-ftp client server, and others+Bilal Sarwar
527 views1 Folie
Ramey soft von
Ramey soft Ramey soft
Ramey soft Bilal Sarwar
599 views1 Folie
Ramey soft von
Ramey softRamey soft
Ramey softBilal Sarwar
479 views1 Folie
Ch15s von
Ch15sCh15s
Ch15sBilal Sarwar
593 views46 Folien
Ch07s von
Ch07sCh07s
Ch07sBilal Sarwar
635 views37 Folien
Ch07p von
Ch07pCh07p
Ch07pBilal Sarwar
312 views13 Folien

Más de Bilal Sarwar(6)

Último

Transcript: Redefining the book supply chain: A glimpse into the future - Tec... von
Transcript: Redefining the book supply chain: A glimpse into the future - Tec...Transcript: Redefining the book supply chain: A glimpse into the future - Tec...
Transcript: Redefining the book supply chain: A glimpse into the future - Tec...BookNet Canada
41 views16 Folien
Hypervisor Agnostic DRS in CloudStack - Brief overview & demo - Vishesh Jinda... von
Hypervisor Agnostic DRS in CloudStack - Brief overview & demo - Vishesh Jinda...Hypervisor Agnostic DRS in CloudStack - Brief overview & demo - Vishesh Jinda...
Hypervisor Agnostic DRS in CloudStack - Brief overview & demo - Vishesh Jinda...ShapeBlue
161 views13 Folien
"Node.js Development in 2024: trends and tools", Nikita Galkin von
"Node.js Development in 2024: trends and tools", Nikita Galkin "Node.js Development in 2024: trends and tools", Nikita Galkin
"Node.js Development in 2024: trends and tools", Nikita Galkin Fwdays
32 views38 Folien
Live Demo Showcase: Unveiling Dell PowerFlex’s IaaS Capabilities with Apache ... von
Live Demo Showcase: Unveiling Dell PowerFlex’s IaaS Capabilities with Apache ...Live Demo Showcase: Unveiling Dell PowerFlex’s IaaS Capabilities with Apache ...
Live Demo Showcase: Unveiling Dell PowerFlex’s IaaS Capabilities with Apache ...ShapeBlue
126 views10 Folien
Business Analyst Series 2023 - Week 4 Session 8 von
Business Analyst Series 2023 -  Week 4 Session 8Business Analyst Series 2023 -  Week 4 Session 8
Business Analyst Series 2023 - Week 4 Session 8DianaGray10
123 views13 Folien
The Power of Heat Decarbonisation Plans in the Built Environment von
The Power of Heat Decarbonisation Plans in the Built EnvironmentThe Power of Heat Decarbonisation Plans in the Built Environment
The Power of Heat Decarbonisation Plans in the Built EnvironmentIES VE
79 views20 Folien

Último(20)

Transcript: Redefining the book supply chain: A glimpse into the future - Tec... von BookNet Canada
Transcript: Redefining the book supply chain: A glimpse into the future - Tec...Transcript: Redefining the book supply chain: A glimpse into the future - Tec...
Transcript: Redefining the book supply chain: A glimpse into the future - Tec...
BookNet Canada41 views
Hypervisor Agnostic DRS in CloudStack - Brief overview & demo - Vishesh Jinda... von ShapeBlue
Hypervisor Agnostic DRS in CloudStack - Brief overview & demo - Vishesh Jinda...Hypervisor Agnostic DRS in CloudStack - Brief overview & demo - Vishesh Jinda...
Hypervisor Agnostic DRS in CloudStack - Brief overview & demo - Vishesh Jinda...
ShapeBlue161 views
"Node.js Development in 2024: trends and tools", Nikita Galkin von Fwdays
"Node.js Development in 2024: trends and tools", Nikita Galkin "Node.js Development in 2024: trends and tools", Nikita Galkin
"Node.js Development in 2024: trends and tools", Nikita Galkin
Fwdays32 views
Live Demo Showcase: Unveiling Dell PowerFlex’s IaaS Capabilities with Apache ... von ShapeBlue
Live Demo Showcase: Unveiling Dell PowerFlex’s IaaS Capabilities with Apache ...Live Demo Showcase: Unveiling Dell PowerFlex’s IaaS Capabilities with Apache ...
Live Demo Showcase: Unveiling Dell PowerFlex’s IaaS Capabilities with Apache ...
ShapeBlue126 views
Business Analyst Series 2023 - Week 4 Session 8 von DianaGray10
Business Analyst Series 2023 -  Week 4 Session 8Business Analyst Series 2023 -  Week 4 Session 8
Business Analyst Series 2023 - Week 4 Session 8
DianaGray10123 views
The Power of Heat Decarbonisation Plans in the Built Environment von IES VE
The Power of Heat Decarbonisation Plans in the Built EnvironmentThe Power of Heat Decarbonisation Plans in the Built Environment
The Power of Heat Decarbonisation Plans in the Built Environment
IES VE79 views
Initiating and Advancing Your Strategic GIS Governance Strategy von Safe Software
Initiating and Advancing Your Strategic GIS Governance StrategyInitiating and Advancing Your Strategic GIS Governance Strategy
Initiating and Advancing Your Strategic GIS Governance Strategy
Safe Software176 views
Webinar : Desperately Seeking Transformation - Part 2: Insights from leading... von The Digital Insurer
Webinar : Desperately Seeking Transformation - Part 2:  Insights from leading...Webinar : Desperately Seeking Transformation - Part 2:  Insights from leading...
Webinar : Desperately Seeking Transformation - Part 2: Insights from leading...
State of the Union - Rohit Yadav - Apache CloudStack von ShapeBlue
State of the Union - Rohit Yadav - Apache CloudStackState of the Union - Rohit Yadav - Apache CloudStack
State of the Union - Rohit Yadav - Apache CloudStack
ShapeBlue297 views
2FA and OAuth2 in CloudStack - Andrija Panić - ShapeBlue von ShapeBlue
2FA and OAuth2 in CloudStack - Andrija Panić - ShapeBlue2FA and OAuth2 in CloudStack - Andrija Panić - ShapeBlue
2FA and OAuth2 in CloudStack - Andrija Panić - ShapeBlue
ShapeBlue147 views
Business Analyst Series 2023 - Week 4 Session 7 von DianaGray10
Business Analyst Series 2023 -  Week 4 Session 7Business Analyst Series 2023 -  Week 4 Session 7
Business Analyst Series 2023 - Week 4 Session 7
DianaGray10139 views
Setting Up Your First CloudStack Environment with Beginners Challenges - MD R... von ShapeBlue
Setting Up Your First CloudStack Environment with Beginners Challenges - MD R...Setting Up Your First CloudStack Environment with Beginners Challenges - MD R...
Setting Up Your First CloudStack Environment with Beginners Challenges - MD R...
ShapeBlue173 views
Mitigating Common CloudStack Instance Deployment Failures - Jithin Raju - Sha... von ShapeBlue
Mitigating Common CloudStack Instance Deployment Failures - Jithin Raju - Sha...Mitigating Common CloudStack Instance Deployment Failures - Jithin Raju - Sha...
Mitigating Common CloudStack Instance Deployment Failures - Jithin Raju - Sha...
ShapeBlue180 views
Enabling DPU Hardware Accelerators in XCP-ng Cloud Platform Environment - And... von ShapeBlue
Enabling DPU Hardware Accelerators in XCP-ng Cloud Platform Environment - And...Enabling DPU Hardware Accelerators in XCP-ng Cloud Platform Environment - And...
Enabling DPU Hardware Accelerators in XCP-ng Cloud Platform Environment - And...
ShapeBlue106 views
Why and How CloudStack at weSystems - Stephan Bienek - weSystems von ShapeBlue
Why and How CloudStack at weSystems - Stephan Bienek - weSystemsWhy and How CloudStack at weSystems - Stephan Bienek - weSystems
Why and How CloudStack at weSystems - Stephan Bienek - weSystems
ShapeBlue238 views
Updates on the LINSTOR Driver for CloudStack - Rene Peinthor - LINBIT von ShapeBlue
Updates on the LINSTOR Driver for CloudStack - Rene Peinthor - LINBITUpdates on the LINSTOR Driver for CloudStack - Rene Peinthor - LINBIT
Updates on the LINSTOR Driver for CloudStack - Rene Peinthor - LINBIT
ShapeBlue206 views

Ch09s

  • 1. Chapter 9 Problem Solutions 9.1 (a) vO = Ad ( v2 − v1 ) ( ) 1 = Ad 10−3 − ( −10−3 ) ⇒ Ad = 500 (b) 1 = 500 ( v2 − 10−3 ) = 1 + 0.5 = 500v2 v2 = 3 mV (c) 5 = 500 (1 − v1 ) ⇒ 500v1 = 495 v1 = 0.990 V (d) vO = 0 (e) − 3 = 500 ( v2 − ( −0.5 ) ) −250 − 3 = 500v2 v2 = −0.506 V 9.2 (a) ⎛ ⎞ ⎟ vI = ( 0.49975 × 10 ) ( 3) 1 −3 v2 = ⎜ ⎝ 1 + 2000 ⎠ v2 = 1.49925 × 10−3 vO = Aod ( v2 − v1 ) = ( 5 × 103 )(1.49925 × 10−3 − 0 ) vO = 7.49625 V (b) vO = Aod ( v2 − v1 ) 3 = Aod (1.49925 × 10−3 − 0 ) Aod = 2 × 103 9.3 R2 Av = − = −12 ⇒ R2 = 12 R1 R1 Ri = R1 = 25 kΩ ⇒ R2 = (12 )( 25 ) = 300 kΩ 9.3 (a) v2 = 3.00 V (b) vO = Aod ( v2 − v1 ) 2.500 = Aod ( 3.010 − 3.00 ) Aod = 250 9.4
  • 2. ⎛ Ri ⎞ vid = ⎜ ⎟ vI ⎝ Ri + 25 ⎠ ⎛ Ri ⎞ 0.790 = ⎜ ⎟ ( 0.80 ) ⎝ Ri + 25 ⎠ 0.9875 ( Ri + 25 ) = Ri 24.6875 = 0.0125 Ri Ri = 1975 K 9.5 200 ⎫ Av = − = −10 ⎪ 20 ⎪ and ⎬ for each case Ri = 20 kΩ ⎪ ⎪ ⎭ 9.6 a. 100 Av = − = −10 10 Ri = R1 = 10 kΩ b. 100 100 Av = − = −5 10 Ri = R1 = 10 kΩ c. 100 Av = − = −5 10 + 10 Ri = 10 + 10 = 20 K 9.7
  • 3. vI 0.5 I1 = ⇒ R1 = ⇒ R1 = 5 K R1 0.1 R2 = 15 ⇒ R2 = 75 K R1 9.8 R2 Av = − R1 (a) Av = −10 (b) Av = −1 (c) Av = −0.20 (d) Av = −10 (e) Av = −2 (f) Av = −1 9.9 R2 Av = − R1 (a) R1 = 20 K, R2 = 40 K (b) R1 = 20 K, R2 = 200 K (c) R1 = 20 K, R2 = 1000 K (d) R1 = 80 K, R2 = 20 K 9.10 R2 Av = − = −8 ⇒ R2 = 8 R1 R1 1 For vI = −1, i1 = = 15 μ A ⇒ R1 = 66.7 kΩ ⇒ R2 = 533.3 kΩ R1 9.11 R2 Av = − = −30 ⇒ R2 = 30 R1 R1 Set R2 = 1 MΩ ⇒ R1 = 33.3 kΩ 9.12 a. R2 1.05R2 ⎛R ⎞ Av = ⇒ = 1.105 ⎜ 2 ⎟ R1 0.95 R1 ⎝ R1 ⎠ 0.95R2 ⎛R ⎞ = 0.905 ⎜ 2 ⎟ 1.05R1 ⎝ R1 ⎠ Deviation in gain is +10.5% and − 9.5% b. 1.01R2 ⎛R ⎞ 0.99 R2 ⎛R ⎞ Av ⇒ = 1.02 ⎜ 2 ⎟ ⇒ = 0.98 ⎜ 2 ⎟ 0.99 R1 ⎝ R1 ⎠ 1.01R1 ⎝ R1 ⎠ Deviation in gain = ±2% 9.13 (a)
  • 4. vO −15 Av = = = −15 vl 1 vO = −15vl ⇒ vO = −150sin ω t ( mV ) (b) vI i2 = i1 = = 10sin ω t ( μ A ) R1 vO iL = ⇒ iL = −37.5sin ω t ( μ A ) RL iO = iL − i2 iO = −47.5sin ω t ( μ A ) 9.14 R2 Av = − R1 + R5 Av = −30 ± 2.5% ⇒ 29.25 ≤ Av ≤ 30.75 R2 R2 So = 29.25 and = 30.75 R1 + 2 R1 + 1 We have 29.25 ( R1 + 2 ) = 30.75 ( R1 + 1) Which yields R1 = 18.5 k Ω and R2 = 599.6 k Ω For vI = 25 mV , then 0.731 ≤ vO ≤ 0.769 V 9.15 R2 120 vO1 = − , vI = − ( 0.2 ) ⇒ vO1 = −1.2 V R1 20 R4 ⎛ −75 ⎞ vO = − , vO1 = ⎜ ⎟ ( −1.2 ) ⇒ vO = +6 V R3 ⎝ 15 ⎠ 0.2 i1 = i2 = ⇒ i1 = i2 = 10 μ A 20 v −1.2 i3 = i4 = O1 = ⇒ i3 = i4 = −80 μ A R3 15 1st op-amp: 90 μ A into output terminal 2nd op-amp: 80 μ A out of output terminal. 9.16 (a) R2 22 Av = − =− ⇒ Av = −22 R1 1 (b) From Eq. (9.23) R2 1 1 Av = − ⋅ = −22 ⋅ R1 ⎡ 1 ⎛ R2 ⎞ ⎤ ⎡ 1 ⎤ ⎢1 + ⎜1 + ⎟ ⎥ ⎢1 + 104 ( 23) ⎥ ⎣ ⎦ ⎣ Aod ⎝ R1 ⎠ ⎦ Av = −21.95 (c)
  • 5. Want Av = −22 ( 0.98 ) = −21.56 −22 So − 21.56 = 1 1+ ( 23) Aod 1 22 1+ ( 23) = Aod 21.56 1 ( 23) = 0.020408 ⇒ Aod = 1127 Aod 9.17 (a) R2 1 Av = − ⋅ R1 ⎡ 1 ⎛ R2 ⎞ ⎤ ⎢1 + ⎜1 + ⎟ ⎥ ⎣ Aod ⎝ R1 ⎠ ⎦ 100 1 =− ⋅ 25 ⎡ 1 ⎤ ⎢1 + 5 × 103 ( 5 ) ⎥ ⎣ ⎦ Av = −3.9960 (b) vO = −3.9960 (1.00 ) ⇒ vO = −3.9960 V 4 − 3.9960 (c) × 100% = 0.10% 4 (d) vO = Aod ( v2 − v1 ) = − Aod v1 vO − ( −3.9960 ) v1 = − = Aod 5 × 10+3 v1 = 0.7992 mV 9.18 vO = Aod ( v2 − v1 ) = − Aod v1 v −5 v1 = − O = Aod 5 × 10+3 v1 = −1 mV 9.19 R2 ⎛ R3 R3 ⎞ Av = − ⎜1 + + ⎟ R1 ⎝ R4 R2 ⎠ a. R2 ⎛ 100 100 ⎞ −10 = − ⎜1 + + ⎟ 100 ⎝ 100 R2 ⎠ 2 R2 10 = + 1 ⇒ R2 = 450 kΩ 100 2R b. 100 = 2 + 1 ⇒ R2 = 4.95 MΩ 100 9.20 a.
  • 6. R2 ⎛ R3 R3 ⎞ Av = − ⎜1 + + ⎟ R1 ⎝ R4 R2 ⎠ R1 = 500 kΩ R2 ⎛ R3 R3 ⎞ 80 = ⎜1 + + ⎟ 500 ⎝ R4 R2 ⎠ Set R2 = R3 = 500 kΩ ⎛ 500 ⎞ 500 80 = 1⎜ 1 + + 1⎟ = 2 + ⇒ R4 = 6.41 kΩ ⎝ R4 ⎠ R4 b. For vI = −0.05 V −0.05 i1 = i2 = ⇒ i1 = i2 = −0.1 μ A 500 kΩ v X = −i2 R2 = − ( −0.1× 10−6 )( 500 × 103 ) = 0.05 vX 0.05 i4 = − =− ⇒ i4 = −7.80 μ A R4 6.41 i3 = i2 + i4 = −0.1 − 7.80 ⇒ i3 = −7.90 μ A 9.21 (a) − R2 −500 Av = −1000 = = R1 R1 R1 = 0.5 K (b) − R2 ⎛ R3 R3 ⎞ Av = ⎜1 + + ⎟ R1 ⎝ R4 R2 ⎠ −250 ⎛ 500 500 ⎞ −1250 −1000 = ⎜1 + + ⎟= R1 ⎝ 250 250 ⎠ R1 R1 = 1.25 K 9.22 vI i1 = = i2 R ⎛v ⎞ v A = −i2 R = − ⎜ I ⎟ R = −vI ⎝R⎠ v v i3 = − A = I R R
  • 7. vA vA 2v 2v i4 = i2 + i3 = − − =− A = I R R R R ⎛ 2vI ⎞ vB = v A − i4 R = −vI − ⎜ ⎟ ( R ) = −3vI ⎝ R ⎠ vB ( −3vI ) 3vI i5 = − =− = R R R 2vI 3vI 5vI i6 = i4 + i5 = + = R R R ⎛ 5vI ⎞ v0 v0 = vB − i6 R = −3vI − ⎜ ⎟ R ⇒ v = −8 ⎝ R ⎠ I From Figure 9.12 ⇒ Av = −3 9.23 (a) R2 1 Av = − ⋅ R1 ⎡ 1 ⎛ R2 ⎞ ⎤ ⎢1 + ⎜1 + ⎟ ⎥ ⎣ Aod ⎝ R1 ⎠ ⎦ 50 1 =− ⋅ ⇒ Av = −4.99985 10 ⎡ 1 ⎛ 50 ⎞ ⎤ 1+ 1 + ⎟⎥ ⎢ 2 × 105 ⎜ 10 ⎣ ⎝ ⎠⎦ (b) vO = − ( 4.99985 ) (100 × 10−3 ) ⇒ vO = −499.985 mV 0.5 − 0.499985 (c) Error = × 100% ⇒ 0.003% 0.5 9.24 a. From Equation (9.23) R2 1 Av = − ⋅ R1 ⎡ 1 ⎛ R2 ⎞ ⎤ ⎢1 + ⎜1 + ⎟ ⎥ ⎣ Aod ⎝ R1 ⎠ ⎦ 100 1 =− ⋅ = −0.9980 100 ⎡ 1 ⎛ 100 ⎞ ⎤ 1 + 3 ⎜1 + ⎢ 10 ⎟⎥ ⎣ ⎝ 100 ⎠ ⎦ Then v0 = Av ⋅ vI = ( −0.9980 )( 2 ) ⇒ v0 = −1.9960 V b. v0 = Aod ( v A − vB ) vB v0 − vB ⎛ 1 1 ⎞ v = ⇒ vB ⎜ + ⎟ = 0 R1 R2 ⎝ R1 R2 ⎠ R2 v0 vB = ⎛ R2 ⎞ ⎜1 + ⎟ ⎝ R1 ⎠
  • 8. Aod v0 Then v0 = Aod v A − ⎛ R2 ⎞ ⎜1 + ⎟ ⎝ R1 ⎠ ⎡ ⎤ ⎢ ⎥ v0 ⎢1 + Aod ⎥ = Aod v A ⎢ ⎛ R ⎞⎥ ⎢ ⎜1 + ⎟ ⎥ 2 ⎢ ⎝ ⎣ R1 ⎠ ⎥ ⎦ ⎡ ⎛ R2 ⎞ ⎤ ⎢ ⎜ 1 + ⎟ + Aod ⎥ v0 ⎢ ⎝ R1 ⎠ ⎥=A v ⎢ ⎛ R ⎞ ⎥ od A ⎢ ⎜1 + 2 ⎟ ⎥ ⎢ ⎝ ⎣ R1 ⎠ ⎥ ⎦ ⎛ R2 ⎞ Aod ⎜ 1 + ⎟ v A v0 = ⎝ R1 ⎠ ⎛ R ⎞ Aod + ⎜ 1 + 2 ⎟ ⎝ R1 ⎠ ⎛ R2 ⎞ ⎜1 + ⎟ vA v0 = ⎝ R1 ⎠ 1 ⎛ R2 ⎞ 1+ ⎜1 + ⎟ Aod ⎝ R1 ⎠ ⎛ 10 ⎞ ⎛ vI ⎞ ⎜1 + ⎟ ⎜ ⎟ So v0 = ⎝ 10 ⎠ ⎝ 2 ⎠ = 0.9980vI 1 ⎛ 10 ⎞ 1 + 3 ⎜1 + ⎟ 10 ⎝ 10 ⎠ For vI = 2 V v0 = 1.9960 V 9.25 vl v v R (a) ii = = i2 = − O ⇒ O = − 2 R1 R2 vl R1 (b) vl v 1 ⎛ R2 ⎞ i2 = i1 = = i3 + O = i3 + ⎜ − ⋅ vl ⎟ R1 RL RL ⎝ R1 ⎠ v ⎛ R ⎞ Then i3 = l ⎜ 1 + 2 ⎟ R1 ⎝ RL ⎠ 9.26 ⎛ R3 R1 ⎞ + ⎛ 0.1 1 ⎞ ⎜ 0.1 1 + 10 ⎟ ( ) VX .max = ⎜ ⋅V = ⎜ 10 ⇒ VX .max = 0.09008 V ⎜R R +R ⎟ ⎟ ⎟ ⎝ 3 1 4 ⎠ ⎝ ⎠ R vO = 2 ⋅ VX .max R1 R2 R 10 = ( 0.09008 ) ⇒ 2 = 111 R1 R1 So R2 = 111 k Ω 9.27 (a)
  • 9. ⎛R R R ⎞ vO = − ⎜ F ⋅ vI 1 + F ⋅ vI 2 + F ⋅ vI 3 ⎟ ⎝ R1 R2 R3 ⎠ ⎡⎛ 100 ⎞ ⎛ 100 ⎞ ⎛ 100 ⎞ ⎤ = − ⎢⎜ ⎟ ( 0.5 ) + ⎜ ⎟ ( 0.75 ) + ⎜ ⎟ ( 2.5 ) ⎥ ⎣ ⎝ 50 ⎠ ⎝ 20 ⎠ ⎝ 100 ⎠ ⎦ = − [1 + 3.75 + 2.5] vO = −7.25 V (b) ⎡⎛ 100 ⎞ ⎛ 100 ⎞ ⎛ 100 ⎞ ⎤ −2 = − ⎢⎜ ⎟ (1) + ⎜ ⎟ ( 0.8 ) + ⎜ ⎟ vI 3 ⎥ ⎣⎝ 50 ⎠ ⎝ 20 ⎠ ⎝ 100 ⎠ ⎦ 2 = 2 + 4 + vI 3 vI 3 = −4 V 9.28 − RF R R vo = ⋅ vI 1 − F ⋅ vI 2 − F ⋅ vI 3 R1 R2 R3 = −4vI 1 − 8vI 2 − 2vI 3 RF RF RF =4 =8 =2 R1 R2 R3 Largest resistance = RF = 250 K ⇒ R1 = 62.5 K R2 = 31.25 K R3 = 125 K 9.29 RF R v0 = −4vI 1 − 0.5vI 2 = − vI 1 − F vI 2 R1 R2 RF RF =4 = 0.5 ⇒ R1 is the smallest resistor R1 R2 vI 2 i = 100 μ A = = ⇒ R1 = 20 kΩ R1 R1 ⇒ RF = 80 kΩ ⇒ R2 = 160 kΩ 9.30 vI 1 = ( 0.05 ) 2 sin ( 2π ft ) = 0.0707 sin ( 2π ft ) 1 1 f = 1 kHz ⇒ T = 3 ⇒ 1 ms vI 2 ⇒ T2 = ⇒ 10 ms 10 100 R R 10 10 vO = − F ⋅ vI 1 − F ⋅ vI 2 = − ⋅ vI 1 − ⋅ vI 2 R1 R2 1 5 vO = − (10 ) ( 0.0707 sin ( 2π ft ) ) − ( 2 )( ±1 V ) vO = −0.707 sin ( 2π ft ) − ( ±2 V )
  • 10. 9.31 RF R R vO = − ⋅ vI 1 − F ⋅ vI 2 − F ⋅ vI 3 R1 R2 R3 20 20 20 vO = − ⋅ vI 1 − ⋅ vI 2 − ⋅ vI 3 10 5 2 K sin ω t = −2vI 1 − 4 [ 2 + 100sin ω t ] − 0 Set vI 1 = −4 mV 9.32 Only two inputs. ⎡R R ⎤ vO = − ⎢ F ⋅ vI 1 + F ⋅ vI 2 ⎥ ⎣ R1 R2 ⎦ ⎡ 1 ⎤ = − ⎢3vI 1 + ⋅ vI 2 ⎥ ⎣ 4 ⎦ RF RF 1 =3 = R1 R2 4 Smallest resistor = 10 K = R1 RF = 30 K R2 = 120 K 9.33 ⎡R R ⎤ vO = − ⎢ F ⋅ vI 1 + F ⋅ vI 2 ⎥ ⎣ R1 R2 ⎦ − RF −R R RF −5 − 5sin ω t = ( 2.5sin ω t ) F ⋅ ( 2 ) ⇒ F = 2 = 2.5 R1 R2 R1 R2 RF = largest resistor ⇒ RF = 200 K R1 = 100 K R2 = 80 K 9.34 a. RF R R R v0 = − ⋅ a3 ( −5 ) − F ⋅ a2 ( −5 ) − F ⋅ a1 ( −5 ) − F ⋅ a0 ( −5 ) R3 R2 R1 R0 RF ⎡ a3 a2 a1 a0 ⎤ So v0 = + + + ( 5) 10 ⎢ 2 4 8 16 ⎥ ⎣ ⎦ R 1 b. v0 = 2.5 = F ⋅ ⋅ 5 ⇒ RF = 10 kΩ 10 2 c. 10 1 i. v0 = ⋅ ⋅ 5 ⇒ v0 = 0.3125 V 10 16
  • 11. 10 ⎡ 1 1 1 1 ⎤ ii. v0 = + + + ( 5 ) ⇒ v0 = 4.6875 V 10 ⎢ 2 4 8 16 ⎥ ⎣ ⎦ 9.35 (a) 10 vO1 = − ⋅ vI 1 1 20 20 vO = − ⋅ vO1 − ⋅ vI 2 = − ( 20 )( −10 ) vI 1 − ( 20 ) vI 2 1 1 vO = 200vI 1 − 20vI 2 (b) vI 1 = 1 + 2sin ω t ( mV ) vI 2 = −10 mV Then vO = 200 (1 + 2sin ω t ) − 20 ( −10 ) So vO = 0.4 + 0.4sin ω t (V ) 9.36 For one-input v0 v1 = − Aod vI 1 − v1 v1 v −v = + 1 0 R1 R2 R3 RF VI 1 ⎡1 1 1 ⎤ v0 = v1 ⎢ + + ⎥− R1 ⎣ R1 R2 R3 RF ⎦ RF v0 ⎡1 1 1 ⎤ v0 =− ⎢ + + ⎥− Aod ⎣ R1 R2 R3 RF ⎦ RF ⎧ 1 ⎪ 1 1 ⎛ 1 1 ⎞⎫ ⎪ = −v0 ⎨ + + ⎜ + ⎟⎬ ⎪ Aod RF RF Aod ⎝ R1 R2 R3 ⎠ ⎪ ⎩ ⎭ v0 ⎧ 1 1 RF ⎫ =− ⎨ +1+ ⋅ ⎬ RF ⎩ Aod Aod R1 R2 R3 ⎭ ⎧ ⎫ ⎪ ⎪ R ⎪ 1 ⎪ v0 = − F ⋅ vI 1 ⋅ ⎨ ⎬ where RP = R1 R2 R3 R1 ⎪1 + 1 ⎛ RF ⎞ ⎪ 1+ ⎪ Aod ⎜ RP ⎟ ⎪ ⎝ ⎠⎭ ⎩ −1 ⎛R R R ⎞ Therefore, for three-inputs v0 = × ⎜ F ⋅ vI 1 + F ⋅ vI 2 + F ⋅ vI 3 ⎟ 1 ⎛ RF ⎞ ⎝ R1 R2 R3 ⎠ 1+ ⎜1 + ⎟ Aod ⎝ RP ⎠ 9.37
  • 12. ⎛ R ⎞ R Av = 12 = ⎜ 1 + 2 ⎟ ⇒ 2 = 11 ⎝ R1 ⎠ R1 v v 0.5 i1 = I ⇒ R1 = I = R1 i1 0.15 R1 = 3.33 K R2 = 36.7 K 9.38 ⎛ 1 ⎞ ⎛ 1 ⎞ vB = ⎜ ⎟ vI v0 = Aod ⎜ ⎟ vi ⎝ 1 + 500 ⎠ ⎝ 501 ⎠ ⎛ 1 ⎞ a. 2.5 = Aod ⎜ ⎟ ( 5 ) ⇒ Aod = 250.5 ⎝ 501 ⎠ ⎛ 1 ⎞ b. v0 = 5000 ⎜ ⎟ ( 5 ) ⇒ v0 = 49.9 V ⎝ 501 ⎠ 9.39 ⎛ R ⎞ Av = ⎜ 1 + 2 ⎟ ⎝ R1 ⎠ (a) Av = 11 (b) Av = 2 (c) Av = 1.2 (d) Av = 11 (e) Av = 3 (f) Av = 2 9.40 R2 (a) = 1 ⇒ R1 = R2 = 20 K R1 R2 (b) = 9 ⇒ R1 = 20 K, R2 = 180 K R1 R2 (c) = 49 ⇒ R1 = 20 K, R2 = 980 K R1 R2 (d) = 0 can set R2 = 20 K, R1 = ∞ (open circuit) R1 9.41 ⎛ 50 ⎞ ⎡⎛ 20 ⎞ ⎛ 40 ⎞ ⎤ v0 = ⎜ 1 + ⎟ ⎢⎜ ⎟ vI 2 + ⎜ ⎟ vI 1 ⎥ ⎝ 50 ⎠ ⎣⎝ 20 + 40 ⎠ ⎝ 20 + 40 ⎠ ⎦ v0 = 1.33vI 1 + 0.667vI 2 9.42 (a)
  • 13. vI 1 − v2 vI 2 − v2 v2 + = 20 40 10 ⎛ 100 ⎞ vO = ⎜ 1 + ⎟ v2 = 3v2 ⎝ 50 ⎠ Now 2vI 1 − 2v2 + vI 2 − v2 = 4v2 ⎛v ⎞ 2vI 1 + vI 2 = 7v2 = 7 ⎜ o ⎟ ⎝3⎠ 6 3 So vO = ⋅ vI 1 + ⋅ vI 2 7 7 ( 0.2 ) + ⎛ ⎞ ( 0.3) ⇒ vO = 0.3 V 6 3 (b) vO = ⎜ ⎟ 7 ⎝ 7⎠ ⎛6⎞ ⎛ 3⎞ (c) vO = ⎜ ⎟ ( 0.25 ) + ⎜ ⎟ ( −0.4 ) ⇒ vO = 42.86 mV ⎝7⎠ ⎝7⎠ 9.43 ⎛ R4 ⎞ v2 = ⎜ ⎟ vI ⎝ R3 + R4 ⎠ ⎛ R ⎞ ⎛ R ⎞ ⎛ R4 ⎞ vO = ⎜1 + 2 ⎟ v2 = ⎜ 1 + 2 ⎟ ⎜ ⎟ vI ⎝ R1 ⎠ ⎝ R1 ⎠⎝ R3 + R4 ⎠ vO ⎛ R2 ⎞ ⎛ R4 ⎞ Av = = ⎜1 + ⎟ ⎜ ⎟ vI ⎝ R1 ⎠ ⎝ R3 + R4 ⎠ 9.44 (a) vO ⎛ 50 x ⎞ = ⎜1 + ⎜ (1 − x ) 50 ⎟ ⎟ vI ⎝ ⎠ vO ⎛ x ⎞ 1− x + x = ⎜1 + ⎟= vI ⎝ 1 − x ⎠ 1− x v 1 Av = O = vI 1 − x (b) 1 ≤ Av ≤ ∞ (c) If x = 1, gain goes to infinity. 9.45 Change resister values as shown.
  • 14. vI i1 = = i2 R ⎛v ⎞ vx = i2 2 R + vI = ⎜ I ⎟ 2 R + vI = 3vI ⎝R⎠ v x 3I i3 = = R R v 3v 4v i4 = i2 + i3 = I + I = I R R R ⎛ 4vI ⎞ v0 = i4 2 R + vx = ⎜ ⎟ 2 R + 3vI ⎝ R ⎠ v0 = 11 vI 9.46 vO (a) =1 vI (b) From Exercise TYU9.7 ⎛ R2 ⎞ ⎜1 + ⎟ vO = ⎝ R1 ⎠ vI ⎡ 1 ⎛ R2 ⎞ ⎤ ⎢1 + ⎜1 + ⎟ ⎥ ⎣ Aod ⎝ R1 ⎠ ⎦ But R2 = 0, R1 = ∞ vO 1 1 v = = ⇒ O = 0.999993 vI 1 + 1 1 vI 1+ Aod 1.5 × 105 vO 1 (b) Want = 0.990 = ⇒ Aod = 99 vI 1 1+ Aod 9.47
  • 15. v0 = Aod ( vI − v0 ) ⎛ 1 ⎞ ⎜ + 1⎟ v0 = vI ⎝ Aod ⎠ v0 1 = vI ⎛ 1 ⎞ ⎜1 + ⎟ ⎝ Aod ⎠ v Aod = 104 ; 0 = 0.99990 vI v0 Aod = 103 ; = 0.9990 vI v0 Aod = 102 ; = 0.990 vI v0 Aod = 10; = 0.909 vI 9.48 ⎛ R ⎞ v0 A = ⎜ 1 + 2 ⎟ vI ⎝ R1 ⎠ ⎛ R ⎞ ⎛ R ⎞ v01 = ⎜1 + 2 ⎟ vI , v02 = − ⎜ 1 + 2 ⎟ vI ⎝ R1 ⎠ ⎝ R1 ⎠ So v01 = −v02 9.49 vI (a) iL = R1 (b) vO1 = iL RL + vI = iL RL + iL R1 vOI ( max ) ≅ 10 V = iL (1 + 9 ) = 10iL So iL ( max ) ≅ 1 mA Then vI ( max ) ≅ iL R1 = (1)( 9 ) ⇒ vI ( max ) ≅ 9 V 9.50 (a) ⎛ 20 ⎞ ⎛ 20 ⎞ vX = ⎜ ⎟ ⋅ vI = ⎜ ⎟ ( 6 ) = 2 ⎝ 20 + 40 ⎠ ⎝ 60 ⎠ vO = 2 V (b) Same as (a) (c) ⎛ 6 ⎞ vX = ⎜ ⎟ ( 6 ) = 0.666 V ⎝ 6 + 48 ⎠ ⎛ 10 ⎞ vO = ⎜ 1 + ⎟ ⋅ v X ⇒ vO = 1.33 V ⎝ 10 ⎠ 9.51 a.
  • 16. v1 v −v Rin = and 1 0 = i1 and v0 = − Aod v1 i1 RF v1 − ( − Aod v1 ) v1 (1 + Aod ) So i1 = = RF RF v1 RF Then Rin = = i1 1 + Aod b. ⎛ RS ⎞ RF i1 = ⎜ ⎟ iS and v0 = − Aod ⋅ ⋅ i1 ⎝ RS + Rin ⎠ 1 + Aod ⎛ A ⎞⎛ RS ⎞ So v0 = − RF ⎜ od ⎟⎜ ⎟ iS ⎝ 1 + Aod ⎠⎝ RS + Rin ⎠ RF 10 Rin = = = 0.009990 1 + Aod 1001 ⎛ 1000 ⎞ ⎛ RS ⎞ v0 = − RF ⎜ ⎟⎜ ⎟ iS ⎝ 1001 ⎠ ⎝ RS + 0.009990 ⎠ ⎛ 1000 ⎞ ⎛ RS ⎞ Want ⎜ ⎟⎜ ⎟ ≤ 0.990 ⎝ 1001 ⎠ ⎝ RS + 0.009990 ⎠ which yields RS ≥ 1.099 kΩ 9.52 vO = iC RF , 0 ≤ iC ≤ 8 mA For vO ( max ) = 8 V, Then RF = 1 k Ω 9.53 v 10 i = I so 1 = ⇒ R = 10 kΩ R R In the ideal op-amp, R1 has no influence. ⎛ R ⎞ Output voltage: v0 = ⎜1 + 2 ⎟ vI ⎝ R⎠ v0 must remain within the bias voltages of the op-amp; the larger the R2, the smaller the range of input voltage vI in which the output is valid. 9.54 (a)
  • 17. − vI iL = R2 − ( −10V ) 10mA = R2 R2 = 1 K 1 R Also = F R2 R1 R3 vL = (10mA )( 0.05k ) = 0.5 V 0.5 i2 = = 0.5 mA 1 iR 3 = 10 + 0.5 = 10.5 mA v −v 13 − 0.5 Limit vo to 13V ⇒ R3 = O L = R3 = 1.19 K iR 3 10.5 RF R3 1.19 R Then = = = 1.19 = F R1 R2 1 R1 For example, RF = 119 K, R1 = 100 K (b) From part (a), vO = 13 V when vI = −10 V 9.55 (a) vx i1 = i2 and i2 = + iD , vx = −i2 RF R2 ⎛R ⎞ Then i1 = −i1 ⎜ F ⎟ + iD ⎝ R2 ⎠ ⎛ R ⎞ Or iD = i1 ⎜ 1 + F ⎟ ⎝ R2 ⎠ (b) vI 5 R1 = = ⇒ R1 = 5 k Ω i1 1 ⎛ R ⎞ R 12 = (1) ⎜ 1 + F ⎟ ⇒ F = 11 ⎝ R2 ⎠ R2 For example, R2 = 5 k Ω, RF = 55 k Ω 9.56 VX VX − vO (1) IX = + R2 R3 VX VX − vO (2) + =0 R1 RF
  • 18. ⎛ R ⎞ From (2) vO = VX ⎜ 1 + F ⎟ ⎝ R1 ⎠ ⎛ 1 1 ⎞ 1 ⎛ R ⎞ Then (1) I X = VX ⎜ + ⎟ − ⋅ VX ⎜1 + F ⎟ ⎝ R2 R3 ⎠ R3 ⎝ R1 ⎠ IX 1 1 1 1 R 1 R = = + − − F = − F VX R0 R2 R3 R3 R1 R3 R2 R1 R3 R1 R3 − R2 RF = R1 R2 R3 R1 R2 R3 or Ro = R1 R3 − R2 RF RF 1 Note: If = ⇒ R2 RF = R1 R3 then Ro = ∞, which corresponds to an ideal current source. R1 R3 R2 9.57 R2 R4 Ad = = =5 R1 R3 Minimum resistance seen by vI1 is R1. Set R1 = R3 = 25 kΩ Then R2 = R4 = 125 kΩ v0 iL = ⇒ v0 = iL RL = ( 0.5 )( 5 ) = 2.5 V RL v0 = 5 ( vI 2 − vI 1 ) 2.5 = 5 ( vI 2 − 2 ) ⇒ vI 2 = 2.5 V 9.58 R2 vO = ( vI 2 − vI 1 ) R1 R2 R R Ad = and 2 = 4 with R2 = R4 and R1 = R3 R1 R1 R3 Differential input resistance R 20 Ri = 2 R1 ⇒ R1 = i = = 10 K 2 2 R2 (a) = 50 ⇒ R2 = R4 = 500 K R1 R1 = R3 = 10 K R2 (b) = 20 ⇒ R2 = R4 = 200 K R1 R1 = R3 = 10 K R2 (c) = 2 ⇒ R2 = R4 = 20 K R1 R1 = R3 = 10 K R2 (d) = 0.5 ⇒ R2 = R4 = 5 K R1 R1 = R3 = 10 K 9.59
  • 19. We have ⎛ R ⎞⎛ R / R ⎞ ⎛R ⎞ ⎛ R ⎞⎛ 1 ⎞ ⎛ R2 ⎞ vO = ⎜ 1 + 2 ⎟ ⎜ 4 3 ⎟ vI 2 − ⎜ 2 ⎟ vI 1 or vO = ⎜ 1 + 2 ⎟ ⎜ ⎟ vI 2 − ⎜ ⎟ vI 1 ⎝ R1 ⎠ ⎝ 1 + R4 / R3 ⎠ ⎝ R1 ⎠ ⎝ R1 ⎠ ⎝ 1 + R3 / R4 ⎠ ⎝ R1 ⎠ Set R2 = 50 (1 + x ) , R1 = 50 (1 − x ) R3 = 50 (1 − x ) , R4 = 50 (1 + x ) ⎡ ⎤ ⎡ ⎛ 1 + x ⎞⎤ ⎢ ⎥ 1+ x ⎞ ⎥ vI 2 − ⎛ 1 vO = ⎢1 + ⎜ ⎟⎥ ⎢ ⎜ ⎟ vI 1 ⎣ ⎝ 1 − x ⎠ ⎦ ⎢1 + ⎛ 1 − x ⎞ ⎥ ⎝ 1− x ⎠ ⎢ ⎜ 1+ x ⎟ ⎥ ⎣ ⎝ ⎠⎦ ⎡1 − x + (1 + x ) ⎤ ⎡ 1+ x ⎤ ⎛ 1+ x ⎞ vO = ⎢ ⎥⋅⎢ ⎥ vI 2 − ⎜ ⎟ vI 1 ⎣ 1− x ⎦ ⎢1 + x + (1 − x ) ⎥ ⎣ ⎦ ⎝ 1− x ⎠ ⎛ 1+ x ⎞ ⎛1+ x ⎞ =⎜ ⎟ vI 2 − ⎜ ⎟ vI 1 ⎝1− x ⎠ ⎝ 1− x ⎠ For vI 1 = vI 2 ⇒ vO = 0 Set R2 = 50 (1 + x ) R1 = 50 (1 − x ) R3 = 50 (1 + x ) R4 = 50 (1 − x ) ⎛ ⎞ ⎛ 1+ x ⎞⎜ 1 ⎟ ⎛ 1+ x ⎞ vO = ⎜1 + ⎟ ⎜ 1 + x ⎟ vI 2 − ⎜ ⎟ vI 1 ⎝ 1− x ⎠⎜1+ ⎟ ⎝ 1− x ⎠ ⎜ ⎟ ⎝ 1− x ⎠ ⎛ 1+ x ⎞ = vI 2 − ⎜ ⎟ vI 1 ⎝ 1− x ⎠ vI 1 = vI 2 = vcm vO 1 + x 1 − x − (1 + x ) −2 x = 1− = = vcm 1− x 1− x 1− x Set R2 = 50 (1 − x ) R1 = 50 (1 + x ) R3 = 50 (1 − x ) R4 = 50 (1 + x ) ⎛ ⎞ ⎛ 1− x ⎞⎜ 1 ⎟ ⎛ 1− x ⎞ vO = ⎜ 1 + ⎟ ⎜ 1 − x ⎟ vI 2 − ⎜ ⎟ vI 1 ⎝ 1+ x ⎠⎜ 1+ ⎟ ⎝ 1+ x ⎠ ⎜ ⎟ ⎝ 1+ x ⎠ ⎛ 1− x ⎞ = ⎜1 − ⎟ vcm ⎝ 1+ x ⎠ 1 + x − (1 − x ) 2x Acm = = 1+ x 1+ x Worst common-mode gain −2 x Acm = 1− x (b)
  • 20. −2 x −2 ( 0.01) For x = 0.01, Acm = = = −0.0202 1 − x 1 − 0.01 −2 ( 0.02 ) For x = 0.02, Acm = = −0.04082 1 − 0.02 −2 ( 0.05 ) For x = 0.05, Acm = = −0.1053 1 − 0.05 1 1 For this condition, set vI 2 = + , vI 1 = − ⇒ vd = 1 V 2 2 1 ⎡ ⎛ 1 + x ⎞ ⎤ 1 ⎡1 − x + (1 + x ) ⎤ 1 2 1 Ad = ⎢1 + ⎜ ⎟⎥ = ⎢ ⎥= ⋅ = 2 ⎣ ⎝ 1 − x ⎠⎦ 2 ⎣ 1− x ⎦ 2 1− x 1− x 1.010 For x = 0.01 Ad = 1.010 C M R RdB = 20 log10 = 33.98 dB 0.0202 1 1.020 For x = 0.02, Ad = = 1.020 C M R RdB = 20 log10 = 27.96 dB 0.98 0.04082 1 1.0526 For x = 0.05 Ad = = 1.0526 C M R RdB = 20 log10 ≅ 20 dB 0.95 0.1053 9.60 ⎛ 10R ⎞ ⎛ 10 ⎞ vy = ⎜ ⎟ v2 = ⎜ ⎟ ( 2.65 ) ⇒ v y = vx = 2.40909 V ⎝ 10R+R ⎠ ⎝ 11 ⎠ v2 − v y 2.65 − 2.40909 i3 = i4 = = = 0.0120 mA R 20 v −v 2.50 − 2.40909 i1 = i2 = 1 x = = 0.0045455 mA R 20 vO = vx − i2 (10R ) = ( 2.40909 ) − ( 0.0045455 )( 200 ) vO = 1.50 V 9.61 10 iE = (1 + β )( iB ) = ( 81)( 2 ) = 162 mA = R R = 61.73 Ω 9.62 a. From superposition: R2 v01 = − ⋅ vI 1 R1 ⎛ R ⎞ ⎛ R1 ⎞ v02 = ⎜ 1 + 2 ⎟ ⎜ ⎟ vI 2 ⎝ R1 ⎠ ⎝ R3 + R4 ⎠ Setting vI 1 = vI 2 = vcm ⎡ ⎛ ⎞ ⎤ ⎢⎛ R ⎞ ⎜ 1 ⎟ R ⎥ v0 = v01 + v02 = ⎢⎜ 1 + 2 ⎟ ⎜ ⎟ − 2 ⎥ vcm ⎢⎝ R1 ⎠ ⎜ R3 ⎟ R1 ⎥ ⎢ ⎜ 1+ R ⎟ ⎥ ⎣ ⎝ 4 ⎠ ⎦
  • 21. ⎞ v R ⎛ R ⎞⎜ 1 ⎟ R Acm = 0 = 4 ⋅ ⎜ 1 + 2 ⎟ ⎜ ⎟− 2 vcm R3 ⎝ R1 ⎠ ⎜ R4 ⎟ R1 ⎜ 1+ R ⎟ ⎝ 3 ⎠ R4 ⎛ R2 ⎞ R2 ⎛ R4 ⎞ ⎜1 + ⎟ − ⎜1 + ⎟ = 3⎝ R R1 ⎠ R1 ⎝ R3 ⎠ ⎛ R4 ⎞ ⎜1 + ⎟ ⎝ R3 ⎠ R4 R2 − R R1 Acm = 3 ⎛ R4 ⎞ ⎜1 + ⎟ ⎝ R3 ⎠ R4 R b. Max. Acm ⇒ Min. and Max. 2 R3 R1 47.5 52.5 − Max. Acm = 10.5 9.5 = 4.5238 − 5.5263 ⇒ A = 0.1815 1 + 4.5238 cm 47.5 max 1+ 10.5 9.63 vI 1 − v A v A − vB vA − v0 = + (1) R1 + R2 Rv R2 vI 2 − vB vB − v A vB = + (2) R1 + R2 Rv R2 ⎛ R1 ⎞ ⎛ R2 ⎞ v− = ⎜ ⎟ vA + ⎜ ⎟ vI 1 (3) ⎝ R1 + R2 ⎠ ⎝ R1 + R2 ⎠ ⎛ R1 ⎞ ⎛ R2 ⎞ v+ = ⎜ ⎟ vB + ⎜ ⎟ vI 2 (4) ⎝ R1 + R2 ⎠ ⎝ R1 + R2 ⎠
  • 22. Now v− = v+ ⇒ R1vA + R2 vI 1 = R1vB + R2 vI 2 R So that v A = vB + 2 ( vI 2 − vI 1 ) R1 vI 1 ⎛ 1 1 1 ⎞ v v = vA ⎜ + + ⎟− B − 0 (1) R1 + R2 ⎝ R1 + R2 RV R2 ⎠ RV R2 vI 2 ⎛ 1 1 1 ⎞ v = vB ⎜ + + ⎟− A ( 2) R1 + R2 ⎝ R1 + R2 RV R2 ⎠ RV Then vI 1 ⎛ 1 1 1 ⎞ v v ⎛ R ⎞⎛ 1 1 1 ⎞ = vB ⎜ + + ⎟ − B − 0 + ⎜ 2 ⎟⎜ + + ⎟ ( vI 2 − vI 1 ) (1) R1 + R2 ⎝ R1 + R2 RV R2 ⎠ RV R2 ⎝ R1 ⎠ ⎝ R1 + R2 RV R2 ⎠ vI 2 ⎛ 1 1 1 ⎞ 1 ⎡ R2 ⎤ = vB ⎜ + + ⎟− ⎢ vB + ( vI 2 − vI 1 ) ⎥ (2) R1 + R2 ⎝ R1 + R2 RV R2 ⎠ RV ⎣ R1 ⎦ Subtract (2) from (1) 1 ⎛ R ⎞⎛ 1 1 1 ⎞ v 1 R2 ( vI 1 − vI 2 ) = ⎜ 2 ⎟ ⎜ + + ⎟ ( vI 2 − vI 1 ) − 0 + ⋅ ( vI 2 − vI 1 ) R1 + R2 ⎝ R1 ⎠ ⎝ R1 + R2 RV R2 ⎠ R2 RV R1 v0 ⎧⎛ R ⎞ ⎛ 1 ⎪ 1 1 ⎞ 1 ⎫ 1 R2 ⎪ = ( vI 2 − vI 1 ) ⎨⎜ 2 ⎟ ⎜ + + ⎟+ + ⋅ ⎬ R2 ⎪⎝ R1 ⎠ ⎝ R1 + R2 RV R2 ⎠ R1 + R2 RV R1 ⎪ ⎩ ⎭ ⎛ R ⎞ ⎧ R2 R R1 R ⎫ v0 = ( vI 2 − vI 1 ) ⎜ 2 ⎟ ⎨ + 2 +1+ + 2⎬ ⎝ R1 ⎠ ⎩ R1 + R2 RV R1 + R2 RV ⎭ 2 R2 ⎛ R2 ⎞ v0 = ⎜1 + ⎟ ( vI 2 − vI 1 ) R1 ⎝ RV ⎠ 9.64
  • 23. vI 1 − vI 2 ( 0.50 − 0.030sin ω t ) − ( 0.50 + 0.030sin ω t ) i1 = = R1 20 −0.060sin ω t = 20 i1 = −3sin ω t ( μ A ) vO1 = i1 R2 + vI 1 = ( −0.0030sin ω t )(115 ) + 0.50 − 0.030sin ω t vO1 = 0.50 − 0.375sin ω t vO 2 = vI 2 − i1 R2 = 0.50 + 0.030sin ω t − ( −0.003sin ω t )(115 ) vO 2 = 0.50 + 0.375sin ω t R4 200 vO = ( vO 2 − vO1 ) = ⎡ 0.50 + 0.375sin ω t − ( 0.50 − 0.375sin ω t ) ⎤ R3 50 ⎣ ⎦ vO = 3sin ω t ( V ) vO 2 0.50 + 0.375sin ω t i3 = = R3 + R4 50 + 200 i3 = 2 + 1.5sin ω t ( μ A ) vO1 − vO ( 0.5 − 0.375sin ω t ) − ( 3sin ω t ) i2 = = R3 + R4 250 i2 = 2 − 13.5sin ω t ( μ A ) 9.65 ⎛ 40 ⎞ (a) vOB = ⎜1 + ⎟ vI = 2.1667 sin ω t ⎝ 12 ⎠ 30 (b) vOC = − vI = −1.25sin ω t 12 (c) vO = vOB − vOC = 2.1667 sin ω t − ( −1.25sin ω t ) vO = 3.417 sin ω t vO 3.417 (d) = = 6.83 vI 0.5 9.66 vI iO = R 9.67 vO R ⎛ 2R ⎞ Ad = = 4 ⎜1 + 2 ⎟ vI 2 − vI 1 R3 ⎝ R1 ⎠ 200 ⎛ 2 (115 ) ⎞ vO = ⎜1 + ⎟ ( 0.06sin ω t ) 50 ⎝ R1 ⎠ 230 For vO = 0.5 = 1.0833 ⇒ R1 = 212.3 K R1 230 vO = 8 V = 32.33 ⇒ R1 = 7.11 K ⇒ R1 f = 7.11 K, R1 (potentiometer) = 205.2 K R1 9.68
  • 24. ⎛ 2 R2 ⎞ R4 vO = ⎜1 + ⎟ ( vI 2 − vI 1 ) ⎝ R3 R1 ⎠ Set R2 = 15 K, Set R1 = 2 K + 100 k ( Rot ) R4 Want ≈8 Set R3 = 10 K R3 R 4 = 75 K Now 75 ⎛ 2 (15 ) ⎞ Gain (min) = ⎜1 + ⎟ = 9.71 10 ⎝ 102 ⎠ 75 ⎛ 2 (15 ) ⎞ Gain ( max ) = ⎜1 + ⎟ = 120 10 ⎝ 2 ⎠ 9.69 For a common-mode gain, vcm = vI 1 = vI 2 Then ⎛ R ⎞ R v01 = ⎜ 1 + 2 ⎟ vcm − 2 vcm = vcm ⎝ R1 ⎠ R1 ⎛ R ⎞ R v02 = ⎜ 1 + 2 ⎟ vcm − 2 vcm = vcm ⎝ R1 ⎠ R1 From Problem 9.62 we can write R4 R4 − R3 R3 ′ Acm = ⎛ R4 ⎞ ⎜1 + ⎟ ⎝ R3 ⎠ ′ R3 = R4 = 20 kΩ, R3 = 20 kΩ ± 5% 20 1− R3 1 ⎛ 20 ⎞ ′ Acm = = ⎜1 − ⎟ (1 + 1) 2 ⎝ ′ R3 ⎠ ′ For R3 = 20 kΩ − 5% = 19 kΩ 1 ⎛ 20 ⎞ Acm = ⎜ 1 − ⎟ = −0.0263 2 ⎝ 19 ⎠ ′ For R3 = 20 kΩ + 5% = 21 kΩ 1 ⎛ 20 ⎞ Acm = ⎜ 1 − ⎟ = 0.0238 2⎝ 21 ⎠ So Acm max = 0.0263 9.70 a. 1 ⋅ vI ( t ′ ) dt ′ R1C2 ∫ v0 = 0.5 ∫ 0.5sin ω t dt = − ω cos ω t 1 ( 0.5 ) 0.5 v0 = 0.5 = ⋅ = R1C2 ω 2π R1C2 f 1 1 f = = ⇒ f = 31.8 Hz 2π R1C2 2π ( 50 × 103 )( 0.1× 10−6 ) Output signal lags input signal by 90°
  • 25. b. 0.5 i. f = ⇒ f = 15.9 Hz 2π ( 50 × 103 )( 0.1× 10−6 ) 0.5 ii. f = ⇒ f = 159 Hz ( 0.1)( 2π ) ( 50 ×103 )( 0.1×10−6 ) 9.71 1 − vI ⋅ t vO = − RC ∫ vI ( t ) dt = RC vI = −0.2 Now − ( −0.2 )( 2 ) 8= RC (a) RC = 0.05 s ( 0.2 ) t (b) 14 = ⇒ t = 3.5 s 0.05 9.72 a. 1 1 − R2 R2 ⋅ v0 jω C2 jω C2 = =− vI R1 ⎛ 1 ⎞ R1 ⎜ R2 + ⎟ ⎝ jω C2 ⎠ v0 R 1 =− 2⋅ vI R1 1 + jω R2 C2 v0 R b. =− 2 vI R1 1 c. f = 2π R2 C2 9.73 a. v0 − R2 R ( jω C1 ) = =− 2 vI R + 1 1 + jω R1C1 jω C1 1 v0 R jω R1C1 =− 2⋅ vI R1 1 + jω R1C1 v0 R b. =− 2 vI R1 1 c. f = 2π R1C1 9.74 Assuming the Zener diode is in breakdown,
  • 26. R2 1 vO = − ⋅ Vz = − ( 6.8 ) ⇒ vO = −6.8 V R1 1 0 − vO 0 − ( −6.8 ) i2 = = ⇒ i2 = 6.8 mA R2 1 10 − Vz 10 − 6.8 iz = − i2 = − 6.8 ⇒ iz = −6.2 mA!!! Rs 5.6 Circuit is not in breakdown. Now 10 − 0 10 = i2 = ⇒ i2 = 1.52 mA Rs + R1 5.6 + 1 vO = −i2 R2 = − (1.52 )(1) ⇒ vO = −1.52 V iz = 0 9.75 ⎛ v ⎞ ⎡ v ⎤ ⎛ vI ⎞ vO = −VT ln ⎜ I ⎟ = − ( 0.026 ) ln ⎢ −14 I 4 ⎥ ⇒ vO = −0.026 ln ⎜ −10 ⎟ ⎝ I s R1 ⎠ ⎢ (10 )(10 ) ⎥ ⎣ ⎦ ⎝ 10 ⎠ For vI = 20 mV , vO = 0.497 V For vI = 2 V , vO = 0.617 V 9.76
  • 27. ⎛ 333 ⎞ v0 = ⎜ ⎟ ( v01 − v02 ) = 16.65 ( v01 − v02 ) ⎝ 20 ⎠ ⎛i ⎞ v01 = −vBE1 = −VT ln ⎜ C1 ⎟ ⎝ IS ⎠ ⎛i ⎞ v02 = −vBE 2 = −VT ln ⎜ C 2 ⎟ ⎝ IS ⎠ ⎛i ⎞ ⎛i ⎞ v01 − v02 = −VT ln ⎜ C1 ⎟ = VT ln ⎜ C 2 ⎟ ⎝ iC 2 ⎠ ⎝ iC1 ⎠ v v iC 2 = 2 , iC1 = 1 R2 R1 ⎛v R ⎞ So v01 − v02 = VT ln ⎜ 2 ⋅ 1 ⎟ ⎝ R2 v1 ⎠ Then ⎛v R ⎞ v0 = (16.65 )( 0.026 ) ln ⎜ 2 ⋅ 1 ⎟ ⎝ v1 R2 ⎠ ⎛v R ⎞ v0 = 0.4329 ln ⎜ 2 ⋅ 1 ⎟ ⎝ v1 R2 ⎠ ln ( x ) = log e ( x ) = ⎡ log10 ( x ) ⎤ ⋅ ⎡log e (10 ) ⎤ ⎣ ⎦ ⎣ ⎦ = 2.3026 log10 ( x ) ⎛v R ⎞ Then v0 ≅ (1.0 ) log10 ⎜ 2 ⋅ 1 ⎟ ⎝ v1 R2 ⎠ 9.77 ( ) vO = − I s R evI / VT = − (10−14 )(104 ) evI / VT vO = (10 −10 )e vI / 0.026 For vI = 0.30 V , vo = 1.03 × 10−5 V For vI = 0.60 V , vo = 1.05 V