SlideShare ist ein Scribd-Unternehmen logo
1 von 12
Downloaden Sie, um offline zu lesen
Big Data opportunities for marketing of
horticultural products
“Lightning talk” in the workshop on “Big data for food,
agriculture and forestry: opportunities and challenges”
INRA, Paris, 22 September 2015, Tim Verwaart
Issues w.r.t. management
 Market orientation of the horticulture sector can be
enhanced:
● Many growers are production oriented
● For many traders, their transactions are the main
source of information
 No tradition of data based supply planning
 Reactive management, little anticipation
2
Issues w.r.t. data
 Available statistics do not present the level of detail
required for management decisions
● E.g., product categories:
“Pears” versus varieties like Beurré, Williams etc.
 Available data are not current, e.g. export statistics
 Growers and traders lack data about consumer trends
and how the products are used and appreciated
3
Big Data opportunities
 Current detailed data on production, stocks, and
(expected) supply are abundant in many public and
private sources
 Social Media:
● Data on consumers’ appreciation and applications
of products are abundant in Social Media
● Growers’ communications in Social Media indicate
future supply
 Analytic methods to interpret the data are advanced
Relevant data for horticultural markets
 External factors affecting supply and demand:
● Weather conditions, exchange rates, energy prices
 Consumption:
● Market research, retail sales data, Social Media
 Production:
● Areas/capacities, actual production, forecasts, FADN
 (International) trade:
● Import/export statistics, phytosanitary certification
requests, stocks, expected arrivals at (air)ports
 News media:
● News about health aspects; food safety incidents
5
Market information for the horticulture
sector: Big Data challenges
 Data are present in public administrations, but not open
● Governments promote Open Data, but at a lower
level many obstacles must be overcome
● Entrepreneurs are concerned about competitive
relations
 Semantic heterogeneity (in product classifications, etc.)
 Many SMEs in this sector have limited capacity to invest
in the IT required for Big Data applications, including the
collection of relevant Social Media data and semantic
integration of data from a diversity of sources
6
The BIGt&u project
 A Dutch public-private partnership
 To develop an infrastructure for market information
 Access a diversity of data sources
 Collect and structure data from Social Media
 Provide mappings between classifications of products etc.
 Offer a uniform interface with standard classifications
 Boost applications of market data
 Enhance market orientation & data based supply planning
 Minimize investment cost for individual SMEs
7
Consortium
 Knowledge institutions: fundamental and applied
research (Agriculture, IT, Data Analytics)
 Organizations and companies from horticulture and IT
sectors
 Cooperation between fruit/vegetables and
flowers/ornamental plants subsectors
 Participation of government and public data suppliers
8
9
Work packages
1. Research on Semantic Technologies for data access and
data integration
2. Research on Social Media filtering and real-time
clustering
3. Data source descriptions (metadata) and mapping of
classifications
4. IT architecture and development of software and other
infrastructure
5. Social, legal, and financial aspects (competition, data
usage rights, business case)
6. Application prototyping and community building across
horticulture and IT sectors
10
Uniform interface and standard classifications for apps and ERP
Conceptual architecture
11
Social Media - Unstructured - Event-driven Systems – Structured - Transaction-driven
Topics
Trends
Alerts
Norms
Transactions
Registrations
Anonimize
Aggregate
Map
Collect
Filter
Cluster
BUSINESS EDUCATION RESEARCH
SUPPLY CHAINCONSUMERS
Information
tim.verwaart@wur.nl
12
Efficient, uniform access to a wide
variety of sources for market data

Weitere ähnliche Inhalte

Mehr von BigData_Europe

Luigi Selmi - The Big Data Integrator Platform
Luigi Selmi - The Big Data Integrator PlatformLuigi Selmi - The Big Data Integrator Platform
Luigi Selmi - The Big Data Integrator PlatformBigData_Europe
 
Josep Maria Salanova - Introduction to BDE+SC4
Josep Maria Salanova - Introduction to BDE+SC4Josep Maria Salanova - Introduction to BDE+SC4
Josep Maria Salanova - Introduction to BDE+SC4BigData_Europe
 
Rajendra Akerkar - LeMO Project
Rajendra Akerkar - LeMO ProjectRajendra Akerkar - LeMO Project
Rajendra Akerkar - LeMO ProjectBigData_Europe
 
Big Data Europe SC6 WS #3: PILOT SC6: CITIZEN BUDGET ON MUNICIPAL LEVEL, Mart...
Big Data Europe SC6 WS #3: PILOT SC6: CITIZEN BUDGET ON MUNICIPAL LEVEL, Mart...Big Data Europe SC6 WS #3: PILOT SC6: CITIZEN BUDGET ON MUNICIPAL LEVEL, Mart...
Big Data Europe SC6 WS #3: PILOT SC6: CITIZEN BUDGET ON MUNICIPAL LEVEL, Mart...BigData_Europe
 
Big Data Europe SC6 WS #3: Big Data Europe Platform: Apps, challenges, goals ...
Big Data Europe SC6 WS #3: Big Data Europe Platform: Apps, challenges, goals ...Big Data Europe SC6 WS #3: Big Data Europe Platform: Apps, challenges, goals ...
Big Data Europe SC6 WS #3: Big Data Europe Platform: Apps, challenges, goals ...BigData_Europe
 
Big Data Europe SC6 WS 3: Where we are and are going for Big Data in OpenScie...
Big Data Europe SC6 WS 3: Where we are and are going for Big Data in OpenScie...Big Data Europe SC6 WS 3: Where we are and are going for Big Data in OpenScie...
Big Data Europe SC6 WS 3: Where we are and are going for Big Data in OpenScie...BigData_Europe
 
Big Data Europe SC6 WS 3: Ron Dekker, Director CESSDA European Open Science A...
Big Data Europe SC6 WS 3: Ron Dekker, Director CESSDA European Open Science A...Big Data Europe SC6 WS 3: Ron Dekker, Director CESSDA European Open Science A...
Big Data Europe SC6 WS 3: Ron Dekker, Director CESSDA European Open Science A...BigData_Europe
 
Big Data Europe: SC6 Workshop 3: The European Research Data Landscape: Opport...
Big Data Europe: SC6 Workshop 3: The European Research Data Landscape: Opport...Big Data Europe: SC6 Workshop 3: The European Research Data Landscape: Opport...
Big Data Europe: SC6 Workshop 3: The European Research Data Landscape: Opport...BigData_Europe
 
BDE SC3.3 Workshop - BDE review: Scope and Opportunities
 BDE SC3.3 Workshop -  BDE review: Scope and Opportunities BDE SC3.3 Workshop -  BDE review: Scope and Opportunities
BDE SC3.3 Workshop - BDE review: Scope and OpportunitiesBigData_Europe
 
BDE SC3.3 Workshop - Agenda
 BDE SC3.3 Workshop - Agenda BDE SC3.3 Workshop - Agenda
BDE SC3.3 Workshop - AgendaBigData_Europe
 
BDE SC3.3 Workshop - BDE Pilot case for Wind Turbine condition monitoring re...
 BDE SC3.3 Workshop - BDE Pilot case for Wind Turbine condition monitoring re... BDE SC3.3 Workshop - BDE Pilot case for Wind Turbine condition monitoring re...
BDE SC3.3 Workshop - BDE Pilot case for Wind Turbine condition monitoring re...BigData_Europe
 
BDE SC3.3 Workshop - Data management in WT testing and monitoring
 BDE SC3.3 Workshop - Data management in WT testing and monitoring  BDE SC3.3 Workshop - Data management in WT testing and monitoring
BDE SC3.3 Workshop - Data management in WT testing and monitoring BigData_Europe
 
BDE SC3.3 Workshop - Big Data in Wind Turbine Condition Monitoring
 BDE SC3.3 Workshop -  Big Data in Wind Turbine Condition Monitoring BDE SC3.3 Workshop -  Big Data in Wind Turbine Condition Monitoring
BDE SC3.3 Workshop - Big Data in Wind Turbine Condition MonitoringBigData_Europe
 
BDE SC3.3 Workshop - BDE Platform: Technical overview
 BDE SC3.3 Workshop -  BDE Platform: Technical overview BDE SC3.3 Workshop -  BDE Platform: Technical overview
BDE SC3.3 Workshop - BDE Platform: Technical overviewBigData_Europe
 
BDE SC3.3 Workshop - Options for Wind Farm performance assessment and Power f...
BDE SC3.3 Workshop - Options for Wind Farm performance assessment and Power f...BDE SC3.3 Workshop - Options for Wind Farm performance assessment and Power f...
BDE SC3.3 Workshop - Options for Wind Farm performance assessment and Power f...BigData_Europe
 
BDE SC3.3 Workshop - Wind Farm Monitoring and advanced analytics
 BDE SC3.3 Workshop - Wind Farm Monitoring and advanced analytics  BDE SC3.3 Workshop - Wind Farm Monitoring and advanced analytics
BDE SC3.3 Workshop - Wind Farm Monitoring and advanced analytics BigData_Europe
 
Big Data Europe: Workshop 3 SC6 Social Science: THE IMPORTANCE OF METADATA & ...
Big Data Europe: Workshop 3 SC6 Social Science: THE IMPORTANCE OF METADATA & ...Big Data Europe: Workshop 3 SC6 Social Science: THE IMPORTANCE OF METADATA & ...
Big Data Europe: Workshop 3 SC6 Social Science: THE IMPORTANCE OF METADATA & ...BigData_Europe
 
BDE SC1 Workshop 3 - BigMedilytics Overview (Supriyo Chatterjea)
BDE SC1 Workshop 3 - BigMedilytics Overview (Supriyo Chatterjea)BDE SC1 Workshop 3 - BigMedilytics Overview (Supriyo Chatterjea)
BDE SC1 Workshop 3 - BigMedilytics Overview (Supriyo Chatterjea)BigData_Europe
 
BDE SC1 Workshop 3 - iASiS (Guillermo Palma)
BDE SC1 Workshop 3 - iASiS (Guillermo Palma)BDE SC1 Workshop 3 - iASiS (Guillermo Palma)
BDE SC1 Workshop 3 - iASiS (Guillermo Palma)BigData_Europe
 
BDE SC1 Workshop 3 - MIDAS (Michaela Black)
BDE SC1 Workshop 3 - MIDAS (Michaela Black)BDE SC1 Workshop 3 - MIDAS (Michaela Black)
BDE SC1 Workshop 3 - MIDAS (Michaela Black)BigData_Europe
 

Mehr von BigData_Europe (20)

Luigi Selmi - The Big Data Integrator Platform
Luigi Selmi - The Big Data Integrator PlatformLuigi Selmi - The Big Data Integrator Platform
Luigi Selmi - The Big Data Integrator Platform
 
Josep Maria Salanova - Introduction to BDE+SC4
Josep Maria Salanova - Introduction to BDE+SC4Josep Maria Salanova - Introduction to BDE+SC4
Josep Maria Salanova - Introduction to BDE+SC4
 
Rajendra Akerkar - LeMO Project
Rajendra Akerkar - LeMO ProjectRajendra Akerkar - LeMO Project
Rajendra Akerkar - LeMO Project
 
Big Data Europe SC6 WS #3: PILOT SC6: CITIZEN BUDGET ON MUNICIPAL LEVEL, Mart...
Big Data Europe SC6 WS #3: PILOT SC6: CITIZEN BUDGET ON MUNICIPAL LEVEL, Mart...Big Data Europe SC6 WS #3: PILOT SC6: CITIZEN BUDGET ON MUNICIPAL LEVEL, Mart...
Big Data Europe SC6 WS #3: PILOT SC6: CITIZEN BUDGET ON MUNICIPAL LEVEL, Mart...
 
Big Data Europe SC6 WS #3: Big Data Europe Platform: Apps, challenges, goals ...
Big Data Europe SC6 WS #3: Big Data Europe Platform: Apps, challenges, goals ...Big Data Europe SC6 WS #3: Big Data Europe Platform: Apps, challenges, goals ...
Big Data Europe SC6 WS #3: Big Data Europe Platform: Apps, challenges, goals ...
 
Big Data Europe SC6 WS 3: Where we are and are going for Big Data in OpenScie...
Big Data Europe SC6 WS 3: Where we are and are going for Big Data in OpenScie...Big Data Europe SC6 WS 3: Where we are and are going for Big Data in OpenScie...
Big Data Europe SC6 WS 3: Where we are and are going for Big Data in OpenScie...
 
Big Data Europe SC6 WS 3: Ron Dekker, Director CESSDA European Open Science A...
Big Data Europe SC6 WS 3: Ron Dekker, Director CESSDA European Open Science A...Big Data Europe SC6 WS 3: Ron Dekker, Director CESSDA European Open Science A...
Big Data Europe SC6 WS 3: Ron Dekker, Director CESSDA European Open Science A...
 
Big Data Europe: SC6 Workshop 3: The European Research Data Landscape: Opport...
Big Data Europe: SC6 Workshop 3: The European Research Data Landscape: Opport...Big Data Europe: SC6 Workshop 3: The European Research Data Landscape: Opport...
Big Data Europe: SC6 Workshop 3: The European Research Data Landscape: Opport...
 
BDE SC3.3 Workshop - BDE review: Scope and Opportunities
 BDE SC3.3 Workshop -  BDE review: Scope and Opportunities BDE SC3.3 Workshop -  BDE review: Scope and Opportunities
BDE SC3.3 Workshop - BDE review: Scope and Opportunities
 
BDE SC3.3 Workshop - Agenda
 BDE SC3.3 Workshop - Agenda BDE SC3.3 Workshop - Agenda
BDE SC3.3 Workshop - Agenda
 
BDE SC3.3 Workshop - BDE Pilot case for Wind Turbine condition monitoring re...
 BDE SC3.3 Workshop - BDE Pilot case for Wind Turbine condition monitoring re... BDE SC3.3 Workshop - BDE Pilot case for Wind Turbine condition monitoring re...
BDE SC3.3 Workshop - BDE Pilot case for Wind Turbine condition monitoring re...
 
BDE SC3.3 Workshop - Data management in WT testing and monitoring
 BDE SC3.3 Workshop - Data management in WT testing and monitoring  BDE SC3.3 Workshop - Data management in WT testing and monitoring
BDE SC3.3 Workshop - Data management in WT testing and monitoring
 
BDE SC3.3 Workshop - Big Data in Wind Turbine Condition Monitoring
 BDE SC3.3 Workshop -  Big Data in Wind Turbine Condition Monitoring BDE SC3.3 Workshop -  Big Data in Wind Turbine Condition Monitoring
BDE SC3.3 Workshop - Big Data in Wind Turbine Condition Monitoring
 
BDE SC3.3 Workshop - BDE Platform: Technical overview
 BDE SC3.3 Workshop -  BDE Platform: Technical overview BDE SC3.3 Workshop -  BDE Platform: Technical overview
BDE SC3.3 Workshop - BDE Platform: Technical overview
 
BDE SC3.3 Workshop - Options for Wind Farm performance assessment and Power f...
BDE SC3.3 Workshop - Options for Wind Farm performance assessment and Power f...BDE SC3.3 Workshop - Options for Wind Farm performance assessment and Power f...
BDE SC3.3 Workshop - Options for Wind Farm performance assessment and Power f...
 
BDE SC3.3 Workshop - Wind Farm Monitoring and advanced analytics
 BDE SC3.3 Workshop - Wind Farm Monitoring and advanced analytics  BDE SC3.3 Workshop - Wind Farm Monitoring and advanced analytics
BDE SC3.3 Workshop - Wind Farm Monitoring and advanced analytics
 
Big Data Europe: Workshop 3 SC6 Social Science: THE IMPORTANCE OF METADATA & ...
Big Data Europe: Workshop 3 SC6 Social Science: THE IMPORTANCE OF METADATA & ...Big Data Europe: Workshop 3 SC6 Social Science: THE IMPORTANCE OF METADATA & ...
Big Data Europe: Workshop 3 SC6 Social Science: THE IMPORTANCE OF METADATA & ...
 
BDE SC1 Workshop 3 - BigMedilytics Overview (Supriyo Chatterjea)
BDE SC1 Workshop 3 - BigMedilytics Overview (Supriyo Chatterjea)BDE SC1 Workshop 3 - BigMedilytics Overview (Supriyo Chatterjea)
BDE SC1 Workshop 3 - BigMedilytics Overview (Supriyo Chatterjea)
 
BDE SC1 Workshop 3 - iASiS (Guillermo Palma)
BDE SC1 Workshop 3 - iASiS (Guillermo Palma)BDE SC1 Workshop 3 - iASiS (Guillermo Palma)
BDE SC1 Workshop 3 - iASiS (Guillermo Palma)
 
BDE SC1 Workshop 3 - MIDAS (Michaela Black)
BDE SC1 Workshop 3 - MIDAS (Michaela Black)BDE SC1 Workshop 3 - MIDAS (Michaela Black)
BDE SC1 Workshop 3 - MIDAS (Michaela Black)
 

Kürzlich hochgeladen

prediction of default payment next month using a logistic approach
prediction of default payment next month using a logistic approachprediction of default payment next month using a logistic approach
prediction of default payment next month using a logistic approachAdekunleJoseph4
 
Data Discovery With Power Query in excel
Data Discovery With Power Query in excelData Discovery With Power Query in excel
Data Discovery With Power Query in excelKapilSidhpuria3
 
Role of Consumer Insights in business transformation
Role of Consumer Insights in business transformationRole of Consumer Insights in business transformation
Role of Consumer Insights in business transformationAnnie Melnic
 
IBEF report on the Insurance market in India
IBEF report on the Insurance market in IndiaIBEF report on the Insurance market in India
IBEF report on the Insurance market in IndiaManalVerma4
 
Decoding Movie Sentiments: Analyzing Reviews with Data Analysis model
Decoding Movie Sentiments: Analyzing Reviews with Data Analysis modelDecoding Movie Sentiments: Analyzing Reviews with Data Analysis model
Decoding Movie Sentiments: Analyzing Reviews with Data Analysis modelBoston Institute of Analytics
 
Adobe Scan 06-Mar-2024 (1).pdfwvsbbsbsba
Adobe Scan 06-Mar-2024 (1).pdfwvsbbsbsbaAdobe Scan 06-Mar-2024 (1).pdfwvsbbsbsba
Adobe Scan 06-Mar-2024 (1).pdfwvsbbsbsbas73678sri
 
testingsdadadadaaddadadadadadadadaad.pdf
testingsdadadadaaddadadadadadadadaad.pdftestingsdadadadaaddadadadadadadadaad.pdf
testingsdadadadaaddadadadadadadadaad.pdfDSP Mutual Fund
 
Film cover research.pptx for media courseowrk
Film cover research.pptx for media courseowrkFilm cover research.pptx for media courseowrk
Film cover research.pptx for media courseowrk494f574xmv
 
why-transparency-and-traceability-are-essential-for-sustainable-supply-chains...
why-transparency-and-traceability-are-essential-for-sustainable-supply-chains...why-transparency-and-traceability-are-essential-for-sustainable-supply-chains...
why-transparency-and-traceability-are-essential-for-sustainable-supply-chains...Jack Cole
 
Rabobank_Exploring the Impact of Graph Technology on Financial Services.pdf
Rabobank_Exploring the Impact of Graph Technology on Financial Services.pdfRabobank_Exploring the Impact of Graph Technology on Financial Services.pdf
Rabobank_Exploring the Impact of Graph Technology on Financial Services.pdfNeo4j
 
DATA ANALYSIS using various data sets like shoping data set etc
DATA ANALYSIS using various data sets like shoping data set etcDATA ANALYSIS using various data sets like shoping data set etc
DATA ANALYSIS using various data sets like shoping data set etclalithasri22
 
Adobe Scan 06-Mar-2024 (1).pdf shavashwvw
Adobe Scan 06-Mar-2024 (1).pdf shavashwvwAdobe Scan 06-Mar-2024 (1).pdf shavashwvw
Adobe Scan 06-Mar-2024 (1).pdf shavashwvws73678sri
 
Statistics For Management by Richard I. Levin 8ed.pdf
Statistics For Management by Richard I. Levin 8ed.pdfStatistics For Management by Richard I. Levin 8ed.pdf
Statistics For Management by Richard I. Levin 8ed.pdfnikeshsingh56
 
Neo4j_Exploring the Impact of Graph Technology on Financial Services.pdf
Neo4j_Exploring the Impact of Graph Technology on Financial Services.pdfNeo4j_Exploring the Impact of Graph Technology on Financial Services.pdf
Neo4j_Exploring the Impact of Graph Technology on Financial Services.pdfNeo4j
 
Digital Indonesia Report 2024 by We Are Social .pdf
Digital Indonesia Report 2024 by We Are Social .pdfDigital Indonesia Report 2024 by We Are Social .pdf
Digital Indonesia Report 2024 by We Are Social .pdfNicoChristianSunaryo
 
6 Tips for Interpretable Topic Models _ by Nicha Ruchirawat _ Towards Data Sc...
6 Tips for Interpretable Topic Models _ by Nicha Ruchirawat _ Towards Data Sc...6 Tips for Interpretable Topic Models _ by Nicha Ruchirawat _ Towards Data Sc...
6 Tips for Interpretable Topic Models _ by Nicha Ruchirawat _ Towards Data Sc...Dr Arash Najmaei ( Phd., MBA, BSc)
 
Predictive Analysis - Using Insight-informed Data to Plan Inventory in Next 6...
Predictive Analysis - Using Insight-informed Data to Plan Inventory in Next 6...Predictive Analysis - Using Insight-informed Data to Plan Inventory in Next 6...
Predictive Analysis - Using Insight-informed Data to Plan Inventory in Next 6...ThinkInnovation
 
Inference rules in artificial intelligence
Inference rules in artificial intelligenceInference rules in artificial intelligence
Inference rules in artificial intelligencePriyadharshiniG41
 

Kürzlich hochgeladen (19)

prediction of default payment next month using a logistic approach
prediction of default payment next month using a logistic approachprediction of default payment next month using a logistic approach
prediction of default payment next month using a logistic approach
 
Data Discovery With Power Query in excel
Data Discovery With Power Query in excelData Discovery With Power Query in excel
Data Discovery With Power Query in excel
 
Role of Consumer Insights in business transformation
Role of Consumer Insights in business transformationRole of Consumer Insights in business transformation
Role of Consumer Insights in business transformation
 
IBEF report on the Insurance market in India
IBEF report on the Insurance market in IndiaIBEF report on the Insurance market in India
IBEF report on the Insurance market in India
 
Decoding Movie Sentiments: Analyzing Reviews with Data Analysis model
Decoding Movie Sentiments: Analyzing Reviews with Data Analysis modelDecoding Movie Sentiments: Analyzing Reviews with Data Analysis model
Decoding Movie Sentiments: Analyzing Reviews with Data Analysis model
 
Adobe Scan 06-Mar-2024 (1).pdfwvsbbsbsba
Adobe Scan 06-Mar-2024 (1).pdfwvsbbsbsbaAdobe Scan 06-Mar-2024 (1).pdfwvsbbsbsba
Adobe Scan 06-Mar-2024 (1).pdfwvsbbsbsba
 
testingsdadadadaaddadadadadadadadaad.pdf
testingsdadadadaaddadadadadadadadaad.pdftestingsdadadadaaddadadadadadadadaad.pdf
testingsdadadadaaddadadadadadadadaad.pdf
 
Film cover research.pptx for media courseowrk
Film cover research.pptx for media courseowrkFilm cover research.pptx for media courseowrk
Film cover research.pptx for media courseowrk
 
2023 Survey Shows Dip in High School E-Cigarette Use
2023 Survey Shows Dip in High School E-Cigarette Use2023 Survey Shows Dip in High School E-Cigarette Use
2023 Survey Shows Dip in High School E-Cigarette Use
 
why-transparency-and-traceability-are-essential-for-sustainable-supply-chains...
why-transparency-and-traceability-are-essential-for-sustainable-supply-chains...why-transparency-and-traceability-are-essential-for-sustainable-supply-chains...
why-transparency-and-traceability-are-essential-for-sustainable-supply-chains...
 
Rabobank_Exploring the Impact of Graph Technology on Financial Services.pdf
Rabobank_Exploring the Impact of Graph Technology on Financial Services.pdfRabobank_Exploring the Impact of Graph Technology on Financial Services.pdf
Rabobank_Exploring the Impact of Graph Technology on Financial Services.pdf
 
DATA ANALYSIS using various data sets like shoping data set etc
DATA ANALYSIS using various data sets like shoping data set etcDATA ANALYSIS using various data sets like shoping data set etc
DATA ANALYSIS using various data sets like shoping data set etc
 
Adobe Scan 06-Mar-2024 (1).pdf shavashwvw
Adobe Scan 06-Mar-2024 (1).pdf shavashwvwAdobe Scan 06-Mar-2024 (1).pdf shavashwvw
Adobe Scan 06-Mar-2024 (1).pdf shavashwvw
 
Statistics For Management by Richard I. Levin 8ed.pdf
Statistics For Management by Richard I. Levin 8ed.pdfStatistics For Management by Richard I. Levin 8ed.pdf
Statistics For Management by Richard I. Levin 8ed.pdf
 
Neo4j_Exploring the Impact of Graph Technology on Financial Services.pdf
Neo4j_Exploring the Impact of Graph Technology on Financial Services.pdfNeo4j_Exploring the Impact of Graph Technology on Financial Services.pdf
Neo4j_Exploring the Impact of Graph Technology on Financial Services.pdf
 
Digital Indonesia Report 2024 by We Are Social .pdf
Digital Indonesia Report 2024 by We Are Social .pdfDigital Indonesia Report 2024 by We Are Social .pdf
Digital Indonesia Report 2024 by We Are Social .pdf
 
6 Tips for Interpretable Topic Models _ by Nicha Ruchirawat _ Towards Data Sc...
6 Tips for Interpretable Topic Models _ by Nicha Ruchirawat _ Towards Data Sc...6 Tips for Interpretable Topic Models _ by Nicha Ruchirawat _ Towards Data Sc...
6 Tips for Interpretable Topic Models _ by Nicha Ruchirawat _ Towards Data Sc...
 
Predictive Analysis - Using Insight-informed Data to Plan Inventory in Next 6...
Predictive Analysis - Using Insight-informed Data to Plan Inventory in Next 6...Predictive Analysis - Using Insight-informed Data to Plan Inventory in Next 6...
Predictive Analysis - Using Insight-informed Data to Plan Inventory in Next 6...
 
Inference rules in artificial intelligence
Inference rules in artificial intelligenceInference rules in artificial intelligence
Inference rules in artificial intelligence
 

SC2 Workshop 1: Big Data opportunities for marketing of horticultural products

  • 1. Big Data opportunities for marketing of horticultural products “Lightning talk” in the workshop on “Big data for food, agriculture and forestry: opportunities and challenges” INRA, Paris, 22 September 2015, Tim Verwaart
  • 2. Issues w.r.t. management  Market orientation of the horticulture sector can be enhanced: ● Many growers are production oriented ● For many traders, their transactions are the main source of information  No tradition of data based supply planning  Reactive management, little anticipation 2
  • 3. Issues w.r.t. data  Available statistics do not present the level of detail required for management decisions ● E.g., product categories: “Pears” versus varieties like Beurré, Williams etc.  Available data are not current, e.g. export statistics  Growers and traders lack data about consumer trends and how the products are used and appreciated 3
  • 4. Big Data opportunities  Current detailed data on production, stocks, and (expected) supply are abundant in many public and private sources  Social Media: ● Data on consumers’ appreciation and applications of products are abundant in Social Media ● Growers’ communications in Social Media indicate future supply  Analytic methods to interpret the data are advanced
  • 5. Relevant data for horticultural markets  External factors affecting supply and demand: ● Weather conditions, exchange rates, energy prices  Consumption: ● Market research, retail sales data, Social Media  Production: ● Areas/capacities, actual production, forecasts, FADN  (International) trade: ● Import/export statistics, phytosanitary certification requests, stocks, expected arrivals at (air)ports  News media: ● News about health aspects; food safety incidents 5
  • 6. Market information for the horticulture sector: Big Data challenges  Data are present in public administrations, but not open ● Governments promote Open Data, but at a lower level many obstacles must be overcome ● Entrepreneurs are concerned about competitive relations  Semantic heterogeneity (in product classifications, etc.)  Many SMEs in this sector have limited capacity to invest in the IT required for Big Data applications, including the collection of relevant Social Media data and semantic integration of data from a diversity of sources 6
  • 7. The BIGt&u project  A Dutch public-private partnership  To develop an infrastructure for market information  Access a diversity of data sources  Collect and structure data from Social Media  Provide mappings between classifications of products etc.  Offer a uniform interface with standard classifications  Boost applications of market data  Enhance market orientation & data based supply planning  Minimize investment cost for individual SMEs 7
  • 8. Consortium  Knowledge institutions: fundamental and applied research (Agriculture, IT, Data Analytics)  Organizations and companies from horticulture and IT sectors  Cooperation between fruit/vegetables and flowers/ornamental plants subsectors  Participation of government and public data suppliers 8
  • 9. 9
  • 10. Work packages 1. Research on Semantic Technologies for data access and data integration 2. Research on Social Media filtering and real-time clustering 3. Data source descriptions (metadata) and mapping of classifications 4. IT architecture and development of software and other infrastructure 5. Social, legal, and financial aspects (competition, data usage rights, business case) 6. Application prototyping and community building across horticulture and IT sectors 10
  • 11. Uniform interface and standard classifications for apps and ERP Conceptual architecture 11 Social Media - Unstructured - Event-driven Systems – Structured - Transaction-driven Topics Trends Alerts Norms Transactions Registrations Anonimize Aggregate Map Collect Filter Cluster BUSINESS EDUCATION RESEARCH SUPPLY CHAINCONSUMERS
  • 12. Information tim.verwaart@wur.nl 12 Efficient, uniform access to a wide variety of sources for market data