SlideShare verwendet Cookies, um die Funktionalität und Leistungsfähigkeit der Webseite zu verbessern und Ihnen relevante Werbung bereitzustellen. Wenn Sie diese Webseite weiter besuchen, erklären Sie sich mit der Verwendung von Cookies auf dieser Seite einverstanden. Lesen Sie bitte unsere Nutzervereinbarung und die Datenschutzrichtlinie.
SlideShare verwendet Cookies, um die Funktionalität und Leistungsfähigkeit der Webseite zu verbessern und Ihnen relevante Werbung bereitzustellen. Wenn Sie diese Webseite weiter besuchen, erklären Sie sich mit der Verwendung von Cookies auf dieser Seite einverstanden. Lesen Sie bitte unsere unsere Datenschutzrichtlinie und die Nutzervereinbarung.
Veröffentlicht am
In information retrieval there is a long history of learning vector representations for words. In recent times, neural word embeddings have gained significant popularity for many natural language processing tasks, such as word analogy and machine translation. The goal of this talk is to introduce basic intuitions behind these simple but elegant models of text representation. We will start our discussion with classic vector space models and then make our way to recently proposed neural word embeddings. We will see how these models can be useful for analogical reasoning as well applied to many information retrieval tasks.
Sie haben diese Folie bereits ins Clipboard „“ geclippt.
Loggen Sie sich ein, um Kommentare anzuzeigen.