



Suche senden


Hochladen
dma_ppt.pdf
•
0 gefällt mir•29 views

B
BatoolKhan15Folgen
discrete  mathematicsWeniger lesen

Mehr lesen
Ingenieurwesen




Melden
Teilen








Melden
Teilen



1 von 188Jetzt herunterladenDownloaden Sie, um offline zu lesen

































































































































































































































































































































































































Recomendados
Discrete Mathematics - All chapters 
Discrete Mathematics - All chapters Omnia A. Abdullah 


Ch01-1.pdf
Ch01-1.pdfSheinahdenMayTenerif 


Ch01-1.ppt
Ch01-1.pptEddyMakoyo1 


Ch01-1.ppt
Ch01-1.pptSinhUTS 


Logic DM
Logic DMRokonuzzaman Rony 


Lecture 2 predicates quantifiers and rules of inference
Lecture 2 predicates quantifiers and rules of inferenceasimnawaz54 


Logic
LogicShiwani Gupta 


Course notes1
Course notes1Von Adam Martinez 










Ähnlich wie dma_ppt.pdf
Stochastic Processes Homework Help
Stochastic Processes Homework HelpExcel Homework Help 


Predicate logic_2(Artificial Intelligence)
Predicate logic_2(Artificial Intelligence)SHUBHAM KUMAR GUPTA 


Lecture 01.ppt
Lecture 01.pptVinhQuang898733 


Discrete Math Lecture 02: First Order Logic
Discrete Math Lecture 02: First Order LogicIT Engineering Department 










Ähnlich wie dma_ppt.pdf
Discrete mathematics Ch2 Propositional Logic_Dr.khaled.Bakro د. خالد بكرو
Discrete mathematics Ch2 Propositional Logic_Dr.khaled.Bakro د. خالد بكروDr. Khaled Bakro 


Discrete Structure Lecture #5 & 6.pdf
Discrete Structure Lecture #5 & 6.pdfMuhammadUmerIhtisham 


Propositional Logic and Pridicate logic
Propositional Logic and Pridicate logicRoorkee College of Engineering, Roorkee 


DISMATH_Part1
DISMATH_Part1Melvin Cabatuan 










Ähnlich wie dma_ppt.pdf
C2.0 propositional logic
C2.0 propositional logicMelaku Bayih Demessie 


Chapter 01 - p2.pdf
Chapter 01 - p2.pdfsmarwaneid 


L2.pdf
L2.pdfMeena Prakash 


MetiTarski: An Automatic Prover for Real-Valued Special Functions
MetiTarski: An Automatic Prover for Real-Valued Special FunctionsLawrence Paulson 










Ähnlich wie dma_ppt.pdf
Discrete structures &amp; optimization unit 1
Discrete structures &amp; optimization unit 1SURBHI SAROHA 


DMS UNIT-1 ppt.pptx
DMS UNIT-1 ppt.pptxDrMadhavaReddyCh 


Discrete-Chapter 04 Logic Part II
Discrete-Chapter 04 Logic Part IIWongyos Keardsri 


1606751772-ds-lecture-6.ppt
1606751772-ds-lecture-6.pptTejasAditya2 










Más contenido relacionado
Ähnlich wie dma_ppt.pdf
Stochastic Processes Homework Help
Stochastic Processes Homework HelpExcel Homework Help 



Predicate logic_2(Artificial Intelligence)
Predicate logic_2(Artificial Intelligence)SHUBHAM KUMAR GUPTA 



Lecture 01.ppt
Lecture 01.pptVinhQuang898733 



Discrete Math Lecture 02: First Order Logic
Discrete Math Lecture 02: First Order LogicIT Engineering Department 



Discrete mathematics Ch2 Propositional Logic_Dr.khaled.Bakro د. خالد بكرو
Discrete mathematics Ch2 Propositional Logic_Dr.khaled.Bakro د. خالد بكروDr. Khaled Bakro 



Discrete Structure Lecture #5 & 6.pdf
Discrete Structure Lecture #5 & 6.pdfMuhammadUmerIhtisham 



Propositional Logic and Pridicate logic
Propositional Logic and Pridicate logicRoorkee College of Engineering, Roorkee 



DISMATH_Part1
DISMATH_Part1Melvin Cabatuan 



C2.0 propositional logic
C2.0 propositional logicMelaku Bayih Demessie 



Chapter 01 - p2.pdf
Chapter 01 - p2.pdfsmarwaneid 



L2.pdf
L2.pdfMeena Prakash 



MetiTarski: An Automatic Prover for Real-Valued Special Functions
MetiTarski: An Automatic Prover for Real-Valued Special FunctionsLawrence Paulson 



Discrete structures &amp; optimization unit 1
Discrete structures &amp; optimization unit 1SURBHI SAROHA 



DMS UNIT-1 ppt.pptx
DMS UNIT-1 ppt.pptxDrMadhavaReddyCh 



Discrete-Chapter 04 Logic Part II
Discrete-Chapter 04 Logic Part IIWongyos Keardsri 



1606751772-ds-lecture-6.ppt
1606751772-ds-lecture-6.pptTejasAditya2 



UGC NET Computer Science & Application book.pdf  [Sample]
UGC NET Computer Science & Application book.pdf  [Sample]DIwakar Rajput 



Nested loop
Nested loopLal Bdr. Saud 



Poggi   analytics - star - 1a
Poggi   analytics - star - 1aGaston Liberman 



chapter9.ppt
chapter9.pptPraveen Kumar 





Ähnlich wie dma_ppt.pdf (20)
Stochastic Processes Homework Help
Stochastic Processes Homework Help 


Predicate logic_2(Artificial Intelligence)
Predicate logic_2(Artificial Intelligence) 


Lecture 01.ppt
Lecture 01.ppt 


Discrete Math Lecture 02: First Order Logic
Discrete Math Lecture 02: First Order Logic 


Discrete mathematics Ch2 Propositional Logic_Dr.khaled.Bakro د. خالد بكرو
Discrete mathematics Ch2 Propositional Logic_Dr.khaled.Bakro د. خالد بكرو 


Discrete Structure Lecture #5 & 6.pdf
Discrete Structure Lecture #5 & 6.pdf 


Propositional Logic and Pridicate logic
Propositional Logic and Pridicate logic 


DISMATH_Part1
DISMATH_Part1 


C2.0 propositional logic
C2.0 propositional logic 


Chapter 01 - p2.pdf
Chapter 01 - p2.pdf 


L2.pdf
L2.pdf 


MetiTarski: An Automatic Prover for Real-Valued Special Functions
MetiTarski: An Automatic Prover for Real-Valued Special Functions 


Discrete structures &amp; optimization unit 1
Discrete structures &amp; optimization unit 1 


DMS UNIT-1 ppt.pptx
DMS UNIT-1 ppt.pptx 


Discrete-Chapter 04 Logic Part II
Discrete-Chapter 04 Logic Part II 


1606751772-ds-lecture-6.ppt
1606751772-ds-lecture-6.ppt 


UGC NET Computer Science & Application book.pdf  [Sample]
UGC NET Computer Science & Application book.pdf  [Sample] 


Nested loop
Nested loop 


Poggi   analytics - star - 1a
Poggi   analytics - star - 1a 


chapter9.ppt
chapter9.ppt 






Último
ISO 5725-2 2019 Accuracy (trueness and precision) of measurement methods and ...
ISO 5725-2 2019 Accuracy (trueness and precision) of measurement methods and ...Boris Chicoma Larrea 



Software Requirement  Specification & Use Case.pptx
Software Requirement  Specification & Use Case.pptxReduan Ahmad 



Maraging Steels (Properties, Microstructure & Applications)
Maraging Steels (Properties, Microstructure & Applications)MANICKAVASAHAM G 



Lecture on Introduction  to  finite element methods  & its  contents
Lecture on Introduction  to  finite element methods  & its  contentsMesayAlemuTolcha1 



Rule Level & Gate Operation in a Dam.pptx
Rule Level & Gate Operation in a Dam.pptxManish Khandelwal 



WIPAC Monthly Magazine  -  February 2024
WIPAC Monthly Magazine  -  February 2024Water Industry Process Automation & Control 



TYPES OF GRAIN DRYER IN POST HARVEST TECHNOLOGY.pptx
TYPES OF GRAIN DRYER IN POST HARVEST TECHNOLOGY.pptxARUL S 



PLC/PAC in Industrial Automation and Control Systems
PLC/PAC in Industrial Automation and Control SystemsIrena  



Complete Process of Materials Management.pptx
Complete Process of Materials Management.pptxashwini101142 



CME397 SURFACE ENGINEERING SYLLABUS.docx
CME397 SURFACE ENGINEERING SYLLABUS.docxkarthi keyan 



Data Science Machine Lerning Bigdat.pptx
Data Science Machine Lerning Bigdat.pptxPriyadarshini648418 



Osst-Alternative-Waste-SystemGroup-5.pptx
Osst-Alternative-Waste-SystemGroup-5.pptxImjusttryingtohelp 



aircraft workshops hangars part1.pdf
aircraft workshops hangars part1.pdfgamalgendy 



OVERVIEW OF OPERATING SYSTEM -Basic concepts of operating system like functio...
OVERVIEW OF OPERATING SYSTEM -Basic concepts of operating system like functio...ApurvaLaddha 



Haifa University Student Centre .pptxsaa
Haifa University Student Centre .pptxsaassuser1cd9c9 



seminar power point presentation by Getahun Shanko.pptx
seminar power point presentation by Getahun Shanko.pptxGetahunShankoKefeni 



IoT definition and the presentation for engineers
IoT definition and the presentation for engineersjeevarajan1302 



Mapping Security Information and Event Management (SIEM) Rules to Tactics and...
Mapping Security Information and Event Management (SIEM) Rules to Tactics and...AntonioProcentese1 



Présentation IIRB 2024 M.Campoverde R.Duval
Présentation IIRB 2024 M.Campoverde R.DuvalInstitut Technique de la Betterave 



Direct methanol fuel cell and proton Exchange membranes i
Direct methanol fuel cell and proton Exchange membranes iShahXubair 





Último (20)
ISO 5725-2 2019 Accuracy (trueness and precision) of measurement methods and ...
ISO 5725-2 2019 Accuracy (trueness and precision) of measurement methods and ... 


Software Requirement  Specification & Use Case.pptx
Software Requirement  Specification & Use Case.pptx 


Maraging Steels (Properties, Microstructure & Applications)
Maraging Steels (Properties, Microstructure & Applications) 


Lecture on Introduction  to  finite element methods  & its  contents
Lecture on Introduction  to  finite element methods  & its  contents 


Rule Level & Gate Operation in a Dam.pptx
Rule Level & Gate Operation in a Dam.pptx 


WIPAC Monthly Magazine  -  February 2024
WIPAC Monthly Magazine  -  February 2024 


TYPES OF GRAIN DRYER IN POST HARVEST TECHNOLOGY.pptx
TYPES OF GRAIN DRYER IN POST HARVEST TECHNOLOGY.pptx 


PLC/PAC in Industrial Automation and Control Systems
PLC/PAC in Industrial Automation and Control Systems 


Complete Process of Materials Management.pptx
Complete Process of Materials Management.pptx 


CME397 SURFACE ENGINEERING SYLLABUS.docx
CME397 SURFACE ENGINEERING SYLLABUS.docx 


Data Science Machine Lerning Bigdat.pptx
Data Science Machine Lerning Bigdat.pptx 


Osst-Alternative-Waste-SystemGroup-5.pptx
Osst-Alternative-Waste-SystemGroup-5.pptx 


aircraft workshops hangars part1.pdf
aircraft workshops hangars part1.pdf 


OVERVIEW OF OPERATING SYSTEM -Basic concepts of operating system like functio...
OVERVIEW OF OPERATING SYSTEM -Basic concepts of operating system like functio... 


Haifa University Student Centre .pptxsaa
Haifa University Student Centre .pptxsaa 


seminar power point presentation by Getahun Shanko.pptx
seminar power point presentation by Getahun Shanko.pptx 


IoT definition and the presentation for engineers
IoT definition and the presentation for engineers 


Mapping Security Information and Event Management (SIEM) Rules to Tactics and...
Mapping Security Information and Event Management (SIEM) Rules to Tactics and... 


Présentation IIRB 2024 M.Campoverde R.Duval
Présentation IIRB 2024 M.Campoverde R.Duval 


Direct methanol fuel cell and proton Exchange membranes i
Direct methanol fuel cell and proton Exchange membranes i 











dma_ppt.pdf

	1. Discrete Structures 1
Let’s  get started with...
Logic!
 


	2. Discrete Structures 2
Logic
•  Crucial for mathematical reasoning
• Important for program design
• Used for designing electronic circuitry
• (Propositional )Logic is a system based on
propositions.
• A proposition is a (declarative) statement
that is either true or false (not both).
• We say that the truth value of a proposition
is either true (T) or false (F).
• Corresponds to 1 and 0 in digital circuits
 


	3. Discrete Structures 3
The  Statement/Proposition Game
“Elephants are bigger than mice.”
Is this a statement? yes
Is this a proposition? yes
What is the truth value
of the proposition? true
 


	4. Discrete Structures 4
The  Statement/Proposition Game
“520 < 111”
Is this a statement? yes
Is this a proposition? yes
What is the truth value
of the proposition? false
 


	5. Discrete Structures 5
The  Statement/Proposition Game
“y > 5”
Is this a statement? yes
Is this a proposition? no
Its truth value depends on the value of y,
but this value is not specified.
We call this type of statement a
propositional function or open sentence.
 


	6. Discrete Structures 6
The  Statement/Proposition Game
“Today is January 27 and 99 < 5.”
Is this a statement? yes
Is this a proposition? yes
What is the truth value
of the proposition? false
 


	7. Discrete Structures 7
The  Statement/Proposition Game
“Please do not fall asleep.”
Is this a statement? no
Is this a proposition? no
Only statements can be propositions.
It’s a request.
 


	8. Discrete Structures 8
The  Statement/Proposition Game
“If the moon is made of cheese,
then I will be rich.”
Is this a statement? yes
Is this a proposition? yes
What is the truth value
of the proposition? probably true
 


	9. Discrete Structures 9
The  Statement/Proposition Game
“x < y if and only if y > x.”
Is this a statement? yes
Is this a proposition? yes
What is the truth value
of the proposition? true
… because its truth value
does not depend on
specific values of x and y.
 


	10. Discrete Structures 10
Combining  Propositions
As we have seen in the previous examples,
one or more propositions can be combined
to form a single compound proposition.
We formalize this by denoting propositions
with letters such as p, q, r, s, and
introducing several logical operators or
logical connectives.
 


	11. Discrete Structures 11
Logical  Operators (Connectives)
We will examine the following logical operators:
• Negation (NOT, ¬)
• Conjunction (AND, ∧)
• Disjunction (OR, ∨)
• Exclusive-or (XOR, ⊕ )
• Implication (if – then, → )
• Biconditional (if and only if, ↔ )
Truth tables can be used to show how these
operators can combine propositions to
compound propositions.
 


	12. Discrete Structures 12
Negation  (NOT)
Unary Operator, Symbol: ¬
P ¬ P
true (T) false (F)
false (F) true (T)
 


	13. Discrete Structures 13
Conjunction  (AND)
Binary Operator, Symbol: ∧
P Q P∧ Q
T T T
T F F
F T F
F F F
 


	14. Discrete Structures 14
Disjunction  (OR)
Binary Operator, Symbol: ∨
P Q P ∨ Q
T T T
T F T
F T T
F F F
 


	15. Discrete Structures 15
Exclusive  Or (XOR)
Binary Operator, Symbol: ⊕
P Q P⊕Q
T T F
T F T
F T T
F F F
 


	16. Discrete Structures 16
Implication  (if - then)
Binary Operator, Symbol: →
P Q P→Q
T T T
T F F
F T T
F F T
 


	17. Discrete Structures 17
Biconditional  (if and only if)
Binary Operator, Symbol: ↔
P Q P↔Q
T T T
T F F
F T F
F F T
 


	18. Discrete Structures 18
Statements  and Operators
Statements and operators can be combined in any
way to form new statements.
P Q ¬P ¬Q (¬P)∨(¬Q)
T T F F F
T F F T T
F T T F T
F F T T T
 


	19. Discrete Structures 19
Statements  and Operations
Statements and operators can be combined in any
way to form new statements.
P Q
P∧
Q
¬(P∧Q) (¬P)∨(¬Q)
T T T F F
T F F T T
F T F T T
F F F T T
 


	20. Discrete Structures 20
Exercises
•To  take discrete mathematics, you must have
taken calculus or a course in computer science.
•When you buy a new car from Acme Motor
Company, you get $2000 back in cash or a 2%
car loan.
•School is closed if more than 2 feet of snow
falls or if the wind chill is below -100.
 


	21. Discrete Structures 21
Exercises
–  P: take discrete mathematics
– Q: take calculus
– R: take a course in computer science
•P → Q ∨ R
•Problem with proposition R
– What if I want to represent “take CMSC201”?
•To take discrete mathematics, you must have
taken calculus or a course in computer science.
 


	22. Discrete Structures 22
  


	23. Discrete Structures 23
Exercises
–  P: buy a car from Acme Motor Company
– Q: get $2000 cash back
– R: get a 2% car loan
•P → Q ⊕ R
•Why use XOR here? – example of ambiguity of
natural languages
•When you buy a new car from Acme Motor
Company, you get $2000 back in cash or a 2%
car loan.
 


	24. Discrete Structures 24
Exercises
–  P: School is closed
– Q: 2 feet of snow falls
– R: wind chill is below -100
•Q ∧ R → P
•Precedence among operators:
¬, ∧, ∨, →, ↔
•School is closed if more than 2 feet of snow
falls or if the wind chill is below -100.
 


	25. Discrete Structures 25
Equivalent  Statements
P Q ¬(P∧Q) (¬P)∨(¬Q) ¬(P∧Q)↔(¬P)∨(¬Q)
T T F F T
T F T T T
F T T T T
F F T T T
The statements ¬(P∧Q) and (¬P) ∨ (¬Q) are logically
equivalent, since they have the same truth table, or put
it in another way, ¬(P∧Q) ↔(¬P) ∨ (¬Q) is always true.
 


	26. Discrete Structures 26
Tautologies  and Contradictions
A tautology is a statement that is always true.
Examples:
– R∨(¬R)
– ¬(P∧Q) ↔ (¬P)∨(¬ Q)
A contradiction is a statement that is always false.
Examples:
– R∧(¬R)
– ¬(¬(P ∧ Q) ↔ (¬P) ∨ (¬Q))
The negation of any tautology is a contradiction, and
the negation of any contradiction is a tautology.
 


	27. Discrete Structures 27
Equivalence
Definition:  two propositional statements
S1 and S2 are said to be (logically)
equivalent, denoted S1 ≡ S2 if
– They have the same truth table, or
– S1 ⇔ S2 is a tautology
Equivalence can be established by
– Constructing truth tables
– Using equivalence laws (Table 5 in Section 1.2)
 


	28. Discrete Structures 28
Equivalence
Equivalence  laws
– Identity laws, P ∧ T ≡ P,
– Domination laws, P ∧ F ≡ F,
– Idempotent laws, P ∧ P ≡ P,
– Double negation law, ¬ (¬ P) ≡ P
– Commutative laws, P ∧ Q ≡ Q ∧ P,
– Associative laws, P ∧ (Q ∧ R)≡ (P ∧ Q) ∧ R,
– Distributive laws, P ∧ (Q ∨ R)≡ (P ∧ Q) ∨ (P ∧ R),
– De Morgan’s laws, ¬ (P∧Q) ≡ (¬ P) ∨ (¬ Q)
– Law with implication P → Q ≡ ¬ P ∨ Q
 


	29. Discrete Structures 29
Exercises
•Show  that P → Q ≡ ¬ P ∨ Q: by truth table
•Show that (P → Q) ∧ (P → R) ≡ P → (Q ∧ R):
by equivalence laws (q20, p27):
– Law with implication on both sides
– Distribution law on LHS
 


	30. Discrete Structures 30
Summary,  Sections 1.1, 1.2
•Proposition
– Statement, Truth value,
– Proposition, Propositional symbol, Open proposition
•Operators
– Define by truth tables
– Composite propositions
– Tautology and contradiction
•Equivalence of propositional statements
– Definition
– Proving equivalence (by truth table or equivalence
laws)
 


	31. Discrete Structures 31
Propositional  Functions & Predicates
Propositional function (open sentence):
statement involving one or more variables,
e.g.: x-3 > 5.
Let us call this propositional function P(x), where
P is the predicate and x is the variable.
What is the truth value of P(2) ? false
What is the truth value of P(8) ?
What is the truth value of P(9) ?
false
true
When a variable is given a value, it is said to be
instantiated
Truth value depends on value of variable
 


	32. Discrete Structures 32
Propositional  Functions
Let us consider the propositional function
Q(x, y, z) defined as:
x + y = z.
Here, Q is the predicate and x, y, and z are the
variables.
What is the truth value of Q(2, 3, 5) ? true
What is the truth value of Q(0, 1, 2) ?
What is the truth value of Q(9, -9, 0) ?
false
true
A propositional function (predicate) becomes a
proposition when all its variables are instantiated.
 


	33. Discrete Structures 33
Propositional  Functions
Other examples of propositional functions
Person(x), which is true if x is a person
Person(Socrates) = T
CSCourse(x), which is true if x is a
computer science course
CSCourse(CMSC201) = T
Person(dolly-the-sheep) = F
CSCourse(MATH155) = F
How do we say
All humans are mortal
One CS course
 


	34. Discrete Structures 34
Universal  Quantification
Let P(x) be a predicate (propositional function).
Universally quantified sentence:
For all x in the universe of discourse P(x) is true.
Using the universal quantifier ∀:
∀x P(x) “for all x P(x)” or “for every x P(x)”
(Note: ∀x P(x) is either true or false, so it is a
proposition, not a propositional function.)
 


	35. Discrete Structures 35
Universal  Quantification
Example: Let the universe of discourse be all
people
S(x): x is a UMBC student.
G(x): x is a genius.
What does ∀x (S(x) → G(x)) mean ?
“If x is a UMBC student, then x is a genius.” or
“All UMBC students are geniuses.”
If the universe of discourse is all UMBC students,
then the same statement can be written as
∀x G(x)
 


	36. Discrete Structures 36
Existential  Quantification
Existentially quantified sentence:
There exists an x in the universe of discourse
for which P(x) is true.
Using the existential quantifier ∃:
∃x P(x) “There is an x such that P(x).”
“There is at least one x such that P(x).”
(Note: ∃x P(x) is either true or false, so it is a
proposition, but no propositional function.)
 


	37. Discrete Structures 37
Existential  Quantification
Example:
P(x): x is a UMBC professor.
G(x): x is a genius.
What does ∃x (P(x) ∧ G(x)) mean ?
“There is an x such that x is a UMBC professor
and x is a genius.”
or
“At least one UMBC professor is a genius.”
 


	38. Discrete Structures 38
Quantification
Another  example:
Let the universe of discourse be the real numbers.
What does ∀x∃y (x + y = 320) mean ?
“For every x there exists a y so that x + y = 320.”
Is it true?
Is it true for the natural numbers?
yes
no
 


	39. Discrete Structures 39
Disproof  by Counterexample
A counterexample to ∀x P(x) is an object c so
that P(c) is false.
Statements such as ∀x (P(x) → Q(x)) can be
disproved by simply providing a counterexample.
Statement: “All birds can fly.”
Disproved by counterexample: Penguin.
 


	40. Discrete Structures 40
Negation
¬(∀x  P(x)) is logically equivalent to ∃x (¬P(x)).
¬(∃x P(x)) is logically equivalent to ∀x (¬P(x)).
See Table 2 in Section 1.3.
This is de Morgan’s law for quantifiers
 


	41. Discrete Structures 41
Negation
Examples
Not  all roses are red
¬∀x (Rose(x) → Red(x))
∃x (Rose(x) ∧ ¬Red(x))
Nobody is perfect
¬∃x (Person(x) ∧ Perfect(x))
∀x (Person(x) → ¬Perfect(x))
 


	42. Discrete Structures 42
Nested  Quantifier
A predicate can have more than one variables.
– S(x, y, z): z is the sum of x and y
– F(x, y): x and y are friends
We can quantify individual variables in different
ways
– ∀x, y, z (S(x, y, z) → (x <= z ∧ y <= z))
– ∃x ∀y ∀z (F(x, y) ∧ F(x, z) ∧ (y != z) → ¬F(y, z)
 


	43. Discrete Structures 43
Nested  Quantifier
Exercise: translate the following English
sentence into logical expression
“There is a rational number in between every
pair of distinct rational numbers”
Use predicate Q(x), which is true when x
is a rational number
∀x,y (Q(x) ∧ Q (y) ∧ (x < y) →
∃u (Q(u) ∧ (x < u) ∧ (u < y)))
 


	44. Discrete Structures 44
Summary,  Sections 1.3, 1.4
• Propositional functions (predicates)
• Universal and existential quantifiers,
and the duality of the two
• When predicates become propositions
– All of its variables are instantiated
– All of its variables are quantified
• Nested quantifiers
– Quantifiers with negation
• Logical expressions formed by
predicates, operators, and quantifiers
 


	45. Discrete Structures 45
Let’s  proceed to…
Mathematical
Reasoning
 


	46. Discrete Structures 46
Mathematical  Reasoning
We need mathematical reasoning to
• determine whether a mathematical argument is
correct or incorrect and
• construct mathematical arguments.
Mathematical reasoning is not only important for
conducting proofs and program verification, but
also for artificial intelligence systems (drawing
logical inferences from knowledge and facts).
We focus on deductive proofs
 


	47. Discrete Structures 47
Terminology
An  axiom is a basic assumption about mathematical
structure that needs no proof.
- Things known to be true (facts or proven theorems)
- Things believed to be true but cannot be proved
We can use a proof to demonstrate that a
particular statement is true. A proof consists of a
sequence of statements that form an argument.
The steps that connect the statements in such a
sequence are the rules of inference.
Cases of incorrect reasoning are called fallacies.
 


	48. Discrete Structures 48
Terminology
A  theorem is a statement that can be shown to be
true.
A lemma is a simple theorem used as an
intermediate result in the proof of another
theorem.
A corollary is a proposition that follows directly
from a theorem that has been proved.
A conjecture is a statement whose truth value is
unknown. Once it is proven, it becomes a theorem.
 


	49. Discrete Structures 49
Proofs
A  theorem often has two parts
- Conditions (premises, hypotheses)
- conclusion
A correct (deductive) proof is to establish that
- If the conditions are true then the conclusion is true
- I.e., Conditions → conclusion is a tautology
Often there are missing pieces between conditions
and conclusion. Fill it by an argument
- Using conditions and axioms
- Statements in the argument connected by proper
rules of inference
 


	50. Discrete Structures 50
Rules  of Inference
Rules of inference provide the justification of
the steps used in a proof.
One important rule is called modus ponens or the
law of detachment. It is based on the tautology
(p ∧ (p → q)) → q. We write it in the following
way:
p
p → q
____
∴ q
The two hypotheses p and p → q are
written in a column, and the conclusion
below a bar, where ∴ means “therefore”.
 


	51. Discrete Structures 51
Rules  of Inference
The general form of a rule of inference is:
p1
p2
.
.
.
pn
____
∴ q
The rule states that if p1
and p2
and …
and pn
are all true, then q is true as well.
Each rule is an established tautology of
p1
∧ p2
∧ … ∧ pn
→ q
These rules of inference can be used in
any mathematical argument and do not
require any proof.
 


	52. Discrete Structures 52
Rules  of Inference
p
_____
∴ p∨q
Addition
p∧q
_____
∴ p
Simplification
p
q
_____
∴ p∧q
Conjunction
¬q
p → q
_____
∴ ¬ p
Modus
tollens
p → q
q → r
_____
∴ p→
r
Hypothetical
syllogism
(chaining)
p∨q
¬p
_____
∴ q
Disjunctive
syllogism
(resolution)
 


	53. If you have  a current
password,then you can log onto
the network.
You have current password
Therfore,
You can log onto the network
Discrete Structures 53
 


	54. Discrete Structures 54
Arguments
Just  like a rule of inference, an argument consists
of one or more hypotheses (or premises) and a
conclusion.
We say that an argument is valid, if whenever all
its hypotheses are true, its conclusion is also true.
However, if any hypothesis is false, even a valid
argument can lead to an incorrect conclusion.
Proof: show that hypotheses → conclusion is true
using rules of inference
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Arguments
Example:
“If  101 is divisible by 3, then 1012
is divisible by 9.
101 is divisible by 3. Consequently, 1012
is divisible
by 9.”
Although the argument is valid, its conclusion is
incorrect, because one of the hypotheses is false
(“101 is divisible by 3.”).
If in the above argument we replace 101 with 102,
we could correctly conclude that 1022
is divisible
by 9.
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Arguments
Which  rule of inference was used in the last
argument?
p: “101 is divisible by 3.”
q: “1012
is divisible by 9.”
p
p → q
_____
∴ q
Modus
ponens
Unfortunately, one of the hypotheses (p) is false.
Therefore, the conclusion q is incorrect.
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Arguments
Another  example:
“If it rains today, then we will not have a barbeque
today. If we do not have a barbeque today, then
we will have a barbeque tomorrow.
Therefore, if it rains today, then we will have a
barbeque tomorrow.”
This is a valid argument: If its hypotheses are
true, then its conclusion is also true.
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Arguments
Let  us formalize the previous argument:
p: “It is raining today.”
q: “We will not have a barbecue today.”
r: “We will have a barbecue tomorrow.”
So the argument is of the following form:
p → q
q → r
______
∴ P → r
Hypothetical
syllogism
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Arguments
Another  example:
Gary is either intelligent or a good actor.
If Gary is intelligent, then he can count
from 1 to 10.
Gary can only count from 1 to 3.
Therefore, Gary is a good actor.
i: “Gary is intelligent.”
a: “Gary is a good actor.”
c: “Gary can count from 1 to 10.”
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Arguments
i:  “Gary is intelligent.”
a: “Gary is a good actor.”
c: “Gary can count from 1 to 10.”
Step 1: ¬ c Hypothesis
Step 2: i → c Hypothesis
Step 3: ¬ i Modus tollens Steps 1 & 2
Step 4: a ∨ i Hypothesis
Step 5: a Disjunctive Syllogism
Steps 3 & 4
Conclusion: a (“Gary is a good actor.”)
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Arguments
Yet  another example:
If you listen to me, you will pass CS 320.
You passed CS 320.
Therefore, you have listened to me.
Is this argument valid?
No, it assumes ((p → q) ∧ q) → p.
This statement is not a tautology. It is false if p is
false and q is true.
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Rules  of Inference for Quantified Statements
∀x P(x)
__________
∴ P(c) if
c∈U
Universal
instantiation
P(c) for an arbitrary c∈U
___________________
∴ ∀x P(x)
Universal
generalization
∃x P(x)
______________________
∴ P(c) for some element c∈U
Existential
instantiation
P(c) for some element c∈U
____________________
∴ ∃x P(x)
Existential
generalization
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Rules  of Inference for Quantified Statements
Example:
Every UMB student is a genius.
George is a UMB student.
Therefore, George is a genius.
U(x): “x is a UMB student.”
G(x): “x is a genius.”
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Rules  of Inference for Quantified Statements
The following steps are used in the argument:
Step 1: ∀x (U(x) → G(x)) Hypothesis
Step 2: U(George) → G(George) Univ. instantiation
using Step 1
∀x P(x)
__________
∴ P(c) if
c∈U
Universal
instantiation
Step 3: U(George) Hypothesis
Step 4: G(George) Modus ponens
using Steps 2 & 3
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Proving  Theorems
Direct proof:
An implication p → q can be proved by showing
that if p is true, then q is also true.
Example: Give a direct proof of the theorem
“If n is odd, then n2
is odd.”
Idea: Assume that the hypothesis of this
implication is true (n is odd). Then use rules of
inference and known theorems of math to show
that q must also be true (n2
is odd).
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Proving  Theorems
n is odd.
Then n = 2k + 1, where k is an integer.
Consequently, n2
= (2k + 1)2
.
= 4k2
+ 4k + 1
= 2(2k2
+ 2k) + 1
Since n2
can be written in this form, it is odd.
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Proving  Theorems
Indirect proof:
An implication p → q is equivalent to its
contra-positive ¬q → ¬p. Therefore, we can prove
p → q by showing that whenever q is false, then p
is also false.
Example: Give an indirect proof of the theorem
“If 3n + 2 is odd, then n is odd.”
Idea: Assume that the conclusion of this
implication is false (n is even). Then use rules of
inference and known theorems to show that p
must also be false (3n + 2 is even).
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Proving  Theorems
n is even.
Then n = 2k, where k is an integer.
It follows that 3n + 2 = 3(2k) + 2
= 6k + 2
= 2(3k + 1)
Therefore, 3n + 2 is even.
We have shown that the contrapositive of the
implication is true, so the implication itself is also
true (If 3n + 2 is odd, then n is odd).
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Proving  Theorems
Indirect Proof is a special case of proof by
contradiction
Suppose n is even (negation of the conclusion).
Then n = 2k, where k is an integer.
It follows that 3n + 2 = 3(2k) + 2
= 6k + 2
= 2(3k + 1)
Therefore, 3n + 2 is even.
However, this is a contradiction since 3n + 2 is given
to be odd, so the conclusion (n is odd) holds.
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Another  Example on Proof
Anyone performs well is either intelligent or a
good actor.
If someone is intelligent, then he/she can count
from 1 to 10.
Gary performs well.
Gary can only count from 1 to 3.
Therefore, not everyone is both intelligent and a
good actor
P(x): x performs well
I(x): x is intelligent
A(x): x is a good actor
C(x): x can count from 1 to 10
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Another  Example on Proof
Hypotheses:
1. Anyone performs well is either intelligent or a good
actor.
∀x (P(x) → I(x) ∨ A(x))
2. If someone is intelligent, then he/she can count
from 1 to 10.
∀x (I(x) → C(x) )
3. Gary performs well.
P(G)
4. Gary can only count from 1 to 3.
¬C(G)
Conclusion: not everyone is both intelligent and a good actor
¬∀x(I(x) ∧ A(x))
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Another  Example on Proof
Direct proof:
Step 1: ∀x (P(x) → I(x) ∨ A(x)) Hypothesis
Step 2: P(G) → I(G) ∨ A(G) Univ. Inst. Step 1
Step 3: P(G) Hypothesis
Step 4: I(G) ∨ A(G) Modus ponens Steps 2 & 3
Step 5: ∀x (I(x) → C(x)) Hypothesis
Step 6: I(G) → C(G) Univ. inst. Step5
Step 7: ¬C(G) Hypothesis
Step 8: ¬I(G) Modus tollens Steps 6 & 7
Step 9: ¬I(G) ∨ ¬A(G) Addition Step 8
Step 10: ¬(I(G) ∧ A(G)) Equivalence Step 9
Step 11: ∃x¬(I(x) ∧ A(x)) Exist. general. Step 10
Step 12: ¬∀x (I(x) ∧ A(x)) Equivalence Step 11
Conclusion: ¬∀x (I(x) ∧ A(x)), not everyone is both
intelligent and a good actor.
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Summary,  Section 1.5
• Terminology (axiom, theorem, conjecture,
argument, etc.)
• Rules of inference (Tables 1 and 2)
• Valid argument (hypotheses and conclusion)
• Construction of valid argument using rules of
inference
– For each rule used, write down and the
statements involved in the proof
• Direct and indirect proofs
– Other proof methods (e.g., induction, pigeon hole)
will be introduced in later chapters
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Set Theory
Rosen 6th
ed.,  §2.1-2.2
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Introduction to Set  Theory
• A set is a structure, representing an
unordered collection (group, plurality) of
zero or more distinct (different) objects.
• Set theory deals with operations between,
relations among, and statements about sets.
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Basic notations for  sets
• For sets, we’ll use variables S, T, U, …
• We can denote a set S in writing by listing all of
its elements in curly braces:
– {a, b, c} is the set of whatever 3 objects are denoted by
a, b, c.
• Set builder notation: For any proposition P(x) over
any universe of discourse, {x|P(x)} is the set of all
x such that P(x).
e.g., {x | x is an integer where x>0 and x<5 }
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Basic properties of  sets
• Sets are inherently unordered:
– No matter what objects a, b, and c denote,
{a, b, c} = {a, c, b} = {b, a, c} =
{b, c, a} = {c, a, b} = {c, b, a}.
• All elements are distinct (unequal);
multiple listings make no difference!
– {a, b, c} = {a, a, b, a, b, c, c, c, c}.
– This set contains at most 3 elements!
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Definition of Set  Equality
• Two sets are declared to be equal if and only if
they contain exactly the same elements.
• In particular, it does not matter how the set is
defined or denoted.
• For example: The set {1, 2, 3, 4} =
{x | x is an integer where x>0 and x<5 } =
{x | x is a positive integer whose square
is >0 and <25}
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Infinite Sets
• Conceptually,  sets may be infinite (i.e., not
finite, without end, unending).
• Symbols for some special infinite sets:
N = {0, 1, 2, …} The natural numbers.
Z = {…, -2, -1, 0, 1, 2, …} The integers.
R = The “real” numbers, such as
374.1828471929498181917281943125…
• Infinite sets come in different sizes!
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Venn Diagrams
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Basic Set Relations:  Member of
• x∈S (“x is in S”) is the proposition that object x is
an ∈lement or member of set S.
– e.g. 3∈N, “a”∈{x | x is a letter of the alphabet}
• Can define set equality in terms of ∈ relation:
∀S,T: S=T ↔ (∀x: x∈S ↔ x∈T)
“Two sets are equal iff they have all the same
members.”
• x∉S :≡ ¬(x∈S) “x is not in S”
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The Empty Set
•  ∅ (“null”, “the empty set”) is the unique set
that contains no elements whatsoever.
• ∅ = {} = {x|False}
• No matter the domain of discourse,
we have the axiom
¬∃x: x∈∅.
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Subset and Superset  Relations
• S⊆T (“S is a subset of T”) means that every
element of S is also an element of T.
• S⊆T ⇔ ∀x (x∈S → x∈T)
• ∅⊆S, S⊆S.
• S⊇T (“S is a superset of T”) means T⊆S.
• Note S=T ⇔ S⊆T∧ S⊇T.
• means ¬(S⊆T), i.e. ∃x(x∈S ∧ x∉T)
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Proper (Strict) Subsets  & Supersets
• S⊂T (“S is a proper subset of T”) means
that S⊆T but . Similar for S⊃T.
S
T
Venn Diagram equivalent of S⊂T
Example:
{1,2} ⊂
{1,2,3}
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Sets Are Objects,  Too!
• The objects that are elements of a set may
themselves be sets.
• E.g. let S={x | x ⊆ {1,2,3}}
then S={∅,
{1}, {2}, {3},
{1,2}, {1,3}, {2,3},
{1,2,3}}
• Note that 1 ≠ {1} ≠ {{1}} !!!!
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Cardinality and Finiteness
•  |S| (read “the cardinality of S”) is a measure
of how many different elements S has.
• E.g., |∅|=0, |{1,2,3}| = 3, |{a,b}| = 2,
|{{1,2,3},{4,5}}| = ____
• We say S is infinite if it is not finite.
• What are some infinite sets we’ve seen?
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The Power Set  Operation
• The power set P(S) of a set S is the set of all subsets of S.
P(S) = {x | x⊆S}.
• For a set A, Collection or family of all subsets of A is
called the power set of A.
• E.g. P({a,b}) = {∅, {a}, {b}, {a,b}}.
• Sometimes P(S) is written 2S
.
Note that for finite S, |P(S)| = 2|S|
.
• It turns out that |P(N)| > |N|.
There are different sizes of infinite sets!
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Ordered n-tuples
• For  n∈N, an ordered n-tuple or a sequence
of length n is written (a1
, a2
, …, an
). The
first element is a1
, etc.
• These are like sets, except that duplicates
matter, and the order makes a difference.
• Note (1, 2) ≠ (2, 1) ≠ (2, 1, 1).
• Empty sequence, singlets, pairs, triples,
quadruples, quintuples, …, n-tuples.
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Cartesian Products of  Sets
• For sets A, B, their Cartesian product
A×B :≡ {(a, b) | a∈A ∧ b∈B }.
• E.g. {a,b}×{1,2} = {(a,1),(a,2),(b,1),(b,2)}
• Note that for finite A, B, |A×B|=|A||B|.
• Note that the Cartesian product is not
commutative: ¬∀AB: A×B =B×A.
• Extends to A1
× A2
× … × An
...
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The Union Operator
•  For sets A, B, their union A∪B is the set
containing all elements that are either in A,
or (“∨”) in B (or, of course, in both).
• Formally, ∀A,B: A∪B = {x | x∈A ∨
x∈B}.
• Note that A∪B contains all the elements of
A and it contains all the elements of B:
∀A, B: (A∪B ⊇ A) ∧ (A∪B ⊇ B)
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• {a,b,c}∪{2,3} =  {a,b,c,2,3}
• {2,3,5}∪{3,5,7} = {2,3,5,3,5,7} ={2,3,5,7}
Union Examples
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The Intersection Operator
•  For sets A, B, their intersection A∩B is the
set containing all elements that are
simultaneously in A and (“∧”) in B.
• Formally, ∀A,B: A∩B≡{x | x∈A ∧ x∈B}.
• Note that A∩B is a subset of A and it is a
subset of B:
∀A, B: (A∩B ⊆ A) ∧ (A∩B ⊆ B)
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• {a,b,c}∩{2,3} =  ___
• {2,4,6}∩{3,4,5} = ______
Intersection Examples
∅
{4}
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Disjointedness
• Two sets  A, B are called
disjoint (i.e., unjoined)
iff their intersection is
empty. (A∩B=∅)
• Example: the set of even
integers is disjoint with
the set of odd integers.
Help, I’ve
been
disjointed!
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Inclusion-Exclusion Principle
• How  many elements are in A∪B?
|A∪B| = |A| + |B| − |A∩B|
• Example:
{2,3,5}∪{3,5,7} = {2,3,5,3,5,7} ={2,3,5,7}
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Set Difference
• For  sets A, B, the difference of A and B,
written A−B, is the set of all elements that
are in A but not B.
• A − B :≡ {x | x∈A ∧ x∉B}
= {x | ¬( x∈A → x∈B ) }
• Also called:
The complement of B with respect to A.
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Set Difference Examples
•  {1,2,3,4,5,6} − {2,3,5,7,9,11} =
___________
• Z − N = {… , -1, 0, 1, 2, … } − {0, 1, … }
= {x | x is an integer but not a nat. #}
= {x | x is a negative integer}
= {… , -3, -2, -1}
{1,4,6}
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Set Difference -  Venn Diagram
• A-B is what’s left after B
“takes a bite out of A”
Set A Set B
Set
A−B
Cho
mp!
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Set Complements
• The  universe of discourse can itself be
considered a set, call it U.
• The complement of A, written , is the
complement of A w.r.t. U, i.e., it is U−A.
• E.g., If U=N,
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More on Set  Complements
• An equivalent definition, when U is clear:
A
U
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Set Identities
• Identity:  A∪∅=A A∩U=A
• Domination: A∪U=U A∩∅=∅
• Idempotent: A∪A = A = A∩A
• Double complement:
• Commutative: A∪B=B∪A A∩B=B∩A
• Associative: A∪(B∪C)=(A∪B)∪C
A∩(B∩C)=(A∩B)∩C
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DeMorgan’s Law for  Sets
• Exactly analogous to (and derivable from)
DeMorgan’s Law for propositions.
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Proving Set Identities
To  prove statements about sets, of the form
E1
= E2
(where Es are set expressions), here
are three useful techniques:
• Prove E1
⊆ E2
and E2
⊆ E1
separately.
• Use logical equivalences.
• Use a membership table.
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Method 1: Mutual  subsets
Example: Show A∩(B∪C)=(A∩B)∪(A∩C).
• Show A∩(B∪C)⊆(A∩B)∪(A∩C).
– Assume x∈A∩(B∪C), & show x∈(A∩B)∪(A∩C).
– We know that x∈A, and either x∈B or x∈C.
• Case 1: x∈B. Then x∈A∩B, so x∈(A∩B)∪(A∩C).
• Case 2: x∈C. Then x∈A∩C , so x∈(A∩B)∪(A∩C).
– Therefore, x∈(A∩B)∪(A∩C).
– Therefore, A∩(B∪C)⊆(A∩B)∪(A∩C).
• Show (A∩B)∪(A∩C) ⊆ A∩(B∪C). …
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Method 3: Membership  Tables
• Just like truth tables for propositional logic.
• Columns for different set expressions.
• Rows for all combinations of memberships
in constituent sets.
• Use “1” to indicate membership in the
derived set, “0” for non-membership.
• Prove equivalence with identical columns.
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Membership Table Example
Prove  (A∪B)−B = A−B.
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Membership Table Exercise
Prove  (A∪B)−C = (A−C)∪(B−C).
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Generalized Union
• Binary  union operator: A∪B
• n-ary union:
A∪A2
∪…∪An
:≡ ((…((A1
∪ A2
) ∪…)∪
An
)
(grouping & order is irrelevant)
• “Big U” notation:
• Or for infinite sets of sets:
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Generalized Intersection
• Binary  intersection operator: A∩B
• n-ary intersection:
A∩A2
∩…∩An
≡((…((A1
∩A2
)∩…)∩An
)
(grouping & order is irrelevant)
• “Big Arch” notation:
• Or for infinite sets of sets:
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Chapter 3
Sequences
Mathematical Induction
Recursion
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Sequences
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Sequences
Sequences represent ordered lists of elements.
A sequence is defined as a function from a subset
of N to a set S. We use the notation an
to
denote the image of the integer n. We call an
a
term of the sequence.
Example:
subset of N: 1 2 3 4 5 …
S: 2 4 6 8 10 …
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Sequences
We use the notation {an
} to describe a sequence.
Important: Do not confuse this with the {} used
in set notation.
It is convenient to describe a sequence with a
formula.
For example, the sequence on the previous slide
can be specified as {an
}, where an
= 2n.
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The Formula Game
1, 3, 5, 7, 9, … an
= 2n – 1
-1, 1, -1, 1, -1, … an
= (-1)n
2, 5, 10, 17, 26, … an
= n2
+ 1
0.25, 0.5, 0.75, 1, 1.25 … an
= 0.25n
3, 9, 27, 81, 243, … an
= 3n
What are the formulas that describe the
following sequences a1
, a2
, a3
, … ?
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Strings
Finite sequences are also called strings, denoted
by a1
a2
a3
…an
.
The length of a string S is the number of terms
that it consists of.
The empty string contains no terms at all. It has
length zero.
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Summations
It represents the sum am
+ am+1
+ am+2
+ … + an
.
The variable j is called the index of summation,
running from its lower limit m to its upper limit
n. We could as well have used any other letter to
denote this index.
What does stand for?
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Summations
It is 1 + 2 + 3 + 4 + 5 + 6 = 21.
We write it as .
What is the value of ?
It is so much work to calculate this…
What is the value of ?
How can we express the sum of the first 1000
terms of the sequence {an
} with an
=n2
for
n = 1, 2, 3, … ?
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Summations
It is said that Friedrich Gauss came up with the
following formula:
When you have such a formula, the result of any
summation can be calculated much more easily,
for example:
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Arithemetic Series
How does:
Observe that:
1 + 2 + 3 +…+ n/2 + (n/2 + 1) +…+ (n - 2) + (n - 1) + n
???
= [1 + n] + [2 + (n - 1)] + [3 + (n - 2)] +…+ [n/2 + (n/2 + 1)]
= (n + 1) + (n + 1) + (n + 1) + … + (n + 1) (with n/2 terms)
= n(n + 1)/2.
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Geometric Series
How does:
Observe that:
S = 1 + a + a2
+ a3
+ … + an
???
aS = a + a2
+ a3
+ … + an
+ a(n+1)
so, (aS - S) = (a - 1)S = a(n+1)
- 1
Therefore, 1 + a + a2
+ … + an
= (a(n+1)
- 1) / (a - 1).
For example: 1 + 2 + 4 + 8 +… + 1024 = 2047.
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Useful Series
1.
2.
3.
4.
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Double Summations
Corresponding to nested loops in C or Java, there is
also double (or triple etc.) summation:
Example:
Table 2 in Section 3.2
contains some very
useful formulas for
calculating sums.
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Follow me for a walk through...
Mathematical
Induction
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Induction
The principle of mathematical induction is a
useful tool for proving that a certain
predicate is true for all natural numbers.
It cannot be used to discover theorems, but
only to prove them.
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Induction
If we have a propositional function P(n), and we
want to prove that P(n) is true for any natural
number n, we do the following:
• Show that P(0) is true.
(basis step)
• Show that if P(n) then P(n + 1) for any n∈N.
(inductive step)
• Then P(n) must be true for any n∈N.
(conclusion)
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Induction
Example:
Show that n < 2n
for all positive integers n.
Let P(n) be the proposition “n < 2n
.”
1. Show that P(1) is true.
(basis step)
P(1) is true, because 1 < 21
= 2.
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Induction
2. Show that if P(n) is true, then P(n + 1) is
true.
(inductive step)
Assume that n < 2n
is true.
We need to show that P(n + 1) is true, i.e.
n + 1 < 2n+1
We start from n < 2n
:
n + 1 < 2n
+ 1 ≤ 2n
+ 2n
= 2n+1
Therefore, if n < 2n
then n + 1 < 2n+1
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Induction
• Then P(n) must be true for any positive
integer.
(conclusion)
n < 2n
is true for any positive integer.
End of proof.
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Induction
Another Example (“Gauss”):
1 + 2 + … + n = n (n + 1)/2
• Show that P(0) is true.
(basis step)
For n = 0 we get 0 = 0. True.
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Induction
• Show that if P(n) then P(n + 1) for any n∈N.
(inductive step)
1 + 2 + … + n = n (n + 1)/2
1 + 2 + … + n + (n + 1) = n (n + 1)/2 + (n + 1)
= (2n + 2 + n (n + 1))/2
= (2n + 2 + n2
+ n)/2
= (2 + 3n + n2
)/2
= (n + 1) (n + 2)/2
= (n + 1) ((n + 1) + 1)/2
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Induction
• Then P(n) must be true for any n∈N.
(conclusion)
1 + 2 + … + n = n (n + 1)/2 is true for all n∈N.
End of proof.
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Induction
There is another proof technique that is very
similar to the principle of mathematical
induction.
It is called the second principle of
mathematical induction (AKA strong
induction).
It can be used to prove that a propositional
function P(n) is true for any natural number n.
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Induction
The second principle of mathematical induction:
• Show that P(0) is true.
(basis step)
• Show that if P(0) and P(1) and … and P(n),
then P(n + 1) for any n∈N.
(inductive step)
• Then P(n) must be true for any n∈N.
(conclusion)
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Induction
Example: Show that every integer greater than
1 can be written as the product of primes.
• Show that P(2) is true.
(basis step)
2 is the product of one prime: itself.
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Induction
• Show that if P(2) and P(3) and … and P(n),
then P(n + 1) for any n∈N. (inductive step)
Two possible cases:
• If (n + 1) is prime, then obviously P(n + 1) is true.
• If (n + 1) is composite, it can be written as the
product of two integers a and b such that
2 ≤ a ≤ b < n + 1.
By the induction hypothesis, both a and b can be
written as the product of primes.
Therefore, n + 1 = a⋅b can be written as the
product of primes.
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Induction
• Then P(n) must be true for any n∈N.
(conclusion)
End of proof.
We have shown that every integer greater
than 1 can be written as the product of
primes.
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If I told you once, it must be...
Recursion
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Recursive Definitions
Recursion is a principle closely related to
mathematical induction.
In a recursive definition, an object is defined in
terms of itself.
We can recursively define sequences, functions
and sets.
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Recursively Defined Sequences
Example:
The sequence {an
} of powers of 2 is given by
an
= 2n
for n = 0, 1, 2, … .
The same sequence can also be defined
recursively:
a0
= 1
an+1
= 2an
for n = 0, 1, 2, …
Obviously, induction and recursion are similar
principles.
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Recursively Defined Functions
We can use the following method to define a
function with the natural numbers as its
domain:
• Base case: Specify the value of the function at
zero.
• Recursion: Give a rule for finding its value at
any integer from its values at smaller integers.
Such a definition is called recursive or inductive
definition.
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Recursively Defined Functions
Example:
f(0) = 3
f(n + 1) = 2f(n) + 3
f(0) = 3
f(1) = 2f(0) + 3 = 2⋅3 + 3 = 9
f(2) = 2f(1) + 3 = 2⋅9 + 3 = 21
f(3) = 2f(2) + 3 = 2⋅21 + 3 = 45
f(4) = 2f(3) + 3 = 2⋅45 + 3 = 93
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Recursively Defined Functions
How can we recursively define the factorial
function f(n) = n! ?
f(0) = 1
f(n + 1) = (n + 1)f(n)
f(0) = 1
f(1) = 1f(0) = 1⋅1 = 1
f(2) = 2f(1) = 2⋅1 = 2
f(3) = 3f(2) = 3⋅2 = 6
f(4) = 4f(3) = 4⋅6 = 24
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Recursively Defined Functions
A famous example: The Fibonacci numbers
f(0) = 0, f(1) = 1
f(n) = f(n – 1) + f(n - 2)
f(0) = 0
f(1) = 1
f(2) = f(1) + f(0) = 1 + 0 = 1
f(3) = f(2) + f(1) = 1 + 1 = 2
f(4) = f(3) + f(2) = 2 + 1 = 3
f(5) = f(4) + f(3) = 3 + 2 = 5
f(6) = f(5) + f(4) = 5 + 3 = 8
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Recursively Defined Sets
If we want to recursively define a set, we need
to provide two things:
• an initial set of elements,
• rules for the construction of additional
elements from elements in the set.
Example: Let S be recursively defined by:
3 ∈ S
(x + y) ∈ S if (x ∈ S) and (y ∈ S)
S is the set of positive integers divisible by 3.
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Recursively Defined Sets
Proof:
Let A be the set of all positive integers divisible
by 3.
To show that A = S, we must show that
A ⊆ S and S ⊆ A.
Part I: To prove that A ⊆ S, we must show that
every positive integer divisible by 3 is in S.
We will use mathematical induction to show this.
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Recursively Defined Sets
Let P(n) be the statement “3n belongs to S”.
Basis step: P(1) is true, because 3 is in S.
Inductive step: To show:
If P(n) is true, then P(n + 1) is true.
Assume 3n is in S. Since 3n is in S and 3 is in S, it
follows from the recursive definition of S that
3n + 3 = 3(n + 1) is also in S.
Conclusion of Part I: A ⊆ S.
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Recursively Defined Sets
Part II: To show: S ⊆ A.
Basis step: To show:
All initial elements of S are in A. 3 is in A.
True.
Inductive step: To show:
If x and y in S are in A, then (x + y) is in A .
Since x and y are both in A, it follows that 3 | x
and 3 | y. From Theorem I, Section 2.3, it
follows that 3 | (x + y).
Conclusion of Part II: S ⊆ A.
Overall conclusion: A = S.
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Recursively Defined Sets
Another example:
The well-formed formulae of variables, numerals
and operators from {+, -, *, /, ^} are defined
by:
x is a well-formed formula if x is a numeral or
variable.
(f + g), (f – g), (f * g), (f / g), (f ^ g) are
well-formed formulae if f and g are.
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Recursively Defined Sets
With this definition, we can construct formulae
such as:
(x – y)
((z / 3) – y)
((z / 3) – (6 + 5))
((z / (2 * 4)) – (6 + 5))
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Recursive Algorithms
An algorithm is called recursive if it solves a
problem by reducing it to an instance of the same
problem with smaller input.
Example I: Recursive Euclidean Algorithm
procedure gcd(a, b: nonnegative integers with a < b)
if a = 0 then gcd(a, b) := b
else gcd(a, b) := gcd(b mod a, a)
 


	151. Fall 2002 CMSC  203 - Discrete 42
Recursive Algorithms
Example II: Recursive Fibonacci Algorithm
procedure fibo(n: nonnegative integer)
if n = 0 then fibo(0) := 0
else if n = 1 then fibo(1) := 1
else fibo(n) := fibo(n – 1) + fibo(n – 2)
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Recursive Algorithms
Recursive Fibonacci Evaluation:
f(4)
f(3)
f(2)
f(1) f(0)
f(1)
f(2)
f(1) f(0)
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Recursive Algorithms
procedure iterative_fibo(n: nonnegative integer)
if n = 0 then y := 0
else
begin
x := 0
y := 1
for i := 1 to n-1
begin
z := x + y
x : = y
y := z
end
end {y is the n-th Fibonacci number}
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Recursive Algorithms
For every recursive algorithm, there is an
equivalent iterative algorithm.
Recursive algorithms are often shorter, more
elegant, and easier to understand than their
iterative counterparts.
However, iterative algorithms are usually more
efficient in their use of space and time.
 


	155. One, two, three,  we’re…
►Counting
1
 


	156. Basic Counting Principles
►Counting  problems are of the following kind:
►“How many different 8-letter passwords are there?”
►“How many possible ways are there to pick 11 soccer
players out of a 20-player team?”
►Most importantly, counting is the basis for computing
probabilities of discrete events.
►(“What is the probability of winning the lottery?”)
2
 


	157. Basic Counting Principles
►The  sum rule:
►If a task can be done in n1
ways and a second task in n2
ways, and if these two tasks cannot be done at the same
time, then there are n1
+ n2
ways to do either task.
►Example:
►The department will award a free computer to either a CS
student or a CS professor.
►How many different choices are there, if there are 530
students and 15 professors?
►There are 530 + 15 = 545 choices.
3
 


	158. Basic Counting Principles
►Generalized  sum rule:
►If we have tasks T1
, T2
, …, Tm
that can be done in n1
, n2
,
…, nm
ways, respectively, and no two of these tasks can
be done at the same time, then there are n1
+ n2
+ … + nm
ways to do one of these tasks.
4
 


	159. Basic Counting Principles
►The  product rule:
►Suppose that a procedure can be broken down into two
successive tasks. If there are n1
ways to do the first task
and n2
ways to do the second task after the first task has
been done, then there are n1
n2
ways to do the procedure.
5
 


	160. Basic Counting Principles
►Example:
►How  many different license plates are there that
containing exactly three English letters ?
►Solution:
►There are 26 possibilities to pick the first letter, then 26
possibilities for the second one, and 26 for the last one.
►So there are 26⋅26⋅26 = 17576 different license plates.
6
 


	161. Basic Counting Principles
►Generalized  product rule:
►If we have a procedure consisting of sequential tasks T1
,
T2
, …, Tm
that can be done in n1
, n2
, …, nm
ways,
respectively, then there are n1
⋅ n2
⋅ … ⋅ nm
ways to carry
out the procedure.
7
 


	162. Basic Counting Principles
►The  sum and product rules can also be phrased in terms of
set theory.
►Sum rule: Let A1
, A2
, …, Am
be disjoint sets. Then the
number of ways to choose any element from one of these
sets is |A1
∪ A2
∪ … ∪ Am
| =
|A1
| + |A2
| + … + |Am
|.
►Product rule: Let A1
, A2
, …, Am
be finite sets. Then the
number of ways to choose one element from each set in
the order A1
, A2
, …, Am
is
|A1
× A2
× … × Am
| = |A1
| ⋅ |A2
| ⋅ … ⋅ |Am
|.
8
 


	163. Inclusion-Exclusion
►How many bit  strings of length 8 either start with a 1 or end
with 00?
►Task 1: Construct a string of length 8 that starts with a 1.
►There is one way to pick the first bit (1),
►two ways to pick the second bit (0 or 1),
►two ways to pick the third bit (0 or 1),
►.
►.
►.
►two ways to pick the eighth bit (0 or 1).
►Product rule: Task 1 can be done in 1⋅27
= 128 ways.
9
 


	164. Inclusion-Exclusion
►Task 2: Construct  a string of length 8 that ends with 00.
►There are two ways to pick the first bit (0 or 1),
►two ways to pick the second bit (0 or 1),
►.
►.
►.
►two ways to pick the sixth bit (0 or 1),
►one way to pick the seventh bit (0), and
►one way to pick the eighth bit (0).
►Product rule: Task 2 can be done in 26
= 64 ways.
10
 


	165. Inclusion-Exclusion
►Since there are  128 ways to do Task 1 and 64 ways to do
Task 2, does this mean that there are 192 bit strings either
starting with 1 or ending with 00 ?
►No, because here Task 1 and Task 2 can be done at the
same time.
►When we carry out Task 1 and create strings starting with 1,
some of these strings end with 00.
►Therefore, we sometimes do Tasks 1 and 2 at the same
time, so the sum rule does not apply.
11
 


	166. Inclusion-Exclusion
►If we want  to use the sum rule in such a case, we have to
subtract the cases when Tasks 1 and 2 are done at the same
time.
►How many cases are there, that is, how many strings start
with 1 and end with 00?
►There is one way to pick the first bit (1),
►two ways for the second, …, sixth bit (0 or 1),
►one way for the seventh, eighth bit (0).
►Product rule: In 25
= 32 cases, Tasks 1 and 2 are carried
out at the same time.
12
 


	167. Inclusion-Exclusion
►Since there are  128 ways to complete Task 1 and 64 ways to
complete Task 2, and in 32 of these cases Tasks 1 and 2 are
completed at the same time, there are
►128 + 64 – 32 = 160 ways to do either task.
►In set theory, this corresponds to sets A1
and A2
that are not
disjoint. Then we have:
►|A1
∪ A2
| = |A1
| + |A2
| - |A1
∩ A2
|
►This is called the principle of inclusion-exclusion.
13
 


	168. Tree Diagrams
►How many  bit strings of length four do not have two
consecutive 1s?
► Task 1 Task 2 Task 3 Task 4
(1st
bit) (2nd
bit) (3rd
bit) (4th
bit)
14
0
0
0
0
1
1
0
1 0 0
1
1 0
0 0
1
1
0
There are 8 strings.
 


	169. The Pigeonhole Principle
►The  pigeonhole principle: If (k + 1) or more objects are
placed into k boxes, then there is at least one box containing
two or more of the objects.
►Example 1: If there are 11 players in a soccer team that
wins 12-0, there must be at least one player in the team who
scored at least twice.
►Example 2: If you have 6 classes from Monday to Friday,
there must be at least one day on which you have at least
two classes.
15
 


	170. The Pigeonhole Principle
►The  generalized pigeonhole principle: If N objects are
placed into k boxes, then there is at least one box containing
at least ⎡N/k⎤ of the objects.
►Example 1: In our 60-student class, at least 12 students will
get the same letter grade (A, B, C, D, or F).
16
 


	171. The Pigeonhole Principle
►Example  2: Assume you have a drawer containing a
random distribution of a dozen brown socks and a dozen
black socks. It is dark, so how many socks do you have to
pick to be sure that among them there is a matching pair?
►There are two types of socks, so if you pick at least 3 socks,
there must be either at least two brown socks or at least two
black socks.
►Generalized pigeonhole principle: ⎡3/2⎤ = 2.
17
 


	172. Permutations and Combinations
►How  many ways are there to pick a set of 3 people from a
group of 6?
►There are 6 choices for the first person, 5 for the second
one, and 4 for the third one, so there are
6⋅5⋅4 = 120 ways to do this.
►This is not the correct result!
►For example, picking person C, then person A, and then
person E leads to the same group as first picking E, then C,
and then A.
►However, these cases are counted separately in the above
equation.
18
 


	173. Permutations and Combinations
►So  how can we compute how many different subsets of
people can be picked (that is, we want to disregard the order
of picking) ?
►To find out about this, we need to look at permutations.
►A permutation of a set of distinct objects is an ordered
arrangement of these objects.
►An ordered arrangement of r elements of a set is called an
r-permutation.
19
 


	174. Permutations and Combinations
►Example:  Let S = {1, 2, 3}.
►The arrangement 3, 1, 2 is a permutation of S.
►The arrangement 3, 2 is a 2-permutation of S.
►The number of r-permutations of a set with n distinct
elements is denoted by P(n, r).
►We can calculate P(n, r) with the product rule:
►P(n, r) = n⋅(n – 1)⋅(n – 2) ⋅…⋅(n – r + 1).
►(n choices for the first element, (n – 1) for the second one,
(n – 2) for the third one…)
20
 


	175. Permutations and Combinations
►Example:
►P(8,  3) = 8⋅7⋅6 = 336
► = (8⋅7⋅6⋅5⋅4⋅3⋅2⋅1)/(5⋅4⋅3⋅2⋅1)
►General formula:
►P(n, r) = n!/(n – r)!
►Knowing this, we can return to our initial question:
►How many ways are there to pick a set of 3 people from a
group of 6 (disregarding the order of picking)?
21
 


	176. Permutations and Combinations
►An  r-combination of elements of a set is an unordered
selection of r elements from the set.
►Thus, an r-combination is simply a subset of the set with r
elements.
►Example: Let S = {1, 2, 3, 4}.
►Then {1, 3, 4} is a 3-combination from S.
►The number of r-combinations of a set with n distinct
elements is denoted by C(n, r).
►Example: C(4, 2) = 6, since, for example, the
2-combinations of a set {1, 2, 3, 4} are {1, 2}, {1, 3}, {1,
4}, {2, 3}, {2, 4}, {3, 4}.
22
 


	177. Permutations and Combinations
►How  can we calculate C(n, r)?
►Consider that we can obtain the r-permutation of a set in the
following way:
►First, we form all the r-combinations of the set
(there are C(n, r) such r-combinations).
►Then, we generate all possible orderings in each of these
r-combinations (there are P(r, r) such orderings in each
case).
►Therefore, we have:
►P(n, r) = C(n, r)⋅P(r, r)
23
 


	178. Permutations and Combinations
►C(n,  r) = P(n, r)/P(r, r)
► = n!/(n – r)!/(r!/(r – r)!)
► = n!/(r!(n – r)!)
►Now we can answer our initial question:
►How many ways are there to pick a set of 3 people from a
group of 6 (disregarding the order of picking)?
►C(6, 3) = 6!/(3!⋅3!) = 720/(6⋅6) = 720/36 = 20
►There are 20 different ways, that is, 20 different groups to
be picked.
24
 


	179. Permutations and Combinations
►Corollary:
►Let  n and r be nonnegative integers with r ≤ n.
►Then C(n, r) = C(n, n – r).
►Note that “picking a group of r people from a group of n
people” is the same as “splitting a group of n people into a
group of r people and another group of (n – r) people”.
►Please also look at proof on page 323.
25
 


	180. Permutations and Combinations
►Example:
►A  soccer club has 8 female and 7 male members. For
today’s match, the coach wants to have 6 female and 5
male players on the grass. How many possible
configurations are there?
►C(8, 6) ⋅ C(7, 5) = 8!/(6!⋅2!) ⋅ 7!/(5!⋅2!)
► = 28⋅21
► = 588
26
 


	181. Combinations
►We also saw  the following:
27
This symmetry is intuitively plausible. For example,
let us consider a set containing six elements (n = 6).
Picking two elements and leaving four is essentially
the same as picking four elements and leaving two.
In either case, our number of choices is the
number of possibilities to divide the set into one
set containing two elements and another set
containing four elements.
 


	182. Combinations
►Pascal’s Identity:
►Let n  and k be positive integers with n ≥ k.
Then C(n + 1, k) = C(n, k – 1) + C(n, k).
►How can this be explained?
►What is it good for?
28
 


	183. Combinations
►Imagine a set  S containing n elements and a set T containing (n
+ 1) elements, namely all elements in S plus a new element a.
►Calculating C(n + 1, k) is equivalent to answering the
question: How many subsets of T containing k items are there?
►Case I: The subset contains (k – 1) elements of S
plus the element a: C(n, k – 1) choices.
►Case II: The subset contains k elements of S and
does not contain a: C(n, k) choices.
►Sum Rule: C(n + 1, k) = C(n, k – 1) + C(n, k).
29
 


	184. Pascal’s Triangle
►In Pascal’s  triangle, each number is the sum of the
numbers to its upper left and upper right:
30
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
… … … … … …
 


	185. Pascal’s Triangle
►Since we  have C(n + 1, k) = C(n, k – 1) + C(n, k) and
C(0, 0) = 1, we can use Pascal’s triangle to simplify the
computation of C(n, k):
31
C(0, 0) = 1
C(1, 0) = 1 C(1, 1) = 1
C(2, 0) = 1 C(2, 1) = 2 C(2, 2) = 1
C(3, 0) = 1 C(3, 1) = 3 C(3, 2) = 3 C(3, 3) = 1
C(4, 0) = 1 C(4, 1) = 4 C(4, 2) = 6 C(4, 3) = 4 C(4, 4) = 1
k
n
 


	186. Binomial Coefficients
►Expressions of  the form C(n, k) are also called binomial
coefficients.
►How come?
►A binomial expression is the sum of two terms, such as
(a + b).
►Now consider (a + b)2
= (a + b)(a + b).
►When expanding such expressions, we have to form all
possible products of a term in the first factor and a term in
the second factor:
►(a + b)2
= a·a + a·b + b·a + b·b
►Then we can sum identical terms:
►(a + b)2
= a2
+ 2ab + b2
32
 


	187. Binomial Coefficients
►For (a  + b)3
= (a + b)(a + b)(a + b) we have
►(a + b)3
= aaa + aab + aba + abb + baa + bab + bba + bbb
►(a + b)3
= a3
+ 3a2
b + 3ab2
+ b3
►There is only one term a3
, because there is only one
possibility to form it: Choose a from all three factors: C(3,
3) = 1.
►There is three times the term a2
b, because there are three
possibilities to choose a from two out of the three factors:
C(3, 2) = 3.
►Similarly, there is three times the term ab2
(C(3, 1) = 3) and once the term b3
(C(3, 0) = 1).
33
 


	188. Binomial Coefficients
►This leads  us to the following formula:
34
With the help of Pascal’s triangle, this formula
can considerably simplify the process of
expanding powers of binomial expressions.
For example, the fifth row of Pascal’s triangle
(1 – 4 – 6 – 4 – 1) helps us to compute (a + b)4
:
(a + b)4
= a4
+ 4a3
b + 6a2
b2
+ 4ab3
+ b4
(Binomial Theorem)
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