Diese Präsentation wurde erfolgreich gemeldet.
Die SlideShare-Präsentation wird heruntergeladen. ×
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Nächste SlideShare
Wacker-4-june15
Wacker-4-june15
Wird geladen in …3
×

Hier ansehen

1 von 27 Anzeige

Weitere Verwandte Inhalte

Diashows für Sie (20)

Andere mochten auch (20)

Anzeige

Ähnlich wie Lauruhn-5-jun15 (20)

Weitere von National Information Standards Organization (NISO) (20)

Anzeige

Aktuellste (20)

Lauruhn-5-jun15

  1. 1. Project Planning & Linked Data Competencies Mike Lauruhn, Elsevier Labs NISO Virtual Conference: BIBFRAME June 15, 2016 @mikelauruhn @ElsevierLabs
  2. 2. | 2 Agenda • Linked Data Competency Index • Project Management • Resource & Planning Skills
  3. 3. | 3 Linked Data Competency Index (LD4PE) Project under the jurisdiction of the Dublin Core Metadata Initiative (DCMI) Education & Outreach Committee. Funded by the Institute of Museum and Library Services (IMLS). Exploratorium & Competency Index will be sustained by DCMI to support its education and outreach activities.
  4. 4. | 4 Outcomes** Competency Index for learning Linked Data - to help learners and instructors identify and prioritize skills for proficiency in Linked Data. Exploratorium of educational resources for learning the competencies. ** both to be sustained and evolving
  5. 5. | 5 Competency Index 6 top-level clusters & approx. 125 concepts http://explore.dublincore.net/linked-data-learning-resources/
  6. 6. | 6 Fundamentals of Resource Description Framework Identity in RDF RDF data model Related data models RDF serialization Fundamentals of Linked Data Web technology Linked data principles Linked Data architectures and services Linked Data policies and best practices Non-RDF Linked Data RDF vocabularies Finding RDF vocabularies Maintaining RDF vocabularies Versioning RDF vocabularies Publishing RDF vocabularies Mapping RDF vocabularies RDF application profiles Six top-level clusters
  7. 7. | 7 Creating and transforming RDF Data Managing identifiers (URIs) Creating RDF data Versioning RDF data RDF data provenance Cleaning and reconciling RDF data Mapping and enriching RDF data Interacting with RDF Data Finding RDF Data Programming RDF Data Querying RDF Data Visualizing RDF Data Reasoning over RDF Assessing RDF data quality RDF Data analytics Manipulating RDF DataCreating Linked Data applications Storing RDF data Linked Data application architecture Linked Data mashups Six top-level clusters
  8. 8. | 8 Sampling the Competencies… à Fundamentals of Resource Description Framework à à RDF data model Competency: Understands that QNames define shorthand prefixes for long URIs Benchmark: Uses prefixes for URIs in RDF specifications and data à Interacting with RDF Data à à Querying RDF Data Competency: Demonstrates a working knowledge of the forms and uses of SPARQL result sets (SELECT, CONSTRUCT, DESCRIBE, and ASK) Benchmark: Understands the basic syntax of a SPARQL query Formulates advanced queries on data containing blank nodes Benchmark: Uses the SELECT clause to identify the variables to appear in a table of query results
  9. 9. | 9 Learning Resources
  10. 10. | 10 At 0:46 in the video, we get the anatomy of a triple. This can to be mapped to a competency in the competency index. In the index, we find: Knows the subject- predicate-object structure of a triple Resource to competency mapping SPARQL in 11 minutes, by Bob Ducharme https://www.youtube.com/watch?v=FvGndkpa4K0
  11. 11. | 11 Mapping from Ducharme to competencies [ Resource –to- Competency ]
  12. 12. | 12 What’s under the hood? (It’s RDF) The resource metadata are encoded in RDFXML, using schema.org and dc terms: <ns0:dateCreated rdf:datatype="http://purl.org/dc/terms/W3CDTF">2014- 01-01T07:00:00.000Z</ns0:dateCreated> <ns0:about xml:lang="en-US">SPARQL syntax</ns0:about> <ns0:about xml:lang="en-US">filtering</ns0:about> <ns0:about xml:lang="en-US">sorting</ns0:about>
  13. 13. | 13 The Exploratorium
  14. 14. | 14 http://explore.dublincore.net/linked-data-learning-resources/ Exploratorium: Competencies & supporting resources
  15. 15. | 15 Exploratorium: Competencies & supporting resources http://explore.dublincore.net/linked-data-learning-resources/
  16. 16. | 16 LD4PE – Feedback so far… What about higher-level topics: How to recognize Linked Data opportunities? How can I explain this to my stakeholders? How to make the case? How to quantify ROI on Linked Data applications? Will you add attributes for the competencies that further describe them? By proficiency: “Beginner, Intermediate & Advanced” By role: “Developer, Project Manager, Taxonomist, Cataloger”
  17. 17. | 17 LD4PE – Feedback so far… Use Cases for the competency index: Human resources to qualify developers? Can I use it to inform sourcing for a project?
  18. 18. | 18 Library Linked Data Projects http://bibframe.org/documentation/bibframe-usecases/#usecases 21 August 2013
  19. 19. | 19 Library Linked Data Projects Common Project Management Tasks • User Studies & Needs Assessment • Identify Application Objectives • Understand and Inventory Data & Content • Specify Metadata & Facets • Model Content & Infrastructure • Evaluate & Select Vocabularies o Mapping between vocabularies • Training & Outreach
  20. 20. | 20 Specific skills needs Outreach opportunities • Helping prioritize user needs. • Help interpret user requirements into defining the data / metadata for specific applications. • Help identify other opportunities that can leverage Linked Data and new frameworks.
  21. 21. | 21 Specific skills needs Vocabulary experts & Taxonomists • Help identify appropriate vocabularies for applications • Quality issues, sustainability issues, trust issues Understanding that vocabulary selection criteria has more to do than with the concepts
  22. 22. | 22 Specific skills needs Vocabulary experts & Taxonomists (2) • Ability to read other taxonomies and ontologies • Understands the basics of mapping between multiple data models.
  23. 23. | 23 Specific skills needs Content & Domain expertise • Able to evaluate existing or needed resources for integration and exploitation • Cost • Accuracy • Appropriateness • Relevance • Sustainability • Etc.
  24. 24. | 24 Specific skills needs Information Architects / Data modelling resources • Define data & metadata rules and models to support the application and future interoperability. • Understanding of how to collect and enforce data that gets collected
  25. 25. | 25 Specific skills needs Quality & metrics resources • People who can articulate Precision & Recall • Explain how well an application is working and whether changes are leading to improvement
  26. 26. | 26 Specific skills needs Connections to standards organizations • Getting involved with ALA-ALCTS, Dublin Core, NISO, W3C, etc. • Help articulate Use Cases
  27. 27. Thank you. http://explore.dublincore.net/ Contact: m.lauruhn@elsevier.com @mikelauruhn @ElsevierLabs

×