IPv4 adressing

1
© Cisco и/или Партнеры, 2016 г. Все права защищены.
Конфиденциальная информация Cisco
COMPUTER NETWORKS
IPv4 Addressing
2
© Cisco и/или Партнеры, 2016 г. Все права защищены.
Конфиденциальная информация Cisco
Plan
1. IPv4 address structure
2. IPv4 unicast, broadcast, and multicast
3. Types of IPv4 addresses
4. Network segmentation
5. Dividing an IPv4 network into subnets
3
© Cisco и/или Партнеры, 2016 г. Все права защищены.
Конфиденциальная информация Cisco
9.1 IPv4 address structure
4
© Cisco и/или Партнеры, 2016 г. Все права защищены.
Конфиденциальная информация Cisco
Network and host part
• The IPv4 address is hierarchical and consists of a network part and a tail part.
• When determining one or another part, it is necessary to pay attention not to the
decimal value, but to the 32-bit record
• The subnet mask is used to determine the network and host part of the address.
5
© Cisco и/или Партнеры, 2016 г. Все права защищены.
Конфиденциальная информация Cisco
Subnet Mask
• To identify the network and node part of the IPv4 address, the subnet mask is bitwise
compared with the IPv4 address from left to right.
• The process itself used to
determine the network and
node parts of the address
is called the logical
operation And (AND).
6
© Cisco и/или Партнеры, 2016 г. Все права защищены.
Конфиденциальная информация Cisco
Prefix length
• Prefix length is a less cumbersome method used to identify the subnet mask address.
• The prefix length means the
number of bits set to one (1)
in the subnet mask.
• Therefore, you need to count
the number of bits in the
subnet mask and put a slash
before this value.
Subnet mask 32-bit address Prefix Length
255.0.0.0 11111111.00000000.00000000.00000000 /8
255.255.0.0 11111111.11111111.00000000.00000000 /16
255.255.255.0 11111111.11111111.11111111.00000000 /24
255.255.255.128 11111111.1111111111111111.10000000 /25
255.255.255.192 11111111.11111111.1111111111.11000000 /26
255.255.255.224 11111111.11111111.11111111.11100000 /27
255.255.255.240 11111111.11111111.11111111.11110000 /28
255.255.255.248 11111111.11111111.11111111.11111000 /29
255.255.255.252 11111111.11111111.11111111.11111100 /30
7
© Cisco и/или Партнеры, 2016 г. Все права защищены.
Конфиденциальная информация Cisco
Network Definition: logical AND
• The logical operation And is used to determine the network address.
• Logical And is a comparison of two bits, where only 1 and 1 produces 1, and any other
combination results in 0.
• 1 And 1 = 1, 0 And 1 = 0, 1 And 0 = 0, 0 And 0 = 0
• 1 = True and 0 = False
• In order to determine the
network address of an IPv4
node, the logical operation
AND is applied bitwise to the
IPv4 address and subnet
mask.
8
© Cisco и/или Партнеры, 2016 г. Все права защищены.
Конфиденциальная информация Cisco
Network address, host address and broadcast address
Each network has three types of IP addresses:
• Network address
• Host address
• Broadcast address
Сетевая часть
Раздел
хоста
Биты
хоста
Маска подсети
255.255.255.0 или /24
255 255 255
11111111 111111 1111 111111
0
00000000
Сетевой адрес
192.168.10.0 или /24
192 168 10
11000000 10100000 001010
0
00000000
Все 0
Первый адрес
192.168.10.1 или /24
192 168 10
11000000 10100000 001010
1
000001
Все 0 и 1
Последний адрес
192.168.10.254
или /24
192 168 10
11000000 10100000 001010
254
111111
Все 1 и 0
Широковещательный
адрес
192.168.10.255
или /24
192 168 10
11000000 10100000 001010
255
111111
Все 1
9
© Cisco и/или Партнеры, 2016 г. Все права защищены.
Конфиденциальная информация Cisco
9.2 IPv4 unicast, broadcast,
and multicast
10
© Cisco и/или Партнеры, 2016 г. Все права защищены.
Конфиденциальная информация Cisco
Unicast transmission
• Unicast sends a packet to a single destination IP address.
• For example, computer 172.16.4.1 sends a unicast packet to the printer at
172.16.4.253.
11
© Cisco и/или Партнеры, 2016 г. Все права защищены.
Конфиденциальная информация Cisco
Broadcast transmission
• The broadcast sends the packet to all other destination IP addresses.
• For example, computer 172.16.4.1 sends a broadcast packet to all IPv4 nodes.
12
© Cisco и/или Партнеры, 2016 г. Все права защищены.
Конфиденциальная информация Cisco
Multicast transmission
• Multicast sends a packet to a multicast address group.
• For example, computer 172.16.4.1 sends a multicast packet to the multicast group
address 224.10.10.5.
13
© Cisco и/или Партнеры, 2016 г. Все права защищены.
Конфиденциальная информация Cisco
9.3 Types of IPv4 addresses
14
© Cisco и/или Партнеры, 2016 г. Все права защищены.
Конфиденциальная информация Cisco
Public and private IPv4 addresses
• Public IPv4 addresses are addresses that are globally routed between Internet
Service Provider (ISP) routers.
• However, private addresses are not globally routable.
• There are blocks of addresses called
private addresses, which in most
companies are assigned as IPv4
addresses of internal hosts.
• Private IPv4 addresses are not unique
and can be used on any internal network.
Сетевой адрес и
префикс
Диапазон частных адресов RFC
1918
10.0.0.0/8 10.0.0.0 - 10.255.255.255
172.16.0.0/12 172.16.0.0 - 172.31.255.255
192.168.0.0/16 192.168.0.0 - 192.168.255.255
15
© Cisco и/или Партнеры, 2016 г. Все права защищены.
Конфиденциальная информация Cisco
Routing to the Internet
• Network Address Translation (NAT) is used to convert a private IPv4 address to a public
IPv4 address.
• NAT is usually enabled on an
edge router connected to the
Internet.
• Converts private IP
addresses to public IP
addresses.
16
© Cisco и/или Партнеры, 2016 г. Все права защищены.
Конфиденциальная информация Cisco
Special-purpose IPv4 addresses
Loopback addresses
• 127.0.0.0 /8 or from 127.0.0.1 to
127.255.255.254
• Usually identified only as 127.0.0.1
• Is used on the host to check the health
of the TCP/IP configuration.
Local channel addresses
• 169.254.0.0 /16 or from 169.254.0.1 to 169.254.255.254
• More commonly known as Automatic Private IP addresses (APIPA).
• Used by a Windows client for automatic configuration if there is no
available DHCP server.
17
© Cisco и/или Партнеры, 2016 г. Все права защищены.
Конфиденциальная информация Cisco
Traditional class addressing
RFC 790 (1981) allocated IPv4 addresses in
classes
• Class A (0.0.0.0/8 - 127.0.0.0/8 )
• Class B (128.0.0.0 /16 - 191.255.0.0 /16 )
• Class C (192.0.0.0 /24 - 223.255.255.0
/24 )
• Class D (224.0.0.0 - 239.0.0.0)
• Class E (240.0.0.0 - 255.0.0.0)
• Classical addressing has wasted a lot of
IPv4 addresses.
The class distribution of addresses has been
replaced by classless addressing, which
ignores the rules of classes (A, B, C).
18
© Cisco и/или Партнеры, 2016 г. Все права защищены.
Конфиденциальная информация Cisco
Assigning IP addresses
• IANA manages blocks of IP addresses and distributes them among regional Internet
Registrars (RIRs).
• Regional Internet Registrars
(LIRs) are responsible for
distributing IP addresses
between Internet Service
Providers (ISPs), which, in
turn, provide blocks of IPv4
addresses to organizations
and smaller providers.
19
© Cisco и/или Партнеры, 2016 г. Все права защищены.
Конфиденциальная информация Cisco
9.4 Network segmentation
20
© Cisco и/или Партнеры, 2016 г. Все права защищены.
Конфиденциальная информация Cisco
Network Segmentation Broadcast Domains
• Many protocols use broadcast or multicast (for example, ARP uses broadcasts to search for
other devices, hosts send DHCP broadcasts to search for a DHCP server).
• Switches broadcast to all interfaces, except for the interface through which the newsletter was
received.
• The only device stopping broadcasts is the
router.
• Routers do not broadcast.
• Thus, each router interface is connected to a
broadcast domain, and broadcasts are
carried out only within a specific distribution
domain.
21
© Cisco и/или Партнеры, 2016 г. Все права защищены.
Конфиденциальная информация Cisco
Problems with large broadcast domains
• The problem with a large broadcast domain is as
follows: nodes can generate excessive mailing and
negatively affect the operation of the network.
• To solve this problem, it is necessary to reduce the
size of the network by creating smaller broadcast
domains.
• This process is called subnet partitioning.400 LAN 1
users with the network address 172.16.0.0 /16 were
divided into two subnets of 200 users each —
172.16.0.0 /24 and 172.16.1.0/24.
• Mailing is limited to small broadcast domains.
22
© Cisco и/или Партнеры, 2016 г. Все права защищены.
Конфиденциальная информация Cisco
Reasons for partitioning into subnets
• Subnetting reduces the total amount of network traffic and improves network performance.
• It can be used to implement security policies between subnets.
• The subnet reduces the number of devices affected by abnormal broadcast traffic.
• Subnets are used for a variety of reasons, including:
Местоположение Группа или функция Тип устройства
23
© Cisco и/или Партнеры, 2016 г. Все права защищены.
Конфиденциальная информация Cisco
9.5 IPv4 network subnet
24
© Cisco и/или Партнеры, 2016 г. Все права защищены.
Конфиденциальная информация Cisco
Partitioning into subnets at the octet boundary
• The separation of networks is easiest to perform at the boundaries of octets /8, /16
and /24.
• Note that increasing the prefix length reduces the number of nodes in each subnet.
Prefix length Subnet mask
Subnet mask in binary system (n = network, h =
host)
Number of
hosts
/8 255.0.0.0
nnnnnnnn.hhhhhhhh.hhhhhhhh.hhhhhhhh
11111111.00000000.00000000.00000000
16 777 214
/16 255.255.0.0
nnnnnnnn.nnnnnnnn.hhhhhhhh.hhhhhhhh
11111111.11111111.00000000.00000000
65 534
/24 255.255.255.0
nnnnnnnn.nnnnnnnn.nnnnnnnn.hhhhhhhh
11111111.11111111.11111111.00000000
254
25
© Cisco и/или Партнеры, 2016 г. Все права защищены.
Конфиденциальная информация Cisco
• In the first table 10.0.0.0/8, the subnet uses /16, and in the second table, the mask /24.
Subnet address
(256 possible
subnets)
Host range (65,534 possible
hosts in each subnet)
Broadcast
distribution
10,0.0,0/16 10,0.0.1 - 10,0.255,254 10,0.255,255
10.1.0,0/16 10.1.0.1 - 10,1.255,254 10.1.255,255
10,2.0,0/16 10,2.0.1 - 10,2.255,254 10,2.255,255
10,3.0,0/16 10.3.0.1 - 10.3.255.254 10.3.255.255.
10.4.0.0/16 10.4.0.1 - 10,4.255.254 10.4.255.255
10.5.0.0/16 10.5.0.1 - 10.5.255.254 10.5.255.255
10.6.0.0/16 10.6.0.1 - 10.6.255.254 10.6.255.255
10.7.0.0/16 107.0.1 - 10.7.255.254 10.7.255.255
... ... ...
10.255.0.0/16 10.255.0.1 - 10.255.255.254 10.255.255.255
Subnet address
(65,536 possible
subnets)
Node range (254 possible
nodes in each subnet)
Broadcast
distribution
10.0.0.0/24 10.0.0.1 - 10.0.0.254 10.0.0.255
10.0.1.0/24 10.0.1 - 10.0.1.254 10.0.1.255
10.0.2.0/24 10.0.2.1 - 10.0.2.254 10.0.2.255
… … …
10.0.255.0/24 10.0.255.1 - 10.0.255.254 10.0.255.255
10.1.0.0/24 10.1.0.1 - 10.1.0.254 10.1.0.255
10.1.1.0/24 10.1.1.1 - 10.1.1.254 10.1.1.255
10.1.2.0/24 10.1.2.1 - 10.1.2.254 10.1.2.255
… … …
10.100.0.0/24 10.100.0.1 - 10.100.0.254 10.100.0.255
... ... ...
10.255.255.0/24 10.255.255.1 - 10.2255.255.254 10.255.255.255
26
© Cisco и/или Партнеры, 2016 г. Все права защищены.
Конфиденциальная информация Cisco
Partitioning into subnets at the octet boundary
• See the table to see the six ways to subnet a /24 network.
Prefix length Subnet mask
Subnet mask in binary system (c = network, y =
node)
Number of
subnets
Number
of hosts
/25 255.255.255.128
nnnnnnnn.nnnnnnnn.nnnnnnnn.nhhhhhhh
11111111.11111111.11111111. 10000000
2 126
/26 255.255.255.192
nnnnnnnn.nnnnnnnn.nnnnnnnn.nnhhhhhh
11111111.11111111.11111111. 11000000
4 62
/27 255.255.255.224
nnnnnnnn.nnnnnnnn.nnnnnnnn.nnnhhhhh
11111111.11111111.11111111. 11100000
8 30
/28 255.255.255.240
nnnnnnnn.nnnnnnnn.nnnnnnnn.nnnnhhhh
11111111.11111111.11111111. 11110000
16 14
/29 255.255.255.248
nnnnnnnn.nnnnnnnn.nnnnnnnn.nnnnnhhh
11111111.11111111.11111111. 11111000
32 6
/30 255.255.255.252
nnnnnnnn.nnnnnnnn.nnnnnnnn.nnnnnnhh
11111111.11111111.11111111. 11111100
64 2
27
© Cisco и/или Партнеры, 2016 г. Все права защищены.
Конфиденциальная информация Cisco
9.6 Subnet: /16 and /8
28
© Cisco и/или Партнеры, 2016 г. Все права защищены.
Конфиденциальная информация Cisco
Creating subnets with the prefix /16
The table in the
figure shows all
possible scenarios of
partitioning into
subnets with the
prefix /16.
Prefix length Subnet mask Network address (c = network, x = host)
Number of
subnets
Number of
hosts
/17 255.255.128,0
nnnnnnnn.nnnnnnnn.nhhhhhhh.hhhhhhhh
11111111.11111111. 100000000000000
2 32766
/18 255.255.192,0
nnnnnnnn.nnnnnnnn.nnhhhhhh.hhhhhhhh
11111111.11111111. 1100000000000000
4 16382
/19 255.255.224.0
nnnnnnnn.nnnnnnnn.nnnhhhhh.hhhhhhhh
11111111.11111111. 111000000000000
8 8 190
/20 255.255.240,0
nnnnnnnn.nnnnnnnn.nnnnhhhh.hhhhhhhh
11111111.11111111. 1111000000000000
16 4 094
/21 255.255.248,0
nnnnnnnn.nnnnnnnn.nnnnnhhh.hhhhhhhh
11111111.11111111. 11111000,00000000
32 2 046
/22 255.255.252.0
нннннннннннннннннн. ннннннххххххххххх
111111111111.11111100.00000000
64 1 022
/23 255.255.254.0
нннннннннннннннннн. нннннннх.хххххххх
11111111.111111. 11111110,00000000
128 510
/24 255.255.255.0
нннннннннннннннннн. нннннннн.хххххх
11111111.11111111. 1111111111.00000000
256 254
/25 255.255.255.128
нннннннннннннннннн. ннннннннн.нхххххх
1111111111.111111. 11111111.10000000
512 126
/26 255.255.255.192
nnnnnnnn.nnnnnnnn.nnnnnnnn.nnhhhhhh
11111111.11111111. 11111111.11000000
1024 62
/27 255.255.255.224
нннннннннннннннннн. ннннннннннххххх
11111111.11111111. 11111111.11100000
2048 30
/28 255.255.255. 240
нннннннннннннннннн. ннннннннннннчччх
11111111.11111111. 11111111.11110000
4 096 14
/29 255.255.255.248
нннннннннннннннннн. ннннннннннннчччч
11111111.11111111. 11111111.11111000
8 192 6
/30 255.255.255.252
нннннннннннннннннн. нннннннннннннч
1111111111.11111111. 11111111.111100
16 384 2
29
© Cisco и/или Партнеры, 2016 г. Все права защищены.
Конфиденциальная информация Cisco
Creating subnets with the prefix /16
Consider a large enterprise that needs at least 100 subnets,
and which has chosen the private address 172.16.0.0/16 as
the internal network address.
• The figure shows the number of subnets that can be
created by borrowing bits from the third and fourth octets.
• Note that there are now up to 14 host bits that can be
borrowed (that is, the last two bits cannot be borrowed).
To meet the needs of the enterprise, you will need to borrow 7
bits (that is, 27 = 128 subnets), as shown in the figure.
30
© Cisco и/или Партнеры, 2016 г. Все права защищены.
Конфиденциальная информация Cisco
Creating subnets with the prefix /16
Consider a small ISP that requires 1000 subnets for its
clients using a network address of 10.0.0.0/8, which
means that there are 8 bits in the network part and 24
bits of the node are available to borrow for subnets.
• The figure shows the number of subnets that can
be created by borrowing bits from the third and
fourth octets.
• Note that there are now up to 22 host bits that can
be borrowed (that is, the last two bits cannot be
borrowed).
To fulfill the requirement of 1000 subnets for an
enterprise, it is necessary to borrow 10 bits (i.e. 210=
1024 subnets) (a total of 128 subnets)
31
© Cisco и/или Партнеры, 2016 г. Все права защищены.
Конфиденциальная информация Cisco
9.7 Partitioning into subnets to
meet the requirements
32
© Cisco и/или Партнеры, 2016 г. Все права защищены.
Конфиденциальная информация Cisco
Private and public IPv4 address space subnets
Corporate networks
• Intranet - The company's internal network usually
uses private IPv4 addresses.
• DMZ companies, Internet—facing servers.
Devices in the DMZ use public IPv4 addresses.
• The company can use 10.0.0.0/8 and a subnet on
the /16 or /24 network boundary.
• DMZ devices must be configured with public IP
addresses.
33
© Cisco и/или Партнеры, 2016 г. Все права защищены.
Конфиденциальная информация Cisco
Minimizing unused IPv4 node addresses and maximizing subnets
There are two parameters to consider when planning subnets.
• The required number of node addresses in each network
• Required number of subnets
Длина
префикса
Маска подсети
Маска подсети в двоичной системе
(с = сеть, у = узел)
Количеств
о
подсетей
Количест
во узлов
/25 255.255.255.128
nnnnnnnn.nnnnnnnn.nnnnnnnn.nhhhhhhh
11111111.11111111.11111111. 10000000
2 126
/26 255.255.255.192
nnnnnnnn.nnnnnnnn.nnnnnnnn.nnhhhhhh
11111111.11111111.11111111. 11000000
4 62
/27 255.255.255.224
nnnnnnnn.nnnnnnnn.nnnnnnnn.nnnhhhhh
11111111.11111111.11111111. 11100000
8 30
/28 255.255.255.240
nnnnnnnn.nnnnnnnn.nnnnnnnn.nnnnhhhh
11111111.11111111.11111111. 11110000
16 14
/29 255.255.255.248
nnnnnnnn.nnnnnnnn.nnnnnnnn.nnnnnhhh
11111111.11111111.11111111. 11111000
32 6
/30 255.255.255.252
nnnnnnnn.nnnnnnnn.nnnnnnnn.nnnnnnhh
11111111.11111111.11111111. 11111100
64 2
34
© Cisco и/или Партнеры, 2016 г. Все права защищены.
Конфиденциальная информация Cisco
Подсеть, удовлетворяющая требованиям
Example: effective subnetting of an IPv4 network
• In this example, the telecom operator's
headquarters allocated the private network
address 172.16.0.0/22 (10 bits in the node part)
for the branch.
• There are five sites, and therefore five internet
connections, which means that the organization
requires 10 subnets with the largest subnet
requiring 40 addresses.
• He allocated 10 subnets with subnet mask /26
(i.e. 255.255.255.192).
35
© Cisco и/или Партнеры, 2016 г. Все права защищены.
Конфиденциальная информация Cisco
9.8 VLSM
36
© Cisco и/или Партнеры, 2016 г. Все права защищены.
Конфиденциальная информация Cisco
Saving IPv4 addresses
Given the topology, 7 subnets are required (i.e. four local area networks and three WAN
channels), and the largest number of nodes is in Building D with 28 nodes.
The /27 mask provides 8 subnets across 30 node IP addresses and therefore supports
this topology.
37
© Cisco и/или Партнеры, 2016 г. Все права защищены.
Конфиденциальная информация Cisco
Saving IPv4 addresses
However, point-to-point WAN communication requires only two
addresses and therefore loses 28 addresses each for a total of
84 unused addresses.
• The use of a traditional subnet partitioning scheme in such a scenario is not effective
and implies an inappropriate expenditure of resources.
• VLSM was designed to avoid address loss by allowing us to divide subnets into
subnets.
38
© Cisco и/или Партнеры, 2016 г. Все права защищены.
Конфиденциальная информация Cisco
VLSM
• The left side displays the traditional subnet scheme (i.e.
the same subnet mask), and the right side shows how
VLSM can be used to subnetwork one of the subnets.
• When using VLSM, always start by meeting the
requirements for the node of the largest subnet and
continue creating subnets until the requirements for the
node of the smallest subnet are met.
• The resulting topology using VLSM.
39
© Cisco и/или Партнеры, 2016 г. Все права защищены.
Конфиденциальная информация Cisco
Assigning VLSM topology addresses
• Using VLSM subnets, network addressing for local networks and communication
channels between routers can be created without unnecessary losses, as shown in
the logical topology diagram.
40
© Cisco и/или Партнеры, 2016 г. Все права защищены.
Конфиденциальная информация Cisco
9.9. Structured design
41
© Cisco и/или Партнеры, 2016 г. Все права защищены.
Конфиденциальная информация Cisco
Network addressing planning
IP network planning is critical to developing a scalable solution for an enterprise network.
• To develop an addressing scheme for an IPv4 network, you need to know how many
subnets are needed, how many nodes are required for a particular subnet, which
devices are part of the subnet, which networks use private addresses, which use
public addresses, and many other determining factors.
When planning subnets, it is necessary to take into account the requirements of the
organization for the use of the network and the intended structure of subnets.
• Perform a network requirements study by examining the entire network to determine
how each area will be segmented.
• Determine the number of available node addresses and the number of subnets
needed.
• Define DHCP address pools and VLAN pools.
42
© Cisco и/или Партнеры, 2016 г. Все права защищены.
Конфиденциальная информация Cisco
Структурированное проектирование
Назначение адресов устройств
There are various types of devices on the network that need addresses, including the
following:
• End users — most of them use DHCP to reduce the number of errors and the burden
on the network support staff. IPv6 clients can obtain address information using
DHCPv6 or SLAAC.
• Servers and peripherals - They must have a predictable static IP address.
• Servers accessible from the Internet — Servers must have a public IPv4 address,
which is most often accessed using NAT.
• Intermediate devices - Addresses are assigned to such devices for network
management, monitoring and security.
• Gateway - Routers and firewall devices are the gateway for nodes in this network.
When designing an IP addressing scheme, it is usually recommended to use a ready-
made template for assigning addresses to each type of device.
43
© Cisco и/или Партнеры, 2016 г. Все права защищены.
Конфиденциальная информация Cisco
New terms and commands
• prefix length
• logical AND
• network address
• broadcast address
• first usable address
• last usable address
• unicast, broadcast, and multicast transmissions
• private addresses
• public addresses
• Network Address Translation (NAT)
• loopback addresses
• Automatic Private IP Addressing (APIPA)
addresses
• classful addressing (Class A, B, C, D, and E)
Internet Assigned Numbers Authority (IANA)
Regional Internet Registries (RIRs)
AfriNIC, APNIC, ARIN, LACNIC, and RIPE NCC
broadcast domains
subnets
octet boundary
variable-length subnet mask (VLSM)
1 von 43

Recomendados

Ccna rse chp9 nat fo i_pv4 von
Ccna rse chp9 nat fo i_pv4Ccna rse chp9 nat fo i_pv4
Ccna rse chp9 nat fo i_pv4newbie2019
484 views62 Folien
07_IP_Addressing ayudaok.pdf von
07_IP_Addressing ayudaok.pdf07_IP_Addressing ayudaok.pdf
07_IP_Addressing ayudaok.pdfJosue138778
7 views62 Folien
07_IP_Addressing.pdf von
07_IP_Addressing.pdf07_IP_Addressing.pdf
07_IP_Addressing.pdfAdelfaJoycePagobo
3 views62 Folien
CCNA v6.0 ITN - Chapter 08 von
CCNA v6.0 ITN - Chapter 08CCNA v6.0 ITN - Chapter 08
CCNA v6.0 ITN - Chapter 08Irsandi Hasan
4.5K views64 Folien
CCNA 1 Routing and Switching v5.0 Chapter 8 von
CCNA 1 Routing and Switching v5.0 Chapter 8CCNA 1 Routing and Switching v5.0 Chapter 8
CCNA 1 Routing and Switching v5.0 Chapter 8Nil Menon
18.3K views90 Folien
CCNA v6.0 ITN - Chapter 07 von
CCNA v6.0 ITN - Chapter 07CCNA v6.0 ITN - Chapter 07
CCNA v6.0 ITN - Chapter 07Irsandi Hasan
4.2K views80 Folien

Más contenido relacionado

Similar a IPv4 adressing

CCNA RS_ITN - Chapter 8 von
CCNA RS_ITN - Chapter 8CCNA RS_ITN - Chapter 8
CCNA RS_ITN - Chapter 8Irsandi Hasan
1.4K views88 Folien
Chapter 8 : IP addressing von
Chapter 8 : IP addressingChapter 8 : IP addressing
Chapter 8 : IP addressingteknetir
673 views90 Folien
Chapter 08 - IP Addressing von
Chapter 08 - IP AddressingChapter 08 - IP Addressing
Chapter 08 - IP AddressingYaser Rahmati
573 views90 Folien
CCNAv5 - S1: Chapter 8 - Ip Addressing von
CCNAv5 - S1: Chapter 8 - Ip AddressingCCNAv5 - S1: Chapter 8 - Ip Addressing
CCNAv5 - S1: Chapter 8 - Ip AddressingVuz Dở Hơi
5.2K views90 Folien
Ccna v5-S1-Chapter 8 von
Ccna v5-S1-Chapter 8Ccna v5-S1-Chapter 8
Ccna v5-S1-Chapter 8Hamza Malik
329 views88 Folien
CN L8 — копия.ppt von
CN L8 — копия.pptCN L8 — копия.ppt
CN L8 — копия.pptAssemNazirova2
4 views34 Folien

Similar a IPv4 adressing(20)

CCNA RS_ITN - Chapter 8 von Irsandi Hasan
CCNA RS_ITN - Chapter 8CCNA RS_ITN - Chapter 8
CCNA RS_ITN - Chapter 8
Irsandi Hasan1.4K views
Chapter 8 : IP addressing von teknetir
Chapter 8 : IP addressingChapter 8 : IP addressing
Chapter 8 : IP addressing
teknetir673 views
Chapter 08 - IP Addressing von Yaser Rahmati
Chapter 08 - IP AddressingChapter 08 - IP Addressing
Chapter 08 - IP Addressing
Yaser Rahmati573 views
CCNAv5 - S1: Chapter 8 - Ip Addressing von Vuz Dở Hơi
CCNAv5 - S1: Chapter 8 - Ip AddressingCCNAv5 - S1: Chapter 8 - Ip Addressing
CCNAv5 - S1: Chapter 8 - Ip Addressing
Vuz Dở Hơi5.2K views
Ccna v5-S1-Chapter 8 von Hamza Malik
Ccna v5-S1-Chapter 8Ccna v5-S1-Chapter 8
Ccna v5-S1-Chapter 8
Hamza Malik329 views
Module (10) NAT for IPV4.pptx von GeorgeThoreJr
Module (10) NAT for IPV4.pptxModule (10) NAT for IPV4.pptx
Module (10) NAT for IPV4.pptx
GeorgeThoreJr36 views
CCNA (R & S) Module 01 - Introduction to Networks - Chapter 7 von Waqas Ahmed Nawaz
CCNA (R & S) Module 01 - Introduction to Networks - Chapter 7CCNA (R & S) Module 01 - Introduction to Networks - Chapter 7
CCNA (R & S) Module 01 - Introduction to Networks - Chapter 7
Waqas Ahmed Nawaz120 views
IPv6 address-planning von Tim Martin
IPv6 address-planningIPv6 address-planning
IPv6 address-planning
Tim Martin736 views
ITN_Module_8.pptx von AliJrboy
ITN_Module_8.pptxITN_Module_8.pptx
ITN_Module_8.pptx
AliJrboy8 views
Apnic V6 Tutorial Distribution von Ali_Ahmad
Apnic V6 Tutorial DistributionApnic V6 Tutorial Distribution
Apnic V6 Tutorial Distribution
Ali_Ahmad496 views
It nv51 instructor_ppt_ch7 von newbie2019
It nv51 instructor_ppt_ch7It nv51 instructor_ppt_ch7
It nv51 instructor_ppt_ch7
newbie2019672 views
CCNA v6.0 ITN - Chapter 06 von Irsandi Hasan
CCNA v6.0 ITN - Chapter 06CCNA v6.0 ITN - Chapter 06
CCNA v6.0 ITN - Chapter 06
Irsandi Hasan4.8K views
CCNA (R & S) Module 01 - Introduction to Networks - Chapter 8 von Waqas Ahmed Nawaz
CCNA (R & S) Module 01 - Introduction to Networks - Chapter 8CCNA (R & S) Module 01 - Introduction to Networks - Chapter 8
CCNA (R & S) Module 01 - Introduction to Networks - Chapter 8
Waqas Ahmed Nawaz235 views
CCNAS :Multi Area OSPF von rooree29
CCNAS :Multi Area OSPFCCNAS :Multi Area OSPF
CCNAS :Multi Area OSPF
rooree293.3K views
Deploying IPv6 in Cisco's Labs by Robert Beckett at gogoNET LIVE! 3 IPv6 Conf... von gogo6
Deploying IPv6 in Cisco's Labs by Robert Beckett at gogoNET LIVE! 3 IPv6 Conf...Deploying IPv6 in Cisco's Labs by Robert Beckett at gogoNET LIVE! 3 IPv6 Conf...
Deploying IPv6 in Cisco's Labs by Robert Beckett at gogoNET LIVE! 3 IPv6 Conf...
gogo61.5K views

Más de AssemNazirova2

ICT L13 — копия.pptx von
ICT L13 — копия.pptxICT L13 — копия.pptx
ICT L13 — копия.pptxAssemNazirova2
3 views9 Folien
SDT_L8 — копия.ppt von
SDT_L8 — копия.pptSDT_L8 — копия.ppt
SDT_L8 — копия.pptAssemNazirova2
12 views79 Folien
Cloud technology von
Cloud technologyCloud technology
Cloud technologyAssemNazirova2
10 views15 Folien
CN L7 — копия.ppt von
CN L7 — копия.pptCN L7 — копия.ppt
CN L7 — копия.pptAssemNazirova2
6 views28 Folien
Лекция 1_ РЭС_Презентация — копия.pptx von
Лекция 1_ РЭС_Презентация — копия.pptxЛекция 1_ РЭС_Презентация — копия.pptx
Лекция 1_ РЭС_Презентация — копия.pptxAssemNazirova2
20 views20 Folien
CN L5 — копия.pptx von
CN L5 — копия.pptxCN L5 — копия.pptx
CN L5 — копия.pptxAssemNazirova2
4 views35 Folien

Más de AssemNazirova2(17)

Лекция 1_ РЭС_Презентация — копия.pptx von AssemNazirova2
Лекция 1_ РЭС_Презентация — копия.pptxЛекция 1_ РЭС_Презентация — копия.pptx
Лекция 1_ РЭС_Презентация — копия.pptx
AssemNazirova220 views
vlsisubsystemdesignprocessesandillustration-131101063110-phpapp02.pptx von AssemNazirova2
vlsisubsystemdesignprocessesandillustration-131101063110-phpapp02.pptxvlsisubsystemdesignprocessesandillustration-131101063110-phpapp02.pptx
vlsisubsystemdesignprocessesandillustration-131101063110-phpapp02.pptx
AssemNazirova26 views

Último

Black and White Modern Science Presentation.pptx von
Black and White Modern Science Presentation.pptxBlack and White Modern Science Presentation.pptx
Black and White Modern Science Presentation.pptxmaryamkhalid2916
14 views21 Folien
Uni Systems for Power Platform.pptx von
Uni Systems for Power Platform.pptxUni Systems for Power Platform.pptx
Uni Systems for Power Platform.pptxUni Systems S.M.S.A.
50 views21 Folien
.conf Go 2023 - Data analysis as a routine von
.conf Go 2023 - Data analysis as a routine.conf Go 2023 - Data analysis as a routine
.conf Go 2023 - Data analysis as a routineSplunk
93 views12 Folien
Upskilling the Evolving Workforce with Digital Fluency for Tomorrow's Challen... von
Upskilling the Evolving Workforce with Digital Fluency for Tomorrow's Challen...Upskilling the Evolving Workforce with Digital Fluency for Tomorrow's Challen...
Upskilling the Evolving Workforce with Digital Fluency for Tomorrow's Challen...NUS-ISS
28 views70 Folien
handbook for web 3 adoption.pdf von
handbook for web 3 adoption.pdfhandbook for web 3 adoption.pdf
handbook for web 3 adoption.pdfLiveplex
19 views16 Folien
Emerging & Future Technology - How to Prepare for the Next 10 Years of Radica... von
Emerging & Future Technology - How to Prepare for the Next 10 Years of Radica...Emerging & Future Technology - How to Prepare for the Next 10 Years of Radica...
Emerging & Future Technology - How to Prepare for the Next 10 Years of Radica...NUS-ISS
16 views28 Folien

Último(20)

Black and White Modern Science Presentation.pptx von maryamkhalid2916
Black and White Modern Science Presentation.pptxBlack and White Modern Science Presentation.pptx
Black and White Modern Science Presentation.pptx
maryamkhalid291614 views
.conf Go 2023 - Data analysis as a routine von Splunk
.conf Go 2023 - Data analysis as a routine.conf Go 2023 - Data analysis as a routine
.conf Go 2023 - Data analysis as a routine
Splunk93 views
Upskilling the Evolving Workforce with Digital Fluency for Tomorrow's Challen... von NUS-ISS
Upskilling the Evolving Workforce with Digital Fluency for Tomorrow's Challen...Upskilling the Evolving Workforce with Digital Fluency for Tomorrow's Challen...
Upskilling the Evolving Workforce with Digital Fluency for Tomorrow's Challen...
NUS-ISS28 views
handbook for web 3 adoption.pdf von Liveplex
handbook for web 3 adoption.pdfhandbook for web 3 adoption.pdf
handbook for web 3 adoption.pdf
Liveplex19 views
Emerging & Future Technology - How to Prepare for the Next 10 Years of Radica... von NUS-ISS
Emerging & Future Technology - How to Prepare for the Next 10 Years of Radica...Emerging & Future Technology - How to Prepare for the Next 10 Years of Radica...
Emerging & Future Technology - How to Prepare for the Next 10 Years of Radica...
NUS-ISS16 views
Voice Logger - Telephony Integration Solution at Aegis von Nirmal Sharma
Voice Logger - Telephony Integration Solution at AegisVoice Logger - Telephony Integration Solution at Aegis
Voice Logger - Telephony Integration Solution at Aegis
Nirmal Sharma17 views
AI: mind, matter, meaning, metaphors, being, becoming, life values von Twain Liu 刘秋艳
AI: mind, matter, meaning, metaphors, being, becoming, life valuesAI: mind, matter, meaning, metaphors, being, becoming, life values
AI: mind, matter, meaning, metaphors, being, becoming, life values
Digital Product-Centric Enterprise and Enterprise Architecture - Tan Eng Tsze von NUS-ISS
Digital Product-Centric Enterprise and Enterprise Architecture - Tan Eng TszeDigital Product-Centric Enterprise and Enterprise Architecture - Tan Eng Tsze
Digital Product-Centric Enterprise and Enterprise Architecture - Tan Eng Tsze
NUS-ISS19 views
The Importance of Cybersecurity for Digital Transformation von NUS-ISS
The Importance of Cybersecurity for Digital TransformationThe Importance of Cybersecurity for Digital Transformation
The Importance of Cybersecurity for Digital Transformation
NUS-ISS27 views
Data-centric AI and the convergence of data and model engineering: opportunit... von Paolo Missier
Data-centric AI and the convergence of data and model engineering:opportunit...Data-centric AI and the convergence of data and model engineering:opportunit...
Data-centric AI and the convergence of data and model engineering: opportunit...
Paolo Missier34 views
PharoJS - Zürich Smalltalk Group Meetup November 2023 von Noury Bouraqadi
PharoJS - Zürich Smalltalk Group Meetup November 2023PharoJS - Zürich Smalltalk Group Meetup November 2023
PharoJS - Zürich Smalltalk Group Meetup November 2023
Noury Bouraqadi120 views
Attacking IoT Devices from a Web Perspective - Linux Day von Simone Onofri
Attacking IoT Devices from a Web Perspective - Linux Day Attacking IoT Devices from a Web Perspective - Linux Day
Attacking IoT Devices from a Web Perspective - Linux Day
Simone Onofri15 views
TouchLog: Finger Micro Gesture Recognition Using Photo-Reflective Sensors von sugiuralab
TouchLog: Finger Micro Gesture Recognition  Using Photo-Reflective SensorsTouchLog: Finger Micro Gesture Recognition  Using Photo-Reflective Sensors
TouchLog: Finger Micro Gesture Recognition Using Photo-Reflective Sensors
sugiuralab15 views
DALI Basics Course 2023 von Ivory Egg
DALI Basics Course  2023DALI Basics Course  2023
DALI Basics Course 2023
Ivory Egg14 views
Web Dev - 1 PPT.pdf von gdsczhcet
Web Dev - 1 PPT.pdfWeb Dev - 1 PPT.pdf
Web Dev - 1 PPT.pdf
gdsczhcet55 views

IPv4 adressing

  • 1. 1 © Cisco и/или Партнеры, 2016 г. Все права защищены. Конфиденциальная информация Cisco COMPUTER NETWORKS IPv4 Addressing
  • 2. 2 © Cisco и/или Партнеры, 2016 г. Все права защищены. Конфиденциальная информация Cisco Plan 1. IPv4 address structure 2. IPv4 unicast, broadcast, and multicast 3. Types of IPv4 addresses 4. Network segmentation 5. Dividing an IPv4 network into subnets
  • 3. 3 © Cisco и/или Партнеры, 2016 г. Все права защищены. Конфиденциальная информация Cisco 9.1 IPv4 address structure
  • 4. 4 © Cisco и/или Партнеры, 2016 г. Все права защищены. Конфиденциальная информация Cisco Network and host part • The IPv4 address is hierarchical and consists of a network part and a tail part. • When determining one or another part, it is necessary to pay attention not to the decimal value, but to the 32-bit record • The subnet mask is used to determine the network and host part of the address.
  • 5. 5 © Cisco и/или Партнеры, 2016 г. Все права защищены. Конфиденциальная информация Cisco Subnet Mask • To identify the network and node part of the IPv4 address, the subnet mask is bitwise compared with the IPv4 address from left to right. • The process itself used to determine the network and node parts of the address is called the logical operation And (AND).
  • 6. 6 © Cisco и/или Партнеры, 2016 г. Все права защищены. Конфиденциальная информация Cisco Prefix length • Prefix length is a less cumbersome method used to identify the subnet mask address. • The prefix length means the number of bits set to one (1) in the subnet mask. • Therefore, you need to count the number of bits in the subnet mask and put a slash before this value. Subnet mask 32-bit address Prefix Length 255.0.0.0 11111111.00000000.00000000.00000000 /8 255.255.0.0 11111111.11111111.00000000.00000000 /16 255.255.255.0 11111111.11111111.11111111.00000000 /24 255.255.255.128 11111111.1111111111111111.10000000 /25 255.255.255.192 11111111.11111111.1111111111.11000000 /26 255.255.255.224 11111111.11111111.11111111.11100000 /27 255.255.255.240 11111111.11111111.11111111.11110000 /28 255.255.255.248 11111111.11111111.11111111.11111000 /29 255.255.255.252 11111111.11111111.11111111.11111100 /30
  • 7. 7 © Cisco и/или Партнеры, 2016 г. Все права защищены. Конфиденциальная информация Cisco Network Definition: logical AND • The logical operation And is used to determine the network address. • Logical And is a comparison of two bits, where only 1 and 1 produces 1, and any other combination results in 0. • 1 And 1 = 1, 0 And 1 = 0, 1 And 0 = 0, 0 And 0 = 0 • 1 = True and 0 = False • In order to determine the network address of an IPv4 node, the logical operation AND is applied bitwise to the IPv4 address and subnet mask.
  • 8. 8 © Cisco и/или Партнеры, 2016 г. Все права защищены. Конфиденциальная информация Cisco Network address, host address and broadcast address Each network has three types of IP addresses: • Network address • Host address • Broadcast address Сетевая часть Раздел хоста Биты хоста Маска подсети 255.255.255.0 или /24 255 255 255 11111111 111111 1111 111111 0 00000000 Сетевой адрес 192.168.10.0 или /24 192 168 10 11000000 10100000 001010 0 00000000 Все 0 Первый адрес 192.168.10.1 или /24 192 168 10 11000000 10100000 001010 1 000001 Все 0 и 1 Последний адрес 192.168.10.254 или /24 192 168 10 11000000 10100000 001010 254 111111 Все 1 и 0 Широковещательный адрес 192.168.10.255 или /24 192 168 10 11000000 10100000 001010 255 111111 Все 1
  • 9. 9 © Cisco и/или Партнеры, 2016 г. Все права защищены. Конфиденциальная информация Cisco 9.2 IPv4 unicast, broadcast, and multicast
  • 10. 10 © Cisco и/или Партнеры, 2016 г. Все права защищены. Конфиденциальная информация Cisco Unicast transmission • Unicast sends a packet to a single destination IP address. • For example, computer 172.16.4.1 sends a unicast packet to the printer at 172.16.4.253.
  • 11. 11 © Cisco и/или Партнеры, 2016 г. Все права защищены. Конфиденциальная информация Cisco Broadcast transmission • The broadcast sends the packet to all other destination IP addresses. • For example, computer 172.16.4.1 sends a broadcast packet to all IPv4 nodes.
  • 12. 12 © Cisco и/или Партнеры, 2016 г. Все права защищены. Конфиденциальная информация Cisco Multicast transmission • Multicast sends a packet to a multicast address group. • For example, computer 172.16.4.1 sends a multicast packet to the multicast group address 224.10.10.5.
  • 13. 13 © Cisco и/или Партнеры, 2016 г. Все права защищены. Конфиденциальная информация Cisco 9.3 Types of IPv4 addresses
  • 14. 14 © Cisco и/или Партнеры, 2016 г. Все права защищены. Конфиденциальная информация Cisco Public and private IPv4 addresses • Public IPv4 addresses are addresses that are globally routed between Internet Service Provider (ISP) routers. • However, private addresses are not globally routable. • There are blocks of addresses called private addresses, which in most companies are assigned as IPv4 addresses of internal hosts. • Private IPv4 addresses are not unique and can be used on any internal network. Сетевой адрес и префикс Диапазон частных адресов RFC 1918 10.0.0.0/8 10.0.0.0 - 10.255.255.255 172.16.0.0/12 172.16.0.0 - 172.31.255.255 192.168.0.0/16 192.168.0.0 - 192.168.255.255
  • 15. 15 © Cisco и/или Партнеры, 2016 г. Все права защищены. Конфиденциальная информация Cisco Routing to the Internet • Network Address Translation (NAT) is used to convert a private IPv4 address to a public IPv4 address. • NAT is usually enabled on an edge router connected to the Internet. • Converts private IP addresses to public IP addresses.
  • 16. 16 © Cisco и/или Партнеры, 2016 г. Все права защищены. Конфиденциальная информация Cisco Special-purpose IPv4 addresses Loopback addresses • 127.0.0.0 /8 or from 127.0.0.1 to 127.255.255.254 • Usually identified only as 127.0.0.1 • Is used on the host to check the health of the TCP/IP configuration. Local channel addresses • 169.254.0.0 /16 or from 169.254.0.1 to 169.254.255.254 • More commonly known as Automatic Private IP addresses (APIPA). • Used by a Windows client for automatic configuration if there is no available DHCP server.
  • 17. 17 © Cisco и/или Партнеры, 2016 г. Все права защищены. Конфиденциальная информация Cisco Traditional class addressing RFC 790 (1981) allocated IPv4 addresses in classes • Class A (0.0.0.0/8 - 127.0.0.0/8 ) • Class B (128.0.0.0 /16 - 191.255.0.0 /16 ) • Class C (192.0.0.0 /24 - 223.255.255.0 /24 ) • Class D (224.0.0.0 - 239.0.0.0) • Class E (240.0.0.0 - 255.0.0.0) • Classical addressing has wasted a lot of IPv4 addresses. The class distribution of addresses has been replaced by classless addressing, which ignores the rules of classes (A, B, C).
  • 18. 18 © Cisco и/или Партнеры, 2016 г. Все права защищены. Конфиденциальная информация Cisco Assigning IP addresses • IANA manages blocks of IP addresses and distributes them among regional Internet Registrars (RIRs). • Regional Internet Registrars (LIRs) are responsible for distributing IP addresses between Internet Service Providers (ISPs), which, in turn, provide blocks of IPv4 addresses to organizations and smaller providers.
  • 19. 19 © Cisco и/или Партнеры, 2016 г. Все права защищены. Конфиденциальная информация Cisco 9.4 Network segmentation
  • 20. 20 © Cisco и/или Партнеры, 2016 г. Все права защищены. Конфиденциальная информация Cisco Network Segmentation Broadcast Domains • Many protocols use broadcast or multicast (for example, ARP uses broadcasts to search for other devices, hosts send DHCP broadcasts to search for a DHCP server). • Switches broadcast to all interfaces, except for the interface through which the newsletter was received. • The only device stopping broadcasts is the router. • Routers do not broadcast. • Thus, each router interface is connected to a broadcast domain, and broadcasts are carried out only within a specific distribution domain.
  • 21. 21 © Cisco и/или Партнеры, 2016 г. Все права защищены. Конфиденциальная информация Cisco Problems with large broadcast domains • The problem with a large broadcast domain is as follows: nodes can generate excessive mailing and negatively affect the operation of the network. • To solve this problem, it is necessary to reduce the size of the network by creating smaller broadcast domains. • This process is called subnet partitioning.400 LAN 1 users with the network address 172.16.0.0 /16 were divided into two subnets of 200 users each — 172.16.0.0 /24 and 172.16.1.0/24. • Mailing is limited to small broadcast domains.
  • 22. 22 © Cisco и/или Партнеры, 2016 г. Все права защищены. Конфиденциальная информация Cisco Reasons for partitioning into subnets • Subnetting reduces the total amount of network traffic and improves network performance. • It can be used to implement security policies between subnets. • The subnet reduces the number of devices affected by abnormal broadcast traffic. • Subnets are used for a variety of reasons, including: Местоположение Группа или функция Тип устройства
  • 23. 23 © Cisco и/или Партнеры, 2016 г. Все права защищены. Конфиденциальная информация Cisco 9.5 IPv4 network subnet
  • 24. 24 © Cisco и/или Партнеры, 2016 г. Все права защищены. Конфиденциальная информация Cisco Partitioning into subnets at the octet boundary • The separation of networks is easiest to perform at the boundaries of octets /8, /16 and /24. • Note that increasing the prefix length reduces the number of nodes in each subnet. Prefix length Subnet mask Subnet mask in binary system (n = network, h = host) Number of hosts /8 255.0.0.0 nnnnnnnn.hhhhhhhh.hhhhhhhh.hhhhhhhh 11111111.00000000.00000000.00000000 16 777 214 /16 255.255.0.0 nnnnnnnn.nnnnnnnn.hhhhhhhh.hhhhhhhh 11111111.11111111.00000000.00000000 65 534 /24 255.255.255.0 nnnnnnnn.nnnnnnnn.nnnnnnnn.hhhhhhhh 11111111.11111111.11111111.00000000 254
  • 25. 25 © Cisco и/или Партнеры, 2016 г. Все права защищены. Конфиденциальная информация Cisco • In the first table 10.0.0.0/8, the subnet uses /16, and in the second table, the mask /24. Subnet address (256 possible subnets) Host range (65,534 possible hosts in each subnet) Broadcast distribution 10,0.0,0/16 10,0.0.1 - 10,0.255,254 10,0.255,255 10.1.0,0/16 10.1.0.1 - 10,1.255,254 10.1.255,255 10,2.0,0/16 10,2.0.1 - 10,2.255,254 10,2.255,255 10,3.0,0/16 10.3.0.1 - 10.3.255.254 10.3.255.255. 10.4.0.0/16 10.4.0.1 - 10,4.255.254 10.4.255.255 10.5.0.0/16 10.5.0.1 - 10.5.255.254 10.5.255.255 10.6.0.0/16 10.6.0.1 - 10.6.255.254 10.6.255.255 10.7.0.0/16 107.0.1 - 10.7.255.254 10.7.255.255 ... ... ... 10.255.0.0/16 10.255.0.1 - 10.255.255.254 10.255.255.255 Subnet address (65,536 possible subnets) Node range (254 possible nodes in each subnet) Broadcast distribution 10.0.0.0/24 10.0.0.1 - 10.0.0.254 10.0.0.255 10.0.1.0/24 10.0.1 - 10.0.1.254 10.0.1.255 10.0.2.0/24 10.0.2.1 - 10.0.2.254 10.0.2.255 … … … 10.0.255.0/24 10.0.255.1 - 10.0.255.254 10.0.255.255 10.1.0.0/24 10.1.0.1 - 10.1.0.254 10.1.0.255 10.1.1.0/24 10.1.1.1 - 10.1.1.254 10.1.1.255 10.1.2.0/24 10.1.2.1 - 10.1.2.254 10.1.2.255 … … … 10.100.0.0/24 10.100.0.1 - 10.100.0.254 10.100.0.255 ... ... ... 10.255.255.0/24 10.255.255.1 - 10.2255.255.254 10.255.255.255
  • 26. 26 © Cisco и/или Партнеры, 2016 г. Все права защищены. Конфиденциальная информация Cisco Partitioning into subnets at the octet boundary • See the table to see the six ways to subnet a /24 network. Prefix length Subnet mask Subnet mask in binary system (c = network, y = node) Number of subnets Number of hosts /25 255.255.255.128 nnnnnnnn.nnnnnnnn.nnnnnnnn.nhhhhhhh 11111111.11111111.11111111. 10000000 2 126 /26 255.255.255.192 nnnnnnnn.nnnnnnnn.nnnnnnnn.nnhhhhhh 11111111.11111111.11111111. 11000000 4 62 /27 255.255.255.224 nnnnnnnn.nnnnnnnn.nnnnnnnn.nnnhhhhh 11111111.11111111.11111111. 11100000 8 30 /28 255.255.255.240 nnnnnnnn.nnnnnnnn.nnnnnnnn.nnnnhhhh 11111111.11111111.11111111. 11110000 16 14 /29 255.255.255.248 nnnnnnnn.nnnnnnnn.nnnnnnnn.nnnnnhhh 11111111.11111111.11111111. 11111000 32 6 /30 255.255.255.252 nnnnnnnn.nnnnnnnn.nnnnnnnn.nnnnnnhh 11111111.11111111.11111111. 11111100 64 2
  • 27. 27 © Cisco и/или Партнеры, 2016 г. Все права защищены. Конфиденциальная информация Cisco 9.6 Subnet: /16 and /8
  • 28. 28 © Cisco и/или Партнеры, 2016 г. Все права защищены. Конфиденциальная информация Cisco Creating subnets with the prefix /16 The table in the figure shows all possible scenarios of partitioning into subnets with the prefix /16. Prefix length Subnet mask Network address (c = network, x = host) Number of subnets Number of hosts /17 255.255.128,0 nnnnnnnn.nnnnnnnn.nhhhhhhh.hhhhhhhh 11111111.11111111. 100000000000000 2 32766 /18 255.255.192,0 nnnnnnnn.nnnnnnnn.nnhhhhhh.hhhhhhhh 11111111.11111111. 1100000000000000 4 16382 /19 255.255.224.0 nnnnnnnn.nnnnnnnn.nnnhhhhh.hhhhhhhh 11111111.11111111. 111000000000000 8 8 190 /20 255.255.240,0 nnnnnnnn.nnnnnnnn.nnnnhhhh.hhhhhhhh 11111111.11111111. 1111000000000000 16 4 094 /21 255.255.248,0 nnnnnnnn.nnnnnnnn.nnnnnhhh.hhhhhhhh 11111111.11111111. 11111000,00000000 32 2 046 /22 255.255.252.0 нннннннннннннннннн. ннннннххххххххххх 111111111111.11111100.00000000 64 1 022 /23 255.255.254.0 нннннннннннннннннн. нннннннх.хххххххх 11111111.111111. 11111110,00000000 128 510 /24 255.255.255.0 нннннннннннннннннн. нннннннн.хххххх 11111111.11111111. 1111111111.00000000 256 254 /25 255.255.255.128 нннннннннннннннннн. ннннннннн.нхххххх 1111111111.111111. 11111111.10000000 512 126 /26 255.255.255.192 nnnnnnnn.nnnnnnnn.nnnnnnnn.nnhhhhhh 11111111.11111111. 11111111.11000000 1024 62 /27 255.255.255.224 нннннннннннннннннн. ннннннннннххххх 11111111.11111111. 11111111.11100000 2048 30 /28 255.255.255. 240 нннннннннннннннннн. ннннннннннннчччх 11111111.11111111. 11111111.11110000 4 096 14 /29 255.255.255.248 нннннннннннннннннн. ннннннннннннчччч 11111111.11111111. 11111111.11111000 8 192 6 /30 255.255.255.252 нннннннннннннннннн. нннннннннннннч 1111111111.11111111. 11111111.111100 16 384 2
  • 29. 29 © Cisco и/или Партнеры, 2016 г. Все права защищены. Конфиденциальная информация Cisco Creating subnets with the prefix /16 Consider a large enterprise that needs at least 100 subnets, and which has chosen the private address 172.16.0.0/16 as the internal network address. • The figure shows the number of subnets that can be created by borrowing bits from the third and fourth octets. • Note that there are now up to 14 host bits that can be borrowed (that is, the last two bits cannot be borrowed). To meet the needs of the enterprise, you will need to borrow 7 bits (that is, 27 = 128 subnets), as shown in the figure.
  • 30. 30 © Cisco и/или Партнеры, 2016 г. Все права защищены. Конфиденциальная информация Cisco Creating subnets with the prefix /16 Consider a small ISP that requires 1000 subnets for its clients using a network address of 10.0.0.0/8, which means that there are 8 bits in the network part and 24 bits of the node are available to borrow for subnets. • The figure shows the number of subnets that can be created by borrowing bits from the third and fourth octets. • Note that there are now up to 22 host bits that can be borrowed (that is, the last two bits cannot be borrowed). To fulfill the requirement of 1000 subnets for an enterprise, it is necessary to borrow 10 bits (i.e. 210= 1024 subnets) (a total of 128 subnets)
  • 31. 31 © Cisco и/или Партнеры, 2016 г. Все права защищены. Конфиденциальная информация Cisco 9.7 Partitioning into subnets to meet the requirements
  • 32. 32 © Cisco и/или Партнеры, 2016 г. Все права защищены. Конфиденциальная информация Cisco Private and public IPv4 address space subnets Corporate networks • Intranet - The company's internal network usually uses private IPv4 addresses. • DMZ companies, Internet—facing servers. Devices in the DMZ use public IPv4 addresses. • The company can use 10.0.0.0/8 and a subnet on the /16 or /24 network boundary. • DMZ devices must be configured with public IP addresses.
  • 33. 33 © Cisco и/или Партнеры, 2016 г. Все права защищены. Конфиденциальная информация Cisco Minimizing unused IPv4 node addresses and maximizing subnets There are two parameters to consider when planning subnets. • The required number of node addresses in each network • Required number of subnets Длина префикса Маска подсети Маска подсети в двоичной системе (с = сеть, у = узел) Количеств о подсетей Количест во узлов /25 255.255.255.128 nnnnnnnn.nnnnnnnn.nnnnnnnn.nhhhhhhh 11111111.11111111.11111111. 10000000 2 126 /26 255.255.255.192 nnnnnnnn.nnnnnnnn.nnnnnnnn.nnhhhhhh 11111111.11111111.11111111. 11000000 4 62 /27 255.255.255.224 nnnnnnnn.nnnnnnnn.nnnnnnnn.nnnhhhhh 11111111.11111111.11111111. 11100000 8 30 /28 255.255.255.240 nnnnnnnn.nnnnnnnn.nnnnnnnn.nnnnhhhh 11111111.11111111.11111111. 11110000 16 14 /29 255.255.255.248 nnnnnnnn.nnnnnnnn.nnnnnnnn.nnnnnhhh 11111111.11111111.11111111. 11111000 32 6 /30 255.255.255.252 nnnnnnnn.nnnnnnnn.nnnnnnnn.nnnnnnhh 11111111.11111111.11111111. 11111100 64 2
  • 34. 34 © Cisco и/или Партнеры, 2016 г. Все права защищены. Конфиденциальная информация Cisco Подсеть, удовлетворяющая требованиям Example: effective subnetting of an IPv4 network • In this example, the telecom operator's headquarters allocated the private network address 172.16.0.0/22 (10 bits in the node part) for the branch. • There are five sites, and therefore five internet connections, which means that the organization requires 10 subnets with the largest subnet requiring 40 addresses. • He allocated 10 subnets with subnet mask /26 (i.e. 255.255.255.192).
  • 35. 35 © Cisco и/или Партнеры, 2016 г. Все права защищены. Конфиденциальная информация Cisco 9.8 VLSM
  • 36. 36 © Cisco и/или Партнеры, 2016 г. Все права защищены. Конфиденциальная информация Cisco Saving IPv4 addresses Given the topology, 7 subnets are required (i.e. four local area networks and three WAN channels), and the largest number of nodes is in Building D with 28 nodes. The /27 mask provides 8 subnets across 30 node IP addresses and therefore supports this topology.
  • 37. 37 © Cisco и/или Партнеры, 2016 г. Все права защищены. Конфиденциальная информация Cisco Saving IPv4 addresses However, point-to-point WAN communication requires only two addresses and therefore loses 28 addresses each for a total of 84 unused addresses. • The use of a traditional subnet partitioning scheme in such a scenario is not effective and implies an inappropriate expenditure of resources. • VLSM was designed to avoid address loss by allowing us to divide subnets into subnets.
  • 38. 38 © Cisco и/или Партнеры, 2016 г. Все права защищены. Конфиденциальная информация Cisco VLSM • The left side displays the traditional subnet scheme (i.e. the same subnet mask), and the right side shows how VLSM can be used to subnetwork one of the subnets. • When using VLSM, always start by meeting the requirements for the node of the largest subnet and continue creating subnets until the requirements for the node of the smallest subnet are met. • The resulting topology using VLSM.
  • 39. 39 © Cisco и/или Партнеры, 2016 г. Все права защищены. Конфиденциальная информация Cisco Assigning VLSM topology addresses • Using VLSM subnets, network addressing for local networks and communication channels between routers can be created without unnecessary losses, as shown in the logical topology diagram.
  • 40. 40 © Cisco и/или Партнеры, 2016 г. Все права защищены. Конфиденциальная информация Cisco 9.9. Structured design
  • 41. 41 © Cisco и/или Партнеры, 2016 г. Все права защищены. Конфиденциальная информация Cisco Network addressing planning IP network planning is critical to developing a scalable solution for an enterprise network. • To develop an addressing scheme for an IPv4 network, you need to know how many subnets are needed, how many nodes are required for a particular subnet, which devices are part of the subnet, which networks use private addresses, which use public addresses, and many other determining factors. When planning subnets, it is necessary to take into account the requirements of the organization for the use of the network and the intended structure of subnets. • Perform a network requirements study by examining the entire network to determine how each area will be segmented. • Determine the number of available node addresses and the number of subnets needed. • Define DHCP address pools and VLAN pools.
  • 42. 42 © Cisco и/или Партнеры, 2016 г. Все права защищены. Конфиденциальная информация Cisco Структурированное проектирование Назначение адресов устройств There are various types of devices on the network that need addresses, including the following: • End users — most of them use DHCP to reduce the number of errors and the burden on the network support staff. IPv6 clients can obtain address information using DHCPv6 or SLAAC. • Servers and peripherals - They must have a predictable static IP address. • Servers accessible from the Internet — Servers must have a public IPv4 address, which is most often accessed using NAT. • Intermediate devices - Addresses are assigned to such devices for network management, monitoring and security. • Gateway - Routers and firewall devices are the gateway for nodes in this network. When designing an IP addressing scheme, it is usually recommended to use a ready- made template for assigning addresses to each type of device.
  • 43. 43 © Cisco и/или Партнеры, 2016 г. Все права защищены. Конфиденциальная информация Cisco New terms and commands • prefix length • logical AND • network address • broadcast address • first usable address • last usable address • unicast, broadcast, and multicast transmissions • private addresses • public addresses • Network Address Translation (NAT) • loopback addresses • Automatic Private IP Addressing (APIPA) addresses • classful addressing (Class A, B, C, D, and E) Internet Assigned Numbers Authority (IANA) Regional Internet Registries (RIRs) AfriNIC, APNIC, ARIN, LACNIC, and RIPE NCC broadcast domains subnets octet boundary variable-length subnet mask (VLSM)