SlideShare ist ein Scribd-Unternehmen logo
1 von 28
Load Flow Analysis
Part- II
Prepared by – A. L. Jamadar
1
NR Application to Power Flow
*
* * *
1 1
We first need to rewrite complex power equations
as equations with real coefficients (we've seen this earlier):
These can be derived by defining
n n
i i i i ik k i ik k
k k
ik ik ik
i
S V I V Y V V Y V
Y G jB
V
 
 
   
 

 
@
Recall e cos sin
ij
i i i
ik i k
j
V e V
j



  
 
 

 
@
@
2
Real Power Balance Equations
* *
1 1
1
1
1
( )
(cos sin )( )
Resolving into the real and imaginary parts:
( cos sin )
( sin
ik
n n
j
i i i i ik k i k ik ik
k k
n
i k ik ik ik ik
k
n
i Gi Di i k ik ik ik ik
k
n
i Gi Di i k ik ik
k
S P jQ V Y V V V e G jB
V V j G jB
P P P V V G B
Q Q Q V V G

 
 

 



    
  
   
  
 


 cos )ik ikB 
3
Newton-Raphson Power Flow
In the Newton-Raphson power flow we use Newton's
method to determine the voltage magnitude and angle at
each bus in the power system that satisfies power balance.
We need to solve the power balance equ
1
1
ations:
( cos sin ) 0
( sin cos ) 0
n
i k ik ik ik ik Gi Di
k
n
i k ik ik ik ik Gi Di
k
V V G B P P
V V G B Q Q
 
 


   
   


4
Power Balance Equations
•5
1
1
For convenience, write:
( ) ( cos sin )
( ) ( sin cos )
The power balance equations are then:
( ) 0
( ) 0
n
i i k ik ik ik ik
k
n
i i k ik ik ik ik
k
i Gi Di
i Gi Di
P V V G B
Q V V G B
P P P
Q Q Q
 
 


 
 
  
  


x
x
x
x
Power Balance Equations
• Note that Pi( ) and Qi( ) mean the functions
that expresses flow from bus i into the system
in terms of voltage magnitudes and angles,
• While PGi, PDi, QGi, QDi mean the generations
and demand at the bus.
• For a system with a slack bus and the rest PQ
buses, power flow problem is to use the power
balance equations to solve for the unknown
voltage magnitudes and angles in terms of the
given bus generations and demands, and then
use solution to calculate the real and reactive
injection at the slack bus. •6
Power Flow Variables
2
n
2
Assume the slack bus is the first bus (with a fixed
voltage angle/magnitude). We then need to determine
the voltage angle/magnitude at the other buses.
We must solve ( ) , where:
n
V
V









f x 0
x
M
M
2 2 2
2 2 2
( )
( )
( )
( )
( )
G D
n Gn Dn
G D
n Gn Dn
P P P
P P P
Q Q Q
Q Q Q
   
  
  
   
    
   
   
     
x
x
f x
x
x
M
M
7
N-R Power Flow Solution
(0)
( )
( 1) ( ) ( ) 1 ( )
The power flow is solved using the same procedure
discussed previously for general equations:
For 0; make an initial guess of ,
While ( ) Do
[ ( )] ( )
1
End
v
v v v v
v
v v

 


 
 
x x
f x
x x J x f x
8
Power Flow Jacobian Matrix
1 1 1
1 2 2 2
2 2 2
1 2 2 2
2 2 2 2 2 2
1 2
The most difficult part of the algorithm is determining
and factorizing the Jacobian matrix, ( )
( ) ( ) ( )
( ) ( ) ( )
( )
( ) ( )
n
n
n n n
f f f
x x x
f f f
x x x
f f f
x x x


  
  
  
  
  
  
  
J x
x x x
x x x
J x
x x
L
L
M O O M
L
2 2
( )
n
 
 
 
 
 
 
 
 
 
 
x
9
Power Flow Jacobian Matrix, cont’d
1
Jacobian elements are calculated by differentiating
each function, ( ), with respect to each variable.
For example, if ( ) is the bus real power equation
( ) ( cos sin )
i
i
n
i i k ik ik ik ik Gi
k
f x
f x i
f x V V G B P P 

   
1
( ) ( sin cos )
( ) ( sin cos ) ( )
Di
n
i
i k ik ik ik ik
i k
k i
i
i j ij ij ij ij
j
f
x V V G B
f
x V V G B j i
 

 




  


  


10
Two Bus Newton-Raphson Example
Line Z = 0.1j
One Two1.000 pu 1.000 pu
200 MW
100 MVR
0 MW
0 MVR
For the two bus power system shown below, use the
Newton-Raphson power flow to determine the
voltage magnitude and angle at bus two. Assume
that bus one is the slack and SBase = 100 MVA.
2
2
10 10
Unkown: , Also,
10 10
bus
j j
V j j
    
      
x Y
11
Two Bus Example, cont’d
1
1
General power balance equations:
( cos sin ) 0
( sin cos ) 0
For bus two, the power balance equations are
(load real power is 2.0 per unit,
while react
n
i k ik ik ik ik Gi Di
k
n
i k ik ik ik ik Gi Di
k
V V G B P P
V V G B Q Q
 
 


   
   


2 1 2
2
2 1 2 2
ive power is 1.0 per unit):
(10sin ) 2.0 0
( 10cos ) (10) 1.0 0
V V
V V V


 
    12
Two Bus Example, cont’d
2 2 2
2
2 2 2 2
2 2
2 2
2 2
2 2
2 2 2
2 2 2 2
( ) 2.0 (10sin ) 2.0
( ) 1.0 ( 10cos ) (10) 1.0
Now calculate the power flow Jacobian
( ) ( )
( )
( ) ( )
10 cos 10sin
10 sin 10cos 20
P V
Q V V
P P
x x
V
Q Q
x x
V
V
V V




 
 
  
    
  
  
 
  
   
 
    
x
x
J x
13
Two Bus Example, First Iteration
(0)
2(0)
(0)
2
(0) (0)
2 2
(0)
2(0) (0) (0)
2 2 2
(0) (0) (0)
2 2 2(0)
(0) (0)
2 2
0
For 0, guess . Calculate:
1
(10sin ) 2.0 2.0
( )
1.0( 10cos ) (10) 1.0
10 cos 10sin
( )
10 sin 10cos
v
V
V
V V
V
V



 

   
     
   
 
           


x
f x
J x
(0) (0)
2 2
1
(1)
10 0
0 1020
0 10 0 2.0 0.2
Solve
1 0 10 1.0 0.9
V

 
         
       
         
       
x
14
Two Bus Example, Next Iterations
(1)
2
(1)
1
(2)
0.9(10sin( 0.2)) 2.0 0.212
( )
0.2790.9( 10cos( 0.2)) 0.9 10 1.0
8.82 1.986
( )
1.788 8.199
0.2 8.82 1.986 0.212 0.233
0.9 1.788 8.199 0.279 0.8586
(

    
           
 
   
         
                
f x
J x
x
f (2) (3)
(3)
2
0.0145 0.236
)
0.0190 0.8554
0.0000906
( ) Close enough! 0.8554 13.52
0.0001175
V
   
    
   
 
     
 
x x
f x
15
Two Bus Solved Values
Line Z = 0.1j
One Two1.000 pu 0.855 pu
200 MW
100 MVR
200.0 MW
168.3 MVR
-13.522 Deg
200.0 MW
168.3 MVR
-200.0 MW
-100.0 MVR
Once the voltage angle and magnitude at bus 2 are
known we can calculate all the other system values,
such as the line flows and the generator real and
reactive power output
16
Two Bus Case Low Voltage Solution
(0)
(0) (0)
2 2
(0)
(0) (0) (0
2 2 2
This case actually has two solutions! The second
"low voltage" is found by using a low initial guess.
0
Set 0, guess . Calculate:
0.25
(10sin ) 2.0
( )
( 10cos )
v
V
V V


 
   
 


 
x
f x 2)
(0) (0) (0)
2 2 2(0)
(0) (0) (0) (0)
2 2 2 2
2
0.875(10) 1.0
10 cos 10sin 2.5 0
( )
0 510 sin 10cos 20
V
V V
 
 
 
         
 
          
J x
17
Low Voltage Solution, cont'd
1
(1)
(2) (2) (3)
0 2.5 0 2 0.8
Solve
0.25 0 5 0.875 0.075
1.462 1.42 0.921
( )
0.534 0.2336 0.220

       
                 
      
       
     
x
f x x x
Line Z = 0.1j
One Two1.000 pu 0.261 pu
200 MW
100 MVR
200.0 MW
831.7 MVR
-49.914 Deg
200.0 MW
831.7 MVR
-200.0 MW
-100.0 MVR
Low voltage solution
18
Two Bus Region of Convergence
Graph shows the region of convergence for different initial
guesses of bus 2 angle (horizontal axis) and magnitude
(vertical axis).
Red region
converges
to the high
voltage
solution,
while the
yellow region
converges
to the low
voltage
solution
Maximum
of 15
iterations19
PV Buses
Since the voltage magnitude at PV buses is fixed
there is no need to explicitly include these
voltages in x nor explicitly include the reactive
power balance equations at the PV buses:
– the reactive power output of the generator varies to
maintain the fixed terminal voltage (within limits), so
we can just use the solved voltages and angles to
calculate the reactive power production to be
whatever is needed to satisfy reactive power balance.
– An alternative is to keep the reactive power balance
equation explicit but also write an explicit voltage
constraint for the generator bus:
|Vi | – Vi setpoint = 0 20
Three Bus PV Case Example
Line Z = 0.1j
Line Z = 0.1j Line Z = 0.1j
One Two1.000 pu
0.941 pu
200 MW
100 MVR
170.0 MW
68.2 MVR
-7.469 Deg
Three 1.000 pu
30 MW
63 MVR
2 2 2
3 3 3
2 2 2
For this three bus case we have
( )
( ) ( ) 0
( )
D
G
D
P P
P P
V Q Q


   
      
   
     
x
x f x x
x
21
PV Buses
• With Newton-Raphson, PV buses means that
there are less unknown variables we need to
calculate explicitly and less equations we need
to satisfy explicitly.
• Reactive power balance is satisfied implicitly by
choosing reactive power production to be
whatever is needed, once we have a solved case
(like real and reactive power at the slack bus).
• Contrast to Gauss iterations where PV buses
complicated the algorithm. 22
Modeling Voltage Dependent Load
So far we've assumed that the load is independent of
the bus voltage (i.e., constant power). However, the
power flow can be easily extended to include voltage
dependence with both the real and reactive
1
1
load. This
is done by making and a function of :
( cos sin ) ( ) 0
( sin cos ) ( ) 0
Di Di i
n
i k ik ik ik ik Gi Di i
k
n
i k ik ik ik ik Gi Di i
k
P Q V
V V G B P P V
V V G B Q Q V
 
 


   
   


23
Voltage Dependent Load Example
2 2
2 2 2 2 2
2 2 2
2 2 2 2 2 2
In previous two bus example now assume the load is
constant impedance, with corresponding per unit
admittance of 2.0 1.0:
( ) 2.0 (10sin ) 2.0 0
( ) 1.0 ( 10cos ) (10) 1.0 0
Now
j
P V V V
Q V V V V



   
     
x
x
2 2 2 2
2 2 2 2 2
calculate the power flow Jacobian
10 cos 10sin 4.0
( )
10 sin 10cos 20 2.0
V V
V V V
 
 
 
     
J x
24
Voltage Dependent Load, cont'd
(0)
2(0)
(0)
2
2(0) (0) (0)
2 2 2(0)
2 2(0) (0) (0) (0)
2 2 2 2
(0)
(1)
0
Again for 0, guess . Calculate:
1
(10sin ) 2.0 2.0
( )
1.0
( 10cos ) (10) 1.0
10 4
( )
0 12
0
Solve
1
v
V
V V
V V V



   
     
   
              
 
  
 

 

x
f x
J x
x
1
10 4 2.0 0.1667
0 12 1.0 0.9167

      
       
      
25
Voltage Dependent Load, cont'd
Line Z = 0.1j
One Two1.000 pu
0.894 pu
160 MW
80 MVR
160.0 MW
120.0 MVR
-10.304 Deg
160.0 MW
120.0 MVR
-160.0 MW
-80.0 MVR
With constant impedance load the MW/MVAr load at
bus 2 varies with the square of the bus 2 voltage
magnitude. This if the voltage level is less than 1.0,
the load is lower than 200/100 MW/MVAr.
26
More generally, load can be modeled as the sum of:
constant power, constant impedance, and, in some cases,
constant current load terms: “ZIP” load.
Solving Large Power Systems
Most difficult computational task is inverting the
Jacobian matrix (or solving the update equation):
– factorizing a full matrix is an order n3 operation, meaning
the amount of computation increases with the cube of
the size of the problem.
– this amount of computation can be decreased
substantially by recognizing that since Ybus is a sparse
matrix, the Jacobian is also a sparse matrix.
– using sparse matrix methods results in a computational
order of about n1.5.
– this is a substantial savings when solving systems with
tens of thousands of buses. 27
Newton-Raphson Power Flow
 Advantages
– fast convergence as long as initial guess is close to
solution
– large region of convergence
 Disadvantages
– each iteration takes much longer than a Gauss-Seidel
iteration
– more complicated to code, particularly when
implementing sparse matrix algorithms
 Newton-Raphson algorithm is very common in
power flow analysis.
28

Weitere ähnliche Inhalte

Was ist angesagt?

Unit 1 Power System Stability
Unit 1 Power System Stability Unit 1 Power System Stability
Unit 1 Power System Stability SANTOSH GADEKAR
 
Load forecasting
Load forecastingLoad forecasting
Load forecastingsushrut p
 
power quality conditioners
power quality conditionerspower quality conditioners
power quality conditionersmamodiya
 
Unit 4 Automatic Generation Control
Unit 4 Automatic Generation ControlUnit 4 Automatic Generation Control
Unit 4 Automatic Generation ControlSANTOSH GADEKAR
 
POWER QUALITY ISSUE WITH GRID CONNECTED WIND ENERGY SYSTRM
POWER QUALITY ISSUE WITH GRID CONNECTED WIND ENERGY SYSTRMPOWER QUALITY ISSUE WITH GRID CONNECTED WIND ENERGY SYSTRM
POWER QUALITY ISSUE WITH GRID CONNECTED WIND ENERGY SYSTRMRavijesh Kumar
 
Electrical transmission line
Electrical transmission lineElectrical transmission line
Electrical transmission lineDhananjay Jha
 
Load flow study
Load flow studyLoad flow study
Load flow studyf s
 
Gauss Siedel method of Load Flow
Gauss Siedel method of Load FlowGauss Siedel method of Load Flow
Gauss Siedel method of Load FlowAbdul Azeem
 
Reactive power compensation
Reactive power compensationReactive power compensation
Reactive power compensationVikas Saini
 
Power Flow in a Transmission line
Power Flow in a Transmission linePower Flow in a Transmission line
Power Flow in a Transmission lineAyyarao T S L V
 
Power Factor Improvement
Power Factor ImprovementPower Factor Improvement
Power Factor ImprovementArijitDhali
 
Economic load dispatch
Economic load  dispatchEconomic load  dispatch
Economic load dispatchDeepak John
 

Was ist angesagt? (20)

CURRENT LIMITING REACTORS
CURRENT  LIMITING  REACTORSCURRENT  LIMITING  REACTORS
CURRENT LIMITING REACTORS
 
load flow 1
 load flow 1 load flow 1
load flow 1
 
Unit 1 Power System Stability
Unit 1 Power System Stability Unit 1 Power System Stability
Unit 1 Power System Stability
 
MTDC SYSTEMS
MTDC SYSTEMSMTDC SYSTEMS
MTDC SYSTEMS
 
Load forecasting
Load forecastingLoad forecasting
Load forecasting
 
Load flow study
Load flow studyLoad flow study
Load flow study
 
Gauss seidel method
Gauss seidel methodGauss seidel method
Gauss seidel method
 
power quality conditioners
power quality conditionerspower quality conditioners
power quality conditioners
 
Unit 4 Automatic Generation Control
Unit 4 Automatic Generation ControlUnit 4 Automatic Generation Control
Unit 4 Automatic Generation Control
 
Power system security
Power system security Power system security
Power system security
 
POWER QUALITY ISSUE WITH GRID CONNECTED WIND ENERGY SYSTRM
POWER QUALITY ISSUE WITH GRID CONNECTED WIND ENERGY SYSTRMPOWER QUALITY ISSUE WITH GRID CONNECTED WIND ENERGY SYSTRM
POWER QUALITY ISSUE WITH GRID CONNECTED WIND ENERGY SYSTRM
 
Electrical transmission line
Electrical transmission lineElectrical transmission line
Electrical transmission line
 
Load flow study
Load flow studyLoad flow study
Load flow study
 
Gauss Siedel method of Load Flow
Gauss Siedel method of Load FlowGauss Siedel method of Load Flow
Gauss Siedel method of Load Flow
 
Reactive power
Reactive powerReactive power
Reactive power
 
Chapter 06 - Generation of High Direct Current Voltages
Chapter 06 - Generation of High Direct Current VoltagesChapter 06 - Generation of High Direct Current Voltages
Chapter 06 - Generation of High Direct Current Voltages
 
Reactive power compensation
Reactive power compensationReactive power compensation
Reactive power compensation
 
Power Flow in a Transmission line
Power Flow in a Transmission linePower Flow in a Transmission line
Power Flow in a Transmission line
 
Power Factor Improvement
Power Factor ImprovementPower Factor Improvement
Power Factor Improvement
 
Economic load dispatch
Economic load  dispatchEconomic load  dispatch
Economic load dispatch
 

Ähnlich wie Load flow study Part-II

Newton raphson method
Newton raphson methodNewton raphson method
Newton raphson methodNazrul Kabir
 
NR-Power Flow.pdf
NR-Power Flow.pdfNR-Power Flow.pdf
NR-Power Flow.pdfLucasMogaka
 
Stability with analysis and psa and load flow.ppt
Stability with analysis and psa and load flow.pptStability with analysis and psa and load flow.ppt
Stability with analysis and psa and load flow.pptZahid Yousaf
 
Electronics and communication engineering_Lect14.ppt
Electronics and communication engineering_Lect14.pptElectronics and communication engineering_Lect14.ppt
Electronics and communication engineering_Lect14.pptmuhammadzaid733820
 
ECEN615_Fall2020_Lect4.pptx
ECEN615_Fall2020_Lect4.pptxECEN615_Fall2020_Lect4.pptx
ECEN615_Fall2020_Lect4.pptxPrasenjitDey49
 
Load flow study Part-I
Load flow study Part-ILoad flow study Part-I
Load flow study Part-IAsif Jamadar
 
UNIT-III complex reactive three phase.ppt
UNIT-III complex reactive three phase.pptUNIT-III complex reactive three phase.ppt
UNIT-III complex reactive three phase.pptAbinaya Saraswathy T
 
about power system operation and control13197214.ppt
about power system operation and control13197214.pptabout power system operation and control13197214.ppt
about power system operation and control13197214.pptMohammedAhmed66819
 
ECE476_2016_Lect 12.pptx
ECE476_2016_Lect 12.pptxECE476_2016_Lect 12.pptx
ECE476_2016_Lect 12.pptxAhmed359095
 
Newton Raphson method for load flow analysis
Newton Raphson method for load flow analysisNewton Raphson method for load flow analysis
Newton Raphson method for load flow analysisdivyanshuprakashrock
 
Vlsi DEsign with buck-boost converter using Matlab Simulink software.ppt
Vlsi DEsign with buck-boost converter using Matlab Simulink software.pptVlsi DEsign with buck-boost converter using Matlab Simulink software.ppt
Vlsi DEsign with buck-boost converter using Matlab Simulink software.pptNikhilKumarJaiswal2
 

Ähnlich wie Load flow study Part-II (20)

Newton raphson method
Newton raphson methodNewton raphson method
Newton raphson method
 
NR-Power Flow.pdf
NR-Power Flow.pdfNR-Power Flow.pdf
NR-Power Flow.pdf
 
Lecture 12
Lecture 12Lecture 12
Lecture 12
 
Stability with analysis and psa and load flow.ppt
Stability with analysis and psa and load flow.pptStability with analysis and psa and load flow.ppt
Stability with analysis and psa and load flow.ppt
 
ECE4762011_Lect14.ppt
ECE4762011_Lect14.pptECE4762011_Lect14.ppt
ECE4762011_Lect14.ppt
 
powerflowproblem.ppt
powerflowproblem.pptpowerflowproblem.ppt
powerflowproblem.ppt
 
Electronics and communication engineering_Lect14.ppt
Electronics and communication engineering_Lect14.pptElectronics and communication engineering_Lect14.ppt
Electronics and communication engineering_Lect14.ppt
 
ECE4762011_Lect14.ppt
ECE4762011_Lect14.pptECE4762011_Lect14.ppt
ECE4762011_Lect14.ppt
 
Lecture 13
Lecture 13Lecture 13
Lecture 13
 
Lecture 7
Lecture 7Lecture 7
Lecture 7
 
ECEN615_Fall2020_Lect4.pptx
ECEN615_Fall2020_Lect4.pptxECEN615_Fall2020_Lect4.pptx
ECEN615_Fall2020_Lect4.pptx
 
Load flow study Part-I
Load flow study Part-ILoad flow study Part-I
Load flow study Part-I
 
UNIT-III complex reactive three phase.ppt
UNIT-III complex reactive three phase.pptUNIT-III complex reactive three phase.ppt
UNIT-III complex reactive three phase.ppt
 
about power system operation and control13197214.ppt
about power system operation and control13197214.pptabout power system operation and control13197214.ppt
about power system operation and control13197214.ppt
 
Lecture 11
Lecture 11Lecture 11
Lecture 11
 
Lecture 2
Lecture 2Lecture 2
Lecture 2
 
ECE476_2016_Lect 12.pptx
ECE476_2016_Lect 12.pptxECE476_2016_Lect 12.pptx
ECE476_2016_Lect 12.pptx
 
Newton Raphson method for load flow analysis
Newton Raphson method for load flow analysisNewton Raphson method for load flow analysis
Newton Raphson method for load flow analysis
 
Lecture 10
Lecture 10Lecture 10
Lecture 10
 
Vlsi DEsign with buck-boost converter using Matlab Simulink software.ppt
Vlsi DEsign with buck-boost converter using Matlab Simulink software.pptVlsi DEsign with buck-boost converter using Matlab Simulink software.ppt
Vlsi DEsign with buck-boost converter using Matlab Simulink software.ppt
 

Mehr von Asif Jamadar

Electrical Engineering Material Part-XX
Electrical Engineering Material Part-XXElectrical Engineering Material Part-XX
Electrical Engineering Material Part-XXAsif Jamadar
 
Electrical Engineering Material Part-XVIII
Electrical Engineering Material Part-XVIIIElectrical Engineering Material Part-XVIII
Electrical Engineering Material Part-XVIIIAsif Jamadar
 
Electrical Engineering Material Part-XVII
Electrical Engineering Material Part-XVIIElectrical Engineering Material Part-XVII
Electrical Engineering Material Part-XVIIAsif Jamadar
 
Electrical Engineering Material Part-XVI
Electrical Engineering Material Part-XVIElectrical Engineering Material Part-XVI
Electrical Engineering Material Part-XVIAsif Jamadar
 
Electrical Engineering Material Part-XV
Electrical Engineering Material Part-XVElectrical Engineering Material Part-XV
Electrical Engineering Material Part-XVAsif Jamadar
 
Electrical Engineering Material Part-XIX
Electrical Engineering Material Part-XIXElectrical Engineering Material Part-XIX
Electrical Engineering Material Part-XIXAsif Jamadar
 
Electrical Engineering Material Part-XIV
Electrical Engineering Material Part-XIVElectrical Engineering Material Part-XIV
Electrical Engineering Material Part-XIVAsif Jamadar
 
Electrical Engineering Material Part-XIII
Electrical Engineering Material Part-XIIIElectrical Engineering Material Part-XIII
Electrical Engineering Material Part-XIIIAsif Jamadar
 
Electrical Engineering Material Part-XII
Electrical Engineering Material Part-XIIElectrical Engineering Material Part-XII
Electrical Engineering Material Part-XIIAsif Jamadar
 
Electrical Engineering Material Part-XI
Electrical Engineering Material Part-XIElectrical Engineering Material Part-XI
Electrical Engineering Material Part-XIAsif Jamadar
 
Electrical Engineering Material Part-X
Electrical Engineering Material Part-XElectrical Engineering Material Part-X
Electrical Engineering Material Part-XAsif Jamadar
 
Electrical Engineering Material Part-VIII
Electrical Engineering Material Part-VIIIElectrical Engineering Material Part-VIII
Electrical Engineering Material Part-VIIIAsif Jamadar
 
Electrical Engineering Material Part-VII
Electrical Engineering Material Part-VIIElectrical Engineering Material Part-VII
Electrical Engineering Material Part-VIIAsif Jamadar
 
Electrical Engineering Material Part-VI
Electrical Engineering Material Part-VIElectrical Engineering Material Part-VI
Electrical Engineering Material Part-VIAsif Jamadar
 
Electrical Engineering Material Part-IX
Electrical Engineering Material Part-IXElectrical Engineering Material Part-IX
Electrical Engineering Material Part-IXAsif Jamadar
 
Electrical Engineering Material Part-V
Electrical Engineering Material Part-VElectrical Engineering Material Part-V
Electrical Engineering Material Part-VAsif Jamadar
 
Electrical Engineering Material-IV
Electrical Engineering Material-IVElectrical Engineering Material-IV
Electrical Engineering Material-IVAsif Jamadar
 
Electrical Engineering Material Part-III
Electrical Engineering Material Part-IIIElectrical Engineering Material Part-III
Electrical Engineering Material Part-IIIAsif Jamadar
 
Electrical Engineering Material Part-II
Electrical Engineering Material Part-IIElectrical Engineering Material Part-II
Electrical Engineering Material Part-IIAsif Jamadar
 
Electrical Engineering Material Part-I
Electrical Engineering Material Part-IElectrical Engineering Material Part-I
Electrical Engineering Material Part-IAsif Jamadar
 

Mehr von Asif Jamadar (20)

Electrical Engineering Material Part-XX
Electrical Engineering Material Part-XXElectrical Engineering Material Part-XX
Electrical Engineering Material Part-XX
 
Electrical Engineering Material Part-XVIII
Electrical Engineering Material Part-XVIIIElectrical Engineering Material Part-XVIII
Electrical Engineering Material Part-XVIII
 
Electrical Engineering Material Part-XVII
Electrical Engineering Material Part-XVIIElectrical Engineering Material Part-XVII
Electrical Engineering Material Part-XVII
 
Electrical Engineering Material Part-XVI
Electrical Engineering Material Part-XVIElectrical Engineering Material Part-XVI
Electrical Engineering Material Part-XVI
 
Electrical Engineering Material Part-XV
Electrical Engineering Material Part-XVElectrical Engineering Material Part-XV
Electrical Engineering Material Part-XV
 
Electrical Engineering Material Part-XIX
Electrical Engineering Material Part-XIXElectrical Engineering Material Part-XIX
Electrical Engineering Material Part-XIX
 
Electrical Engineering Material Part-XIV
Electrical Engineering Material Part-XIVElectrical Engineering Material Part-XIV
Electrical Engineering Material Part-XIV
 
Electrical Engineering Material Part-XIII
Electrical Engineering Material Part-XIIIElectrical Engineering Material Part-XIII
Electrical Engineering Material Part-XIII
 
Electrical Engineering Material Part-XII
Electrical Engineering Material Part-XIIElectrical Engineering Material Part-XII
Electrical Engineering Material Part-XII
 
Electrical Engineering Material Part-XI
Electrical Engineering Material Part-XIElectrical Engineering Material Part-XI
Electrical Engineering Material Part-XI
 
Electrical Engineering Material Part-X
Electrical Engineering Material Part-XElectrical Engineering Material Part-X
Electrical Engineering Material Part-X
 
Electrical Engineering Material Part-VIII
Electrical Engineering Material Part-VIIIElectrical Engineering Material Part-VIII
Electrical Engineering Material Part-VIII
 
Electrical Engineering Material Part-VII
Electrical Engineering Material Part-VIIElectrical Engineering Material Part-VII
Electrical Engineering Material Part-VII
 
Electrical Engineering Material Part-VI
Electrical Engineering Material Part-VIElectrical Engineering Material Part-VI
Electrical Engineering Material Part-VI
 
Electrical Engineering Material Part-IX
Electrical Engineering Material Part-IXElectrical Engineering Material Part-IX
Electrical Engineering Material Part-IX
 
Electrical Engineering Material Part-V
Electrical Engineering Material Part-VElectrical Engineering Material Part-V
Electrical Engineering Material Part-V
 
Electrical Engineering Material-IV
Electrical Engineering Material-IVElectrical Engineering Material-IV
Electrical Engineering Material-IV
 
Electrical Engineering Material Part-III
Electrical Engineering Material Part-IIIElectrical Engineering Material Part-III
Electrical Engineering Material Part-III
 
Electrical Engineering Material Part-II
Electrical Engineering Material Part-IIElectrical Engineering Material Part-II
Electrical Engineering Material Part-II
 
Electrical Engineering Material Part-I
Electrical Engineering Material Part-IElectrical Engineering Material Part-I
Electrical Engineering Material Part-I
 

Kürzlich hochgeladen

Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvLewisJB
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort servicejennyeacort
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfAsst.prof M.Gokilavani
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfme23b1001
 
computer application and construction management
computer application and construction managementcomputer application and construction management
computer application and construction managementMariconPadriquez1
 
Solving The Right Triangles PowerPoint 2.ppt
Solving The Right Triangles PowerPoint 2.pptSolving The Right Triangles PowerPoint 2.ppt
Solving The Right Triangles PowerPoint 2.pptJasonTagapanGulla
 
US Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of ActionUS Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of ActionMebane Rash
 
Correctly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleCorrectly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleAlluxio, Inc.
 
Transport layer issues and challenges - Guide
Transport layer issues and challenges - GuideTransport layer issues and challenges - Guide
Transport layer issues and challenges - GuideGOPINATHS437943
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfROCENODodongVILLACER
 
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor CatchersTechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catcherssdickerson1
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
Introduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHIntroduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHC Sai Kiran
 
Indian Dairy Industry Present Status and.ppt
Indian Dairy Industry Present Status and.pptIndian Dairy Industry Present Status and.ppt
Indian Dairy Industry Present Status and.pptMadan Karki
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
Vishratwadi & Ghorpadi Bridge Tender documents
Vishratwadi & Ghorpadi Bridge Tender documentsVishratwadi & Ghorpadi Bridge Tender documents
Vishratwadi & Ghorpadi Bridge Tender documentsSachinPawar510423
 
An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...Chandu841456
 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxKartikeyaDwivedi3
 

Kürzlich hochgeladen (20)

Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvv
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdf
 
computer application and construction management
computer application and construction managementcomputer application and construction management
computer application and construction management
 
Solving The Right Triangles PowerPoint 2.ppt
Solving The Right Triangles PowerPoint 2.pptSolving The Right Triangles PowerPoint 2.ppt
Solving The Right Triangles PowerPoint 2.ppt
 
US Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of ActionUS Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of Action
 
Correctly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleCorrectly Loading Incremental Data at Scale
Correctly Loading Incremental Data at Scale
 
Transport layer issues and challenges - Guide
Transport layer issues and challenges - GuideTransport layer issues and challenges - Guide
Transport layer issues and challenges - Guide
 
Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdf
 
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor CatchersTechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
Introduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHIntroduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECH
 
Indian Dairy Industry Present Status and.ppt
Indian Dairy Industry Present Status and.pptIndian Dairy Industry Present Status and.ppt
Indian Dairy Industry Present Status and.ppt
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
Vishratwadi & Ghorpadi Bridge Tender documents
Vishratwadi & Ghorpadi Bridge Tender documentsVishratwadi & Ghorpadi Bridge Tender documents
Vishratwadi & Ghorpadi Bridge Tender documents
 
An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...
 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptx
 
young call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Serviceyoung call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Service
 

Load flow study Part-II

  • 1. Load Flow Analysis Part- II Prepared by – A. L. Jamadar 1
  • 2. NR Application to Power Flow * * * * 1 1 We first need to rewrite complex power equations as equations with real coefficients (we've seen this earlier): These can be derived by defining n n i i i i ik k i ik k k k ik ik ik i S V I V Y V V Y V Y G jB V              @ Recall e cos sin ij i i i ik i k j V e V j              @ @ 2
  • 3. Real Power Balance Equations * * 1 1 1 1 1 ( ) (cos sin )( ) Resolving into the real and imaginary parts: ( cos sin ) ( sin ik n n j i i i i ik k i k ik ik k k n i k ik ik ik ik k n i Gi Di i k ik ik ik ik k n i Gi Di i k ik ik k S P jQ V Y V V V e G jB V V j G jB P P P V V G B Q Q Q V V G                                cos )ik ikB  3
  • 4. Newton-Raphson Power Flow In the Newton-Raphson power flow we use Newton's method to determine the voltage magnitude and angle at each bus in the power system that satisfies power balance. We need to solve the power balance equ 1 1 ations: ( cos sin ) 0 ( sin cos ) 0 n i k ik ik ik ik Gi Di k n i k ik ik ik ik Gi Di k V V G B P P V V G B Q Q                 4
  • 5. Power Balance Equations •5 1 1 For convenience, write: ( ) ( cos sin ) ( ) ( sin cos ) The power balance equations are then: ( ) 0 ( ) 0 n i i k ik ik ik ik k n i i k ik ik ik ik k i Gi Di i Gi Di P V V G B Q V V G B P P P Q Q Q                   x x x x
  • 6. Power Balance Equations • Note that Pi( ) and Qi( ) mean the functions that expresses flow from bus i into the system in terms of voltage magnitudes and angles, • While PGi, PDi, QGi, QDi mean the generations and demand at the bus. • For a system with a slack bus and the rest PQ buses, power flow problem is to use the power balance equations to solve for the unknown voltage magnitudes and angles in terms of the given bus generations and demands, and then use solution to calculate the real and reactive injection at the slack bus. •6
  • 7. Power Flow Variables 2 n 2 Assume the slack bus is the first bus (with a fixed voltage angle/magnitude). We then need to determine the voltage angle/magnitude at the other buses. We must solve ( ) , where: n V V          f x 0 x M M 2 2 2 2 2 2 ( ) ( ) ( ) ( ) ( ) G D n Gn Dn G D n Gn Dn P P P P P P Q Q Q Q Q Q                                  x x f x x x M M 7
  • 8. N-R Power Flow Solution (0) ( ) ( 1) ( ) ( ) 1 ( ) The power flow is solved using the same procedure discussed previously for general equations: For 0; make an initial guess of , While ( ) Do [ ( )] ( ) 1 End v v v v v v v v          x x f x x x J x f x 8
  • 9. Power Flow Jacobian Matrix 1 1 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 1 2 The most difficult part of the algorithm is determining and factorizing the Jacobian matrix, ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) n n n n n f f f x x x f f f x x x f f f x x x                        J x x x x x x x J x x x L L M O O M L 2 2 ( ) n                     x 9
  • 10. Power Flow Jacobian Matrix, cont’d 1 Jacobian elements are calculated by differentiating each function, ( ), with respect to each variable. For example, if ( ) is the bus real power equation ( ) ( cos sin ) i i n i i k ik ik ik ik Gi k f x f x i f x V V G B P P       1 ( ) ( sin cos ) ( ) ( sin cos ) ( ) Di n i i k ik ik ik ik i k k i i i j ij ij ij ij j f x V V G B f x V V G B j i                    10
  • 11. Two Bus Newton-Raphson Example Line Z = 0.1j One Two1.000 pu 1.000 pu 200 MW 100 MVR 0 MW 0 MVR For the two bus power system shown below, use the Newton-Raphson power flow to determine the voltage magnitude and angle at bus two. Assume that bus one is the slack and SBase = 100 MVA. 2 2 10 10 Unkown: , Also, 10 10 bus j j V j j             x Y 11
  • 12. Two Bus Example, cont’d 1 1 General power balance equations: ( cos sin ) 0 ( sin cos ) 0 For bus two, the power balance equations are (load real power is 2.0 per unit, while react n i k ik ik ik ik Gi Di k n i k ik ik ik ik Gi Di k V V G B P P V V G B Q Q                 2 1 2 2 2 1 2 2 ive power is 1.0 per unit): (10sin ) 2.0 0 ( 10cos ) (10) 1.0 0 V V V V V         12
  • 13. Two Bus Example, cont’d 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ( ) 2.0 (10sin ) 2.0 ( ) 1.0 ( 10cos ) (10) 1.0 Now calculate the power flow Jacobian ( ) ( ) ( ) ( ) ( ) 10 cos 10sin 10 sin 10cos 20 P V Q V V P P x x V Q Q x x V V V V                                       x x J x 13
  • 14. Two Bus Example, First Iteration (0) 2(0) (0) 2 (0) (0) 2 2 (0) 2(0) (0) (0) 2 2 2 (0) (0) (0) 2 2 2(0) (0) (0) 2 2 0 For 0, guess . Calculate: 1 (10sin ) 2.0 2.0 ( ) 1.0( 10cos ) (10) 1.0 10 cos 10sin ( ) 10 sin 10cos v V V V V V V                                     x f x J x (0) (0) 2 2 1 (1) 10 0 0 1020 0 10 0 2.0 0.2 Solve 1 0 10 1.0 0.9 V                                        x 14
  • 15. Two Bus Example, Next Iterations (1) 2 (1) 1 (2) 0.9(10sin( 0.2)) 2.0 0.212 ( ) 0.2790.9( 10cos( 0.2)) 0.9 10 1.0 8.82 1.986 ( ) 1.788 8.199 0.2 8.82 1.986 0.212 0.233 0.9 1.788 8.199 0.279 0.8586 (                                                    f x J x x f (2) (3) (3) 2 0.0145 0.236 ) 0.0190 0.8554 0.0000906 ( ) Close enough! 0.8554 13.52 0.0001175 V                        x x f x 15
  • 16. Two Bus Solved Values Line Z = 0.1j One Two1.000 pu 0.855 pu 200 MW 100 MVR 200.0 MW 168.3 MVR -13.522 Deg 200.0 MW 168.3 MVR -200.0 MW -100.0 MVR Once the voltage angle and magnitude at bus 2 are known we can calculate all the other system values, such as the line flows and the generator real and reactive power output 16
  • 17. Two Bus Case Low Voltage Solution (0) (0) (0) 2 2 (0) (0) (0) (0 2 2 2 This case actually has two solutions! The second "low voltage" is found by using a low initial guess. 0 Set 0, guess . Calculate: 0.25 (10sin ) 2.0 ( ) ( 10cos ) v V V V               x f x 2) (0) (0) (0) 2 2 2(0) (0) (0) (0) (0) 2 2 2 2 2 0.875(10) 1.0 10 cos 10sin 2.5 0 ( ) 0 510 sin 10cos 20 V V V                              J x 17
  • 18. Low Voltage Solution, cont'd 1 (1) (2) (2) (3) 0 2.5 0 2 0.8 Solve 0.25 0 5 0.875 0.075 1.462 1.42 0.921 ( ) 0.534 0.2336 0.220                                                 x f x x x Line Z = 0.1j One Two1.000 pu 0.261 pu 200 MW 100 MVR 200.0 MW 831.7 MVR -49.914 Deg 200.0 MW 831.7 MVR -200.0 MW -100.0 MVR Low voltage solution 18
  • 19. Two Bus Region of Convergence Graph shows the region of convergence for different initial guesses of bus 2 angle (horizontal axis) and magnitude (vertical axis). Red region converges to the high voltage solution, while the yellow region converges to the low voltage solution Maximum of 15 iterations19
  • 20. PV Buses Since the voltage magnitude at PV buses is fixed there is no need to explicitly include these voltages in x nor explicitly include the reactive power balance equations at the PV buses: – the reactive power output of the generator varies to maintain the fixed terminal voltage (within limits), so we can just use the solved voltages and angles to calculate the reactive power production to be whatever is needed to satisfy reactive power balance. – An alternative is to keep the reactive power balance equation explicit but also write an explicit voltage constraint for the generator bus: |Vi | – Vi setpoint = 0 20
  • 21. Three Bus PV Case Example Line Z = 0.1j Line Z = 0.1j Line Z = 0.1j One Two1.000 pu 0.941 pu 200 MW 100 MVR 170.0 MW 68.2 MVR -7.469 Deg Three 1.000 pu 30 MW 63 MVR 2 2 2 3 3 3 2 2 2 For this three bus case we have ( ) ( ) ( ) 0 ( ) D G D P P P P V Q Q                        x x f x x x 21
  • 22. PV Buses • With Newton-Raphson, PV buses means that there are less unknown variables we need to calculate explicitly and less equations we need to satisfy explicitly. • Reactive power balance is satisfied implicitly by choosing reactive power production to be whatever is needed, once we have a solved case (like real and reactive power at the slack bus). • Contrast to Gauss iterations where PV buses complicated the algorithm. 22
  • 23. Modeling Voltage Dependent Load So far we've assumed that the load is independent of the bus voltage (i.e., constant power). However, the power flow can be easily extended to include voltage dependence with both the real and reactive 1 1 load. This is done by making and a function of : ( cos sin ) ( ) 0 ( sin cos ) ( ) 0 Di Di i n i k ik ik ik ik Gi Di i k n i k ik ik ik ik Gi Di i k P Q V V V G B P P V V V G B Q Q V                 23
  • 24. Voltage Dependent Load Example 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 In previous two bus example now assume the load is constant impedance, with corresponding per unit admittance of 2.0 1.0: ( ) 2.0 (10sin ) 2.0 0 ( ) 1.0 ( 10cos ) (10) 1.0 0 Now j P V V V Q V V V V              x x 2 2 2 2 2 2 2 2 2 calculate the power flow Jacobian 10 cos 10sin 4.0 ( ) 10 sin 10cos 20 2.0 V V V V V             J x 24
  • 25. Voltage Dependent Load, cont'd (0) 2(0) (0) 2 2(0) (0) (0) 2 2 2(0) 2 2(0) (0) (0) (0) 2 2 2 2 (0) (1) 0 Again for 0, guess . Calculate: 1 (10sin ) 2.0 2.0 ( ) 1.0 ( 10cos ) (10) 1.0 10 4 ( ) 0 12 0 Solve 1 v V V V V V V                                            x f x J x x 1 10 4 2.0 0.1667 0 12 1.0 0.9167                        25
  • 26. Voltage Dependent Load, cont'd Line Z = 0.1j One Two1.000 pu 0.894 pu 160 MW 80 MVR 160.0 MW 120.0 MVR -10.304 Deg 160.0 MW 120.0 MVR -160.0 MW -80.0 MVR With constant impedance load the MW/MVAr load at bus 2 varies with the square of the bus 2 voltage magnitude. This if the voltage level is less than 1.0, the load is lower than 200/100 MW/MVAr. 26 More generally, load can be modeled as the sum of: constant power, constant impedance, and, in some cases, constant current load terms: “ZIP” load.
  • 27. Solving Large Power Systems Most difficult computational task is inverting the Jacobian matrix (or solving the update equation): – factorizing a full matrix is an order n3 operation, meaning the amount of computation increases with the cube of the size of the problem. – this amount of computation can be decreased substantially by recognizing that since Ybus is a sparse matrix, the Jacobian is also a sparse matrix. – using sparse matrix methods results in a computational order of about n1.5. – this is a substantial savings when solving systems with tens of thousands of buses. 27
  • 28. Newton-Raphson Power Flow  Advantages – fast convergence as long as initial guess is close to solution – large region of convergence  Disadvantages – each iteration takes much longer than a Gauss-Seidel iteration – more complicated to code, particularly when implementing sparse matrix algorithms  Newton-Raphson algorithm is very common in power flow analysis. 28