SlideShare ist ein Scribd-Unternehmen logo
1 von 31
Downloaden Sie, um offline zu lesen
Quantum Dot Solar Cells:
A Simulation Approach
Ing. Ariel Cedola
GEMyDE, Departamento de Electrotecnia, Facultad de Ingeniería, Universidad Nacional de La Plata
Calle 48 y 116, 1er Piso, La Plata, 1900, Buenos Aires, Argentina
&
Dipartimento di Elettronica e Telecomunicazioni, Politecnico di Torino
Corso Duca degli Abruzzi 24, 10129, Torino, Italia
2014
Ing. Ariel Cedola – UNLP & POLITO
Quantum Dot Solar Cells (QDSC) have gained
attention during the last years as one of the most
feasible semiconductor structures for the
implementation of the intermediate band solar cell
(IBSC) concept.
IBSCs are p-i-n structures with a narrow band of
energy levels within the bandgap of the intrinsic
region.
According to theoretical predictions, based on
idealized considerations, IBSCs maximum
efficiencies could reach values >60%, due to:
• Absorption of low energy photons (processes 1
and 2 in the figure), generation and escape of
extra carriers.
• Increment of cell short-circuit current (Jsc) with
no degradation of open-circuit voltage (Voc).
Intermediate band (IB)
Barrier
Luque A. et. al, Phys. Rev. Lett.,
Vol. 78, N. 26, p. 5014 (1997)
Ing. Ariel Cedola – UNLP & POLITO
• Semiconductor nanostructures with quantum mechanical properties (e.g. InAs)
¿What are QDs?
• Size: Base 10-60 nm; Height 4-10 nm
• x, y, z confinement (0D DOS)
• Discrete energy levels
Ing. Ariel Cedola – UNLP & POLITO
• Bandgap and absorption spectrum depend on materials, sizes and shapes
• Non uniformity: absorption spectrum broadening
4 nm
9 nm
8 nm
InAs/GaAs InAs/GaAs GaN QDs
Ing. Ariel Cedola – UNLP & POLITO
QDs fabrication
• Stranski-Krastanow method
• QDs layer stacking ND = 1010 – 1011 cm-2
Ing. Ariel Cedola – UNLP & POLITO
EQE

Quantum efficiency of solar cells with embedded QDs layers
Without QDs
QDs (x, ND)
QDs (x, ND)
QDs (x, ND)
Ing. Ariel Cedola – UNLP & POLITO
InAs/GaAs Quantum Dot Solar Cells (QDSCs)
InAs QDs
layers
p GaAs n GaAs
i GaAs
Energía[eV]
0
-1.5
1.5
x
Energy bands diagram
Ing. Ariel Cedola – UNLP & POLITO
Ing. Ariel Cedola – UNLP & POLITO
InAs QDs
layers
InAs/GaAs Quantum Dot Solar Cells (QDSCs)
 < 900 nm
Efot > EG GaAs
Photogeneration
Recombination
Ing. Ariel Cedola – UNLP & POLITO
InAs/GaAs Quantum Dot Solar Cells (QDSCs)
 > 900 nm
Efot < EG GaAs
Photogeneration
Recombination
Escape
Capture
JQD  (EscWLB – CapBWL)
Ing. Ariel Cedola – UNLP & POLITO
InAs/GaAs Quantum Dot Solar Cells (QDSCs)
Jolley 2012 Prog. Photovolt.
Guimard 2010 APL Bailey 2011 APL
Yang 2013 SEM&SC
Ing. Ariel Cedola – UNLP & POLITO
InAs/GaAs QDSCs: Experimental IV curves
Ing. Ariel Cedola – UNLP & POLITO
QDSCs modeling: State-of-the-art approaches
Our work: Drift-Diffusion + QDs carrier dynamics modeling
 
2
2 i i i i i id a WL WL ES ES GS GS
i
V q
p n N N p n p n p n
x 
   
             

 1 i iWL B B WLn
B B nESC nCAP
i
Jn
R G R R
t q x
 
    
 

 1 i ip WL B B WL
B B pESC pCAP
i
Jp
R G R R
t q x
 

     
 

n n n
V n
J q n qD
x x

 
  
 
p p p
V p
J q p qD
x x

 
  
 
• Poisson equation
• Continuity equations for holes and electrons
Drift-diffusion transport model
i = QDs layer
Ing. Ariel Cedola – UNLP & POLITO
i i i i i i i
i i
WL B WL WL B WL ES ES WL
nCAP nESC nCAP nESC WL WL
n
R R R R R G
t
   

     

i i i i i i i i i
i i
ES WL ES ES WL ES GS GS ES
nCAP nESC nCAP nESC ES ES
n
R R R R R G
t
   

     

i i i i i
i i
GS ES GS GS ES
nCAP nESC GS GS
n
R R R G
t
 

   

( )
( )
( )( )
1n p ESC
n p ESC
n pn p
R
DOS
  



 
   
 
( )
( )
( ) ( )
1n p CAP
n p CAP
n p n p
R
DOS
  


  
  
 
=WL, ES, GS; =B, WL, ES
• Rate equations for electrons at each energy level at each QD layer
• Escape and capture rates for electrons (holes)
fe(h)i
fe(h)i
Ing. Ariel Cedola – UNLP & POLITO
QDSCs modeling
i = QDs layer
• Recombination rates
        

ddxffffxG
i
WLiWLiWLiWLii
x
heWLGAMheWLWL 








  0
5.1 ',,exp,,,
        

ddxffffxG
i
ESiESiESiESii
x
heESGAMheESES 








  0
5.1 ',,exp,,,
        

ddxffffxG
i
GSiGSiGSiGSii
x
heGSGAMheGSGS 








  0
5.1 ',,exp,,,
• Photogeneration rates at each QD energy level
0.2 0.4 0.6 0.8 1 1.2 1.4
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
Wavelength [nm]
AM1.5GSpectralIrradiance[kW/m2/um]
GaAs InAs
IEEE ARGENCON 2014
Ing. Ariel Cedola – UNLP & POLITO
QDSCs modeling
Results: comparison with experimental measurements
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-0.016
-0.014
-0.012
-0.01
-0.008
-0.006
-0.004
-0.002
0
Tensión [V]
Densidaddecorriente[A/cm2]
Celda de GaAs Ref. [5]
QDSC Ref. [5]
Simulación de la celda de GaAs
Simulación de la QDSC
[5] K. Sablon et al, Strong enhancement of solar cell efficiency due to quantum dots with built in charge,
NanoLetters, vol. 11, pp. 2311-2317 (2011).
Voc=50 mV
Jsc=600 mA/cm2
Ing. Ariel Cedola – UNLP & POLITO
300 400 500 600 700 800 900 1000 1100 1200
10
0
10
1
10
2
10
3
10
4
10
5
Longitud de onda [nm]
Respuestaespectral[a.u.]
Celda de GaAs Ref. [5]
QDSC Ref. [5]
Simulación de la celda de GaAs
Simulación de la QDSC
[5] K. Sablon et al, Strong enhancement of solar cell efficiency due to quantum dots with built in charge,
NanoLetters, vol. 11, pp. 2311-2317 (2011).
Ing. Ariel Cedola – UNLP & POLITO
Results: comparison with experimental measurements (cont.)
Results: Dependence of I-V curves with number of QD layers and density
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
-0.025
-0.02
-0.015
-0.01
-0.005
0
Tensión [V]
Densidaddecorriente[A/cm-2]
ND = 1.2e10 cm-2
ND = 4e10 cm-2
ND = 1e11 cm-2
20x
100x
Ing. Ariel Cedola – UNLP & POLITO
20 30 40 50 60 70 80 90 100
14.6
14.8
15
15.2
15.4
15.6
15.8
16
16.2
Número de capas de QDs
Eficiencia[%]
ND = 1.2 e10 cm-2
ND = 4e10 cm-2
ND = 1e11 cm-2
Eficiencia de la celda
de GaAs sin QDs
Results: Dependence of the efficiency with the number of QD layers and density
Ing. Ariel Cedola – UNLP & POLITO
Results: Doping effects
80 nm (NA = 1018 cm-3)
70 nm (NA = 3x1017 cm-3)
600 nm (intr.)
300 nm (ND = 1018 cm-3)
10x
EB-WL
EWL-ES
EES-GS
EB-WL
EWL-ES
EES-GS
1420 meV
Parámetros QDSC-A QDSC-B
Capa p+ GaAs (1018 cm-3) [nm] 80 80
Capa p- GaAs (3x1017 cm-3) [nm] 70 70
Capa i GaAs [nm] 600 600
Capa n+ GaAs (1018 cm-3) [nm] 300 300
ND = Densidad sup. de QDs [cm-2] 6x1010 6x1010
Número de capas de QDs 10 10
Rango de captura de los QDs [nm] 5 5
n: EB-WL, EWL-ES, EES-GS [meV] 140, 62, 70 220, 40, 30
p: EB-WL, EWL-ES, EES-GS [meV] 28, 16, 16 140, 15, 15
n-capWL, n-capES, n-capGS [ps] 0.3, 1, 1 0.3, 1, 1
p-capWL, p-capES, p-capGS [ps] 0.1, 0.1, 0.1 0.1, 0.1, 0.1
rWL, rES, rGS [ns] 1, 1, 1 1, 1, 1
Ing. Ariel Cedola – UNLP & POLITO
Results: Doping effects (cont.)
Ing. Ariel Cedola – UNLP & POLITO
Ing. Ariel Cedola – UNLP & POLITO
Results: Doping effects (cont.)
Ing. Ariel Cedola – UNLP & POLITO
Results: Doping effects (cont.)
Ing. Ariel Cedola – UNLP & POLITO
Results: Non-linear (additive) behavior & QD dynamics
Full solar spectrum illumination  > 900 nm
K. Sablon et al, NanoLetters, vol. 11, pp. 2311-2317 (2011)
0 0.2 0.4 0.6 0.8
-30
-25
-20
-15
-10
-5
0
X: 0.001
Y: -8.607
Voltage (V)
Currentdensity(mAcm
-2
)
X: 0
Y: -20.74
X: 0
Y: -29.34
h/e follow hole (faster) dynamics
-> linear (additive) behavior
h/e follow electron (slower) dynamics
-> NON linear behavior
Ing. Ariel Cedola – UNLP & POLITO
Results: Non-linear (additive) behavior & QD dynamics (cont.)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
-40
-30
-20
-10
0
10
20
X: 0
Y: -7.09
Voltage (V)
Currentdensity(mAcm
-2
)
X: 0
Y: -20.74
X: 0
Y: -25.3
Ing. Ariel Cedola – UNLP & POLITO
Results: Non-linear (additive) behavior & QD dynamics (cont.)
010E+12
1,000E+12
010E+16
1,000E+16
010E+20
1,000E+20
010E+24
1,000E+24
010E+28
1,000E+28
0 5 10 15 20
Rate[cm-3s-1]
# QD layer
GS
tasa_cap_n_GS
tasa_esc_n_GS
tasa_cap_p_GS
tasa_esc_p_GS
g_sol_qd_gs
tasa_rec_GS
abs(net_cap_n_GS)
abs(net_cap_p_GS)
0 5 10 15 20
GS
Full solar spectrum illumination  > 900 nm
Ing. Ariel Cedola – UNLP & POLITO
Results: Non-linear (additive) behavior & QD dynamics (cont.)
100E-12
1,000E-12
001E-08
010E-08
100E-08
1,000E-08
001E-04
010E-04
100E-04
1,000E-04
001E+00
0 5 10 15 20
Ocup. factors
0 5 10 15 20
Ocup. factors
GS
ES
WL
GS
ES
WL
Full solar spectrum illumination  > 900 nm
Ing. Ariel Cedola – UNLP & POLITO
Results: Non-linear (additive) behavior & QD dynamics (cont.)
Full solar spectrum illumination  > 900 nm
-200E+20
-150E+20
-100E+20
-050E+20
0,000E+00
050E+20
100E+20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
NET ESCAPE
GS->ES ES->WL WL->Barrier
-060E+20
-040E+20
-020E+20
0,000E+00
020E+20
040E+20
060E+20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
NET ESCAPE
Conclusions
• A device-level model including QD intersubband carrier dynamics and transport has been developed
for simulation of QDSCs.
• Preliminary results agree very well with experimental data.
• Effects of doping and non-additive behavior of the QD photocurrent have been investigated.
• QD Photocurrent can be increased with optimal n-uniform doping, althoug the Voc degradation is still
a factor to investigate.
• Non-linearities can be associated to the de-synchronization of QD dynamics
Ing. Ariel Cedola – UNLP & POLITO
Thankyou for your attention.
ariel.cedola@ing.unlp.edu.ar
Ing. Ariel Cedola – UNLP & POLITO

Weitere ähnliche Inhalte

Was ist angesagt?

Current Status of Solar Photovoltaic Technology Platforms, Manufacturing Issu...
Current Status of Solar Photovoltaic Technology Platforms, Manufacturing Issu...Current Status of Solar Photovoltaic Technology Platforms, Manufacturing Issu...
Current Status of Solar Photovoltaic Technology Platforms, Manufacturing Issu...Tuong Do
 
Heterojunction silicon based solar cells
Heterojunction silicon based solar cellsHeterojunction silicon based solar cells
Heterojunction silicon based solar cellsdinomasch
 
Solar Cells: when will they become economically feasible
Solar Cells: when will they become economically feasibleSolar Cells: when will they become economically feasible
Solar Cells: when will they become economically feasibleJeffrey Funk
 
MultiJunctionSolarCells (1)
MultiJunctionSolarCells (1)MultiJunctionSolarCells (1)
MultiJunctionSolarCells (1)Nitin Maurya
 
Enhancement in the efficiency of solar cells final ppt
Enhancement in the efficiency of solar cells final pptEnhancement in the efficiency of solar cells final ppt
Enhancement in the efficiency of solar cells final pptSwapnil Agarwal
 
GaN as Semiconductor Material for Solar Photovoltaic: A Review
GaN as Semiconductor Material for Solar Photovoltaic: A ReviewGaN as Semiconductor Material for Solar Photovoltaic: A Review
GaN as Semiconductor Material for Solar Photovoltaic: A ReviewIRJET Journal
 
Dye Sensitized Solar cell (DSSC)
Dye Sensitized Solar cell (DSSC)Dye Sensitized Solar cell (DSSC)
Dye Sensitized Solar cell (DSSC)shashank chetty
 
solar cell characteristics
solar cell characteristicssolar cell characteristics
solar cell characteristicspaneliya sagar
 
Nano solar cells
Nano solar cellsNano solar cells
Nano solar cellsSubash John
 
CIGS Solar Cells: How and Why is their Cost Falling?
CIGS Solar Cells: How and Why is their Cost Falling?CIGS Solar Cells: How and Why is their Cost Falling?
CIGS Solar Cells: How and Why is their Cost Falling?Jeffrey Funk
 
The growth and assembly of organic molecules and inorganic 2D materials on gr...
The growth and assembly of organic molecules and inorganic 2D materials on gr...The growth and assembly of organic molecules and inorganic 2D materials on gr...
The growth and assembly of organic molecules and inorganic 2D materials on gr...Akinola Oyedele
 

Was ist angesagt? (20)

Raj Solar Cells
Raj Solar CellsRaj Solar Cells
Raj Solar Cells
 
Pv cell
Pv cellPv cell
Pv cell
 
Vijay and ravi
Vijay  and raviVijay  and ravi
Vijay and ravi
 
Current Status of Solar Photovoltaic Technology Platforms, Manufacturing Issu...
Current Status of Solar Photovoltaic Technology Platforms, Manufacturing Issu...Current Status of Solar Photovoltaic Technology Platforms, Manufacturing Issu...
Current Status of Solar Photovoltaic Technology Platforms, Manufacturing Issu...
 
Heterojunction silicon based solar cells
Heterojunction silicon based solar cellsHeterojunction silicon based solar cells
Heterojunction silicon based solar cells
 
Solar Cells: when will they become economically feasible
Solar Cells: when will they become economically feasibleSolar Cells: when will they become economically feasible
Solar Cells: when will they become economically feasible
 
Report
ReportReport
Report
 
Solar Cell
Solar CellSolar Cell
Solar Cell
 
Organic Solar cell
Organic Solar cellOrganic Solar cell
Organic Solar cell
 
MultiJunctionSolarCells (1)
MultiJunctionSolarCells (1)MultiJunctionSolarCells (1)
MultiJunctionSolarCells (1)
 
Enhancement in the efficiency of solar cells final ppt
Enhancement in the efficiency of solar cells final pptEnhancement in the efficiency of solar cells final ppt
Enhancement in the efficiency of solar cells final ppt
 
GaN as Semiconductor Material for Solar Photovoltaic: A Review
GaN as Semiconductor Material for Solar Photovoltaic: A ReviewGaN as Semiconductor Material for Solar Photovoltaic: A Review
GaN as Semiconductor Material for Solar Photovoltaic: A Review
 
Dye Sensitized Solar cell (DSSC)
Dye Sensitized Solar cell (DSSC)Dye Sensitized Solar cell (DSSC)
Dye Sensitized Solar cell (DSSC)
 
solar cell characteristics
solar cell characteristicssolar cell characteristics
solar cell characteristics
 
Nano solar cells
Nano solar cellsNano solar cells
Nano solar cells
 
3. solar cell
3. solar cell3. solar cell
3. solar cell
 
CIGS Solar Cells: How and Why is their Cost Falling?
CIGS Solar Cells: How and Why is their Cost Falling?CIGS Solar Cells: How and Why is their Cost Falling?
CIGS Solar Cells: How and Why is their Cost Falling?
 
CIGS Solar Cell
CIGS Solar CellCIGS Solar Cell
CIGS Solar Cell
 
The growth and assembly of organic molecules and inorganic 2D materials on gr...
The growth and assembly of organic molecules and inorganic 2D materials on gr...The growth and assembly of organic molecules and inorganic 2D materials on gr...
The growth and assembly of organic molecules and inorganic 2D materials on gr...
 
Lecture 10: Solar Cell Technologies
Lecture 10: Solar Cell TechnologiesLecture 10: Solar Cell Technologies
Lecture 10: Solar Cell Technologies
 

Andere mochten auch

Polymer nanomaterial composite solar cells, friday, 5th november, 2010
Polymer nanomaterial composite solar cells, friday, 5th november, 2010Polymer nanomaterial composite solar cells, friday, 5th november, 2010
Polymer nanomaterial composite solar cells, friday, 5th november, 2010M. Faisal Halim
 
Analysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic Device Slide ...
Analysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic Device Slide ...Analysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic Device Slide ...
Analysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic Device Slide ...M. Faisal Halim
 
Perovskite solar cells, All you need to know - Dawn John Mullassery
Perovskite solar cells, All you need to know - Dawn John MullasseryPerovskite solar cells, All you need to know - Dawn John Mullassery
Perovskite solar cells, All you need to know - Dawn John MullasseryDawn John Mullassery
 
Solar Power: THE PEROVSKITE
Solar Power: THE PEROVSKITESolar Power: THE PEROVSKITE
Solar Power: THE PEROVSKITECyra Mae Soreda
 
Perovskites-based Solar Cells: The challenge of material choice for p-i-n per...
Perovskites-based Solar Cells: The challenge of material choice for p-i-n per...Perovskites-based Solar Cells: The challenge of material choice for p-i-n per...
Perovskites-based Solar Cells: The challenge of material choice for p-i-n per...Akinola Oyedele
 
Perovskite Solar Cells - an Introduction
Perovskite Solar Cells - an IntroductionPerovskite Solar Cells - an Introduction
Perovskite Solar Cells - an IntroductionDawn John Mullassery
 
Fabrication of perovskite solar cell
Fabrication of perovskite solar cellFabrication of perovskite solar cell
Fabrication of perovskite solar cellakash arya
 

Andere mochten auch (9)

Polymer nanomaterial composite solar cells, friday, 5th november, 2010
Polymer nanomaterial composite solar cells, friday, 5th november, 2010Polymer nanomaterial composite solar cells, friday, 5th november, 2010
Polymer nanomaterial composite solar cells, friday, 5th november, 2010
 
Analysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic Device Slide ...
Analysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic Device Slide ...Analysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic Device Slide ...
Analysis Of Carbon Nanotubes And Quantum Dots In A Photovoltaic Device Slide ...
 
Quantum dot
Quantum dotQuantum dot
Quantum dot
 
Perovskite solar cells, All you need to know - Dawn John Mullassery
Perovskite solar cells, All you need to know - Dawn John MullasseryPerovskite solar cells, All you need to know - Dawn John Mullassery
Perovskite solar cells, All you need to know - Dawn John Mullassery
 
Solar Power: THE PEROVSKITE
Solar Power: THE PEROVSKITESolar Power: THE PEROVSKITE
Solar Power: THE PEROVSKITE
 
Perovskites-based Solar Cells: The challenge of material choice for p-i-n per...
Perovskites-based Solar Cells: The challenge of material choice for p-i-n per...Perovskites-based Solar Cells: The challenge of material choice for p-i-n per...
Perovskites-based Solar Cells: The challenge of material choice for p-i-n per...
 
Perovskite Solar Cells - an Introduction
Perovskite Solar Cells - an IntroductionPerovskite Solar Cells - an Introduction
Perovskite Solar Cells - an Introduction
 
Types of Solar Cell
Types of Solar CellTypes of Solar Cell
Types of Solar Cell
 
Fabrication of perovskite solar cell
Fabrication of perovskite solar cellFabrication of perovskite solar cell
Fabrication of perovskite solar cell
 

Ähnlich wie Quantum Dot Solar Cells Simulation Approach

poster New Mexico Consortium 2015
poster New Mexico Consortium 2015poster New Mexico Consortium 2015
poster New Mexico Consortium 2015Swayandipta Dey
 
Enhancement of dye solar cell by adding n ps
Enhancement of dye solar cell by adding n psEnhancement of dye solar cell by adding n ps
Enhancement of dye solar cell by adding n psGufranSattar1
 
David Mitzi at BASF Science Symposium 2015
David Mitzi at BASF Science Symposium 2015David Mitzi at BASF Science Symposium 2015
David Mitzi at BASF Science Symposium 2015BASF
 
Characterization of Carrier Lifetime
Characterization of Carrier LifetimeCharacterization of Carrier Lifetime
Characterization of Carrier Lifetimepaneliya sagar
 
Ijarcet vol-2-issue-7-2378-2383
Ijarcet vol-2-issue-7-2378-2383Ijarcet vol-2-issue-7-2378-2383
Ijarcet vol-2-issue-7-2378-2383Editor IJARCET
 
Ijarcet vol-2-issue-7-2378-2383
Ijarcet vol-2-issue-7-2378-2383Ijarcet vol-2-issue-7-2378-2383
Ijarcet vol-2-issue-7-2378-2383Editor IJARCET
 
Imaging, spectroscopy and manipulation of C60 molecule on semiconductor surf...
 Imaging, spectroscopy and manipulation of C60 molecule on semiconductor surf... Imaging, spectroscopy and manipulation of C60 molecule on semiconductor surf...
Imaging, spectroscopy and manipulation of C60 molecule on semiconductor surf...Cristina Chiutu
 
Dominant mode resonant frequency of circular microstrip antennas with and wit...
Dominant mode resonant frequency of circular microstrip antennas with and wit...Dominant mode resonant frequency of circular microstrip antennas with and wit...
Dominant mode resonant frequency of circular microstrip antennas with and wit...IAEME Publication
 
ALD Process Monitoring and Optimisation by OES-based Gas Analysis
ALD Process Monitoring and Optimisation by OES-based Gas AnalysisALD Process Monitoring and Optimisation by OES-based Gas Analysis
ALD Process Monitoring and Optimisation by OES-based Gas AnalysisNova Fabrica Ltd
 
Charged-Current Pion Production in T2K
Charged-Current Pion Production in T2KCharged-Current Pion Production in T2K
Charged-Current Pion Production in T2KSon Cao
 
Localized Characterization of GaAs/AlGaAs Quantum Well Devices
Localized Characterization of GaAs/AlGaAs Quantum Well DevicesLocalized Characterization of GaAs/AlGaAs Quantum Well Devices
Localized Characterization of GaAs/AlGaAs Quantum Well DevicesImee Rose Tagaca
 
A Low Phase Noise CMOS Quadrature Voltage Control Oscillator Using Clock Gate...
A Low Phase Noise CMOS Quadrature Voltage Control Oscillator Using Clock Gate...A Low Phase Noise CMOS Quadrature Voltage Control Oscillator Using Clock Gate...
A Low Phase Noise CMOS Quadrature Voltage Control Oscillator Using Clock Gate...IJERA Editor
 
A Low Phase Noise CMOS Quadrature Voltage Control Oscillator Using Clock Gate...
A Low Phase Noise CMOS Quadrature Voltage Control Oscillator Using Clock Gate...A Low Phase Noise CMOS Quadrature Voltage Control Oscillator Using Clock Gate...
A Low Phase Noise CMOS Quadrature Voltage Control Oscillator Using Clock Gate...IJERA Editor
 
HDR Vincent Agache Defense
HDR Vincent Agache DefenseHDR Vincent Agache Defense
HDR Vincent Agache Defensevince3859
 
Contact Resistance of Graphene/Single-Walled Carbon Nanotube Thin Film Transi...
Contact Resistance of Graphene/Single-Walled Carbon Nanotube Thin Film Transi...Contact Resistance of Graphene/Single-Walled Carbon Nanotube Thin Film Transi...
Contact Resistance of Graphene/Single-Walled Carbon Nanotube Thin Film Transi...Ryan Kim
 
Simulation Of Algan/Si And Inn/Si Electric - Devices
Simulation Of Algan/Si And Inn/Si Electric - DevicesSimulation Of Algan/Si And Inn/Si Electric - Devices
Simulation Of Algan/Si And Inn/Si Electric - Devicesijrap
 
Importance of SSPS in SDG and ESG, and importance of antennas in SSPS
Importance of SSPS in SDG and ESG, and importance of antennas in SSPSImportance of SSPS in SDG and ESG, and importance of antennas in SSPS
Importance of SSPS in SDG and ESG, and importance of antennas in SSPSAdvanced-Concepts-Team
 

Ähnlich wie Quantum Dot Solar Cells Simulation Approach (20)

poster New Mexico Consortium 2015
poster New Mexico Consortium 2015poster New Mexico Consortium 2015
poster New Mexico Consortium 2015
 
Enhancement of dye solar cell by adding n ps
Enhancement of dye solar cell by adding n psEnhancement of dye solar cell by adding n ps
Enhancement of dye solar cell by adding n ps
 
VCSELs
VCSELsVCSELs
VCSELs
 
David Mitzi at BASF Science Symposium 2015
David Mitzi at BASF Science Symposium 2015David Mitzi at BASF Science Symposium 2015
David Mitzi at BASF Science Symposium 2015
 
Characterization of Carrier Lifetime
Characterization of Carrier LifetimeCharacterization of Carrier Lifetime
Characterization of Carrier Lifetime
 
Ijarcet vol-2-issue-7-2378-2383
Ijarcet vol-2-issue-7-2378-2383Ijarcet vol-2-issue-7-2378-2383
Ijarcet vol-2-issue-7-2378-2383
 
Ijarcet vol-2-issue-7-2378-2383
Ijarcet vol-2-issue-7-2378-2383Ijarcet vol-2-issue-7-2378-2383
Ijarcet vol-2-issue-7-2378-2383
 
Imaging, spectroscopy and manipulation of C60 molecule on semiconductor surf...
 Imaging, spectroscopy and manipulation of C60 molecule on semiconductor surf... Imaging, spectroscopy and manipulation of C60 molecule on semiconductor surf...
Imaging, spectroscopy and manipulation of C60 molecule on semiconductor surf...
 
Dominant mode resonant frequency of circular microstrip antennas with and wit...
Dominant mode resonant frequency of circular microstrip antennas with and wit...Dominant mode resonant frequency of circular microstrip antennas with and wit...
Dominant mode resonant frequency of circular microstrip antennas with and wit...
 
Thesis presentation
Thesis presentationThesis presentation
Thesis presentation
 
Xray interferometry
Xray interferometryXray interferometry
Xray interferometry
 
ALD Process Monitoring and Optimisation by OES-based Gas Analysis
ALD Process Monitoring and Optimisation by OES-based Gas AnalysisALD Process Monitoring and Optimisation by OES-based Gas Analysis
ALD Process Monitoring and Optimisation by OES-based Gas Analysis
 
Charged-Current Pion Production in T2K
Charged-Current Pion Production in T2KCharged-Current Pion Production in T2K
Charged-Current Pion Production in T2K
 
Localized Characterization of GaAs/AlGaAs Quantum Well Devices
Localized Characterization of GaAs/AlGaAs Quantum Well DevicesLocalized Characterization of GaAs/AlGaAs Quantum Well Devices
Localized Characterization of GaAs/AlGaAs Quantum Well Devices
 
A Low Phase Noise CMOS Quadrature Voltage Control Oscillator Using Clock Gate...
A Low Phase Noise CMOS Quadrature Voltage Control Oscillator Using Clock Gate...A Low Phase Noise CMOS Quadrature Voltage Control Oscillator Using Clock Gate...
A Low Phase Noise CMOS Quadrature Voltage Control Oscillator Using Clock Gate...
 
A Low Phase Noise CMOS Quadrature Voltage Control Oscillator Using Clock Gate...
A Low Phase Noise CMOS Quadrature Voltage Control Oscillator Using Clock Gate...A Low Phase Noise CMOS Quadrature Voltage Control Oscillator Using Clock Gate...
A Low Phase Noise CMOS Quadrature Voltage Control Oscillator Using Clock Gate...
 
HDR Vincent Agache Defense
HDR Vincent Agache DefenseHDR Vincent Agache Defense
HDR Vincent Agache Defense
 
Contact Resistance of Graphene/Single-Walled Carbon Nanotube Thin Film Transi...
Contact Resistance of Graphene/Single-Walled Carbon Nanotube Thin Film Transi...Contact Resistance of Graphene/Single-Walled Carbon Nanotube Thin Film Transi...
Contact Resistance of Graphene/Single-Walled Carbon Nanotube Thin Film Transi...
 
Simulation Of Algan/Si And Inn/Si Electric - Devices
Simulation Of Algan/Si And Inn/Si Electric - DevicesSimulation Of Algan/Si And Inn/Si Electric - Devices
Simulation Of Algan/Si And Inn/Si Electric - Devices
 
Importance of SSPS in SDG and ESG, and importance of antennas in SSPS
Importance of SSPS in SDG and ESG, and importance of antennas in SSPSImportance of SSPS in SDG and ESG, and importance of antennas in SSPS
Importance of SSPS in SDG and ESG, and importance of antennas in SSPS
 

Quantum Dot Solar Cells Simulation Approach

  • 1. Quantum Dot Solar Cells: A Simulation Approach Ing. Ariel Cedola GEMyDE, Departamento de Electrotecnia, Facultad de Ingeniería, Universidad Nacional de La Plata Calle 48 y 116, 1er Piso, La Plata, 1900, Buenos Aires, Argentina & Dipartimento di Elettronica e Telecomunicazioni, Politecnico di Torino Corso Duca degli Abruzzi 24, 10129, Torino, Italia 2014
  • 2. Ing. Ariel Cedola – UNLP & POLITO
  • 3. Quantum Dot Solar Cells (QDSC) have gained attention during the last years as one of the most feasible semiconductor structures for the implementation of the intermediate band solar cell (IBSC) concept. IBSCs are p-i-n structures with a narrow band of energy levels within the bandgap of the intrinsic region. According to theoretical predictions, based on idealized considerations, IBSCs maximum efficiencies could reach values >60%, due to: • Absorption of low energy photons (processes 1 and 2 in the figure), generation and escape of extra carriers. • Increment of cell short-circuit current (Jsc) with no degradation of open-circuit voltage (Voc). Intermediate band (IB) Barrier Luque A. et. al, Phys. Rev. Lett., Vol. 78, N. 26, p. 5014 (1997) Ing. Ariel Cedola – UNLP & POLITO
  • 4. • Semiconductor nanostructures with quantum mechanical properties (e.g. InAs) ¿What are QDs? • Size: Base 10-60 nm; Height 4-10 nm • x, y, z confinement (0D DOS) • Discrete energy levels Ing. Ariel Cedola – UNLP & POLITO
  • 5. • Bandgap and absorption spectrum depend on materials, sizes and shapes • Non uniformity: absorption spectrum broadening 4 nm 9 nm 8 nm InAs/GaAs InAs/GaAs GaN QDs Ing. Ariel Cedola – UNLP & POLITO
  • 6. QDs fabrication • Stranski-Krastanow method • QDs layer stacking ND = 1010 – 1011 cm-2 Ing. Ariel Cedola – UNLP & POLITO
  • 7. EQE  Quantum efficiency of solar cells with embedded QDs layers Without QDs QDs (x, ND) QDs (x, ND) QDs (x, ND) Ing. Ariel Cedola – UNLP & POLITO
  • 8. InAs/GaAs Quantum Dot Solar Cells (QDSCs) InAs QDs layers p GaAs n GaAs i GaAs Energía[eV] 0 -1.5 1.5 x Energy bands diagram Ing. Ariel Cedola – UNLP & POLITO
  • 9. Ing. Ariel Cedola – UNLP & POLITO InAs QDs layers InAs/GaAs Quantum Dot Solar Cells (QDSCs)
  • 10.  < 900 nm Efot > EG GaAs Photogeneration Recombination Ing. Ariel Cedola – UNLP & POLITO InAs/GaAs Quantum Dot Solar Cells (QDSCs)
  • 11.  > 900 nm Efot < EG GaAs Photogeneration Recombination Escape Capture JQD  (EscWLB – CapBWL) Ing. Ariel Cedola – UNLP & POLITO InAs/GaAs Quantum Dot Solar Cells (QDSCs)
  • 12. Jolley 2012 Prog. Photovolt. Guimard 2010 APL Bailey 2011 APL Yang 2013 SEM&SC Ing. Ariel Cedola – UNLP & POLITO InAs/GaAs QDSCs: Experimental IV curves
  • 13. Ing. Ariel Cedola – UNLP & POLITO QDSCs modeling: State-of-the-art approaches
  • 14. Our work: Drift-Diffusion + QDs carrier dynamics modeling   2 2 i i i i i id a WL WL ES ES GS GS i V q p n N N p n p n p n x                      1 i iWL B B WLn B B nESC nCAP i Jn R G R R t q x            1 i ip WL B B WL B B pESC pCAP i Jp R G R R t q x             n n n V n J q n qD x x         p p p V p J q p qD x x         • Poisson equation • Continuity equations for holes and electrons Drift-diffusion transport model i = QDs layer Ing. Ariel Cedola – UNLP & POLITO
  • 15. i i i i i i i i i WL B WL WL B WL ES ES WL nCAP nESC nCAP nESC WL WL n R R R R R G t             i i i i i i i i i i i ES WL ES ES WL ES GS GS ES nCAP nESC nCAP nESC ES ES n R R R R R G t             i i i i i i i GS ES GS GS ES nCAP nESC GS GS n R R R G t         ( ) ( ) ( )( ) 1n p ESC n p ESC n pn p R DOS               ( ) ( ) ( ) ( ) 1n p CAP n p CAP n p n p R DOS              =WL, ES, GS; =B, WL, ES • Rate equations for electrons at each energy level at each QD layer • Escape and capture rates for electrons (holes) fe(h)i fe(h)i Ing. Ariel Cedola – UNLP & POLITO QDSCs modeling i = QDs layer • Recombination rates
  • 16.           ddxffffxG i WLiWLiWLiWLii x heWLGAMheWLWL            0 5.1 ',,exp,,,           ddxffffxG i ESiESiESiESii x heESGAMheESES            0 5.1 ',,exp,,,           ddxffffxG i GSiGSiGSiGSii x heGSGAMheGSGS            0 5.1 ',,exp,,, • Photogeneration rates at each QD energy level 0.2 0.4 0.6 0.8 1 1.2 1.4 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 Wavelength [nm] AM1.5GSpectralIrradiance[kW/m2/um] GaAs InAs IEEE ARGENCON 2014 Ing. Ariel Cedola – UNLP & POLITO QDSCs modeling
  • 17. Results: comparison with experimental measurements 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 -0.016 -0.014 -0.012 -0.01 -0.008 -0.006 -0.004 -0.002 0 Tensión [V] Densidaddecorriente[A/cm2] Celda de GaAs Ref. [5] QDSC Ref. [5] Simulación de la celda de GaAs Simulación de la QDSC [5] K. Sablon et al, Strong enhancement of solar cell efficiency due to quantum dots with built in charge, NanoLetters, vol. 11, pp. 2311-2317 (2011). Voc=50 mV Jsc=600 mA/cm2 Ing. Ariel Cedola – UNLP & POLITO
  • 18. 300 400 500 600 700 800 900 1000 1100 1200 10 0 10 1 10 2 10 3 10 4 10 5 Longitud de onda [nm] Respuestaespectral[a.u.] Celda de GaAs Ref. [5] QDSC Ref. [5] Simulación de la celda de GaAs Simulación de la QDSC [5] K. Sablon et al, Strong enhancement of solar cell efficiency due to quantum dots with built in charge, NanoLetters, vol. 11, pp. 2311-2317 (2011). Ing. Ariel Cedola – UNLP & POLITO Results: comparison with experimental measurements (cont.)
  • 19. Results: Dependence of I-V curves with number of QD layers and density 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 -0.025 -0.02 -0.015 -0.01 -0.005 0 Tensión [V] Densidaddecorriente[A/cm-2] ND = 1.2e10 cm-2 ND = 4e10 cm-2 ND = 1e11 cm-2 20x 100x Ing. Ariel Cedola – UNLP & POLITO
  • 20. 20 30 40 50 60 70 80 90 100 14.6 14.8 15 15.2 15.4 15.6 15.8 16 16.2 Número de capas de QDs Eficiencia[%] ND = 1.2 e10 cm-2 ND = 4e10 cm-2 ND = 1e11 cm-2 Eficiencia de la celda de GaAs sin QDs Results: Dependence of the efficiency with the number of QD layers and density Ing. Ariel Cedola – UNLP & POLITO
  • 21. Results: Doping effects 80 nm (NA = 1018 cm-3) 70 nm (NA = 3x1017 cm-3) 600 nm (intr.) 300 nm (ND = 1018 cm-3) 10x EB-WL EWL-ES EES-GS EB-WL EWL-ES EES-GS 1420 meV Parámetros QDSC-A QDSC-B Capa p+ GaAs (1018 cm-3) [nm] 80 80 Capa p- GaAs (3x1017 cm-3) [nm] 70 70 Capa i GaAs [nm] 600 600 Capa n+ GaAs (1018 cm-3) [nm] 300 300 ND = Densidad sup. de QDs [cm-2] 6x1010 6x1010 Número de capas de QDs 10 10 Rango de captura de los QDs [nm] 5 5 n: EB-WL, EWL-ES, EES-GS [meV] 140, 62, 70 220, 40, 30 p: EB-WL, EWL-ES, EES-GS [meV] 28, 16, 16 140, 15, 15 n-capWL, n-capES, n-capGS [ps] 0.3, 1, 1 0.3, 1, 1 p-capWL, p-capES, p-capGS [ps] 0.1, 0.1, 0.1 0.1, 0.1, 0.1 rWL, rES, rGS [ns] 1, 1, 1 1, 1, 1 Ing. Ariel Cedola – UNLP & POLITO
  • 22. Results: Doping effects (cont.) Ing. Ariel Cedola – UNLP & POLITO
  • 23. Ing. Ariel Cedola – UNLP & POLITO Results: Doping effects (cont.)
  • 24. Ing. Ariel Cedola – UNLP & POLITO Results: Doping effects (cont.)
  • 25. Ing. Ariel Cedola – UNLP & POLITO Results: Non-linear (additive) behavior & QD dynamics Full solar spectrum illumination  > 900 nm K. Sablon et al, NanoLetters, vol. 11, pp. 2311-2317 (2011)
  • 26. 0 0.2 0.4 0.6 0.8 -30 -25 -20 -15 -10 -5 0 X: 0.001 Y: -8.607 Voltage (V) Currentdensity(mAcm -2 ) X: 0 Y: -20.74 X: 0 Y: -29.34 h/e follow hole (faster) dynamics -> linear (additive) behavior h/e follow electron (slower) dynamics -> NON linear behavior Ing. Ariel Cedola – UNLP & POLITO Results: Non-linear (additive) behavior & QD dynamics (cont.) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 -40 -30 -20 -10 0 10 20 X: 0 Y: -7.09 Voltage (V) Currentdensity(mAcm -2 ) X: 0 Y: -20.74 X: 0 Y: -25.3
  • 27. Ing. Ariel Cedola – UNLP & POLITO Results: Non-linear (additive) behavior & QD dynamics (cont.) 010E+12 1,000E+12 010E+16 1,000E+16 010E+20 1,000E+20 010E+24 1,000E+24 010E+28 1,000E+28 0 5 10 15 20 Rate[cm-3s-1] # QD layer GS tasa_cap_n_GS tasa_esc_n_GS tasa_cap_p_GS tasa_esc_p_GS g_sol_qd_gs tasa_rec_GS abs(net_cap_n_GS) abs(net_cap_p_GS) 0 5 10 15 20 GS Full solar spectrum illumination  > 900 nm
  • 28. Ing. Ariel Cedola – UNLP & POLITO Results: Non-linear (additive) behavior & QD dynamics (cont.) 100E-12 1,000E-12 001E-08 010E-08 100E-08 1,000E-08 001E-04 010E-04 100E-04 1,000E-04 001E+00 0 5 10 15 20 Ocup. factors 0 5 10 15 20 Ocup. factors GS ES WL GS ES WL Full solar spectrum illumination  > 900 nm
  • 29. Ing. Ariel Cedola – UNLP & POLITO Results: Non-linear (additive) behavior & QD dynamics (cont.) Full solar spectrum illumination  > 900 nm -200E+20 -150E+20 -100E+20 -050E+20 0,000E+00 050E+20 100E+20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 NET ESCAPE GS->ES ES->WL WL->Barrier -060E+20 -040E+20 -020E+20 0,000E+00 020E+20 040E+20 060E+20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 NET ESCAPE
  • 30. Conclusions • A device-level model including QD intersubband carrier dynamics and transport has been developed for simulation of QDSCs. • Preliminary results agree very well with experimental data. • Effects of doping and non-additive behavior of the QD photocurrent have been investigated. • QD Photocurrent can be increased with optimal n-uniform doping, althoug the Voc degradation is still a factor to investigate. • Non-linearities can be associated to the de-synchronization of QD dynamics Ing. Ariel Cedola – UNLP & POLITO
  • 31. Thankyou for your attention. ariel.cedola@ing.unlp.edu.ar Ing. Ariel Cedola – UNLP & POLITO