Diese Präsentation wurde erfolgreich gemeldet.
Wir verwenden Ihre LinkedIn Profilangaben und Informationen zu Ihren Aktivitäten, um Anzeigen zu personalisieren und Ihnen relevantere Inhalte anzuzeigen. Sie können Ihre Anzeigeneinstellungen jederzeit ändern.

Keynote financial services in 2030 by Michelle Kactis- ArabNet Riyadh 2018

37 Aufrufe

Veröffentlicht am

Financial Services in 2030: How will Big Data Deliver on Big Promises?

Veröffentlicht in: Technologie
  • Als Erste(r) kommentieren

  • Gehören Sie zu den Ersten, denen das gefällt!

Keynote financial services in 2030 by Michelle Kactis- ArabNet Riyadh 2018

  1. 1. Financial Services in 2030: How will Big Data Deliver on Big Promises? Michelle Katics, CEO and Co-Founder
  2. 2. what will Financial Services look like in 2030?
  3. 3. Today: “I wanttogoon Vacation" Can we use our points? Which destinations have non-stop flights? Traveller ratings? Which credit card has the best Forex rates? How much can I spend on my trip?
  4. 4. In 2030: ”ALEXA: I Want to go on vacation”
  5. 5. how do we get there? BIG Data machine Learning & AI CROSS-VERTICAL INTEGRATION
  6. 6. big data in banking
  7. 7. Big Data: ACTION Plan Action Plan 1. Test and Learn. Test Tailored discounts, Promotions, Coupons and Relevant Loyalty offers 2. Reconsider which analytics, data visualization tools, and database structures you should use. Python? R? SAS? MongoDB? The 'real' definition of big data is that traditional analysis techniques don't work. 3. Invest not only in your data lake, but also on data cleansing and data organization such as data tagging.
  8. 8. Example USE CASE: ML & AI Action Plan
  9. 9. live example Value of big data to finance: observations on an internet credit Service Company in China https://jfin-swufe.springeropen.com/articles/10.1186/s40854-015-0017-2 Examples
  10. 10. more examples Examples 30% to 40% lift in Fraud Detection with no additional false alarms Luvo: Natural language processing AI bot Manual review of 12,000 annual commercial credit agreements normally requires approximately 360,000 hours.... the same amount of agreements could be reviewed in seconds.
  11. 11. action plan: Machine learning & AI Action Plan 1. Look to other industries for examples, inspiration, and talent 2. "Stay in your lane" with Machine Learning. Walk before you run. 3. Upskill and Reskill your teams now - these skills sets are scarce. Encourage and make space for lots of pilot tests.
  12. 12. Cross-vertical integration What is it?
  13. 13. examples: Cross-vertical integration Examples
  14. 14. action Plan: Cross-vertical integration Action Plan 1. Build corporate partnerships which are are data gold mines 2. Watch consumer, e-commerce and marketing trends; they are ahead of us 3. Test out every app you can; shopping, transport, travel.
  15. 15. Now, back to ALEXA BIG Data ML & AI CROSS-VERTICAL 1. Always start with the use case, and the user experience 2. Cross-vertical integration brings the volume and velocity of big data 3. Integrate ML and AI as a toolkit 4. Now your intelligence is actionable.
  16. 16. LEARN MORE! www.FinTalent.com/how-to 1. Download the SmartUp app: App Store / Google Play Store 2. Start the app > click Join my community > type fintalent2018 3. Login with any of your social logins.
  17. 17. Simulation, Sandboxes, online and Mobile learning Michelle Katics CEO and Co-Founder BankersLab @michellekatics michelle@bankerslab.com WhatsApp +65 86503580 www.FinTalent.com www.BankersLab.com

×