SlideShare a Scribd company logo
1 of 62
OR.A.SIOR.A.SI
Orbit and AttitudeOrbit and Attitude
SimulatorSimulator
Antonios Arkas
Flight Dynamics Engineer
1. Orbital Module1. Orbital Module
CharacteristicsCharacteristics
OR.A.SI - Orbit and Attitude Simulator
1.1 Technical Features
4. Planetary and Moon Ephemeris
 Moon’s orbital model – Charpnot ELP-2000/82 (Accuracy 2 arcsec)
 Planetary orbital model – VSOP87
OR.A.SI - Orbit and Attitude Simulator
3. Earth Gravity Model
 GEM10B
 Order and degree of approximation defined by the user.
 Capability to upgrade the model by changing the geopotential coefficients.
1. Numerical Integrator
 Continuous embedded 6th
stage Runge-Kutta-Fehelberg method RKF4(5)
 Continuous embedded 13th
stage Runge-Kutta method RKF8(7)-13
2. Internal step size adaptation according to the steepness of the problem
 Control of the local truncation error in order for each step to contribute uniformly to
the total integration error.
(code capable of accurately solving any kind of orbit: LEO – GEO - Interplanetary).).
OR.A.SI - Orbit and Attitude Simulator
1.2 Capabilities – Orbital features
1. Forward and backward propagation by taking account an indefinite
number
of orbital maneuvers
 Three degrees of freedom maneuver (radial, tangential and normal velocity components).
 Ability to execute both impulsive and continuous thrusts (ionic propulsion).
3. E/W station keeping maneuver computation
 Functional for every geographical longitude.
 Supports tilted circle collocation strategy (eccentricity separation).
 Radial and tangential effects of the upcoming N/S maneuver are taken into account.
2. N/S station keeping maneuver computation
 Supports tilted circle collocation strategy (inclination separation).
4. Maneuver calibration
5. State vector transformations
 Transformation from Keplerian to synchronous elements and vice versa.
 Transformation between reference frames (B1950, J2000, Mean of Date , True of Date)
6. Mean value of a state vector
OR.A.SI - Orbit and Attitude Simulator
1.3 Capabilities: Earth-Spacecraft Geometry Calculations
1. Antenna Pointing Data
 Topocentric horizon polar (range, azimuth, elevation) and Cartesian coordinates
(x,y,z) with respect to whatever Earth station in the satellite geographical coverage.
 Tropospheric range and elevation correction as functions of local temperature,
relative humidity and barometric pressure (Hopfield model for radio frequencies).
 Doppler shift calculation.
2. Calculation of Sun outage for GEO satellites and whatever Earth station in
the relevant coverage.
 Calculation of the first and the last day of Sun outage for both Vernal and Autumnal
periods for all the satellite coverage area.
 Entrance and exit times of a parabolic antenna main lobe from the solar disk
according to the downlink frequency and the diameter of the antenna.
 Angular separation between the bore sight of the antenna and the centre of the solar
disk during the phenomenon.
 Percentage of the main lobe obscuration by the solar disk during the phenomenon.
OR.A.SI - Orbit and Attitude Simulator
1.4 Capabilities: Earth-Spacecraft Geometry Calculations
3. Calculation of Sun eclipse by the Earth for a GEO spacecraft.
5. IRES Blinding for GEO spacecraft.
6. Earth station – Satellite geometry calculations and transformations.
 Transformation from topocentric horizon (range, azimuth elevation) to geographical
(geocentric distance, longitude, latitude) and vice versa.
 Antenna biases and weather conditions are taken account (local temperature,
relative humidity and barometric pressure ).
7. Geographical antenna coverage for whatever Earth satellite.
4. Calculation of Sun eclipse by the Moon for a GEO spacecraft.
OR.A.SI - Orbit and Attitude Simulator
1.5 Calendrical Calculations and Conversions
 Conversion between JD, MJD, UTC and Gregorian Date.
 Calculation of J50, ET, GMST, GAST, JDE and TAI.
 Calculation of the UTC corresponding to a specific GMST and date.
OR.A.SI - Orbit and Attitude Simulator
1.6 Capabilities: Mission Analysis for GEO spacecrafts
1. Mission analysis module characteristics
 Fully autonomous calculation of the necessary optimal N/S and E/W maneuvers with
simultaneous orbit propagation and maneuver execution.
 Mission analysis for both inclination and eccentricity separation strategies.
 Functional for every geographical longitude.
 Flexibility to change the duration of the station keeping cycle duration.
2. Data entry for mission analysis
 Spacecraft characteristics : i) initial mass ii) SRP
 Duration of mission analysis (Start and end date).
 Station keeping cycle duration.
 Station longitude.
 Station keeping window dimensions.
 Inclination separation strategy (centre of the solar ellipse).
 Correction of periodic solar perturbation correction for inclination control.
 Eccentricity separation strategy (centre of the eccentricity ellipse).
 Eccentricity constrains: i) maximum eccentricity ii) eccentricity tolerance
One Year Mission Analysis – Eccentricity Evolution
Scenario: Inclination and Eccentricity Separation for 39o
East
One Year Mission Analysis – Inclination Evolution
Scenario: Inclination and Eccentricity Separation for 39o
East
One Year Mission Analysis – True and Mean Longitude Evolution
Scenario: Inclination and Eccentricity Separation for 39o
East
One Year Mission Analysis – True and Mean Longitude Evolution
Scenario: Station Keeping at 129o
East (Negative longitudinal acceleration)
Lifetime Mission Analysis for Hellas Sat II – Eccentricity Evolution
Lifetime Mission Analysis for Hellas Sat II – Inclination Evolution
Lifetime Mission Analysis for Hellas Sat II – True and Mean Longitude Evolution
Lifetime Mission Analysis for Hellas Sat II – Latitude versus Longitude Evolution
2. Attitude Module2. Attitude Module
CharacteristicsCharacteristics
OR.A.SI - Orbit and Attitude Simulator
OR.A.SI - Orbit and Attitude Simulator
2.1 Technical Features (1/3)
1. Numerical Integrator
 Continuous embedded 6th
stage Runge-Kutta-Fehelberg method RKF4(5)
 Quaternions used as generalized coordinates (no problem with singular points and
instability cases).
2. Code capable of simulating the following rotational dynamic cases :
 Free rigid body rotation.
 Rotation of a rigid body under the influence of impulsive torques (thrusts).
 Rotation of a rigid body under the influence of continuous torques (perturbing
torques).
3. Motion description with respect to three different coordinate systems :
 Quasi inertial reference frame MGSD – Mean Geocentric System of Date.
 Body axis reference frame (sensors readings).
 Local orbital frame.
4. Flexibility to initialize the rotational state of the spacecraft by defining :
 The angular velocity vector with respect to any of the predefined coordinate systems.
 The angular momentum vector with respect to any of the predefined coordinate systems.
 The vector components form (Cartesian or Polar).
OR.A.SI - Orbit and Attitude Simulator
2.1 Technical Features (2/3)
5. Flexibility to describe the dynamical properties of the system to be
simulated :
 Definition of the mass distribution by choosing the principal moments of inertia
Ixx , Iyy and Izz.
 Addition of inertial wheels of whatever orientation by defining the respective
vector components of their angular momentum Lx, Ly and Lz with respect to the
body frame.
 Model the behavior of a dual-spin satellite by identifying the platform with an
inertial wheel and the rotor with the rigid body.
6. Simultaneous description of the rotational motion by using four
different types of generalized coordinates :
 Euler angles φ, θ and ψ (z-x-z convention).
 Tait-Bryan angles (roll, pitch, yaw).
 Directional cosines of the body axes with respect either to inertial or local frame.
 Quaternions.
2.1 Technical Features (3/3)
7. Computation of two successive torques needed to dump the precessional
motion of the spacecraft (Nutation dumping) :
 Initialization of any kind of rotational state.
 Computation of the epoch for the second impulsive torque when the corresponding
epoch for the first one is given.
 Computation of the two impulsive torque components with respect to both the inertial
and the body axis frame.
OR.A.SI - Orbit and Attitude Simulator
First Pulse
∆ 1
∆H2
T1
2
Momentum
Precession
Roll
H
T
Second Pulse
Yaw
OR.A.SI - Orbit and Attitude Simulator
Output
UTC – Universal Time Coordinated
dd/mm/yyyy hh:mm:ss - Gregorian Date
GAST - Greenwich Apparent Sidereal Time
Euler angles – φ,θ,ψ
Τait-Bryan angles – roll, pitch, yaw
Quaternions – qo, q1, q2, q3
Angular velocity with respect to the
inertial frame – ωx, ωy and ωz
Angular velocity ω with respect to the
body frame – Gyro readings.
Angular momentum vector with respect to
inertial frame – Lx, Ly, Lz
Angular momentum vector with respect to
the body frame.
Angular momentum vector with respect to
the local orbital frame.
Directional cosines of the body axes with
respect to the inertial frame.
Directional cosines of the body axes with
respect to the local orbital frame.
Angle between the x,z and y body axes and
the angular momentum vector.
Angle between the angular velocity vector
and the angular momentum vector.
LIASS unbalance angle.
LIASS pitch angle.
3. OR.A.SI utilization for3. OR.A.SI utilization for
modeling realisticmodeling realistic
attitude problemsattitude problems
OR.A.SI - Orbit and Attitude Simulator
OR.A.SI - Orbit and Attitude Simulator
3.1 Precession dumping with two successive impulses (1/3)
Geometry and dynamics of the simulation
wheel
xbody
zbody-ybody
xinertial
yinertial
zinertial
9.47o
L
ylocal
zlocal
-ylocal
xlocal
xbody
zbody
-ybody
7.36o
L
Body and Inertial Frame Body and Local Orbital Frame
OR.A.SI - Orbit and Attitude Simulator
3.1 Precession dumping with two successive impulses (2/3)
Final State
xbody
zbody
-ybody
wheel
xinertial
yinertial
zinertial
L
Ixx = 16669.631 Kg m2
Iyy = 2714.554 Kg m2
Izz = 16216.076 Kg m2
Roll = 6o
Pitch = 0o
Yaw = 0o
• Wheel angular momentum : 45 Nms
• Total angular momentum L : 45.3942 Nms
• Precession period : 38.3455 min
• Precession radius : 7.364o
• Angle between angular momentum and z-inertial axis: 9.47o
• Angle between angular momentum and y-body axis: 7.36o
Initial State
3.1 Precession dumping with two successive impulses (3/3)
OR.A.SI - Orbit and Attitude Simulator
Torque Impulses computed by OR.A.SI:
Date of the first impulse : 01/01/2008 12:00:00 (Defined by the user)
Date of the second impulse : 01/01/2008 12:19:1
Torque impulses [N m sec] with respect to the inertial frame
***************************************************
DLx1 = 6.132987 DLy1 = -1.578041 DLz1 = 0.423591
DLx2 = 0.414507 DLy2 = -2.030013 DLz2 = -0.000010
Torque impulses [N m sec] with respect to the body frame
**************************************************
DLx1 = 1.424230 DLy1 = -0.168105 DLz1 = 6.182757
DLx2 = 2.050461 DLy2 = -0.000034 DLz2 = 0.297288
OR.A.SI - Orbit and Attitude Simulator
OR.A.SI - Orbit and Attitude Simulator
OR.A.SI - Orbit and Attitude Simulator
OR.A.SI - Orbit and Attitude Simulator
OR.A.SI - Orbit and Attitude Simulator
OR.A.SI - Orbit and Attitude Simulator
4. Current Utilization of4. Current Utilization of
OR.A.SI to EnhanceOR.A.SI to Enhance
Hellas Sat’s FD OperationsHellas Sat’s FD Operations
OR.A.SI - Orbit and Attitude Simulator
OR.A.SI - Orbit and Attitude Simulator
4.1 Current utilization of OR.A.SI to enhance FD operations
 Training.
 Verification of the chosen station keeping strategy optimality by computing the
expected optimal ΔV increment corresponding to the desired time period.
 Computation of the expected future ergol consumption by executing long term
mission analysis.
 Assessment of the number and the epochs of the anticipated West maneuvers.
 SED – Satellite Ephemeris Data (Cartesian Ephemeris with respect to Earth
Centered Fixed reference frame) provision to the customers with DVB-RCS platforms
 Enhance Flight Dynamics operations safety with the ability to execute the
necessary orbital calculations even while away from office.
5. Future Plans for Further5. Future Plans for Further
Code DevelopmentCode Development
OR.A.SI - Orbit and Attitude Simulator
 Incorporation of Long Term Inclination Control Strategy.
 Addition of Orbit Determination Module.
 Enhancement of Mission Analysis with automatic calculation of plasmic thrusts.
 Implementation of platform depented characteristics (Maneuver Implementation).
 Description of a realistic model for the atmosphere up to the height of 1000 Km in
order to take account the air drug perurbation for LEO calculations.
 Implementation of control laws for solar arrays, and wheel.
 Code enhancement with multi threading characteristics in order to interact with
the program “on the run”.
 Code optimization to decrease the necessary run time.
 Addition of a Windows GUI.
OR.A.SI - Orbit and Attitude Simulator
5.1 Future Plans for Further Code Development
THANK YOU FOR ATTENDING MY PRESENTATION
OR.A.SI Integrator EvaluationOR.A.SI Integrator Evaluation
OR.A.SI - Orbit and Attitude Simulator
Comparison with an analytic solution
Utilization of a “steep” problem in order to challenge the integrator’s
capability to adapt its step size.
(the problem doesn’t ought to be physically realizable)
Highly eccentric Keplerian (non-perturbed) orbit with the following characteristics :
 a = 65127 Km
 e = 0.987
 i = 0o
 perigee radius = 894.45 Km (Earth’s radius = 6378 Km)
 apogee radius = 129407.372 Km
 maximum orbital velocity = 28.92 Km/sec (Escape velocity : 11 Km/sec)
OR.A.SI - Orbit and Attitude Simulator
Step Size Control
OR.A.SI - Orbit and Attitude Simulator
Relative Accuracy With Respect to the Analytic Solution
OR.A.SI Planetary and Earth ModelOR.A.SI Planetary and Earth Model
EvaluationEvaluation
OR.A.SI - Orbit and Attitude Simulator
Comparison with COSMIC
Utilization of a series of realistic station keeping maneuvers actually executed for Hellas
Sat II between 16-12-05 and 13-02-06 :
 All perturbations taken account.
 Total of 7 consecutive maneuvers.
 4 South maneuvers coupled with 3 East maneuvers.
OR.A.SI - Orbit and Attitude Simulator
1) How accurate is the orbit prediction ?
2) How accurate are the antenna pointing data ?
OR.A.SI - Orbit and Attitude Simulator
True and Mean Longitude Evolution
OR.A.SI - Orbit and Attitude Simulator
Inclination Evolution
OR.A.SI - Orbit and Attitude Simulator
Osculating and Mean Major Semi Axis Evolution
OR.A.SI - Orbit and Attitude Simulator
ey Eccentricity Component Evolution
OR.A.SI - Orbit and Attitude Simulator
Output - Osculating Elements (1/2)
UTC – Universal Time Coordinated
MJD – Modified Julian Day
dd/mm/yyyy hh:mm:ss - Gregorian Date
GAST - Greenwich Apparent Sidereal Time
LST – Local Sidereal Time
a – major semi axis
e – eccentricity
i – inclination
Ω – Right Ascension of the Ascending node
ω – Argument of the perigee
M – Mean anomaly
v – True anomaly
λ – True longitude
λο – Mean longitude
φ – Sub satellite point latitude
(ex , ey) – Eccentricity vector
(ix , iy ) – Inclination vector
D – Longitude drift rate (deg/day)
R – Geocentric distance (height)
S – Slant distance
(X,Y,Z) – Cartesian Coordinates with respect
to ECI.
(Vx, Vy, Vz) – Velocity vector with respect
to ECI.
(X,Y,Z)Earth - Cartesian Coordinates with
respect to ECF.
OR.A.SI - Orbit and Attitude Simulator
Output - Osculating Elements (2/2)
(Vx, Vy, Vz)Earth – Velocity vector with respect to ECF.
(X,Y,Z)topocentric - Topocentric Horizon Cartesian Coordinates.
Azimuth and Elevation - Antenna tracking angles (Tropospheric refraction taken account).
Doppler shift – Δf/f.
Sun’s RA – Sun’s Right Ascension.
Sun’s Dec – Sun’s Declination.
Step size – Evolution of the adaptive step size used by the differential equations integrator.
Output - Mean Elements
OR.A.SI - Orbit and Attitude Simulator
UTC – Universal Time Coordinated
MJD – Modified Julian Day
dd/mm/yyyy hh:mm:ss - Gregorian Date
GAST - Greenwich Apparent Sidereal Time
LST – Local Sidereal Time
a – Major semi axis
e – Eccentricity
i – Inclination
Ω + ω – Right Ascension of the Ascending node plus argument of the perigee
λo – Mean longitude
(ix , iy) – Inclination vector
(ex , ey) – Eccentricity vector
OR.A.SI - Orbit and Attitude Simulator
Elevation Evolution for Earth Station at φ = 22.6859ο
and λ = 38.822ο
OR.A.SI - Orbit and Attitude Simulator
Azimuth Evolution for Earth Station at φ = 22.6859ο
and λ = 38.822ο
OR.A.SI - Orbit and Attitude Simulator
Slant Distance Evolution for Earth Station at φ = 22.6859ο
and λ = 38.822ο
OR.A.SI - Orbit and Attitude Simulator
Doppler Evolution
State Form Transformation Module Output
Satellite position, earth station position and antenna charachteristics
***********************************************************
Satellite's longitude : 39.000000 degrees East
Satellite's azimuth : 154.955357 deg
Satellite's elevation : 41.961143 deg
Earth station longitude : 22.685968 degrees East
Earth station latitude : 38.822452 degrees
Antenna diameter : 31.000000 m
Downlink frequency : 6.000000 GHz
Antenna HPBW : 0.112824 deg
First day of Vernal outage: 26/02/2008 Last day of Vernal outage: 11/04/2008
Vernal outage for year 2008
************************
4/3/2008 9:26 Angular separation : 0.314282 deg Obscuration : 9.510246%
4/3/2008 9:27 Angular separation : 0.161102 deg Obscuration : 100.000000%
4/3/2008 9:28 Angular separation : 0.277018 deg Obscuration : 42.538741%
5/3/2008 9:26 Angular separation : 0.312228 deg Obscuration : 11.330798%
5/3/2008 9:27 Angular separation : 0.229455 deg Obscuration : 84.695338%
First day of Autumnal outage: 30/08/2008 Last day of Autumnal outage: 15/10/2008
Autumnal outage for year 2008
***************************
8/10/2008 9:1 Angular separation : 0.225690 deg Obscuration : 88.032401%
8/10/2008 9:2 Angular separation : 0.102622 deg Obscuration : 100.000000%
8/10/2008 9:3 Angular separation : 0.149870 deg Obscuration : 100.000000%
8/10/2008 9:4 Angular separation : 0.273488 deg Obscuration : 45.667732%
Penumbra vernal eclipse for 2008 and longitude 39 degrees East
*******************************************************
Enter Exit Duration
26/02/2008 21:27:43 26/02/2008 21:45:43 18 min
27/02/2008 21:23:02 27/02/2008 21:50:02 27 min
28/02/2008 21:19:48 28/02/2008 21:52:55 33.12 min
29/02/2008 21:16:55 29/02/2008 21:55:26 38.52 min
01/03/2008 21:14:24 01/03/2008 21:57:36 43.2 min
02/03/2008 21:12:14 02/03/2008 21:59:24 47.16 min
03/03/2008 21:10:26 03/03/2008 22:00:50 50.4 min
04/03/2008 21:08:38 04/03/2008 22:01:55 53.28 min
05/03/2008 21:07:12 05/03/2008 22:03:00 55.8 min
06/03/2008 21:05:45 06/03/2008 22:04:04 58.32 min
07/03/2008 21:04:19 07/03/2008 22:04:48 60.48 min
08/03/2008 21:03:14 08/03/2008 22:05:31 62.28 min
09/03/2008 21:02:09 09/03/2008 22:06:14 64.08 min
10/03/2008 21:01:04 10/03/2008 22:06:36 65.52 min
11/03/2008 21:00:21 11/03/2008 22:06:57 66.6 min
12/03/2008 20:59:16 12/03/2008 22:07:19 68.04 min
13/03/2008 20:58:33 13/03/2008 22:07:19 68.76 min
14/03/2008 20:57:50 14/03/2008 22:07:40 69.84 min
15/03/2008 20:57:07 15/03/2008 22:07:40 70.56 min
16/03/2008 20:56:45 16/03/2008 22:07:40 70.92 min
17/03/2008 20:56:02 17/03/2008 22:07:40 71.64 min
18/03/2008 20:55:40 18/03/2008 22:07:19 71.64 min
19/03/2008 20:55:19 19/03/2008 22:07:19 72 min
20/03/2008 20:55:19 20/03/2008 22:06:57 71.64 min
21/03/2008 20:54:57 21/03/2008 22:06:36 71.64 min
22/03/2008 20:54:36 22/03/2008 22:05:52 71.28 min
23/03/2008 20:54:36 23/03/2008 22:05:31 70.92 min
24/03/2008 20:54:36 24/03/2008 22:04:48 70.2 min
25/03/2008 20:54:36 25/03/2008 22:04:04 69.48 min
26/03/2008 20:54:57 26/03/2008 22:03:21 68.4 min
55 60 65 70 75 80 85 90 95 100 105
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
Hellas Sat's Vernal Eclipse for 2008
Penumbra duration
Umbra Duration
duration[min]
UTC [days]
Start date: 01/01/2008 0:0:0
End date: 31/12/2008 23:59:59
Ephemeris: Center-of-box
Window center : 39.000000 deg East
Start: 06/02/2008 22:39:00 0.765697 %
Maximum : 06/02/2008 22:53:00 37.468716 %
End: 06/02/2008 23:07:00 0.399627 %
Start: 07/02/2008 12:16:00 0.137689 %
Maximum: 07/02/2008 12:51:00 58.648095 %
End: 07/02/2008 13:28:00 0.039556 %
Start: 27/12/2008 19:10:00 0.329664 %
Maximum: 27/12/2008 19:18:00 4.690416 %
End: 27/12/2008 19:26:00 0.241870 %
Sun Eclipse by the Moon for 2008 and
Orbital Position 39o
East
Start date: 1/6/2008 0:0:0
End date: 30/6/2008 0:0:0
Ephemeris: Center-of-box
Window center: 39.000000 deg East
Moon phase threshold : 40.000000%
Error margin: 0.100000 deg
10/06/2008 02:14:00 BOLOMETER 2 : START 44.602096 %
10/06/2008 04:42:00 BOLOMETER 2 : END 45.675974 %
12/06/2008 02:53:00 BOLOMETER 1 : START 64.901304 %
12/06/2008 05:21:00 BOLOMETER 1 : END 65.870919 %
24/06/2008 12:17:00 BOLOMETER 1 : START 70.785076 %
24/06/2008 14:46:00 BOLOMETER 1 : END 69.793799 %
26/06/2008 14:32:00 BOLOMETER 2 : START 49.043781 %
26/06/2008 17:01:00 BOLOMETER 2 : END 47.895228 %
IRES Blinding by the Moon for June 2008 and
Orbital Position 39o
East
Geographical-Topocentric Horizon Transformation

More Related Content

What's hot

Simulation of Deployment and Operation of an Earth Observing Satellite
Simulation of Deployment and Operation of an Earth Observing SatelliteSimulation of Deployment and Operation of an Earth Observing Satellite
Simulation of Deployment and Operation of an Earth Observing SatelliteAlber Douglawi
 
Investigation Of Alternative Return Strategies for Orion Trans-Earth Inject...
  Investigation Of Alternative Return Strategies for Orion Trans-Earth Inject...  Investigation Of Alternative Return Strategies for Orion Trans-Earth Inject...
Investigation Of Alternative Return Strategies for Orion Trans-Earth Inject...Belinda Marchand
 
ÖNCEL AKADEMİ: İSTANBUL DEPREMİ
ÖNCEL AKADEMİ: İSTANBUL DEPREMİÖNCEL AKADEMİ: İSTANBUL DEPREMİ
ÖNCEL AKADEMİ: İSTANBUL DEPREMİAli Osman Öncel
 
Aero421FinalProject
Aero421FinalProjectAero421FinalProject
Aero421FinalProjectEric Woods
 
IGARSS_2011_final.ppt
IGARSS_2011_final.pptIGARSS_2011_final.ppt
IGARSS_2011_final.pptgrssieee
 
A_Ku_Band_Geosyncrhonous_Synthetic_Aperture_Radar_Mission_Analysi.ppt
A_Ku_Band_Geosyncrhonous_Synthetic_Aperture_Radar_Mission_Analysi.pptA_Ku_Band_Geosyncrhonous_Synthetic_Aperture_Radar_Mission_Analysi.ppt
A_Ku_Band_Geosyncrhonous_Synthetic_Aperture_Radar_Mission_Analysi.pptgrssieee
 
02 chapter: Earthquake: Strong Motion and Estimation of Seismic Hazard
02 chapter: Earthquake: Strong Motion and Estimation of Seismic Hazard02 chapter: Earthquake: Strong Motion and Estimation of Seismic Hazard
02 chapter: Earthquake: Strong Motion and Estimation of Seismic HazardPriodeep Chowdhury
 
PR3 MODIS_VIIRS_Geo_Error_Trend_with_Kalman_Filter.pptx
PR3 MODIS_VIIRS_Geo_Error_Trend_with_Kalman_Filter.pptxPR3 MODIS_VIIRS_Geo_Error_Trend_with_Kalman_Filter.pptx
PR3 MODIS_VIIRS_Geo_Error_Trend_with_Kalman_Filter.pptxgrssieee
 
Interplanetary Mission Design
Interplanetary Mission DesignInterplanetary Mission Design
Interplanetary Mission DesignNicholas Cordero
 
History of Earth Gravity Model
History of Earth Gravity ModelHistory of Earth Gravity Model
History of Earth Gravity ModelPawan Singh
 
Build Your Own VR Display Course - SIGGRAPH 2017: Part 3
Build Your Own VR Display Course - SIGGRAPH 2017: Part 3Build Your Own VR Display Course - SIGGRAPH 2017: Part 3
Build Your Own VR Display Course - SIGGRAPH 2017: Part 3StanfordComputationalImaging
 
Electromagnetic formationflightoct02
Electromagnetic formationflightoct02Electromagnetic formationflightoct02
Electromagnetic formationflightoct02Clifford Stone
 
Spacecraft Formation Flying Navigation via a Novel Wireless Final
Spacecraft Formation Flying Navigation via a Novel Wireless FinalSpacecraft Formation Flying Navigation via a Novel Wireless Final
Spacecraft Formation Flying Navigation via a Novel Wireless FinalShu Ting Goh
 
Relativistic Effect in GPS Satellite and Computation of Time Error
Relativistic Effect in GPS Satellite and Computation of Time Error Relativistic Effect in GPS Satellite and Computation of Time Error
Relativistic Effect in GPS Satellite and Computation of Time Error Vedant Srivastava
 
2011IgarssMetaw.ppt
2011IgarssMetaw.ppt2011IgarssMetaw.ppt
2011IgarssMetaw.pptgrssieee
 
TH1.L09 - GEODETICALLY ACCURATE INSAR DATA PROCESSOR FOR TIME SERIES ANALYSIS
TH1.L09 - GEODETICALLY ACCURATE INSAR DATA PROCESSOR FOR TIME SERIES ANALYSISTH1.L09 - GEODETICALLY ACCURATE INSAR DATA PROCESSOR FOR TIME SERIES ANALYSIS
TH1.L09 - GEODETICALLY ACCURATE INSAR DATA PROCESSOR FOR TIME SERIES ANALYSISgrssieee
 

What's hot (20)

Simulation of Deployment and Operation of an Earth Observing Satellite
Simulation of Deployment and Operation of an Earth Observing SatelliteSimulation of Deployment and Operation of an Earth Observing Satellite
Simulation of Deployment and Operation of an Earth Observing Satellite
 
Investigation Of Alternative Return Strategies for Orion Trans-Earth Inject...
  Investigation Of Alternative Return Strategies for Orion Trans-Earth Inject...  Investigation Of Alternative Return Strategies for Orion Trans-Earth Inject...
Investigation Of Alternative Return Strategies for Orion Trans-Earth Inject...
 
ÖNCEL AKADEMİ: İSTANBUL DEPREMİ
ÖNCEL AKADEMİ: İSTANBUL DEPREMİÖNCEL AKADEMİ: İSTANBUL DEPREMİ
ÖNCEL AKADEMİ: İSTANBUL DEPREMİ
 
Aero421FinalProject
Aero421FinalProjectAero421FinalProject
Aero421FinalProject
 
IGARSS_2011_final.ppt
IGARSS_2011_final.pptIGARSS_2011_final.ppt
IGARSS_2011_final.ppt
 
A_Ku_Band_Geosyncrhonous_Synthetic_Aperture_Radar_Mission_Analysi.ppt
A_Ku_Band_Geosyncrhonous_Synthetic_Aperture_Radar_Mission_Analysi.pptA_Ku_Band_Geosyncrhonous_Synthetic_Aperture_Radar_Mission_Analysi.ppt
A_Ku_Band_Geosyncrhonous_Synthetic_Aperture_Radar_Mission_Analysi.ppt
 
Formation flyingoct01
Formation flyingoct01Formation flyingoct01
Formation flyingoct01
 
02 chapter: Earthquake: Strong Motion and Estimation of Seismic Hazard
02 chapter: Earthquake: Strong Motion and Estimation of Seismic Hazard02 chapter: Earthquake: Strong Motion and Estimation of Seismic Hazard
02 chapter: Earthquake: Strong Motion and Estimation of Seismic Hazard
 
PR3 MODIS_VIIRS_Geo_Error_Trend_with_Kalman_Filter.pptx
PR3 MODIS_VIIRS_Geo_Error_Trend_with_Kalman_Filter.pptxPR3 MODIS_VIIRS_Geo_Error_Trend_with_Kalman_Filter.pptx
PR3 MODIS_VIIRS_Geo_Error_Trend_with_Kalman_Filter.pptx
 
Interplanetary Mission Design
Interplanetary Mission DesignInterplanetary Mission Design
Interplanetary Mission Design
 
History of Earth Gravity Model
History of Earth Gravity ModelHistory of Earth Gravity Model
History of Earth Gravity Model
 
Build Your Own VR Display Course - SIGGRAPH 2017: Part 3
Build Your Own VR Display Course - SIGGRAPH 2017: Part 3Build Your Own VR Display Course - SIGGRAPH 2017: Part 3
Build Your Own VR Display Course - SIGGRAPH 2017: Part 3
 
Thailand Earth Observation System sattellite
Thailand Earth Observation System sattelliteThailand Earth Observation System sattellite
Thailand Earth Observation System sattellite
 
ICES_2016_348
ICES_2016_348ICES_2016_348
ICES_2016_348
 
Electromagnetic formationflightoct02
Electromagnetic formationflightoct02Electromagnetic formationflightoct02
Electromagnetic formationflightoct02
 
Spacecraft Formation Flying Navigation via a Novel Wireless Final
Spacecraft Formation Flying Navigation via a Novel Wireless FinalSpacecraft Formation Flying Navigation via a Novel Wireless Final
Spacecraft Formation Flying Navigation via a Novel Wireless Final
 
ProjectReport
ProjectReportProjectReport
ProjectReport
 
Relativistic Effect in GPS Satellite and Computation of Time Error
Relativistic Effect in GPS Satellite and Computation of Time Error Relativistic Effect in GPS Satellite and Computation of Time Error
Relativistic Effect in GPS Satellite and Computation of Time Error
 
2011IgarssMetaw.ppt
2011IgarssMetaw.ppt2011IgarssMetaw.ppt
2011IgarssMetaw.ppt
 
TH1.L09 - GEODETICALLY ACCURATE INSAR DATA PROCESSOR FOR TIME SERIES ANALYSIS
TH1.L09 - GEODETICALLY ACCURATE INSAR DATA PROCESSOR FOR TIME SERIES ANALYSISTH1.L09 - GEODETICALLY ACCURATE INSAR DATA PROCESSOR FOR TIME SERIES ANALYSIS
TH1.L09 - GEODETICALLY ACCURATE INSAR DATA PROCESSOR FOR TIME SERIES ANALYSIS
 

Viewers also liked

NANOTECHNOLOGY FOR AERONAUTICAL ENGINEERING
NANOTECHNOLOGY FOR AERONAUTICAL ENGINEERINGNANOTECHNOLOGY FOR AERONAUTICAL ENGINEERING
NANOTECHNOLOGY FOR AERONAUTICAL ENGINEERINGRajesh Mumma Love
 
Robots, Astronauts, and You: Exploring Space
Robots, Astronauts, and You: Exploring SpaceRobots, Astronauts, and You: Exploring Space
Robots, Astronauts, and You: Exploring SpaceFlyingSinger
 
Composite Materials in Aerospace Industry
Composite Materials in Aerospace IndustryComposite Materials in Aerospace Industry
Composite Materials in Aerospace IndustryNagababu Tallam
 
Satellite dynamic and control
Satellite dynamic and controlSatellite dynamic and control
Satellite dynamic and controlZuliana Ismail
 
Cruise Missile Technology By Takalikar Mayur ppt
Cruise Missile Technology By Takalikar Mayur pptCruise Missile Technology By Takalikar Mayur ppt
Cruise Missile Technology By Takalikar Mayur pptmayur takalikar
 
Protección jurídica del software
Protección jurídica del softwareProtección jurídica del software
Protección jurídica del softwareEdwin Condori
 
Scott D Klepper - Resume-1
Scott D Klepper - Resume-1Scott D Klepper - Resume-1
Scott D Klepper - Resume-1Scott Klepper
 
Prohibiciones del fracking: El caso de Nueva York
Prohibiciones del fracking: El caso de Nueva YorkProhibiciones del fracking: El caso de Nueva York
Prohibiciones del fracking: El caso de Nueva YorkAIDA_Americas
 
Gramatica ingles III competencias
Gramatica ingles III competenciasGramatica ingles III competencias
Gramatica ingles III competenciasBRENDA REYES CRUZ
 
VISITA A LA UNA-PERÚ
VISITA A LA UNA-PERÚVISITA A LA UNA-PERÚ
VISITA A LA UNA-PERÚCASITA FELIZ
 
Pdg catalog staged installations only
Pdg catalog  staged installations onlyPdg catalog  staged installations only
Pdg catalog staged installations onlyobrieninteriors
 
Please Spell D-E-A-T-H -- First 10 Pages
Please Spell D-E-A-T-H -- First 10 PagesPlease Spell D-E-A-T-H -- First 10 Pages
Please Spell D-E-A-T-H -- First 10 PagesDavid Rodriguez
 
EBQ Presentation
EBQ PresentationEBQ Presentation
EBQ PresentationLaud Dei
 

Viewers also liked (20)

NANOTECHNOLOGY FOR AERONAUTICAL ENGINEERING
NANOTECHNOLOGY FOR AERONAUTICAL ENGINEERINGNANOTECHNOLOGY FOR AERONAUTICAL ENGINEERING
NANOTECHNOLOGY FOR AERONAUTICAL ENGINEERING
 
Robots, Astronauts, and You: Exploring Space
Robots, Astronauts, and You: Exploring SpaceRobots, Astronauts, and You: Exploring Space
Robots, Astronauts, and You: Exploring Space
 
Composite Materials in Aerospace Industry
Composite Materials in Aerospace IndustryComposite Materials in Aerospace Industry
Composite Materials in Aerospace Industry
 
Satellite dynamic and control
Satellite dynamic and controlSatellite dynamic and control
Satellite dynamic and control
 
Cruise Missile Technology By Takalikar Mayur ppt
Cruise Missile Technology By Takalikar Mayur pptCruise Missile Technology By Takalikar Mayur ppt
Cruise Missile Technology By Takalikar Mayur ppt
 
Application of composite materials in aerospace industry (1)
Application of composite materials in aerospace industry (1)Application of composite materials in aerospace industry (1)
Application of composite materials in aerospace industry (1)
 
Cv
CvCv
Cv
 
BMCA Website Portfolio
BMCA Website PortfolioBMCA Website Portfolio
BMCA Website Portfolio
 
Protección jurídica del software
Protección jurídica del softwareProtección jurídica del software
Protección jurídica del software
 
Scott D Klepper - Resume-1
Scott D Klepper - Resume-1Scott D Klepper - Resume-1
Scott D Klepper - Resume-1
 
Prohibiciones del fracking: El caso de Nueva York
Prohibiciones del fracking: El caso de Nueva YorkProhibiciones del fracking: El caso de Nueva York
Prohibiciones del fracking: El caso de Nueva York
 
Gramatica ingles III competencias
Gramatica ingles III competenciasGramatica ingles III competencias
Gramatica ingles III competencias
 
hmani.cv (2)
hmani.cv (2)hmani.cv (2)
hmani.cv (2)
 
Investigacion de accidente laboral
Investigacion de accidente laboralInvestigacion de accidente laboral
Investigacion de accidente laboral
 
Aashish kumar Patwari
Aashish kumar PatwariAashish kumar Patwari
Aashish kumar Patwari
 
VISITA A LA UNA-PERÚ
VISITA A LA UNA-PERÚVISITA A LA UNA-PERÚ
VISITA A LA UNA-PERÚ
 
Pdg catalog staged installations only
Pdg catalog  staged installations onlyPdg catalog  staged installations only
Pdg catalog staged installations only
 
Please Spell D-E-A-T-H -- First 10 Pages
Please Spell D-E-A-T-H -- First 10 PagesPlease Spell D-E-A-T-H -- First 10 Pages
Please Spell D-E-A-T-H -- First 10 Pages
 
Hsp mat-t4
Hsp mat-t4Hsp mat-t4
Hsp mat-t4
 
EBQ Presentation
EBQ PresentationEBQ Presentation
EBQ Presentation
 

Similar to Presentation for the 16th EUROSTAR Users Conference June 2008

Aocs Intro
Aocs IntroAocs Intro
Aocs Introhome
 
Software and hardware tracking sattelite
Software and hardware tracking satteliteSoftware and hardware tracking sattelite
Software and hardware tracking satteliteM Manggala
 
SENSORS for attitude determination in Satellites
SENSORS for attitude determination in SatellitesSENSORS for attitude determination in Satellites
SENSORS for attitude determination in SatellitesChaitanya Shukla
 
Junior Design Report (SPOT)
Junior Design Report (SPOT)Junior Design Report (SPOT)
Junior Design Report (SPOT)Myriah Shirling
 
Satellite Geodesy Lecture Notes MSU 2015.pptx
Satellite Geodesy Lecture Notes MSU 2015.pptxSatellite Geodesy Lecture Notes MSU 2015.pptx
Satellite Geodesy Lecture Notes MSU 2015.pptxTNNNelson
 
dinamica_e_controle_cap_4_hall_attde.pdf
dinamica_e_controle_cap_4_hall_attde.pdfdinamica_e_controle_cap_4_hall_attde.pdf
dinamica_e_controle_cap_4_hall_attde.pdfLeonardoMMarques
 
Satellite science
Satellite scienceSatellite science
Satellite scienceVishwas N
 
Chaos satellite dynamics 1 aiaa-92-4369
Chaos satellite dynamics 1   aiaa-92-4369Chaos satellite dynamics 1   aiaa-92-4369
Chaos satellite dynamics 1 aiaa-92-4369karasoha
 
AROSAT_updated-spacesegment_presentation_NO_loghi
AROSAT_updated-spacesegment_presentation_NO_loghiAROSAT_updated-spacesegment_presentation_NO_loghi
AROSAT_updated-spacesegment_presentation_NO_loghiStefano Coltellacci
 
IRJET - Intelligence Satellite Tracking System
IRJET - Intelligence Satellite Tracking SystemIRJET - Intelligence Satellite Tracking System
IRJET - Intelligence Satellite Tracking SystemIRJET Journal
 
Orbital parameters of asteroids using analytical propagation
Orbital parameters of asteroids using analytical propagationOrbital parameters of asteroids using analytical propagation
Orbital parameters of asteroids using analytical propagationUniversity of Delaware
 
Team ESAT Preliminary Design Review
Team ESAT Preliminary Design ReviewTeam ESAT Preliminary Design Review
Team ESAT Preliminary Design Reviewmarc_cattrell
 
EC 8094 SATELLITE COMMUNICATION - COURSE MATERIAL
EC 8094 SATELLITE COMMUNICATION - COURSE MATERIALEC 8094 SATELLITE COMMUNICATION - COURSE MATERIAL
EC 8094 SATELLITE COMMUNICATION - COURSE MATERIALdineshkumarT17
 

Similar to Presentation for the 16th EUROSTAR Users Conference June 2008 (20)

Aocs Intro
Aocs IntroAocs Intro
Aocs Intro
 
Ec6004 unit 2
Ec6004 unit 2Ec6004 unit 2
Ec6004 unit 2
 
Software and hardware tracking sattelite
Software and hardware tracking satteliteSoftware and hardware tracking sattelite
Software and hardware tracking sattelite
 
SENSORS for attitude determination in Satellites
SENSORS for attitude determination in SatellitesSENSORS for attitude determination in Satellites
SENSORS for attitude determination in Satellites
 
Junior Design Report (SPOT)
Junior Design Report (SPOT)Junior Design Report (SPOT)
Junior Design Report (SPOT)
 
gps_details.ppt
gps_details.pptgps_details.ppt
gps_details.ppt
 
gps_details.ppt
gps_details.pptgps_details.ppt
gps_details.ppt
 
Satellite Geodesy Lecture Notes MSU 2015.pptx
Satellite Geodesy Lecture Notes MSU 2015.pptxSatellite Geodesy Lecture Notes MSU 2015.pptx
Satellite Geodesy Lecture Notes MSU 2015.pptx
 
Lecture 2.pptx.pdf
Lecture 2.pptx.pdfLecture 2.pptx.pdf
Lecture 2.pptx.pdf
 
inroduction to geodesy
inroduction to geodesyinroduction to geodesy
inroduction to geodesy
 
dinamica_e_controle_cap_4_hall_attde.pdf
dinamica_e_controle_cap_4_hall_attde.pdfdinamica_e_controle_cap_4_hall_attde.pdf
dinamica_e_controle_cap_4_hall_attde.pdf
 
Satellite science
Satellite scienceSatellite science
Satellite science
 
Chaos satellite dynamics 1 aiaa-92-4369
Chaos satellite dynamics 1   aiaa-92-4369Chaos satellite dynamics 1   aiaa-92-4369
Chaos satellite dynamics 1 aiaa-92-4369
 
AROSAT_updated-spacesegment_presentation_NO_loghi
AROSAT_updated-spacesegment_presentation_NO_loghiAROSAT_updated-spacesegment_presentation_NO_loghi
AROSAT_updated-spacesegment_presentation_NO_loghi
 
IRJET - Intelligence Satellite Tracking System
IRJET - Intelligence Satellite Tracking SystemIRJET - Intelligence Satellite Tracking System
IRJET - Intelligence Satellite Tracking System
 
satellite communication-UNIT-II.pptx
satellite communication-UNIT-II.pptxsatellite communication-UNIT-II.pptx
satellite communication-UNIT-II.pptx
 
Orbital parameters of asteroids using analytical propagation
Orbital parameters of asteroids using analytical propagationOrbital parameters of asteroids using analytical propagation
Orbital parameters of asteroids using analytical propagation
 
Gyroscope_sensors
Gyroscope_sensorsGyroscope_sensors
Gyroscope_sensors
 
Team ESAT Preliminary Design Review
Team ESAT Preliminary Design ReviewTeam ESAT Preliminary Design Review
Team ESAT Preliminary Design Review
 
EC 8094 SATELLITE COMMUNICATION - COURSE MATERIAL
EC 8094 SATELLITE COMMUNICATION - COURSE MATERIALEC 8094 SATELLITE COMMUNICATION - COURSE MATERIAL
EC 8094 SATELLITE COMMUNICATION - COURSE MATERIAL
 

Presentation for the 16th EUROSTAR Users Conference June 2008

  • 1. OR.A.SIOR.A.SI Orbit and AttitudeOrbit and Attitude SimulatorSimulator Antonios Arkas Flight Dynamics Engineer
  • 2. 1. Orbital Module1. Orbital Module CharacteristicsCharacteristics OR.A.SI - Orbit and Attitude Simulator
  • 3. 1.1 Technical Features 4. Planetary and Moon Ephemeris  Moon’s orbital model – Charpnot ELP-2000/82 (Accuracy 2 arcsec)  Planetary orbital model – VSOP87 OR.A.SI - Orbit and Attitude Simulator 3. Earth Gravity Model  GEM10B  Order and degree of approximation defined by the user.  Capability to upgrade the model by changing the geopotential coefficients. 1. Numerical Integrator  Continuous embedded 6th stage Runge-Kutta-Fehelberg method RKF4(5)  Continuous embedded 13th stage Runge-Kutta method RKF8(7)-13 2. Internal step size adaptation according to the steepness of the problem  Control of the local truncation error in order for each step to contribute uniformly to the total integration error. (code capable of accurately solving any kind of orbit: LEO – GEO - Interplanetary).).
  • 4. OR.A.SI - Orbit and Attitude Simulator 1.2 Capabilities – Orbital features 1. Forward and backward propagation by taking account an indefinite number of orbital maneuvers  Three degrees of freedom maneuver (radial, tangential and normal velocity components).  Ability to execute both impulsive and continuous thrusts (ionic propulsion). 3. E/W station keeping maneuver computation  Functional for every geographical longitude.  Supports tilted circle collocation strategy (eccentricity separation).  Radial and tangential effects of the upcoming N/S maneuver are taken into account. 2. N/S station keeping maneuver computation  Supports tilted circle collocation strategy (inclination separation). 4. Maneuver calibration 5. State vector transformations  Transformation from Keplerian to synchronous elements and vice versa.  Transformation between reference frames (B1950, J2000, Mean of Date , True of Date) 6. Mean value of a state vector
  • 5. OR.A.SI - Orbit and Attitude Simulator 1.3 Capabilities: Earth-Spacecraft Geometry Calculations 1. Antenna Pointing Data  Topocentric horizon polar (range, azimuth, elevation) and Cartesian coordinates (x,y,z) with respect to whatever Earth station in the satellite geographical coverage.  Tropospheric range and elevation correction as functions of local temperature, relative humidity and barometric pressure (Hopfield model for radio frequencies).  Doppler shift calculation. 2. Calculation of Sun outage for GEO satellites and whatever Earth station in the relevant coverage.  Calculation of the first and the last day of Sun outage for both Vernal and Autumnal periods for all the satellite coverage area.  Entrance and exit times of a parabolic antenna main lobe from the solar disk according to the downlink frequency and the diameter of the antenna.  Angular separation between the bore sight of the antenna and the centre of the solar disk during the phenomenon.  Percentage of the main lobe obscuration by the solar disk during the phenomenon.
  • 6. OR.A.SI - Orbit and Attitude Simulator 1.4 Capabilities: Earth-Spacecraft Geometry Calculations 3. Calculation of Sun eclipse by the Earth for a GEO spacecraft. 5. IRES Blinding for GEO spacecraft. 6. Earth station – Satellite geometry calculations and transformations.  Transformation from topocentric horizon (range, azimuth elevation) to geographical (geocentric distance, longitude, latitude) and vice versa.  Antenna biases and weather conditions are taken account (local temperature, relative humidity and barometric pressure ). 7. Geographical antenna coverage for whatever Earth satellite. 4. Calculation of Sun eclipse by the Moon for a GEO spacecraft.
  • 7. OR.A.SI - Orbit and Attitude Simulator 1.5 Calendrical Calculations and Conversions  Conversion between JD, MJD, UTC and Gregorian Date.  Calculation of J50, ET, GMST, GAST, JDE and TAI.  Calculation of the UTC corresponding to a specific GMST and date.
  • 8. OR.A.SI - Orbit and Attitude Simulator 1.6 Capabilities: Mission Analysis for GEO spacecrafts 1. Mission analysis module characteristics  Fully autonomous calculation of the necessary optimal N/S and E/W maneuvers with simultaneous orbit propagation and maneuver execution.  Mission analysis for both inclination and eccentricity separation strategies.  Functional for every geographical longitude.  Flexibility to change the duration of the station keeping cycle duration. 2. Data entry for mission analysis  Spacecraft characteristics : i) initial mass ii) SRP  Duration of mission analysis (Start and end date).  Station keeping cycle duration.  Station longitude.  Station keeping window dimensions.  Inclination separation strategy (centre of the solar ellipse).  Correction of periodic solar perturbation correction for inclination control.  Eccentricity separation strategy (centre of the eccentricity ellipse).  Eccentricity constrains: i) maximum eccentricity ii) eccentricity tolerance
  • 9. One Year Mission Analysis – Eccentricity Evolution Scenario: Inclination and Eccentricity Separation for 39o East
  • 10. One Year Mission Analysis – Inclination Evolution Scenario: Inclination and Eccentricity Separation for 39o East
  • 11. One Year Mission Analysis – True and Mean Longitude Evolution Scenario: Inclination and Eccentricity Separation for 39o East
  • 12. One Year Mission Analysis – True and Mean Longitude Evolution Scenario: Station Keeping at 129o East (Negative longitudinal acceleration)
  • 13. Lifetime Mission Analysis for Hellas Sat II – Eccentricity Evolution
  • 14. Lifetime Mission Analysis for Hellas Sat II – Inclination Evolution
  • 15. Lifetime Mission Analysis for Hellas Sat II – True and Mean Longitude Evolution
  • 16. Lifetime Mission Analysis for Hellas Sat II – Latitude versus Longitude Evolution
  • 17. 2. Attitude Module2. Attitude Module CharacteristicsCharacteristics OR.A.SI - Orbit and Attitude Simulator
  • 18. OR.A.SI - Orbit and Attitude Simulator 2.1 Technical Features (1/3) 1. Numerical Integrator  Continuous embedded 6th stage Runge-Kutta-Fehelberg method RKF4(5)  Quaternions used as generalized coordinates (no problem with singular points and instability cases). 2. Code capable of simulating the following rotational dynamic cases :  Free rigid body rotation.  Rotation of a rigid body under the influence of impulsive torques (thrusts).  Rotation of a rigid body under the influence of continuous torques (perturbing torques). 3. Motion description with respect to three different coordinate systems :  Quasi inertial reference frame MGSD – Mean Geocentric System of Date.  Body axis reference frame (sensors readings).  Local orbital frame. 4. Flexibility to initialize the rotational state of the spacecraft by defining :  The angular velocity vector with respect to any of the predefined coordinate systems.  The angular momentum vector with respect to any of the predefined coordinate systems.  The vector components form (Cartesian or Polar).
  • 19. OR.A.SI - Orbit and Attitude Simulator 2.1 Technical Features (2/3) 5. Flexibility to describe the dynamical properties of the system to be simulated :  Definition of the mass distribution by choosing the principal moments of inertia Ixx , Iyy and Izz.  Addition of inertial wheels of whatever orientation by defining the respective vector components of their angular momentum Lx, Ly and Lz with respect to the body frame.  Model the behavior of a dual-spin satellite by identifying the platform with an inertial wheel and the rotor with the rigid body. 6. Simultaneous description of the rotational motion by using four different types of generalized coordinates :  Euler angles φ, θ and ψ (z-x-z convention).  Tait-Bryan angles (roll, pitch, yaw).  Directional cosines of the body axes with respect either to inertial or local frame.  Quaternions.
  • 20. 2.1 Technical Features (3/3) 7. Computation of two successive torques needed to dump the precessional motion of the spacecraft (Nutation dumping) :  Initialization of any kind of rotational state.  Computation of the epoch for the second impulsive torque when the corresponding epoch for the first one is given.  Computation of the two impulsive torque components with respect to both the inertial and the body axis frame. OR.A.SI - Orbit and Attitude Simulator First Pulse ∆ 1 ∆H2 T1 2 Momentum Precession Roll H T Second Pulse Yaw
  • 21. OR.A.SI - Orbit and Attitude Simulator Output UTC – Universal Time Coordinated dd/mm/yyyy hh:mm:ss - Gregorian Date GAST - Greenwich Apparent Sidereal Time Euler angles – φ,θ,ψ Τait-Bryan angles – roll, pitch, yaw Quaternions – qo, q1, q2, q3 Angular velocity with respect to the inertial frame – ωx, ωy and ωz Angular velocity ω with respect to the body frame – Gyro readings. Angular momentum vector with respect to inertial frame – Lx, Ly, Lz Angular momentum vector with respect to the body frame. Angular momentum vector with respect to the local orbital frame. Directional cosines of the body axes with respect to the inertial frame. Directional cosines of the body axes with respect to the local orbital frame. Angle between the x,z and y body axes and the angular momentum vector. Angle between the angular velocity vector and the angular momentum vector. LIASS unbalance angle. LIASS pitch angle.
  • 22. 3. OR.A.SI utilization for3. OR.A.SI utilization for modeling realisticmodeling realistic attitude problemsattitude problems OR.A.SI - Orbit and Attitude Simulator
  • 23. OR.A.SI - Orbit and Attitude Simulator 3.1 Precession dumping with two successive impulses (1/3) Geometry and dynamics of the simulation wheel xbody zbody-ybody xinertial yinertial zinertial 9.47o L ylocal zlocal -ylocal xlocal xbody zbody -ybody 7.36o L Body and Inertial Frame Body and Local Orbital Frame
  • 24. OR.A.SI - Orbit and Attitude Simulator 3.1 Precession dumping with two successive impulses (2/3) Final State xbody zbody -ybody wheel xinertial yinertial zinertial L Ixx = 16669.631 Kg m2 Iyy = 2714.554 Kg m2 Izz = 16216.076 Kg m2 Roll = 6o Pitch = 0o Yaw = 0o • Wheel angular momentum : 45 Nms • Total angular momentum L : 45.3942 Nms • Precession period : 38.3455 min • Precession radius : 7.364o • Angle between angular momentum and z-inertial axis: 9.47o • Angle between angular momentum and y-body axis: 7.36o Initial State
  • 25. 3.1 Precession dumping with two successive impulses (3/3) OR.A.SI - Orbit and Attitude Simulator Torque Impulses computed by OR.A.SI: Date of the first impulse : 01/01/2008 12:00:00 (Defined by the user) Date of the second impulse : 01/01/2008 12:19:1 Torque impulses [N m sec] with respect to the inertial frame *************************************************** DLx1 = 6.132987 DLy1 = -1.578041 DLz1 = 0.423591 DLx2 = 0.414507 DLy2 = -2.030013 DLz2 = -0.000010 Torque impulses [N m sec] with respect to the body frame ************************************************** DLx1 = 1.424230 DLy1 = -0.168105 DLz1 = 6.182757 DLx2 = 2.050461 DLy2 = -0.000034 DLz2 = 0.297288
  • 26. OR.A.SI - Orbit and Attitude Simulator
  • 27. OR.A.SI - Orbit and Attitude Simulator
  • 28. OR.A.SI - Orbit and Attitude Simulator
  • 29. OR.A.SI - Orbit and Attitude Simulator
  • 30. OR.A.SI - Orbit and Attitude Simulator
  • 31. OR.A.SI - Orbit and Attitude Simulator
  • 32. 4. Current Utilization of4. Current Utilization of OR.A.SI to EnhanceOR.A.SI to Enhance Hellas Sat’s FD OperationsHellas Sat’s FD Operations OR.A.SI - Orbit and Attitude Simulator
  • 33. OR.A.SI - Orbit and Attitude Simulator 4.1 Current utilization of OR.A.SI to enhance FD operations  Training.  Verification of the chosen station keeping strategy optimality by computing the expected optimal ΔV increment corresponding to the desired time period.  Computation of the expected future ergol consumption by executing long term mission analysis.  Assessment of the number and the epochs of the anticipated West maneuvers.  SED – Satellite Ephemeris Data (Cartesian Ephemeris with respect to Earth Centered Fixed reference frame) provision to the customers with DVB-RCS platforms  Enhance Flight Dynamics operations safety with the ability to execute the necessary orbital calculations even while away from office.
  • 34. 5. Future Plans for Further5. Future Plans for Further Code DevelopmentCode Development OR.A.SI - Orbit and Attitude Simulator
  • 35.  Incorporation of Long Term Inclination Control Strategy.  Addition of Orbit Determination Module.  Enhancement of Mission Analysis with automatic calculation of plasmic thrusts.  Implementation of platform depented characteristics (Maneuver Implementation).  Description of a realistic model for the atmosphere up to the height of 1000 Km in order to take account the air drug perurbation for LEO calculations.  Implementation of control laws for solar arrays, and wheel.  Code enhancement with multi threading characteristics in order to interact with the program “on the run”.  Code optimization to decrease the necessary run time.  Addition of a Windows GUI. OR.A.SI - Orbit and Attitude Simulator 5.1 Future Plans for Further Code Development
  • 36. THANK YOU FOR ATTENDING MY PRESENTATION
  • 37. OR.A.SI Integrator EvaluationOR.A.SI Integrator Evaluation OR.A.SI - Orbit and Attitude Simulator
  • 38. Comparison with an analytic solution Utilization of a “steep” problem in order to challenge the integrator’s capability to adapt its step size. (the problem doesn’t ought to be physically realizable) Highly eccentric Keplerian (non-perturbed) orbit with the following characteristics :  a = 65127 Km  e = 0.987  i = 0o  perigee radius = 894.45 Km (Earth’s radius = 6378 Km)  apogee radius = 129407.372 Km  maximum orbital velocity = 28.92 Km/sec (Escape velocity : 11 Km/sec) OR.A.SI - Orbit and Attitude Simulator
  • 40. OR.A.SI - Orbit and Attitude Simulator Relative Accuracy With Respect to the Analytic Solution
  • 41. OR.A.SI Planetary and Earth ModelOR.A.SI Planetary and Earth Model EvaluationEvaluation OR.A.SI - Orbit and Attitude Simulator
  • 42. Comparison with COSMIC Utilization of a series of realistic station keeping maneuvers actually executed for Hellas Sat II between 16-12-05 and 13-02-06 :  All perturbations taken account.  Total of 7 consecutive maneuvers.  4 South maneuvers coupled with 3 East maneuvers. OR.A.SI - Orbit and Attitude Simulator 1) How accurate is the orbit prediction ? 2) How accurate are the antenna pointing data ?
  • 43. OR.A.SI - Orbit and Attitude Simulator True and Mean Longitude Evolution
  • 44. OR.A.SI - Orbit and Attitude Simulator Inclination Evolution
  • 45. OR.A.SI - Orbit and Attitude Simulator Osculating and Mean Major Semi Axis Evolution
  • 46. OR.A.SI - Orbit and Attitude Simulator ey Eccentricity Component Evolution
  • 47. OR.A.SI - Orbit and Attitude Simulator Output - Osculating Elements (1/2) UTC – Universal Time Coordinated MJD – Modified Julian Day dd/mm/yyyy hh:mm:ss - Gregorian Date GAST - Greenwich Apparent Sidereal Time LST – Local Sidereal Time a – major semi axis e – eccentricity i – inclination Ω – Right Ascension of the Ascending node ω – Argument of the perigee M – Mean anomaly v – True anomaly λ – True longitude λο – Mean longitude φ – Sub satellite point latitude (ex , ey) – Eccentricity vector (ix , iy ) – Inclination vector D – Longitude drift rate (deg/day) R – Geocentric distance (height) S – Slant distance (X,Y,Z) – Cartesian Coordinates with respect to ECI. (Vx, Vy, Vz) – Velocity vector with respect to ECI. (X,Y,Z)Earth - Cartesian Coordinates with respect to ECF.
  • 48. OR.A.SI - Orbit and Attitude Simulator Output - Osculating Elements (2/2) (Vx, Vy, Vz)Earth – Velocity vector with respect to ECF. (X,Y,Z)topocentric - Topocentric Horizon Cartesian Coordinates. Azimuth and Elevation - Antenna tracking angles (Tropospheric refraction taken account). Doppler shift – Δf/f. Sun’s RA – Sun’s Right Ascension. Sun’s Dec – Sun’s Declination. Step size – Evolution of the adaptive step size used by the differential equations integrator.
  • 49. Output - Mean Elements OR.A.SI - Orbit and Attitude Simulator UTC – Universal Time Coordinated MJD – Modified Julian Day dd/mm/yyyy hh:mm:ss - Gregorian Date GAST - Greenwich Apparent Sidereal Time LST – Local Sidereal Time a – Major semi axis e – Eccentricity i – Inclination Ω + ω – Right Ascension of the Ascending node plus argument of the perigee λo – Mean longitude (ix , iy) – Inclination vector (ex , ey) – Eccentricity vector
  • 50. OR.A.SI - Orbit and Attitude Simulator Elevation Evolution for Earth Station at φ = 22.6859ο and λ = 38.822ο
  • 51. OR.A.SI - Orbit and Attitude Simulator Azimuth Evolution for Earth Station at φ = 22.6859ο and λ = 38.822ο
  • 52. OR.A.SI - Orbit and Attitude Simulator Slant Distance Evolution for Earth Station at φ = 22.6859ο and λ = 38.822ο
  • 53. OR.A.SI - Orbit and Attitude Simulator Doppler Evolution
  • 54. State Form Transformation Module Output
  • 55. Satellite position, earth station position and antenna charachteristics *********************************************************** Satellite's longitude : 39.000000 degrees East Satellite's azimuth : 154.955357 deg Satellite's elevation : 41.961143 deg Earth station longitude : 22.685968 degrees East Earth station latitude : 38.822452 degrees Antenna diameter : 31.000000 m Downlink frequency : 6.000000 GHz Antenna HPBW : 0.112824 deg First day of Vernal outage: 26/02/2008 Last day of Vernal outage: 11/04/2008 Vernal outage for year 2008 ************************ 4/3/2008 9:26 Angular separation : 0.314282 deg Obscuration : 9.510246% 4/3/2008 9:27 Angular separation : 0.161102 deg Obscuration : 100.000000% 4/3/2008 9:28 Angular separation : 0.277018 deg Obscuration : 42.538741% 5/3/2008 9:26 Angular separation : 0.312228 deg Obscuration : 11.330798% 5/3/2008 9:27 Angular separation : 0.229455 deg Obscuration : 84.695338% First day of Autumnal outage: 30/08/2008 Last day of Autumnal outage: 15/10/2008 Autumnal outage for year 2008 *************************** 8/10/2008 9:1 Angular separation : 0.225690 deg Obscuration : 88.032401% 8/10/2008 9:2 Angular separation : 0.102622 deg Obscuration : 100.000000% 8/10/2008 9:3 Angular separation : 0.149870 deg Obscuration : 100.000000% 8/10/2008 9:4 Angular separation : 0.273488 deg Obscuration : 45.667732%
  • 56. Penumbra vernal eclipse for 2008 and longitude 39 degrees East ******************************************************* Enter Exit Duration 26/02/2008 21:27:43 26/02/2008 21:45:43 18 min 27/02/2008 21:23:02 27/02/2008 21:50:02 27 min 28/02/2008 21:19:48 28/02/2008 21:52:55 33.12 min 29/02/2008 21:16:55 29/02/2008 21:55:26 38.52 min 01/03/2008 21:14:24 01/03/2008 21:57:36 43.2 min 02/03/2008 21:12:14 02/03/2008 21:59:24 47.16 min 03/03/2008 21:10:26 03/03/2008 22:00:50 50.4 min 04/03/2008 21:08:38 04/03/2008 22:01:55 53.28 min 05/03/2008 21:07:12 05/03/2008 22:03:00 55.8 min 06/03/2008 21:05:45 06/03/2008 22:04:04 58.32 min 07/03/2008 21:04:19 07/03/2008 22:04:48 60.48 min 08/03/2008 21:03:14 08/03/2008 22:05:31 62.28 min 09/03/2008 21:02:09 09/03/2008 22:06:14 64.08 min 10/03/2008 21:01:04 10/03/2008 22:06:36 65.52 min 11/03/2008 21:00:21 11/03/2008 22:06:57 66.6 min 12/03/2008 20:59:16 12/03/2008 22:07:19 68.04 min 13/03/2008 20:58:33 13/03/2008 22:07:19 68.76 min 14/03/2008 20:57:50 14/03/2008 22:07:40 69.84 min 15/03/2008 20:57:07 15/03/2008 22:07:40 70.56 min 16/03/2008 20:56:45 16/03/2008 22:07:40 70.92 min 17/03/2008 20:56:02 17/03/2008 22:07:40 71.64 min 18/03/2008 20:55:40 18/03/2008 22:07:19 71.64 min 19/03/2008 20:55:19 19/03/2008 22:07:19 72 min 20/03/2008 20:55:19 20/03/2008 22:06:57 71.64 min 21/03/2008 20:54:57 21/03/2008 22:06:36 71.64 min 22/03/2008 20:54:36 22/03/2008 22:05:52 71.28 min 23/03/2008 20:54:36 23/03/2008 22:05:31 70.92 min 24/03/2008 20:54:36 24/03/2008 22:04:48 70.2 min 25/03/2008 20:54:36 25/03/2008 22:04:04 69.48 min 26/03/2008 20:54:57 26/03/2008 22:03:21 68.4 min
  • 57. 55 60 65 70 75 80 85 90 95 100 105 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 Hellas Sat's Vernal Eclipse for 2008 Penumbra duration Umbra Duration duration[min] UTC [days]
  • 58. Start date: 01/01/2008 0:0:0 End date: 31/12/2008 23:59:59 Ephemeris: Center-of-box Window center : 39.000000 deg East Start: 06/02/2008 22:39:00 0.765697 % Maximum : 06/02/2008 22:53:00 37.468716 % End: 06/02/2008 23:07:00 0.399627 % Start: 07/02/2008 12:16:00 0.137689 % Maximum: 07/02/2008 12:51:00 58.648095 % End: 07/02/2008 13:28:00 0.039556 % Start: 27/12/2008 19:10:00 0.329664 % Maximum: 27/12/2008 19:18:00 4.690416 % End: 27/12/2008 19:26:00 0.241870 % Sun Eclipse by the Moon for 2008 and Orbital Position 39o East
  • 59. Start date: 1/6/2008 0:0:0 End date: 30/6/2008 0:0:0 Ephemeris: Center-of-box Window center: 39.000000 deg East Moon phase threshold : 40.000000% Error margin: 0.100000 deg 10/06/2008 02:14:00 BOLOMETER 2 : START 44.602096 % 10/06/2008 04:42:00 BOLOMETER 2 : END 45.675974 % 12/06/2008 02:53:00 BOLOMETER 1 : START 64.901304 % 12/06/2008 05:21:00 BOLOMETER 1 : END 65.870919 % 24/06/2008 12:17:00 BOLOMETER 1 : START 70.785076 % 24/06/2008 14:46:00 BOLOMETER 1 : END 69.793799 % 26/06/2008 14:32:00 BOLOMETER 2 : START 49.043781 % 26/06/2008 17:01:00 BOLOMETER 2 : END 47.895228 % IRES Blinding by the Moon for June 2008 and Orbital Position 39o East
  • 60.
  • 61.