Diese Präsentation wurde erfolgreich gemeldet.
Die SlideShare-Präsentation wird heruntergeladen. ×

Machine Learning Exchange (MLX)

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Wird geladen in …3
×

Hier ansehen

1 von 15 Anzeige

Weitere Verwandte Inhalte

Diashows für Sie (20)

Ähnlich wie Machine Learning Exchange (MLX) (20)

Anzeige

Weitere von Animesh Singh (20)

Aktuellste (20)

Anzeige

Machine Learning Exchange (MLX)

  1. 1. Machine Learning Exchange (MLX) Animesh Singh, Christian Kadner, Tommy Li, Andrew Butler
  2. 2. Machine Learning Exchange (MLX) : Data and AI Assets Catalog and Execution Engine
  3. 3. Machine Learning Exchange (MLX) – Data and AI Assets Catalog and Execution Engine – Upload, register, execute, and deploy -AI pipelines and Components -Models -Datasets -Notebooks – Automated sample pipeline code generation to train, validate, serve your registered models, datasets and notebooks – Pipelines Engine powered by Kubeflow Pipelines on Tekton, core of Watson Pipelines – Serving engine by KFServing (Next gen base for WML) , Datasets Management by Dataset Lifecycle Framework – Preregistered Datasets from Data Asset Exchange (DAX) and Models from Model Asset Exchange (MAX) – Model Metadata schema aligned with MLSpec MLX API Server Components Pipelines Notebooks Object Store Kubeflow Pipelines on Tekton MLX UI SDK Relational DB Models Datasets Datashim KFServing Notebook Component - Elyra MAX/DAX
  4. 4. View, download, and execute Pipelines 4
  5. 5. View, download, and execute Pipeline Components 5
  6. 6. Library of prepackaged models. Register your own models, run with Pipelines 6
  7. 7. View, modify, and monitor deployed models 7
  8. 8. Register and deploy Datasets (as sharable Volumes for other assets) 8
  9. 9. Library of prepackaged notebooks. Register your own notebooks
  10. 10. 10 Run Notebooks using Pipelines
  11. 11. Integration
  12. 12. Pluggable Components Watson Studio WML Open Scale Kubeflow Training Seldon AIF360 ART KATIB KFSERVING … … TASK STEP POD STEP TASK STEP STEP POD Container Container Container Container TEKTON KFP API Server Components Pipelines Object Store KFP UI Relational DB COMPILE KFP SDK Intermediate Representation [IR] Pipelines - default integration with Kubeflow Pipelines and Tekton
  13. 13. Datasets - default integration with Datashim
  14. 14. Models – default integration with KFServing Kubernetes Compute cluster GPU, TPU ,CPU Model Assets. Istio Knative KFServing PRE-PROCESS PREDICT POST-PROCESS EXPLAIN
  15. 15. Notebooks – default integration with Elyra Notebook Component

×