# Euclid ppt final

8. Dec 2015
1 von 16

### Euclid ppt final

• 1. EUCLID’S GEOMETRY MATHS PPT CLASS 1X PRESENTED BY: MASTER ANIKET VISHWAKARMA
• 2. INTODUCTION TO EUCLID’S • THE WORD ‘GEOMETRY’ COMES FROM GREEK WORD ‘GEO’ MEANING THE ‘EARTH’ AND ‘METRENI’ MEANING TO ‘MEASURE’. • GEOMETRY APPEARS TO HAVE ORIGINATED FROM THE NEED FOR MEASURING LAND. • NEARLY 5000 YEARS AGO GEOMETRY ORIGINATED IN EGYPT AS AN ART OF EARTH MEASUREMENT. • EGYPTIAN GEOMETRY WAS THE STATEMENTS OF RESULTS.
• 3. EUCLID • EUCLID WAS THE FIRST GREEK MATHEMATICAN WHO INITIATED A NEW WAY OF THINKING THE STUDY OF GEOMETRY. • HE INTRODUCED THE METHOD OF PROVING A GEOMETRICAL RESULTS BY DEDUCTIVE REASONING BASED UPON PREVIOUSLY PROVED RESULT AND SOME SELF EVIDENT SPECIFIC ASSUMPTIONS CALLED AXIOMS. • THE GEOMETRY OF PLANE FIGURE IS KNOWN AS ‘EUCLIDEAN GEOMETRY’.
• 4. EUCLID’S DEFINITIONS • A POINT IS THAT WHICH HAS NO PART. • A LINE IS BREADTHLESS LENGTH. • THE ENDS OF THE LINE ARE POINT’S. • A STRAIGHT LINE IS A LINE WHICH LIES EVENLY WITH THE POINT ON ITSELF. • A SURFACE IS THAT WHICH HAS LENGTH AND BREADTH ONLY.
• 5. EUCLID’S DEFINITIONS • THE EDGES OF A SURFACE ARE LINES. • A PLANE SURFACE IS A SURFACE WHICH LIES EVENLY WITH THE STRAIGHT LINES ON IT SELF.
• 6. EUCLID’S AXIOMS • THING’S WHICH ARE EQUAL TO THE SAME THINGS ARE EQUAL TO ONE ANOTHER. • IF EQUALS ARE ADDEDTO EQUALS,THE WHOLES ARE EQUAL. • IF EQUALS ARE SUBTRACTED FROM EQUALS,THE REMAINDERS ARE EQUAL. • THINGS WHICH COINCIDE WITH ONE ANOTHER ARE EQUAL TO ONE ANOTHER
• 7. EUCLID’S AXIOMS • THE WHOLE IS GREATER THAN THE PART. • THINGS WHICH ARE DOUBLE OF THE SAME THINGS ARE EQUAL TO ONE ANOTHER. • THINGS WHICH ARE HALVES OF THE SAME THINGS ARE EQUAL TO ONE ANOTHER.
• 8. EUCLID’S FIVE POSTULATE • POSTULATE 1 : A STRAIGHT LINE MAY BE DRAWN FROM ANY ONE POINT TO ANY OTHER POINT. • POSTULATE 2: A TERMINATED LINE CAN BE PRODUCED INDEFINITELY. • POSTULATE 3: A CIRCLE CAN BE DRAWN WITH ANY CENTRE AND ANY RADIUS. • POSTULATE 4: ALL RIGHT ANGLES ARE EQUAL TO ONE ANOTHER.
• 9. EUCLID’S FIVE POSTULATE • POSTULATE 5: IF A STRAIGHT LINE FALLING ON TWO STRAIGHT LINES MAKES THE INTERIOR ANGLES ON THE SAME SIDE OF IT TAKEN TOGETHER LESS THAN TWO RIGHT ANGLES,THEN THE TWO STRAIGHT LINES, IF PRODUCED INDEFINITELY, MEET ON THAT SIDE ON WHICH THE SUM OF ANGLES IS LESS THAN TWO RIGHT ANGLES
• 10. PROBLEM ON EUCLID’S GEOMRTRY • If A, B and C are three points on a line, and B lies between A and C (see Fig. 5.7), then prove that AB + BC = AC. A B C
• 11. PROBLEMS ON EUCLID’S GEOMRTRY • SOLUTION: In the figure given above, AC coincides with AB + BC. • Also, Euclid’s Axiom (4) says that things which coincide with one another are equal to one another. So, it can be deduced that AB + BC = AC • Note that in this solution, it has been assumed that there is a unique line passing through two points.
• 12. Equivalent Versions of Euclid’s Fifth Postulate • Euclid’s fifth postulate is very significant in the history of mathematics. Recall it again from Section 5.2. We see that by implication, no intersection of lines will take place when the sum of the measures of the interior angles on the same side of the falling lines exactly 180°. There are several equivalent versions of this postulate. One of them is‘Play fair’s Axiom’ (given by a Scottish mathematician John Play fair in 1729), as stated below: • ‘For every line l and for every point P not lying on l, there exists a unique line m passing through P and parallel to l’. • From Fig. 5.11, you can see that of all the lines passing through the point P, only line m is parallel to line l.
• 13. Equivalent Versions of Euclid’s Fifth Postulate • M P L FIG 5.1
• 14. Equivalent Versions of Euclid’s Fifth Postulate • This result can also be stated in the following form: • Two distinct intersecting lines cannot be parallel to the same line.