Diese Präsentation wurde erfolgreich gemeldet.
Die SlideShare-Präsentation wird heruntergeladen. ×

Plano Numérico o Plano Cartesiano.pdf

Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Anzeige
Wird geladen in …3
×

Hier ansehen

1 von 10 Anzeige

Weitere Verwandte Inhalte

Ähnlich wie Plano Numérico o Plano Cartesiano.pdf (20)

Aktuellste (20)

Anzeige

Plano Numérico o Plano Cartesiano.pdf

  1. 1. REPUBLICA BOLIVARIANA DE VENEZUELA MINISTERIO PARA EL PODER POPULAR DE LA EDUCACION UNIVERSIDAD POLITECNICA TERRITORIAL “ANDRES ELOY BLANCO” BARQUTO-LARA PLANO NUMERICO O PLANO CARTESIANO ANGEL MENDOZA C.I. 30.560.426
  2. 2. PLANO CARTESIANO A instancias de las matemáticas, el plano cartesiano es un sistema de referencias que se encuentra conformado por dos rectas numéricas, una horizontal y otra vertical, que se cortan en un determinado punto. A la horizontal se la llama eje de las abscisas o de las x y al vertical eje de las coordenadas o de las yes, en tanto, el punto en el cual se cortarán se denomina origen. La principal función o finalidad de este plano será el de describir la posición de puntos, los cuales se encontrarán representados por sus coordenadas o pares ordenados. Las coordenadas se formarán asociando un valor del eje x y otro del eje y.
  3. 3. DISTANCIA: Se define la distancia entre dos puntos de una recta que representa al conjunto de números reales. Sean p y q las coordenadas de dos puntos R y S en una recta de coordenadas. Distancia entre dos puntos Cuando los puntos se encuentran ubicados sobre el eje x o en una recta paralela a este eje, la distancia entre los puntos corresponde al valor absoluto de la diferencia de sus abscisas. Ejemplo: La distancia entre los puntos (-4,0) y (5,0) es 4 + 5 = 9 unidades. Cuando los puntos se encuentran ubicados sobre el eje y o en una recta paralela a este eje, la distancia entre los puntos corresponde al valor absoluto de la diferencia de sus ordenadas. Ahora si los puntos se encuentran en cualquier lugar del sistema de coordenadas, la distancia queda determinada por la relación:
  4. 4. PUNTO MEDIO: En matemáticas, el punto medio de un segmento es aquel punto que se encuentra a la misma distancia de los extremos de un segmento. En una recta numérica, el número a la mitad entre x 1 y x 2 es: Use la fórmula. El punto medio es (–1 + 4)/2= 3/2 o 1.5. ECUACION DE LA RECTA • Tiene la forma y = mx + b ; donde m es la pendiente (ángulo de inclinación de la recta con respecto al eje x ) y b es el intercepto donde la recta corta al eje y. • Cuando se tiene un línea recta que pasa por dos puntos P(x1;y1) y Q(x2;y2) , se cumple que la pendiente m es constante, donde m se define como:
  5. 5. ECUACIÓN PUNTO – PENDIENTE Si se conoce un punto P(x1;y1) por el que pasa una recta y su pendiente m, es factible definir la ecuación de la recta. Se puede calcular la pendiente de la recta en base al punto conocido P(x1;y1) y al punto genérico Q(x;y): m=(y-y1) / (x-x1 ) Ecuación Punto -Pendiente. Otra forma de presentar la ecuación de la recta es: y-y1=m(x-x1 ) Ecuación Punto -Pendiente Ejemplo: Considera la recta que pasa por el punto (1, 3) y tiene una pendiente De Sustituyendo éstos valores en la fórmula punto- pendiente, obtenemos Que es la ecuación de la recta.
  6. 6. ¿Qué es una circunferencia plano cartesiano? Una circunferencia es el lugar geométrico de los puntos de un plano que equidistan de otro punto fijo llamado centro. La circunferencia es una línea curva cerrada cuyos puntos están todos a la misma distancia de un punto fijo llamado centro. Elementos básicos Centro: punto central que está a la misma distancia de todos los puntos pertenecientes a la circunferencia. Radio: pedazo de recta que une el centro con cualquier punto perteneciente a la circunferencia. Cuerda: pedazo de recta que une dos puntos cualesquiera de una circunferencia. Diámetro: mayor cuerda que une dos puntos de una circunferencia. Hay infinitos diámetros y todos pasan por el centro de la circunferencia. Recta secante: recta que corta dos puntos cualesquiera de una circunferencia. Recta tangente: recta que toca a la circunferencia en un solo punto y es perpendicular a un radio.
  7. 7. parábola y sus elementos Una parábola queda definida por el conjunto de los puntos del plano que equidistan de una recta fija y un punto fijo: Foco: Es el punto fijo F. Directriz: Es la recta fija D. Parámetro: A la distancia entre el foco y la directriz de una parábola se le llama parámetro p. Eje: La recta perpendicular a la directriz y que pasa por el foco recibe el nombre de eje. Es el eje de simetría de la parábola. Vértice: Es el punto medio entre el foco y la directriz. También se puede ver como el punto de intersección del eje con la parábola. Radio vector: Es el segmento que une un punto cualquiera de la parábola con el foco.
  8. 8. parábola y sus elementos Una parábola queda definida por el conjunto de los puntos del plano que equidistan de una recta fija y un punto fijo: Foco: Es el punto fijo F. Directriz: Es la recta fija D. Parámetro: A la distancia entre el foco y la directriz de una parábola se le llama parámetro p. Eje: La recta perpendicular a la directriz y que pasa por el foco recibe el nombre de eje. Es el eje de simetría de la parábola. Vértice: Es el punto medio entre el foco y la directriz. También se puede ver como el punto de intersección del eje con la parábola. Radio vector: Es el segmento que une un punto cualquiera de la parábola con el foco.
  9. 9. Concepto y elementos de la elipse Es el lugar geométrico de los puntos del plano cuya suma de distancias a dos puntos fijos llamados focos es constante. Elementos de la elipse: 1. Focos: Son los puntos fijos F y F'. 2. Eje focal: Es la recta que pasa por los focos. 3. Eje secundario: Es la mediatriz del segmento FF'. 4. Centro: Es el punto de intersección de los ejes. 5. Radios vectores: Son los segmentos que van desde un punto de la elipse a los focos: PF y PF'. 6. Distancia focal: Es el segmento de longitud 2c, c es el valor de la semidistancia focal. 7. Vértices: Son los puntos de intersección de la elipse con los ejes: A, A', B y B'. 8. Eje mayor: Es el segmento de longitud 2a, a es el valor del semieje mayor. 9. Eje menor: Es el segmento de longitud 2b, b es el valor del semieje menor. 10. Ejes de simetría: Son las rectas que contienen al eje mayor o al eje menor. 11. Centro de simetría: Coincide con el centro de la elipse, que es el punto de intersección de los ejes de simetría.
  10. 10. Concepto de hipérbola y sus elementos Es el lugar geométrico de los puntos del plano cuya diferencia de distancias a dos puntos fijos llamados focos es constante. Elementos de la hipérbola: 1. Focos: Son los puntos fijos F y F'. 2. Eje principal o real: Es la recta que pasa por los focos. 3. Eje secundario o imaginario: Es la mediatriz del segmento FF'. 4. Centro: Es el punto de intersección de los ejes. 5. Vértices: Los puntos A y A' son los puntos de intersección de la hipérbola con el eje focal. Los puntos B y B' se obtienen como intersección del eje imaginario con la circunferencia que tiene por centro uno de los vértices y de radio c. 6. Radios vectores: Son los segmentos que van desde un punto de la hipérbola a los focos: PF y PF'. 7. Distancia focal: Es el segmento de longitud 2c. 8. Eje mayor: Es el segmento de longitud 2a. 9. Eje menor: Es el segmento de longitud 2b. 10. Ejes de simetría: Son las rectas que contienen al eje real o al eje imaginario. 11. Asíntotas: Son las rectas de ecuaciones: 12. Relación entre los semiejes:

×