Aminullah Assagaf_PERBANDINGAN SPSS, PLS SEM, MANUAL_23 Juli.pptx

A
Aminullah AssagafSenior Lecturer at University of dr soetomo um University of dr soetomo
Perbandingan
SPSS - Smart PLS SEM - Manual
7 Juli 2023
https://www.youtube.com/watch
?v=WG5HdBuvBEs&t=11s
Prof. Dr. Dr. Aminullah Assagaf, SE., MS., MM., M.Ak
Email: assagaf29@yahoo.com
Hp: 08113543409
https://www.slideshare.net/AminullahAssagaf1/aminullah-
assagafspsspls-semmanual07072023pptx
Perbandingan : SPSS, PLS, Manual (Link
Slideshare)
https://www.slideshare.net/AminullahAssagaf1/aminullah-assagafpls-sem-spss4-juli-2023pptx
Link tutorial PLS
https://www.youtube.com/watch?v=WG5HdBuvBEs&t=11s
https://www.youtube.com/watch?v=teyrLfkCyOo
Aminullah Assagaf_PERBANDINGAN SPSS, PLS SEM, MANUAL_23 Juli.pptx
Imput data, dan save melalui excel style
CSV(delimited atau MSDOS), atau Notepad
• Dalam menggunakan data excel: save dengan style CSV (Delimited
atau MSDOS)
• Data dlm excel hanya satu baris nama vabel
• Data diletakkan mulai pojok kiri atas atau A1, agar data tsb bisa
dibaca oleh PLS
• Bila menggunakan Notepate: blok data di excel, buka notepad melalui
search, pilih open, save as, letakkan pd salah satu folder misalnya di
Download.
• Buka PLS: mulai dgn new project, double clik cari file excel atau file
notepad…dst
Perbandingan: SPSS, PLS dan Manual
Prof. Dr. Dr. Aminullah Assagaf, SE., MS., MM., M.Ak
Email: assagaf29@yahoo.com
HP : +628113543409
Jakarta, 15 Juli 2023
Aminullah Assagaf_PERBANDINGAN SPSS, PLS SEM, MANUAL_23 Juli.pptx
Untuk Regresi Unstandardize : Unstandardize
n X1 Y X-Xbar Y-Ybar xy x^2 y^2 Yest Y-Yest
x y e
1 4 5 0.6 0.6 0.36 0.36 0.36 4.37 0.63
1 4 5 0.6 0.6 0.36 0.36 0.36 4.37 0.63
1 4 5 0.6 0.6 0.36 0.36 0.36 4.37 0.63
1 5 4 1.6 -0.4 -0.64 2.56 0.16 4.32 -0.32
1 5 4 1.6 -0.4 -0.64 2.56 0.16 4.32 -0.32
1 3 4 -0.4 -0.4 0.16 0.16 0.16 4.42 -0.42
1 3 3 -0.4 -1.4 0.56 0.16 1.96 4.42 -1.42
1 2 4 -1.4 -0.4 0.56 1.96 0.16 4.47 -0.47
1 2 5 -1.4 0.6 -0.84 1.96 0.36 4.47 0.53
1 2 5 -1.4 0.6 -0.84 1.96 0.36 4.47 0.53
10 34 44 - (0) (1) 12 4.4 44 0.00
Xbar 3.4 b = xy/x^2 = -0.048 Var Y=JKT/(n-1)==>ANOVA=4.4/9
Ybar 4.4 a = Ybar - b(Xbar) = 4.565 Var Y=y^2/(n-1)= 0.489
Var X = x^2/(n-1) = 1.378
SDY = 0.70
SDX = 1.17
Untuk analisis Jalur (Standardize): Standardize
n X1 Y X-Xbar Y-Ybar xy x^2 Yest Y-Yest SD Y(Yest) (SD.Y)+Ybar Selisih Yest
x y e 0.5 4.4 Unstd-Std
1 0.51 0.86 0.511 0.858 0.439 0.261 -0.04 0.90 (0.02) 4.38 (0.01)
1 0.51 0.86 0.511 0.858 0.439 0.261 -0.04 0.90 (0.02) 4.38 (0.01)
1 0.51 0.86 0.511 0.858 0.439 0.261 -0.04 0.90 (0.02) 4.38 (0.01)
1 1.36 -0.57 1.363 (0.572) (0.780) 1.858 -0.11 -0.46 (0.05) 4.35 (0.02)
1 1.36 -0.57 1.363 (0.572) (0.780) 1.858 -0.11 -0.46 (0.05) 4.35 (0.02)
1 -0.34 -0.57 (0.341) (0.572) 0.195 0.116 0.03 -0.60 0.01 4.41 0.01
1 -0.34 -2.00 (0.341) (2.002) 0.682 0.116 0.03 -2.03 0.01 4.41 0.01
1 -1.19 -0.57 (1.193) (0.572) 0.682 1.423 0.10 -0.67 0.05 4.45 0.02
1 -1.19 0.86 (1.193) 0.858 (1.023) 1.423 0.10 0.76 0.05 4.45 0.02
1 -1.19 0.86 (1.193) 0.858 (1.023) 1.423 0.10 0.76 0.05 4.45 0.02
10 - (0) - - (0.73) 9.00 (0) - (0) 44 (0)
Xbar - b = xy/x^2 = -0.081
Ybar (0.00) a = Ybar - b(Xbar) = 0.00 CATATAN :
- UTK ESTIMASI HASILNYA SAMA ANTARA
Xstd = (X - Xbar)/SD, sehingga untuk mengembalikan ke X maka : STANDIZE DENGAN UNSTANDARDIZE
=> Xstd dikalikan SD, misalnya 0,86 x SD = 0,86 x 8,4 = -1.4 - Formulanya :
=> jadi (X - Xbar ) = 7,2 (1) Standardise : (Yest x SDY) + Ybar
=> jika Xbar = 33,8 maka X = Xbar + 7,2 = 2 Yest : standardize
SDY : SD dari Y unstandardize
Ybar : Y rata2 dari unstandardize
(2) Unstandardize : Yest
SPSS
Standardized
Coefficients
B Std. Error Beta
(Constant) 4.565 0.751 6.078 0.000
X1 -0.048 0.210 -0.081 -0.231 0.823
PLS
bo
b1
Prediksi S
a. Dependent Variable: Y
Coefficientsa
Model
Unstandardized
Coefficients
t Sig.
1
Beta_Unstd SPSS_Pred Beta-Std PLS-Pred
bo 4.565 4.565 0 0
b1 -0.048 -0.194 -0.081 -0.162
Prediksi SPSS: Y (X=2)= 4.4 -0.162 Prediksi PLS Pers
Realisasi Y th 10 ========> 5 -0.114 kali SDY 0.699
Prediksi PLS Y ( X=2) ========> 4.3 plus rt2 Y 4.4
PREDIKSI SPSS & PLS (bila X=2))
Aminullah Assagaf_PERBANDINGAN SPSS, PLS SEM, MANUAL_23 Juli.pptx
n Y X1 X2 X1Y X2Y X1X2 X1^2 X2^2
1 5 4 3 20 15 12 16 9
2 5 4 3 20 15 12 16 9
3 5 4 3 20 15 12 16 9
4 4 5 4 20 16 20 25 16
5 4 5 4 20 16 20 25 16
6 4 3 4 12 16 12 9 16
7 3 3 3 9 9 9 9 9
8 4 2 3 8 12 6 4 9
9 5 2 3 10 15 6 4 9
10 5 2 3 10 15 6 4 9
Total 44 34 33 149 144 115 128 111 n
n Ybar X1bar X2bar 1
10 4.4 3.4 3.3 2
x1y = X1Y - (X1. Y)/n 149 34 44 (1) A 3
x2y = X2Y - (X2.Y)/n 144 33 44 1.20
- B 4
x1x2 =X1X2 -(X1. X2)/n 115 34 33 3 C 5
x1^2 = X1^2 - (X1)^2/n 128 34 12 D 6
X2^2 = X2^2 - (X2)^2/n 111 33 2 E 7
b1 = (EA - CB)/(DE- CC) 1
- 3
- 26 8 0.115 8
b2 = (DB - CA)/(DE - CC) 15
- 2
- 26 8 -0.725 9
b0 = Ybar - (b1.Xbar) - (b2. X2bar) 4.4 0.39 2.39
- 6.401 10
Persamaan Reg : Jumlah
Y =6.401 + 0.115 X1 - 0.725 X2
UNSTANDARDIZED COEFFICIENTs
Standardized
Coefficients
B Std. Error Beta
(Constant) 6.401 1.666 3.841 0.006
X1 0.115 0.244 0.194 0.474 0.650
X2 -0.725 0.592 -0.501 -1.225 0.260
a. Dependent Variable: Y
Coefficientsa
Model
Unstandardized
Coefficients
t Sig.
1
MANUAL
SPSS
Y X1 X2
n Y X1 X2 y x1 x2 y^2 x1^2 x2^2 Y=y/SDY X1=x1/SDX1 X2=x2/SDX2 X1Y X2Y X1X2 X1^2 X2^2
1 5 4 3 0.6 0.6 -0.3 0.36 0.36 0.09 0.86 0.51 -0.62 0.439 -0.533 -0.317 0.261 0.386
2 5 4 3 0.6 0.6 -0.3 0.36 0.36 0.09 0.86 0.51 -0.62 0.439 -0.533 -0.317 0.261 0.386
3 5 4 3 0.6 0.6 -0.3 0.36 0.36 0.09 0.86 0.51 -0.62 0.439 -0.533 -0.317 0.261 0.386
4 4 5 4 -0.4 1.6 0.7 0.16 2.56 0.49 -0.57 1.36 1.45 -0.780 -0.829 1.975 1.858 2.100
5 4 5 4 -0.4 1.6 0.7 0.16 2.56 0.49 -0.57 1.36 1.45 -0.780 -0.829 1.975 1.858 2.100
6 4 3 4 -0.4 -0.4 0.7 0.16 0.16 0.49 -0.57 -0.34 1.45 0.195 -0.829 -0.494 0.116 2.100
7 3 3 3 -1.4 -0.4 -0.3 1.96 0.16 0.09 -2.00 -0.34 -0.62 0.682 1.244 0.212 0.116 0.386
8 4 2 3 -0.4 -1.4 -0.3 0.16 1.96 0.09 -0.57 -1.19 -0.62 0.682 0.355 0.741 1.423 0.386
9 5 2 3 0.6 -1.4 -0.3 0.36 1.96 0.09 0.86 -1.19 -0.62 -1.023 -0.533 0.741 1.423 0.386
10 5 2 3 0.6 -1.4 -0.3 0.36 1.96 0.09 0.86 -1.19 -0.62 -1.023 -0.533 0.741 1.423 0.386
Total 44 34 33 0
- - 0 4.4 12.4 2.10 -0.00 0.00 0.00 -0.731 -3.553 4.938 9.000 9.000
Rata2 4.4 3.4 3.3 n Ybar X1bar X2bar
Var 0.489 1.38 0.23 10 -0 0 0
SD 0.699 1.17 0.48
STANDARDIZED COEFFICIENTS
spss
MANUAL
Standardized
Coefficients
B Std. Error Beta
(Constant) 6.401 1.666 3.841 0.006
X1 0.115 0.244 0.194 0.474 0.650
X2 -0.725 0.592 -0.501 -1.225 0.260
1
a. Dependent Variable: Y
Coefficientsa
Model
Unstandardized
Coefficients
t Sig.
x1y = X1Y - (X1. Y)/n -0.73 0.00 -0.00 -0.73 A
x2y = X2Y - (X2.Y)/n -3.55 0.00 -0.00 -3.55 B
x1x2 =X1X2 -(X1. X2)/n 4.94 0.00 0.00 4.94 C
x1^2 = X1^2 - (X1)^2/n 9.00 0.00 9.00 D
X2^2 = X2^2 - (X2)^2/n 9.00 0.00 9.00 E
b1 = (EA - CB)/(DE- CC) -6.58 -17.55 81.00 24.39 0.194
b2 = (DB - CA)/(DE - CC) -31.98 -3.61 81.00 24.39 -0.501
b0 = Ybar - (b1.Xbar) - (b2. X2bar) -0.00 0.00 -0.00 -0.000
Persamaan Reg :
Y = 0 + 0.194 X1 - 0.501 X2
Standardized
Coefficients
B Std. Error Beta
(Constant) 6.401 1.666 3.841 0.006
X1 0.115 0.244 0.194 0.474 0.650
X2 -0.725 0.592 -0.501 -1.225 0.260
1
a. Dependent Variable: Y
Coefficientsa
Model
Unstandardized
Coefficients
t Sig.
SPSS
PLS
R R Square
Adjusted R
Square
Std. Error of
the Estimate
1 .427
a
0.182 -0.052 0.71703
Model Summary
Model
a. Predictors: (Constant), X2, X1
PLS
SPSS
Y X1 X2
Pears
on
1 -0.081 -0.395
Sig. (2-
tailed)
0.823 0.259
N 10 10 10
Pears
on
-0.081 1 0.549
Sig. (2-
tailed)
0.823 0.100
N 10 10 10
Pears
on
-0.395 0.549 1
Sig. (2-
tailed)
0.259 0.100
N 10 10 10
Correlations
Y
X1
X2
PLS SPSSS
Beta_Unstd
SPSS_Pred
Beta-Std PLS-Pred
bo 6.401 6.401 0 0
b1 0.115 0.462 0.194 0.775
b2 -0.725 -2.176 -0.501 -1.503
Prediksi SPSS: Y (X1=4, X2=3)=
4.7 -0.728 Prediksi PLS
Realisasi Y th 10 ========>5 -0.509 kali SDY 0.699
Prediksi PLS Y ( X1=2, X2=3) ========>
3.9 plus rt2 Y 4.4
PREDIKSI SPSS & PLS (bila X1=4 dan X2=3)
Standardized
Coefficients
B Std. Error Beta
(Constant) 6.401 1.666 3.841 0.006
X1 0.115 0.244 0.194 0.474 0.650
X2 -0.725 0.592 -0.501 -1.225 0.260
a. Dependent Variable: Y
Coefficientsa
Model
Unstandardized
Coefficients
t Sig.
1
KESIMPULAN
1) SPSS menggunakan data real sesuai pengamatan atau riset dilapangan
2) Formula perhitungan regresi SPSS dan PLS adalah sama, yg berbeda hanya pada data yang dioleh untuk
menghasilkan koefisien variabel independent. Hal ini telah dibuktikan dengan perhitungan manual baik
SPSS maupun PLS.
3) Smart PLS atau SEM menggunakan data dari: selisih antara data pengamatan dengan rata2 total
pengamatan (mis: Y – Ybar, X1 – X1bar…dst), kemudian dibagi standar deviasi variabel tsb (mis: SDY,
SDX1…dst)
4) Selisih antara data pengamatan dengan rata2 total pengamatan, jumlahnya nol dan rata2 nol, sehingga
data yg diolah PLS seperti butir 3 diatas, menghasilkan konstanta nol. Konstanta dihitung dari rata-rata
variabel dependen Y dikurangi (koefisien kali rata-rata variabel independent Xi), sehingga nilai konstanta
nol.
5) Koefisien dari PLN tidak dapat digunakan untuk prediksi, tetapi harus dikembalikan perhitungannya,
yaitu hasil prediksi Y yang diperoleh dari perkalian koefisien variabel independent Xi dikali data prediksi
Xi menghasilkan nilai yang tidak sesuai prediksi sebagaimana perhitungan SPSS.
6) Prediksi Y sebagaimana butir 5, kemudian dikalikan dengan standar deviasi Y (SDY), dan ditambahkan
nilai rata-rata Y. Hasilnya mendekati perhitungan prediksi SPSS dan relevan dengan kondisi empiris,
terutama bila diuji dengan angka realisasi dengan asumsi dipakai pada prediksi periode sebelumnya.
KESIMPULAN
7) Perhitungan SPSS dan PLS atau SEM memiliki kesamaan dalam formula perhitungan koefisien regresi. Hasil
perhitungan coefficients SPSS menunjukkan koefisien Unstandardized (menggunakan data real) dan koefisien
Standardized (menggunakan data sebagaimana butir 3) dengan hasil yang sama dengan PLS SEM
8) Model SPSS dan PLS dapat digunakan untuk prediksi dengan hasil yang hamper sama, bila menggunakan data
realisasi dengan asumsi prediksi pada periode sebelumnya.
9) Pemahaman perbandingan perhitungan manual, SPSS, PLS adalah penting dipahami oleh mahasiswa atau
peneliti yang menggunakan PLS untuk menjelaskan perbedaan hasil perhitungan dan menggunakannya pada
kebijakan terhadap variabel independent Xi yang berdampak terhadap variabel dependen Y.
10) Koefisien regresi dari PLS SEM tidak dapat digunakan secara langsung untuk melakukan prediksi variabek
dependen Y, tetapi harus mengembalikan perhitungannya dengan cara kalikan dengan standar deviasi Y,
kemudian tambahkan nilai rata2 total Y.
11) Hal ini juga dapat digunakan untuk menjelaskan hasil dan pembahasan pada hasil penelitian yang
menggunakan Smart PLS SEM. Bila menggunakan secara langsung maka hasilnya menjadi tidak rasional, dan
sangat signifikan perbedaannya dengan prediksi SPSS maupun kondisi empiris sesuai data hasil penelitian.
Aminullah Assagaf_PERBANDINGAN SPSS, PLS SEM, MANUAL_23 Juli.pptx
Contoh data sekunder:
Aminullah Assagaf_PERBANDINGAN SPSS, PLS SEM, MANUAL_23 Juli.pptx
Pers Regresi (Unstandardized)
n Y X y=Y-Ybar x=X-Xbar y^2 x^2 xy x^2 A=y/SDY B=x/SDX
1 70 30 9.7 -3.8 94 14 -36.9 14.4 0.8 -0.5
2 78 32 17.7 -1.8 313 3 -31.9 3.2 1.5 -0.2
3 56 45 -4.3 11.2 18 125 -48.2 125.4 -0.4 1.3
4 45 24 -15.3 -9.8 234 96 149.9 96.0 -1.3 -1.2
5 68 46 7.7 12.2 59 149 93.9 148.8 0.7 1.5
6 67 32 6.7 -1.8 45 3 -12.1 3.2 0.6 -0.2
7 54 33 -6.3 -0.8 40 1 5.0 0.6 -0.5 -0.1
8 50 35 -10.3 1.2 106 1 -12.4 1.4 -0.9 0.1
9 45 20 -15.3 -13.8 234 190 211.1 190.4 -1.3 -1.6
10 70 41 9.7 7.2 94 52 69.8 51.8 0.8 0.9
Total 603 338 0.0 0.0 1238 636 388.6 635.6 0.0 0.0
Ybar 60.3
Xbar 33.8 b= 0.611
VarY y^2/(n-1)= 137.57 SDY 11.73 a= 39.635
VarX x^2/(n-1)= 70.62 SDX 8.40
Pers Regressi (Standardized)
n Y X y=Y-Ybar x=X-Xbar xy x^2
1 0.8 -0.5 0.8 -0.5 -0.4 0.2
2 1.5 -0.2 1.5 -0.2 -0.3 0.0
3 -0.4 1.3 -0.4 1.3 -0.5 1.8
4 -1.3 -1.2 -1.3 -1.2 1.5 1.4
5 0.7 1.5 0.7 1.5 1.0 2.1
6 0.6 -0.2 0.6 -0.2 -0.1 0.0
7 -0.5 -0.1 -0.5 -0.1 0.1 0.0
8 -0.9 0.1 -0.9 0.1 -0.1 0.0
9 -1.3 -1.6 -1.3 -1.6 2.1 2.7
10 0.8 0.9 0.8 0.9 0.7 0.7
Total 0.0 0.0 - - 3.9 9.0
Ybar 0.0 b= 0.438
Xbar 0.0 a= 0.000
Pers Regresi (SPSS & PLS)
Standardized
Coefficients
B Std. Error Beta
(Constant) 39.635 15.405 2.573 0.033
X 0.611 0.444 0.438 1.378 0.205
1
a. Dependent Variable: Y
Coefficientsa
Model
Unstandardized Coefficients
t Sig.
Prediksi periode: 11 - 13
Pers Reg =
n Y X Y X
8 -0.9 0.1 50 35
9 -1.3 -1.6 45 20
10 0.8 0.9 70 41
11 0.307 0.7 61 35
12 0.350 0.8 64 40
13 0.394 0.9 67 45
Y = 0 + 0.438 X Y = 39.6635 + 0.611 X
Prediksi Periode: 11 - 13
Pers Reg =
n Y X Y X
8 -0.9 0.1 50 35
9 -1.3 -1.6 45 20
10 0.8 0.9 70 41
11 0.307 0.7 61 35
12 0.350 0.8 64 40
13 0.394 0.9 67 45
11 64 kali SDY 11.7
12 64 Plus Ybar 60.3
13 65
Residual (e) e= Ŷ - Y e= Ŷ - Y
8 62 0.1 61 35
9 41 -1.6 52 20
10 70 0.9 65 41
Y = 0 + 0.438 X Y = 39.6635 + 0.611 X
Contoh data sekunder:
Y X1 X2
6 30 70
7 32 78
5 45 56
5 24 45
6 46 68
7 32 67
6 33 54
8 35 50
6 20 45
8 41 70
Data Penelitian
Y = Kinerja
X1= Incentive
X2= Lingkungan
Standardized
Coefficients
B Std. Error Beta
(Constant) 4.363 2.101 2.076 0.077
X1 -0.003 0.050 -0.025 -0.064 0.951
X2 0.036 0.036 0.388 0.997 0.352
1
a. Dependent Variable: Y
Coefficientsa
Model
Unstandardized Coefficients
t Sig.
SPSS
PLS
Manual (Beta-Unstandardized Coefficients)
n Y X1 X2 X1Y X2Y X1X2 X1^2 X2^2
1 6 30 70 180 420 2100 900 4900
2 7 32 78 224 546 2496 1024 6084
3 5 45 56 225 280 2520 2025 3136
4 5 24 45 120 225 1080 576 2025
5 6 46 68 276 408 3128 2116 4624
6 7 32 67 224 469 2144 1024 4489
7 6 33 54 198 324 1782 1089 2916
8 8 35 50 280 400 1750 1225 2500
9 6 20 45 120 270 900 400 2025
10 8 41 70 328 560 2870 1681 4900
Jumlah 64 338 603 2175 3902 20770 12060 37599
Y X1 X2 X1Y X2Y X1X2 X1^2 X2^2
64 338 603 2,175 3,902 20,770 12,060 37,599 n
Ybar X1bar X2bar n 1
6.4 33.8 60.3 10 2
x1y = X1Y - (X1. Y)/n 2,175 338 64 12 A 3
x2y = X2Y - (X2.Y)/n 3,902 603 64 42.80 B 4
x1x2 =X1X2 -(X1. X2)/n 20,770 338 603 389 C 5
x1^2 = X1^2 - (X1)^2/n 12,060 338 636 D 6
X2^2 = X2^2 - (X2)^2/n 37,599 603 1,238 E 7
b1 = (EA - CB)/(DE- CC) 14,610 16,632 786,936 151,010 (0.003) 8
b2 = (DB - CA)/(DE - CC) 27,204 4,585 786,936 151,010 0.036 9
b0 = Ybar - (b1.Xbar) - (b2. X2bar) 6.4 0.11
- 2.14 4.363 10
Persamaan Reg : Jumlah
Y =4.363 - 0.003 X1 + 0.03 X2
Manual ( Beta – Standardized Coefficients)
n Y X1 X2 y x1 x2 y^2 x1^2 x2^2 Y=y/SDY X1=x1/SDX1 X2=x2/SDX2 X1Y X2Y X1X2 X1^2 X2^2
1 6 30 70 -0.4 -3.8 9.7 0.16 14.44 94.09 0.37
- 0.45
- 0.83 0.168 -0.308 -0.374 0.204 0.684
2 7 32 78 0.6 -1.8 17.7 0.36 3.24 313.29 0.56 0.21
- 1.51 -0.120 0.842 -0.323 0.046 2.277
3 5 45 56 -1.4 11.2 -4.3 1.96 125.4 18.49 1.30
- 1.33 0.37
- -1.736 0.477 -0.489 1.776 0.134
4 5 24 45 -1.4 -9.8 -15.3 1.96 96.04 234.09 1.30
- 1.17
- 1.30
- 1.519 1.699 1.521 1.360 1.702
5 6 46 68 -0.4 12.2 7.7 0.16 148.8 59.29 0.37
- 1.45 0.66 -0.540 -0.244 0.953 2.108 0.431
6 7 32 67 0.6 -1.8 6.7 0.36 3.24 44.89 0.56 0.21
- 0.57 -0.120 0.319 -0.122 0.046 0.326
7 6 33 54 -0.4 -0.8 -6.3 0.16 0.64 39.69 0.37
- 0.10
- 0.54
- 0.035 0.200 0.051 0.009 0.289
8 8 35 50 1.6 1.2 -10.3 2.56 1.44 106.09 1.49 0.14 0.88
- 0.213 -1.307 -0.125 0.020 0.771
9 6 20 45 -0.4 -13.8 -15.3 0.16 190.4 234.09 0.37
- 1.64
- 1.30
- 0.611 0.485 2.142 2.697 1.702
10 8 41 70 1.6 7.2 9.7 2.56 51.84 94.09 1.49 0.86 0.83 1.275 1.231 0.709 0.734 0.684
Jumlah 64 338 603 0
- 0 0 10.4 635.6 1238.10 0.0 0.0 0.0 1.306 3.395 3.943 9.000 9.000
Rt 6.4 33.8 60.3 1.3
Var 1.16 70.62 137.57
SD 1.07 8.40 11.73
Y X1 X2 X1Y X2Y X1X2 X1^2 X2^2
(0) 0 0 1.306 3.395 3.943 9.000 9.000
Ybar X1bar X2bar n
0.0
- 0.0 0.0 10
x1y = X1Y - (X1. Y)/n 1.306 0.000 0.000
- 1.306 A
x2y = X2Y - (X2.Y)/n 3.395 0.000 0.000
- 3.395 B
x1x2 =X1X2 -(X1. X2)/n 3.943 0.000 0.000 3.943 C
x1^2 = X1^2 - (X1)^2/n 9.000 0.000 9.000 D
X2^2 = X2^2 - (X2)^2/n 9.000 0.000 9.000 E
b1 = (EA - CB)/(DE- CC) 11.756 13.383 81.000 15.544 (0.025)
b2 = (DB - CA)/(DE - CC) 30.552 5.150 81.000 15.544 0.388
b0 = Ybar - (b1.Xbar) - (b2. X2bar) 0.000
- 0.000
- 0.000 (0.000)
Persamaan Reg : J
Y = 0 - 0.025 X1 + 0.388 X2 R
V
Sum of
Squares df
Mean
Square F Sig.
Regression 1.485 2 0.742 0.583 .583
b
Residual 8.915 7 1.274
Total 10.400 9
A JKT=y^2 10.400
B df - (n-1) 9
Variance C=A/B KTT 1.16
Standar Dv C^(0.5) 1.07
ANOVA
a
Model
1
a. Dependent Variable: Y
b. Predictors: (Constant), X2, X1
Istilah
• Variabel Laten merupakan variabel yang tidak dapat diukur secara
langsung kecuali dengan satu atau lebih variabel manifest
(indicator). Variabel laten (tidak dapat diukur secara langsung, msi:
tingkat sehatan) dapat berfungsi sebagai variabel eksogen
(independent) maupun endogen (dependen).
Jenis variabel
•Berdasarkan perannya dalam suatu hubungan
• 1. Variabel Independen/Prediktor/Bebas
• 2. Variabel Dependent/Respon/Terikat
• 3. Variabel Eksogen
• 4. Variabel Endogen
• 5. Variabel Intervening/Mediasi
• 6. Variabel Moderating
•Berdasarkan cara pengukurannya
• 1. Variabel Laten (variabel kosntrak)
• 2. Variabel Indikator / Manifest
Berdasarkan perannya dalam suatu hubungan
1. Variabel Independen/Prediktor/Bebas
Merupakan variabel yang mempengaruhi variabel lain dalam suatu hubungan. Variabel
ini dapat dijumpai di model regresi linier, regresi logistik, model probit/gompit, analisis
data panel, model GLM dan lainnya.
2. Variabel Dependent/Respon/Terikat
Merupakan variabel yang dipengaruhi oleh variabel lain dalam suatu model hubungan.
Variabel ini dapat dijumpai di model regresi linier, regresi logistik, model probit/gompit,
analisis data panel, model GLM dan lainnya. Seringkali, di bidang Bisnis/Ekonomi
cenderung menggunakan nama variabel dependent, Sedangkan di bidang Ilmu
Kehidupan (Biologi dan Pertanian) cenderung akan menggunakan nama variabel Respon.
3. Variabel Eksogen
Pengertian variabel ini sama dengan variabel independent, namun tidak dikatakan
variabel independent karena dalam hubungannya ada yang bertindak sebagai variabel
independent sekaligus variabel dependent. Jenis variabel ini dapat dijumpai dalam
analisis Jalur (Path Analysis).
4. Variabel Endogen
Pengertian variabel ini sama dengan variabel dependent, namun tidak dikatakan
variabel dependent karena dalam hubungannya ada yang bertindak sebagai
variabel independent sekaligus variabel dependent. Jenis variabel ini dapat
dijumpai dalam analisis Jalur (Path Analysis).
5. Variabel Intervening/Mediasi
Variabel ini seolah-olah bertindak sebagai variabel independent dan dependent
variabel sekaligus dalam suatu set hubungan. Variabel ini dapat dijumpai dalam
analisis jalur (Path Analysis)
6. Variabel Moderating
Merupakan variabel yang dapat melemahkan atau memperkuat hubungan
antara variabel satu dengan variabel lainnya.
Berdasarkan cara pengukurannya
1. Variabel Laten (variabel kosntrak)
Merupakan variabel yang tidak bisa diukur secara langsung. Oleh karena itu, kita perlu
sejumlah variabel lain untuk menyatakannya. Contoh variabel laten adalah Tingkat
Kesehatan, Loyalitas, Kebijaksanaan, dan Kepuasan. Untuk mengukur variabel ini kita
perlu kombinasi variabel lain (a.k.a indikator).
Contohnya, variabel Tingkat Kesehatan bisa diukur menggunakan kombinasi beberapa
indikator seperti tekanan darah, kadar asam urat, kadar glukosa dalam darah, dan
kolesterol.
2. Variabel Indikator / Manifest
Merupakan variabel yang bisa diukur secara langsung sehingga dia seringkali menjadi
penyusun variabel laten. Contoh variabel Manifest adalah tinggi badan, berat badan,
dan suhu.
Aminullah Assagaf_PERBANDINGAN SPSS, PLS SEM, MANUAL_23 Juli.pptx
Aminullah Assagaf_PERBANDINGAN SPSS, PLS SEM, MANUAL_23 Juli.pptx
Aminullah Assagaf_PERBANDINGAN SPSS, PLS SEM, MANUAL_23 Juli.pptx
Standardized Coefficients
B Std. Error Beta
(Constant) 2.705 0.905 2.988 0.020
X1 0.323 0.237 0.437 1.360 0.216
X2 -0.045 0.055 -0.264 -0.820 0.439
a. Dependent Variable: Y
Coefficientsa
Model
Unstandardized Coefficients
t Sig.
1
Standardized Coefficients
B Std. Error Beta
(Constant) 2.364 0.787 3.002 0.017
X1 0.364 0.227 0.492 1.600 0.148
Standardized Coefficients
B Std. Error Beta
(Constant) 3.873 0.301 12.870 0.000
X2 -0.061 0.056 -0.355 -1.075 0.314
Sig.
1
a. Dependent Variable: Y
Coefficients
a
Model
Unstandardized Coefficients
t Sig.
1
a. Dependent Variable: Y
Coefficientsa
Model
Unstandardized Coefficients
t
Aminullah Assagaf_PERBANDINGAN SPSS, PLS SEM, MANUAL_23 Juli.pptx
Aminullah Assagaf_PERBANDINGAN SPSS, PLS SEM, MANUAL_23 Juli.pptx
Standardized Coefficients
B Std. Error Beta
(Constant) 8.264 2.676 3.088 0.018
X1 0.304 0.239 0.410 1.270 0.245
X2 -0.047 0.053 -0.289 -0.896 0.400
Standardized Coefficients
B Std. Error Beta
(Constant) 7.231 2.385 3.032 0.016
X1 0.343 0.232 0.463 1.478 0.178
Standardized Coefficients
B Std. Error Beta
(Constant) 11.501 0.849 13.553 0.000
X2 -0.059 0.054 -0.364 -1.107 0.301
1
a. Dependent Variable: Y
1
a. Dependent Variable: Y
Coefficients
a
Model
Unstandardized Coefficients
t Sig.
1
a. Dependent Variable: Y
Coefficientsa
Model
Unstandardized Coefficients
t Sig.
Coefficientsa
Model
Unstandardized Coefficients
t Sig.
Standardized Coefficients
B Std. Error Beta
(Constant) 8.264 2.676 3.088 0.018
X1 0.304 0.239 0.410 1.270 0.245
X2 -0.047 0.053 -0.289 -0.896 0.400
1
a. Dependent Variable: Y
Coefficientsa
Model
Unstandardized Coefficients
t Sig.
Aminullah Assagaf_PERBANDINGAN SPSS, PLS SEM, MANUAL_23 Juli.pptx
R R Square Adjusted R Square Std. Error of the Estimate
1 .543a
0.295 0.094 1.34995
Model Summary
Model
a. Predictors: (Constant), X2, X1
Aminullah Assagaf_PERBANDINGAN SPSS, PLS SEM, MANUAL_23 Juli.pptx
Aminullah Assagaf_PERBANDINGAN SPSS, PLS SEM, MANUAL_23 Juli.pptx
Standardiz
ed
Coefficient
s
B Std. Error Beta
(Constant) 4.363 2.101 2.076 0.077
X1 -0.003 0.050 -0.025 -0.064 0.951
X2 0.036 0.036 0.388 0.997 0.352
Coefficientsa
Model
Unstandardized
Coefficients
t Sig.
1
a. Dependent Variable: Y
Aminullah Assagaf_PERBANDINGAN SPSS, PLS SEM, MANUAL_23 Juli.pptx
Aminullah Assagaf_PERBANDINGAN SPSS, PLS SEM, MANUAL_23 Juli.pptx
R R Square
Adjusted R
Square
Std. Error
of the
Estimate
1 .378
a
0.143 -0.102 1.12854
Model Summary
Model
a. Predictors: (Constant), X2, X1
Standardiz
ed
Coefficient
s
B Std. Error Beta
(Constant) 5.772 1.554 3.715 0.006
X1 0.019 0.045 0.145 0.415 0.689
Standardiz
ed
Coefficient
s
B Std. Error Beta
(Constant) 4.315 1.840 2.345 0.047
X2 0.035 0.030 0.377 1.152 0.283
Standardiz
ed
Coefficient
s
B Std. Error Beta
(Constant) 4.363 2.101 2.076 0.077
X1 -0.003 0.050 -0.025 -0.064 0.951
X2 0.036 0.036 0.388 0.997 0.352
Coefficients
a
Model
Unstandardized
Coefficients
t Sig.
1
a. Dependent Variable: Y
1
a. Dependent Variable: Y
1
a. Dependent Variable: Y
Coefficients
a
Model
Unstandardized
Coefficients
t Sig.
Coefficientsa
Model
Unstandardized
Coefficients
t Sig.
Aminullah Assagaf_PERBANDINGAN SPSS, PLS SEM, MANUAL_23 Juli.pptx
Aminullah Assagaf_PERBANDINGAN SPSS, PLS SEM, MANUAL_23 Juli.pptx
b = xy/x^2 = 0.611
a = Ybar - b(Xbar) = 39.63
MANUAL
Standardize
d
Coefficients
B Std. Error Beta
(Constant) 39.635 15.405 2.573 0.033
X1 0.611 0.444 0.438 1.378 0.205
1
a. Dependent Variable: YX2
Coefficientsa
Model
Unstandardized
Coefficients
t Sig.
b = xy/x^2 = 0.438
a = Ybar - b(Xbar) = 0.00
Standardized
Unstandardized
1 von 59

Recomendados

Aminullah Assagaf_SPSS_PLS SEM_Manual_07072023.pptx von
Aminullah Assagaf_SPSS_PLS SEM_Manual_07072023.pptxAminullah Assagaf_SPSS_PLS SEM_Manual_07072023.pptx
Aminullah Assagaf_SPSS_PLS SEM_Manual_07072023.pptxAminullah Assagaf
3 views43 Folien
Aminullah Assagaf_CONPARE SPSS_PLS SEM_Manual.pptx von
Aminullah Assagaf_CONPARE SPSS_PLS SEM_Manual.pptxAminullah Assagaf_CONPARE SPSS_PLS SEM_Manual.pptx
Aminullah Assagaf_CONPARE SPSS_PLS SEM_Manual.pptxAminullah Assagaf
3 views43 Folien
Aminullah Assagaf_CONPARE SPSS_PLS SEM_Manual.pdf von
Aminullah Assagaf_CONPARE SPSS_PLS SEM_Manual.pdfAminullah Assagaf_CONPARE SPSS_PLS SEM_Manual.pdf
Aminullah Assagaf_CONPARE SPSS_PLS SEM_Manual.pdfAminullah Assagaf
8 views43 Folien
Aminullah Assagaf_SPSS_PLS SEM_Manual_COMPARE.pptx von
Aminullah Assagaf_SPSS_PLS SEM_Manual_COMPARE.pptxAminullah Assagaf_SPSS_PLS SEM_Manual_COMPARE.pptx
Aminullah Assagaf_SPSS_PLS SEM_Manual_COMPARE.pptxAminullah Assagaf
5 views43 Folien
Aminullah Assagaf_SPSS_PLS SEM_Manual_COMPARE.pdf von
Aminullah Assagaf_SPSS_PLS SEM_Manual_COMPARE.pdfAminullah Assagaf_SPSS_PLS SEM_Manual_COMPARE.pdf
Aminullah Assagaf_SPSS_PLS SEM_Manual_COMPARE.pdfAminullah Assagaf
3 views43 Folien
Aminullah Assagaf_PLS SEM & SPSS-4 Juli 2023.pptx von
Aminullah Assagaf_PLS SEM & SPSS-4 Juli 2023.pptxAminullah Assagaf_PLS SEM & SPSS-4 Juli 2023.pptx
Aminullah Assagaf_PLS SEM & SPSS-4 Juli 2023.pptxAminullah Assagaf
5 views42 Folien

Más contenido relacionado

Similar a Aminullah Assagaf_PERBANDINGAN SPSS, PLS SEM, MANUAL_23 Juli.pptx

Microsoft Power Point Analisis Regresi.Ppt [Compatibility Mode] von
Microsoft Power Point   Analisis Regresi.Ppt [Compatibility Mode]Microsoft Power Point   Analisis Regresi.Ppt [Compatibility Mode]
Microsoft Power Point Analisis Regresi.Ppt [Compatibility Mode]arditasukma
4.3K views24 Folien
39 model analisis regeresi jalur (path analysis) von
39 model analisis regeresi jalur (path analysis)39 model analisis regeresi jalur (path analysis)
39 model analisis regeresi jalur (path analysis)Aminullah Assagaf
11 views6 Folien
39 model analisis regeresi jalur (path analysis) von
39 model analisis regeresi jalur (path analysis)39 model analisis regeresi jalur (path analysis)
39 model analisis regeresi jalur (path analysis)AminullahAssagaf3
26 views6 Folien
39 model analisis regeresi jalur (path analysis) von
39 model analisis regeresi jalur (path analysis)39 model analisis regeresi jalur (path analysis)
39 model analisis regeresi jalur (path analysis)Aminullah Assagaf
15 views6 Folien
4_Aminullah Assagaf_IMPLEMENTASI SOFTWARE STATISTIK & ANALISIS_27 Juni 2020.pptx von
4_Aminullah Assagaf_IMPLEMENTASI SOFTWARE STATISTIK & ANALISIS_27 Juni 2020.pptx4_Aminullah Assagaf_IMPLEMENTASI SOFTWARE STATISTIK & ANALISIS_27 Juni 2020.pptx
4_Aminullah Assagaf_IMPLEMENTASI SOFTWARE STATISTIK & ANALISIS_27 Juni 2020.pptxAminullah Assagaf
9 views206 Folien
Aminullah assagaf revisi implementasi software statistik & analisis 27 ju... von
Aminullah assagaf revisi implementasi software statistik & analisis 27 ju...Aminullah assagaf revisi implementasi software statistik & analisis 27 ju...
Aminullah assagaf revisi implementasi software statistik & analisis 27 ju...Aminullah Assagaf
36 views206 Folien

Similar a Aminullah Assagaf_PERBANDINGAN SPSS, PLS SEM, MANUAL_23 Juli.pptx(20)

Microsoft Power Point Analisis Regresi.Ppt [Compatibility Mode] von arditasukma
Microsoft Power Point   Analisis Regresi.Ppt [Compatibility Mode]Microsoft Power Point   Analisis Regresi.Ppt [Compatibility Mode]
Microsoft Power Point Analisis Regresi.Ppt [Compatibility Mode]
arditasukma4.3K views
39 model analisis regeresi jalur (path analysis) von Aminullah Assagaf
39 model analisis regeresi jalur (path analysis)39 model analisis regeresi jalur (path analysis)
39 model analisis regeresi jalur (path analysis)
39 model analisis regeresi jalur (path analysis) von AminullahAssagaf3
39 model analisis regeresi jalur (path analysis)39 model analisis regeresi jalur (path analysis)
39 model analisis regeresi jalur (path analysis)
39 model analisis regeresi jalur (path analysis) von Aminullah Assagaf
39 model analisis regeresi jalur (path analysis)39 model analisis regeresi jalur (path analysis)
39 model analisis regeresi jalur (path analysis)
4_Aminullah Assagaf_IMPLEMENTASI SOFTWARE STATISTIK & ANALISIS_27 Juni 2020.pptx von Aminullah Assagaf
4_Aminullah Assagaf_IMPLEMENTASI SOFTWARE STATISTIK & ANALISIS_27 Juni 2020.pptx4_Aminullah Assagaf_IMPLEMENTASI SOFTWARE STATISTIK & ANALISIS_27 Juni 2020.pptx
4_Aminullah Assagaf_IMPLEMENTASI SOFTWARE STATISTIK & ANALISIS_27 Juni 2020.pptx
Aminullah assagaf revisi implementasi software statistik & analisis 27 ju... von Aminullah Assagaf
Aminullah assagaf revisi implementasi software statistik & analisis 27 ju...Aminullah assagaf revisi implementasi software statistik & analisis 27 ju...
Aminullah assagaf revisi implementasi software statistik & analisis 27 ju...
3 regresi and-korelasi_berganda.ppt von aliff_aimann
3 regresi and-korelasi_berganda.ppt3 regresi and-korelasi_berganda.ppt
3 regresi and-korelasi_berganda.ppt
aliff_aimann815 views
Aminullah assagaf umt 28 des 2020-sampel, data, olah data, interpretasi von Aminullah Assagaf
Aminullah assagaf umt 28 des 2020-sampel, data, olah data, interpretasiAminullah assagaf umt 28 des 2020-sampel, data, olah data, interpretasi
Aminullah assagaf umt 28 des 2020-sampel, data, olah data, interpretasi
Aminullah assagaf umt 28 des 2020-sampel, data, olah data, interpretasi von Aminullah Assagaf
Aminullah assagaf umt 28 des 2020-sampel, data, olah data, interpretasiAminullah assagaf umt 28 des 2020-sampel, data, olah data, interpretasi
Aminullah assagaf umt 28 des 2020-sampel, data, olah data, interpretasi
PPT Statistik Pendidikan von Dewi_Sejarah
PPT Statistik PendidikanPPT Statistik Pendidikan
PPT Statistik Pendidikan
Dewi_Sejarah8.3K views
Contoh hitung perataan lanjut teknik geodesi von Mega Yasma Adha
Contoh hitung perataan lanjut teknik geodesiContoh hitung perataan lanjut teknik geodesi
Contoh hitung perataan lanjut teknik geodesi
Mega Yasma Adha1.5K views
ANALISIS REGRESI DAN KORELASI.pptx von Wan Na
ANALISIS REGRESI DAN KORELASI.pptxANALISIS REGRESI DAN KORELASI.pptx
ANALISIS REGRESI DAN KORELASI.pptx
Wan Na35 views
Uji normalitas dan homogenitas non parametrik (Estrela Muaja - UNIMA) von Estrela Bellia Muaja
Uji normalitas dan homogenitas non parametrik (Estrela Muaja - UNIMA)Uji normalitas dan homogenitas non parametrik (Estrela Muaja - UNIMA)
Uji normalitas dan homogenitas non parametrik (Estrela Muaja - UNIMA)

Más de Aminullah Assagaf

Aminullah Assagaf_Regresi Lengkap 19_8 Nov 2023_Inc. Data panel & Perbandinga... von
Aminullah Assagaf_Regresi Lengkap 19_8 Nov 2023_Inc. Data panel & Perbandinga...Aminullah Assagaf_Regresi Lengkap 19_8 Nov 2023_Inc. Data panel & Perbandinga...
Aminullah Assagaf_Regresi Lengkap 19_8 Nov 2023_Inc. Data panel & Perbandinga...Aminullah Assagaf
7 views238 Folien
Aminullah Assagaf_MODEL REGRESI LENGKAP 19_8 Nop 2023_(Inc. Data Panel, EVIEW... von
Aminullah Assagaf_MODEL REGRESI LENGKAP 19_8 Nop 2023_(Inc. Data Panel, EVIEW...Aminullah Assagaf_MODEL REGRESI LENGKAP 19_8 Nop 2023_(Inc. Data Panel, EVIEW...
Aminullah Assagaf_MODEL REGRESI LENGKAP 19_8 Nop 2023_(Inc. Data Panel, EVIEW...Aminullah Assagaf
93 views238 Folien
Aminullah Assagaf_MODEL REGRESI LENGKAP 19_8 Nop 2023_(Inc. Data Panel, EVIEW... von
Aminullah Assagaf_MODEL REGRESI LENGKAP 19_8 Nop 2023_(Inc. Data Panel, EVIEW...Aminullah Assagaf_MODEL REGRESI LENGKAP 19_8 Nop 2023_(Inc. Data Panel, EVIEW...
Aminullah Assagaf_MODEL REGRESI LENGKAP 19_8 Nop 2023_(Inc. Data Panel, EVIEW...Aminullah Assagaf
2 views238 Folien
Aminullah Assagaf_EVIEWS, STATA, Data Panel_7 Nop 2023.pdf von
Aminullah Assagaf_EVIEWS, STATA, Data Panel_7 Nop 2023.pdfAminullah Assagaf_EVIEWS, STATA, Data Panel_7 Nop 2023.pdf
Aminullah Assagaf_EVIEWS, STATA, Data Panel_7 Nop 2023.pdfAminullah Assagaf
6 views62 Folien
Aminullah Assagaf_MODEL REGRESI LENGKAP 19_8 Nop 2023_(Inc. Data Panel, EVIEW... von
Aminullah Assagaf_MODEL REGRESI LENGKAP 19_8 Nop 2023_(Inc. Data Panel, EVIEW...Aminullah Assagaf_MODEL REGRESI LENGKAP 19_8 Nop 2023_(Inc. Data Panel, EVIEW...
Aminullah Assagaf_MODEL REGRESI LENGKAP 19_8 Nop 2023_(Inc. Data Panel, EVIEW...Aminullah Assagaf
12 views238 Folien
Aminullah Assagaf_MODEL REGRESI LENGKAP 18_8 Nop 2023_(Data Panel & EVIEWS).pptx von
Aminullah Assagaf_MODEL REGRESI LENGKAP 18_8 Nop 2023_(Data Panel & EVIEWS).pptxAminullah Assagaf_MODEL REGRESI LENGKAP 18_8 Nop 2023_(Data Panel & EVIEWS).pptx
Aminullah Assagaf_MODEL REGRESI LENGKAP 18_8 Nop 2023_(Data Panel & EVIEWS).pptxAminullah Assagaf
3 views178 Folien

Más de Aminullah Assagaf(20)

Aminullah Assagaf_Regresi Lengkap 19_8 Nov 2023_Inc. Data panel & Perbandinga... von Aminullah Assagaf
Aminullah Assagaf_Regresi Lengkap 19_8 Nov 2023_Inc. Data panel & Perbandinga...Aminullah Assagaf_Regresi Lengkap 19_8 Nov 2023_Inc. Data panel & Perbandinga...
Aminullah Assagaf_Regresi Lengkap 19_8 Nov 2023_Inc. Data panel & Perbandinga...
Aminullah Assagaf_MODEL REGRESI LENGKAP 19_8 Nop 2023_(Inc. Data Panel, EVIEW... von Aminullah Assagaf
Aminullah Assagaf_MODEL REGRESI LENGKAP 19_8 Nop 2023_(Inc. Data Panel, EVIEW...Aminullah Assagaf_MODEL REGRESI LENGKAP 19_8 Nop 2023_(Inc. Data Panel, EVIEW...
Aminullah Assagaf_MODEL REGRESI LENGKAP 19_8 Nop 2023_(Inc. Data Panel, EVIEW...
Aminullah Assagaf_MODEL REGRESI LENGKAP 19_8 Nop 2023_(Inc. Data Panel, EVIEW... von Aminullah Assagaf
Aminullah Assagaf_MODEL REGRESI LENGKAP 19_8 Nop 2023_(Inc. Data Panel, EVIEW...Aminullah Assagaf_MODEL REGRESI LENGKAP 19_8 Nop 2023_(Inc. Data Panel, EVIEW...
Aminullah Assagaf_MODEL REGRESI LENGKAP 19_8 Nop 2023_(Inc. Data Panel, EVIEW...
Aminullah Assagaf_EVIEWS, STATA, Data Panel_7 Nop 2023.pdf von Aminullah Assagaf
Aminullah Assagaf_EVIEWS, STATA, Data Panel_7 Nop 2023.pdfAminullah Assagaf_EVIEWS, STATA, Data Panel_7 Nop 2023.pdf
Aminullah Assagaf_EVIEWS, STATA, Data Panel_7 Nop 2023.pdf
Aminullah Assagaf_MODEL REGRESI LENGKAP 19_8 Nop 2023_(Inc. Data Panel, EVIEW... von Aminullah Assagaf
Aminullah Assagaf_MODEL REGRESI LENGKAP 19_8 Nop 2023_(Inc. Data Panel, EVIEW...Aminullah Assagaf_MODEL REGRESI LENGKAP 19_8 Nop 2023_(Inc. Data Panel, EVIEW...
Aminullah Assagaf_MODEL REGRESI LENGKAP 19_8 Nop 2023_(Inc. Data Panel, EVIEW...
Aminullah Assagaf_MODEL REGRESI LENGKAP 18_8 Nop 2023_(Data Panel & EVIEWS).pptx von Aminullah Assagaf
Aminullah Assagaf_MODEL REGRESI LENGKAP 18_8 Nop 2023_(Data Panel & EVIEWS).pptxAminullah Assagaf_MODEL REGRESI LENGKAP 18_8 Nop 2023_(Data Panel & EVIEWS).pptx
Aminullah Assagaf_MODEL REGRESI LENGKAP 18_8 Nop 2023_(Data Panel & EVIEWS).pptx
Aminullah Assagaf_Regresi Data Panel_EVIEWS_8 November 2023.pptx von Aminullah Assagaf
Aminullah Assagaf_Regresi Data Panel_EVIEWS_8 November 2023.pptxAminullah Assagaf_Regresi Data Panel_EVIEWS_8 November 2023.pptx
Aminullah Assagaf_Regresi Data Panel_EVIEWS_8 November 2023.pptx
Aminullah Assagaf_EVIEWS, STATA, Data Panel_7 Nop 2023.pdf von Aminullah Assagaf
Aminullah Assagaf_EVIEWS, STATA, Data Panel_7 Nop 2023.pdfAminullah Assagaf_EVIEWS, STATA, Data Panel_7 Nop 2023.pdf
Aminullah Assagaf_EVIEWS, STATA, Data Panel_7 Nop 2023.pdf
Aminullah Assagaf_EVIEWS, STATA, Data Panel_6 Nop 2023.pdf von Aminullah Assagaf
Aminullah Assagaf_EVIEWS, STATA, Data Panel_6 Nop 2023.pdfAminullah Assagaf_EVIEWS, STATA, Data Panel_6 Nop 2023.pdf
Aminullah Assagaf_EVIEWS, STATA, Data Panel_6 Nop 2023.pdf
Aminullah Assagaf_Financial Mangement_Ch. 3,4_21 Okt 2023_.pptx von Aminullah Assagaf
Aminullah Assagaf_Financial Mangement_Ch. 3,4_21 Okt 2023_.pptxAminullah Assagaf_Financial Mangement_Ch. 3,4_21 Okt 2023_.pptx
Aminullah Assagaf_Financial Mangement_Ch. 3,4_21 Okt 2023_.pptx
Aminullah Assagaf_SILSILA_29 Januari 2022.pdf von Aminullah Assagaf
Aminullah Assagaf_SILSILA_29 Januari 2022.pdfAminullah Assagaf_SILSILA_29 Januari 2022.pdf
Aminullah Assagaf_SILSILA_29 Januari 2022.pdf

Último

TugasPPT6_NormanAdjiPangestu _E1G022079.pptx von
TugasPPT6_NormanAdjiPangestu _E1G022079.pptxTugasPPT6_NormanAdjiPangestu _E1G022079.pptx
TugasPPT6_NormanAdjiPangestu _E1G022079.pptxNormanAdji
21 views9 Folien
ADITYA GUSTI R. PPT PENKOM.pptx von
ADITYA GUSTI R. PPT PENKOM.pptxADITYA GUSTI R. PPT PENKOM.pptx
ADITYA GUSTI R. PPT PENKOM.pptxAdityaGustiRamadhan
15 views9 Folien
FAKTOR-FAKTOR LAJU REAKSI.pptx von
FAKTOR-FAKTOR LAJU REAKSI.pptxFAKTOR-FAKTOR LAJU REAKSI.pptx
FAKTOR-FAKTOR LAJU REAKSI.pptxlyricsong1117
9 views31 Folien
Kepemimpinan Pramuka von
Kepemimpinan Pramuka Kepemimpinan Pramuka
Kepemimpinan Pramuka Kafe Buku Pak Aw
16 views23 Folien
Tahapan Leaderhip dalam Mengatur Bawahan _Training "Effective Leadership and ... von
Tahapan Leaderhip dalam Mengatur Bawahan _Training "Effective Leadership and ...Tahapan Leaderhip dalam Mengatur Bawahan _Training "Effective Leadership and ...
Tahapan Leaderhip dalam Mengatur Bawahan _Training "Effective Leadership and ...Kanaidi ken
6 views33 Folien
PAS Mtk Kls 7,8,9 Ganjil 2023.pdf von
PAS Mtk Kls 7,8,9 Ganjil 2023.pdfPAS Mtk Kls 7,8,9 Ganjil 2023.pdf
PAS Mtk Kls 7,8,9 Ganjil 2023.pdfssuser29a952
168 views7 Folien

Último(20)

TugasPPT6_NormanAdjiPangestu _E1G022079.pptx von NormanAdji
TugasPPT6_NormanAdjiPangestu _E1G022079.pptxTugasPPT6_NormanAdjiPangestu _E1G022079.pptx
TugasPPT6_NormanAdjiPangestu _E1G022079.pptx
NormanAdji21 views
Tahapan Leaderhip dalam Mengatur Bawahan _Training "Effective Leadership and ... von Kanaidi ken
Tahapan Leaderhip dalam Mengatur Bawahan _Training "Effective Leadership and ...Tahapan Leaderhip dalam Mengatur Bawahan _Training "Effective Leadership and ...
Tahapan Leaderhip dalam Mengatur Bawahan _Training "Effective Leadership and ...
Kanaidi ken6 views
PAS Mtk Kls 7,8,9 Ganjil 2023.pdf von ssuser29a952
PAS Mtk Kls 7,8,9 Ganjil 2023.pdfPAS Mtk Kls 7,8,9 Ganjil 2023.pdf
PAS Mtk Kls 7,8,9 Ganjil 2023.pdf
ssuser29a952168 views
Materi Ai dan Persiapan Khotbah von SABDA
Materi Ai dan Persiapan KhotbahMateri Ai dan Persiapan Khotbah
Materi Ai dan Persiapan Khotbah
SABDA11 views
ppt penkom jovan.pptx von joovi2311
ppt penkom jovan.pptxppt penkom jovan.pptx
ppt penkom jovan.pptx
joovi23115 views
PPT_UP2_BKMA_Modul Online.pptx von sitikulsum85
PPT_UP2_BKMA_Modul Online.pptxPPT_UP2_BKMA_Modul Online.pptx
PPT_UP2_BKMA_Modul Online.pptx
sitikulsum857 views
Fundamental of Leadership & Peran Leadership _Training "Effective Leadership... von Kanaidi ken
Fundamental of  Leadership & Peran Leadership _Training "Effective Leadership...Fundamental of  Leadership & Peran Leadership _Training "Effective Leadership...
Fundamental of Leadership & Peran Leadership _Training "Effective Leadership...
Kanaidi ken9 views
Membangun aplikasi mobile dengan Appsheet von Fajar Baskoro
Membangun aplikasi mobile dengan AppsheetMembangun aplikasi mobile dengan Appsheet
Membangun aplikasi mobile dengan Appsheet
Fajar Baskoro109 views
instrumen BK RENCANA KONSELING INDIVIDUAL (RKI).pdf von mariamandesy
instrumen BK RENCANA KONSELING INDIVIDUAL (RKI).pdfinstrumen BK RENCANA KONSELING INDIVIDUAL (RKI).pdf
instrumen BK RENCANA KONSELING INDIVIDUAL (RKI).pdf
mariamandesy7 views
RENCANA & Link2 MATERI Training _"SERVICE EXCELLENCE" _di Rumah Sakit. von Kanaidi ken
RENCANA & Link2 MATERI Training _"SERVICE EXCELLENCE" _di Rumah Sakit.RENCANA & Link2 MATERI Training _"SERVICE EXCELLENCE" _di Rumah Sakit.
RENCANA & Link2 MATERI Training _"SERVICE EXCELLENCE" _di Rumah Sakit.
Kanaidi ken58 views
PELAKSANAAN & Link2 MATERI Training "Effective SERVICE EXCELLENCE" bagi Para ... von Kanaidi ken
PELAKSANAAN & Link2 MATERI Training "Effective SERVICE EXCELLENCE" bagi Para ...PELAKSANAAN & Link2 MATERI Training "Effective SERVICE EXCELLENCE" bagi Para ...
PELAKSANAAN & Link2 MATERI Training "Effective SERVICE EXCELLENCE" bagi Para ...
Kanaidi ken46 views
A186422_NUR ATIKAH BINTI ABDUL TALIB_BAHAN MENGAJAR MEMBACA.pptx von a186422
A186422_NUR ATIKAH BINTI ABDUL TALIB_BAHAN MENGAJAR MEMBACA.pptxA186422_NUR ATIKAH BINTI ABDUL TALIB_BAHAN MENGAJAR MEMBACA.pptx
A186422_NUR ATIKAH BINTI ABDUL TALIB_BAHAN MENGAJAR MEMBACA.pptx
a1864226 views

Aminullah Assagaf_PERBANDINGAN SPSS, PLS SEM, MANUAL_23 Juli.pptx

  • 1. Perbandingan SPSS - Smart PLS SEM - Manual 7 Juli 2023 https://www.youtube.com/watch ?v=WG5HdBuvBEs&t=11s Prof. Dr. Dr. Aminullah Assagaf, SE., MS., MM., M.Ak Email: assagaf29@yahoo.com Hp: 08113543409 https://www.slideshare.net/AminullahAssagaf1/aminullah- assagafspsspls-semmanual07072023pptx
  • 2. Perbandingan : SPSS, PLS, Manual (Link Slideshare) https://www.slideshare.net/AminullahAssagaf1/aminullah-assagafpls-sem-spss4-juli-2023pptx
  • 5. Imput data, dan save melalui excel style CSV(delimited atau MSDOS), atau Notepad • Dalam menggunakan data excel: save dengan style CSV (Delimited atau MSDOS) • Data dlm excel hanya satu baris nama vabel • Data diletakkan mulai pojok kiri atas atau A1, agar data tsb bisa dibaca oleh PLS • Bila menggunakan Notepate: blok data di excel, buka notepad melalui search, pilih open, save as, letakkan pd salah satu folder misalnya di Download. • Buka PLS: mulai dgn new project, double clik cari file excel atau file notepad…dst
  • 6. Perbandingan: SPSS, PLS dan Manual Prof. Dr. Dr. Aminullah Assagaf, SE., MS., MM., M.Ak Email: assagaf29@yahoo.com HP : +628113543409 Jakarta, 15 Juli 2023
  • 8. Untuk Regresi Unstandardize : Unstandardize n X1 Y X-Xbar Y-Ybar xy x^2 y^2 Yest Y-Yest x y e 1 4 5 0.6 0.6 0.36 0.36 0.36 4.37 0.63 1 4 5 0.6 0.6 0.36 0.36 0.36 4.37 0.63 1 4 5 0.6 0.6 0.36 0.36 0.36 4.37 0.63 1 5 4 1.6 -0.4 -0.64 2.56 0.16 4.32 -0.32 1 5 4 1.6 -0.4 -0.64 2.56 0.16 4.32 -0.32 1 3 4 -0.4 -0.4 0.16 0.16 0.16 4.42 -0.42 1 3 3 -0.4 -1.4 0.56 0.16 1.96 4.42 -1.42 1 2 4 -1.4 -0.4 0.56 1.96 0.16 4.47 -0.47 1 2 5 -1.4 0.6 -0.84 1.96 0.36 4.47 0.53 1 2 5 -1.4 0.6 -0.84 1.96 0.36 4.47 0.53 10 34 44 - (0) (1) 12 4.4 44 0.00 Xbar 3.4 b = xy/x^2 = -0.048 Var Y=JKT/(n-1)==>ANOVA=4.4/9 Ybar 4.4 a = Ybar - b(Xbar) = 4.565 Var Y=y^2/(n-1)= 0.489 Var X = x^2/(n-1) = 1.378 SDY = 0.70 SDX = 1.17
  • 9. Untuk analisis Jalur (Standardize): Standardize n X1 Y X-Xbar Y-Ybar xy x^2 Yest Y-Yest SD Y(Yest) (SD.Y)+Ybar Selisih Yest x y e 0.5 4.4 Unstd-Std 1 0.51 0.86 0.511 0.858 0.439 0.261 -0.04 0.90 (0.02) 4.38 (0.01) 1 0.51 0.86 0.511 0.858 0.439 0.261 -0.04 0.90 (0.02) 4.38 (0.01) 1 0.51 0.86 0.511 0.858 0.439 0.261 -0.04 0.90 (0.02) 4.38 (0.01) 1 1.36 -0.57 1.363 (0.572) (0.780) 1.858 -0.11 -0.46 (0.05) 4.35 (0.02) 1 1.36 -0.57 1.363 (0.572) (0.780) 1.858 -0.11 -0.46 (0.05) 4.35 (0.02) 1 -0.34 -0.57 (0.341) (0.572) 0.195 0.116 0.03 -0.60 0.01 4.41 0.01 1 -0.34 -2.00 (0.341) (2.002) 0.682 0.116 0.03 -2.03 0.01 4.41 0.01 1 -1.19 -0.57 (1.193) (0.572) 0.682 1.423 0.10 -0.67 0.05 4.45 0.02 1 -1.19 0.86 (1.193) 0.858 (1.023) 1.423 0.10 0.76 0.05 4.45 0.02 1 -1.19 0.86 (1.193) 0.858 (1.023) 1.423 0.10 0.76 0.05 4.45 0.02 10 - (0) - - (0.73) 9.00 (0) - (0) 44 (0) Xbar - b = xy/x^2 = -0.081 Ybar (0.00) a = Ybar - b(Xbar) = 0.00 CATATAN : - UTK ESTIMASI HASILNYA SAMA ANTARA Xstd = (X - Xbar)/SD, sehingga untuk mengembalikan ke X maka : STANDIZE DENGAN UNSTANDARDIZE => Xstd dikalikan SD, misalnya 0,86 x SD = 0,86 x 8,4 = -1.4 - Formulanya : => jadi (X - Xbar ) = 7,2 (1) Standardise : (Yest x SDY) + Ybar => jika Xbar = 33,8 maka X = Xbar + 7,2 = 2 Yest : standardize SDY : SD dari Y unstandardize Ybar : Y rata2 dari unstandardize (2) Unstandardize : Yest
  • 10. SPSS Standardized Coefficients B Std. Error Beta (Constant) 4.565 0.751 6.078 0.000 X1 -0.048 0.210 -0.081 -0.231 0.823 PLS bo b1 Prediksi S a. Dependent Variable: Y Coefficientsa Model Unstandardized Coefficients t Sig. 1
  • 11. Beta_Unstd SPSS_Pred Beta-Std PLS-Pred bo 4.565 4.565 0 0 b1 -0.048 -0.194 -0.081 -0.162 Prediksi SPSS: Y (X=2)= 4.4 -0.162 Prediksi PLS Pers Realisasi Y th 10 ========> 5 -0.114 kali SDY 0.699 Prediksi PLS Y ( X=2) ========> 4.3 plus rt2 Y 4.4 PREDIKSI SPSS & PLS (bila X=2))
  • 13. n Y X1 X2 X1Y X2Y X1X2 X1^2 X2^2 1 5 4 3 20 15 12 16 9 2 5 4 3 20 15 12 16 9 3 5 4 3 20 15 12 16 9 4 4 5 4 20 16 20 25 16 5 4 5 4 20 16 20 25 16 6 4 3 4 12 16 12 9 16 7 3 3 3 9 9 9 9 9 8 4 2 3 8 12 6 4 9 9 5 2 3 10 15 6 4 9 10 5 2 3 10 15 6 4 9 Total 44 34 33 149 144 115 128 111 n n Ybar X1bar X2bar 1 10 4.4 3.4 3.3 2 x1y = X1Y - (X1. Y)/n 149 34 44 (1) A 3 x2y = X2Y - (X2.Y)/n 144 33 44 1.20 - B 4 x1x2 =X1X2 -(X1. X2)/n 115 34 33 3 C 5 x1^2 = X1^2 - (X1)^2/n 128 34 12 D 6 X2^2 = X2^2 - (X2)^2/n 111 33 2 E 7 b1 = (EA - CB)/(DE- CC) 1 - 3 - 26 8 0.115 8 b2 = (DB - CA)/(DE - CC) 15 - 2 - 26 8 -0.725 9 b0 = Ybar - (b1.Xbar) - (b2. X2bar) 4.4 0.39 2.39 - 6.401 10 Persamaan Reg : Jumlah Y =6.401 + 0.115 X1 - 0.725 X2 UNSTANDARDIZED COEFFICIENTs Standardized Coefficients B Std. Error Beta (Constant) 6.401 1.666 3.841 0.006 X1 0.115 0.244 0.194 0.474 0.650 X2 -0.725 0.592 -0.501 -1.225 0.260 a. Dependent Variable: Y Coefficientsa Model Unstandardized Coefficients t Sig. 1 MANUAL SPSS
  • 14. Y X1 X2 n Y X1 X2 y x1 x2 y^2 x1^2 x2^2 Y=y/SDY X1=x1/SDX1 X2=x2/SDX2 X1Y X2Y X1X2 X1^2 X2^2 1 5 4 3 0.6 0.6 -0.3 0.36 0.36 0.09 0.86 0.51 -0.62 0.439 -0.533 -0.317 0.261 0.386 2 5 4 3 0.6 0.6 -0.3 0.36 0.36 0.09 0.86 0.51 -0.62 0.439 -0.533 -0.317 0.261 0.386 3 5 4 3 0.6 0.6 -0.3 0.36 0.36 0.09 0.86 0.51 -0.62 0.439 -0.533 -0.317 0.261 0.386 4 4 5 4 -0.4 1.6 0.7 0.16 2.56 0.49 -0.57 1.36 1.45 -0.780 -0.829 1.975 1.858 2.100 5 4 5 4 -0.4 1.6 0.7 0.16 2.56 0.49 -0.57 1.36 1.45 -0.780 -0.829 1.975 1.858 2.100 6 4 3 4 -0.4 -0.4 0.7 0.16 0.16 0.49 -0.57 -0.34 1.45 0.195 -0.829 -0.494 0.116 2.100 7 3 3 3 -1.4 -0.4 -0.3 1.96 0.16 0.09 -2.00 -0.34 -0.62 0.682 1.244 0.212 0.116 0.386 8 4 2 3 -0.4 -1.4 -0.3 0.16 1.96 0.09 -0.57 -1.19 -0.62 0.682 0.355 0.741 1.423 0.386 9 5 2 3 0.6 -1.4 -0.3 0.36 1.96 0.09 0.86 -1.19 -0.62 -1.023 -0.533 0.741 1.423 0.386 10 5 2 3 0.6 -1.4 -0.3 0.36 1.96 0.09 0.86 -1.19 -0.62 -1.023 -0.533 0.741 1.423 0.386 Total 44 34 33 0 - - 0 4.4 12.4 2.10 -0.00 0.00 0.00 -0.731 -3.553 4.938 9.000 9.000 Rata2 4.4 3.4 3.3 n Ybar X1bar X2bar Var 0.489 1.38 0.23 10 -0 0 0 SD 0.699 1.17 0.48 STANDARDIZED COEFFICIENTS spss MANUAL Standardized Coefficients B Std. Error Beta (Constant) 6.401 1.666 3.841 0.006 X1 0.115 0.244 0.194 0.474 0.650 X2 -0.725 0.592 -0.501 -1.225 0.260 1 a. Dependent Variable: Y Coefficientsa Model Unstandardized Coefficients t Sig. x1y = X1Y - (X1. Y)/n -0.73 0.00 -0.00 -0.73 A x2y = X2Y - (X2.Y)/n -3.55 0.00 -0.00 -3.55 B x1x2 =X1X2 -(X1. X2)/n 4.94 0.00 0.00 4.94 C x1^2 = X1^2 - (X1)^2/n 9.00 0.00 9.00 D X2^2 = X2^2 - (X2)^2/n 9.00 0.00 9.00 E b1 = (EA - CB)/(DE- CC) -6.58 -17.55 81.00 24.39 0.194 b2 = (DB - CA)/(DE - CC) -31.98 -3.61 81.00 24.39 -0.501 b0 = Ybar - (b1.Xbar) - (b2. X2bar) -0.00 0.00 -0.00 -0.000 Persamaan Reg : Y = 0 + 0.194 X1 - 0.501 X2
  • 15. Standardized Coefficients B Std. Error Beta (Constant) 6.401 1.666 3.841 0.006 X1 0.115 0.244 0.194 0.474 0.650 X2 -0.725 0.592 -0.501 -1.225 0.260 1 a. Dependent Variable: Y Coefficientsa Model Unstandardized Coefficients t Sig. SPSS PLS
  • 16. R R Square Adjusted R Square Std. Error of the Estimate 1 .427 a 0.182 -0.052 0.71703 Model Summary Model a. Predictors: (Constant), X2, X1 PLS SPSS
  • 17. Y X1 X2 Pears on 1 -0.081 -0.395 Sig. (2- tailed) 0.823 0.259 N 10 10 10 Pears on -0.081 1 0.549 Sig. (2- tailed) 0.823 0.100 N 10 10 10 Pears on -0.395 0.549 1 Sig. (2- tailed) 0.259 0.100 N 10 10 10 Correlations Y X1 X2 PLS SPSSS
  • 18. Beta_Unstd SPSS_Pred Beta-Std PLS-Pred bo 6.401 6.401 0 0 b1 0.115 0.462 0.194 0.775 b2 -0.725 -2.176 -0.501 -1.503 Prediksi SPSS: Y (X1=4, X2=3)= 4.7 -0.728 Prediksi PLS Realisasi Y th 10 ========>5 -0.509 kali SDY 0.699 Prediksi PLS Y ( X1=2, X2=3) ========> 3.9 plus rt2 Y 4.4 PREDIKSI SPSS & PLS (bila X1=4 dan X2=3) Standardized Coefficients B Std. Error Beta (Constant) 6.401 1.666 3.841 0.006 X1 0.115 0.244 0.194 0.474 0.650 X2 -0.725 0.592 -0.501 -1.225 0.260 a. Dependent Variable: Y Coefficientsa Model Unstandardized Coefficients t Sig. 1
  • 19. KESIMPULAN 1) SPSS menggunakan data real sesuai pengamatan atau riset dilapangan 2) Formula perhitungan regresi SPSS dan PLS adalah sama, yg berbeda hanya pada data yang dioleh untuk menghasilkan koefisien variabel independent. Hal ini telah dibuktikan dengan perhitungan manual baik SPSS maupun PLS. 3) Smart PLS atau SEM menggunakan data dari: selisih antara data pengamatan dengan rata2 total pengamatan (mis: Y – Ybar, X1 – X1bar…dst), kemudian dibagi standar deviasi variabel tsb (mis: SDY, SDX1…dst) 4) Selisih antara data pengamatan dengan rata2 total pengamatan, jumlahnya nol dan rata2 nol, sehingga data yg diolah PLS seperti butir 3 diatas, menghasilkan konstanta nol. Konstanta dihitung dari rata-rata variabel dependen Y dikurangi (koefisien kali rata-rata variabel independent Xi), sehingga nilai konstanta nol. 5) Koefisien dari PLN tidak dapat digunakan untuk prediksi, tetapi harus dikembalikan perhitungannya, yaitu hasil prediksi Y yang diperoleh dari perkalian koefisien variabel independent Xi dikali data prediksi Xi menghasilkan nilai yang tidak sesuai prediksi sebagaimana perhitungan SPSS. 6) Prediksi Y sebagaimana butir 5, kemudian dikalikan dengan standar deviasi Y (SDY), dan ditambahkan nilai rata-rata Y. Hasilnya mendekati perhitungan prediksi SPSS dan relevan dengan kondisi empiris, terutama bila diuji dengan angka realisasi dengan asumsi dipakai pada prediksi periode sebelumnya.
  • 20. KESIMPULAN 7) Perhitungan SPSS dan PLS atau SEM memiliki kesamaan dalam formula perhitungan koefisien regresi. Hasil perhitungan coefficients SPSS menunjukkan koefisien Unstandardized (menggunakan data real) dan koefisien Standardized (menggunakan data sebagaimana butir 3) dengan hasil yang sama dengan PLS SEM 8) Model SPSS dan PLS dapat digunakan untuk prediksi dengan hasil yang hamper sama, bila menggunakan data realisasi dengan asumsi prediksi pada periode sebelumnya. 9) Pemahaman perbandingan perhitungan manual, SPSS, PLS adalah penting dipahami oleh mahasiswa atau peneliti yang menggunakan PLS untuk menjelaskan perbedaan hasil perhitungan dan menggunakannya pada kebijakan terhadap variabel independent Xi yang berdampak terhadap variabel dependen Y. 10) Koefisien regresi dari PLS SEM tidak dapat digunakan secara langsung untuk melakukan prediksi variabek dependen Y, tetapi harus mengembalikan perhitungannya dengan cara kalikan dengan standar deviasi Y, kemudian tambahkan nilai rata2 total Y. 11) Hal ini juga dapat digunakan untuk menjelaskan hasil dan pembahasan pada hasil penelitian yang menggunakan Smart PLS SEM. Bila menggunakan secara langsung maka hasilnya menjadi tidak rasional, dan sangat signifikan perbedaannya dengan prediksi SPSS maupun kondisi empiris sesuai data hasil penelitian.
  • 24. Pers Regresi (Unstandardized) n Y X y=Y-Ybar x=X-Xbar y^2 x^2 xy x^2 A=y/SDY B=x/SDX 1 70 30 9.7 -3.8 94 14 -36.9 14.4 0.8 -0.5 2 78 32 17.7 -1.8 313 3 -31.9 3.2 1.5 -0.2 3 56 45 -4.3 11.2 18 125 -48.2 125.4 -0.4 1.3 4 45 24 -15.3 -9.8 234 96 149.9 96.0 -1.3 -1.2 5 68 46 7.7 12.2 59 149 93.9 148.8 0.7 1.5 6 67 32 6.7 -1.8 45 3 -12.1 3.2 0.6 -0.2 7 54 33 -6.3 -0.8 40 1 5.0 0.6 -0.5 -0.1 8 50 35 -10.3 1.2 106 1 -12.4 1.4 -0.9 0.1 9 45 20 -15.3 -13.8 234 190 211.1 190.4 -1.3 -1.6 10 70 41 9.7 7.2 94 52 69.8 51.8 0.8 0.9 Total 603 338 0.0 0.0 1238 636 388.6 635.6 0.0 0.0 Ybar 60.3 Xbar 33.8 b= 0.611 VarY y^2/(n-1)= 137.57 SDY 11.73 a= 39.635 VarX x^2/(n-1)= 70.62 SDX 8.40
  • 25. Pers Regressi (Standardized) n Y X y=Y-Ybar x=X-Xbar xy x^2 1 0.8 -0.5 0.8 -0.5 -0.4 0.2 2 1.5 -0.2 1.5 -0.2 -0.3 0.0 3 -0.4 1.3 -0.4 1.3 -0.5 1.8 4 -1.3 -1.2 -1.3 -1.2 1.5 1.4 5 0.7 1.5 0.7 1.5 1.0 2.1 6 0.6 -0.2 0.6 -0.2 -0.1 0.0 7 -0.5 -0.1 -0.5 -0.1 0.1 0.0 8 -0.9 0.1 -0.9 0.1 -0.1 0.0 9 -1.3 -1.6 -1.3 -1.6 2.1 2.7 10 0.8 0.9 0.8 0.9 0.7 0.7 Total 0.0 0.0 - - 3.9 9.0 Ybar 0.0 b= 0.438 Xbar 0.0 a= 0.000
  • 26. Pers Regresi (SPSS & PLS) Standardized Coefficients B Std. Error Beta (Constant) 39.635 15.405 2.573 0.033 X 0.611 0.444 0.438 1.378 0.205 1 a. Dependent Variable: Y Coefficientsa Model Unstandardized Coefficients t Sig.
  • 27. Prediksi periode: 11 - 13 Pers Reg = n Y X Y X 8 -0.9 0.1 50 35 9 -1.3 -1.6 45 20 10 0.8 0.9 70 41 11 0.307 0.7 61 35 12 0.350 0.8 64 40 13 0.394 0.9 67 45 Y = 0 + 0.438 X Y = 39.6635 + 0.611 X
  • 28. Prediksi Periode: 11 - 13 Pers Reg = n Y X Y X 8 -0.9 0.1 50 35 9 -1.3 -1.6 45 20 10 0.8 0.9 70 41 11 0.307 0.7 61 35 12 0.350 0.8 64 40 13 0.394 0.9 67 45 11 64 kali SDY 11.7 12 64 Plus Ybar 60.3 13 65 Residual (e) e= Ŷ - Y e= Ŷ - Y 8 62 0.1 61 35 9 41 -1.6 52 20 10 70 0.9 65 41 Y = 0 + 0.438 X Y = 39.6635 + 0.611 X
  • 30. Y X1 X2 6 30 70 7 32 78 5 45 56 5 24 45 6 46 68 7 32 67 6 33 54 8 35 50 6 20 45 8 41 70 Data Penelitian Y = Kinerja X1= Incentive X2= Lingkungan
  • 31. Standardized Coefficients B Std. Error Beta (Constant) 4.363 2.101 2.076 0.077 X1 -0.003 0.050 -0.025 -0.064 0.951 X2 0.036 0.036 0.388 0.997 0.352 1 a. Dependent Variable: Y Coefficientsa Model Unstandardized Coefficients t Sig. SPSS PLS
  • 32. Manual (Beta-Unstandardized Coefficients) n Y X1 X2 X1Y X2Y X1X2 X1^2 X2^2 1 6 30 70 180 420 2100 900 4900 2 7 32 78 224 546 2496 1024 6084 3 5 45 56 225 280 2520 2025 3136 4 5 24 45 120 225 1080 576 2025 5 6 46 68 276 408 3128 2116 4624 6 7 32 67 224 469 2144 1024 4489 7 6 33 54 198 324 1782 1089 2916 8 8 35 50 280 400 1750 1225 2500 9 6 20 45 120 270 900 400 2025 10 8 41 70 328 560 2870 1681 4900 Jumlah 64 338 603 2175 3902 20770 12060 37599 Y X1 X2 X1Y X2Y X1X2 X1^2 X2^2 64 338 603 2,175 3,902 20,770 12,060 37,599 n Ybar X1bar X2bar n 1 6.4 33.8 60.3 10 2 x1y = X1Y - (X1. Y)/n 2,175 338 64 12 A 3 x2y = X2Y - (X2.Y)/n 3,902 603 64 42.80 B 4 x1x2 =X1X2 -(X1. X2)/n 20,770 338 603 389 C 5 x1^2 = X1^2 - (X1)^2/n 12,060 338 636 D 6 X2^2 = X2^2 - (X2)^2/n 37,599 603 1,238 E 7 b1 = (EA - CB)/(DE- CC) 14,610 16,632 786,936 151,010 (0.003) 8 b2 = (DB - CA)/(DE - CC) 27,204 4,585 786,936 151,010 0.036 9 b0 = Ybar - (b1.Xbar) - (b2. X2bar) 6.4 0.11 - 2.14 4.363 10 Persamaan Reg : Jumlah Y =4.363 - 0.003 X1 + 0.03 X2
  • 33. Manual ( Beta – Standardized Coefficients) n Y X1 X2 y x1 x2 y^2 x1^2 x2^2 Y=y/SDY X1=x1/SDX1 X2=x2/SDX2 X1Y X2Y X1X2 X1^2 X2^2 1 6 30 70 -0.4 -3.8 9.7 0.16 14.44 94.09 0.37 - 0.45 - 0.83 0.168 -0.308 -0.374 0.204 0.684 2 7 32 78 0.6 -1.8 17.7 0.36 3.24 313.29 0.56 0.21 - 1.51 -0.120 0.842 -0.323 0.046 2.277 3 5 45 56 -1.4 11.2 -4.3 1.96 125.4 18.49 1.30 - 1.33 0.37 - -1.736 0.477 -0.489 1.776 0.134 4 5 24 45 -1.4 -9.8 -15.3 1.96 96.04 234.09 1.30 - 1.17 - 1.30 - 1.519 1.699 1.521 1.360 1.702 5 6 46 68 -0.4 12.2 7.7 0.16 148.8 59.29 0.37 - 1.45 0.66 -0.540 -0.244 0.953 2.108 0.431 6 7 32 67 0.6 -1.8 6.7 0.36 3.24 44.89 0.56 0.21 - 0.57 -0.120 0.319 -0.122 0.046 0.326 7 6 33 54 -0.4 -0.8 -6.3 0.16 0.64 39.69 0.37 - 0.10 - 0.54 - 0.035 0.200 0.051 0.009 0.289 8 8 35 50 1.6 1.2 -10.3 2.56 1.44 106.09 1.49 0.14 0.88 - 0.213 -1.307 -0.125 0.020 0.771 9 6 20 45 -0.4 -13.8 -15.3 0.16 190.4 234.09 0.37 - 1.64 - 1.30 - 0.611 0.485 2.142 2.697 1.702 10 8 41 70 1.6 7.2 9.7 2.56 51.84 94.09 1.49 0.86 0.83 1.275 1.231 0.709 0.734 0.684 Jumlah 64 338 603 0 - 0 0 10.4 635.6 1238.10 0.0 0.0 0.0 1.306 3.395 3.943 9.000 9.000 Rt 6.4 33.8 60.3 1.3 Var 1.16 70.62 137.57 SD 1.07 8.40 11.73 Y X1 X2 X1Y X2Y X1X2 X1^2 X2^2 (0) 0 0 1.306 3.395 3.943 9.000 9.000 Ybar X1bar X2bar n 0.0 - 0.0 0.0 10 x1y = X1Y - (X1. Y)/n 1.306 0.000 0.000 - 1.306 A x2y = X2Y - (X2.Y)/n 3.395 0.000 0.000 - 3.395 B x1x2 =X1X2 -(X1. X2)/n 3.943 0.000 0.000 3.943 C x1^2 = X1^2 - (X1)^2/n 9.000 0.000 9.000 D X2^2 = X2^2 - (X2)^2/n 9.000 0.000 9.000 E b1 = (EA - CB)/(DE- CC) 11.756 13.383 81.000 15.544 (0.025) b2 = (DB - CA)/(DE - CC) 30.552 5.150 81.000 15.544 0.388 b0 = Ybar - (b1.Xbar) - (b2. X2bar) 0.000 - 0.000 - 0.000 (0.000) Persamaan Reg : J Y = 0 - 0.025 X1 + 0.388 X2 R V Sum of Squares df Mean Square F Sig. Regression 1.485 2 0.742 0.583 .583 b Residual 8.915 7 1.274 Total 10.400 9 A JKT=y^2 10.400 B df - (n-1) 9 Variance C=A/B KTT 1.16 Standar Dv C^(0.5) 1.07 ANOVA a Model 1 a. Dependent Variable: Y b. Predictors: (Constant), X2, X1
  • 34. Istilah • Variabel Laten merupakan variabel yang tidak dapat diukur secara langsung kecuali dengan satu atau lebih variabel manifest (indicator). Variabel laten (tidak dapat diukur secara langsung, msi: tingkat sehatan) dapat berfungsi sebagai variabel eksogen (independent) maupun endogen (dependen).
  • 35. Jenis variabel •Berdasarkan perannya dalam suatu hubungan • 1. Variabel Independen/Prediktor/Bebas • 2. Variabel Dependent/Respon/Terikat • 3. Variabel Eksogen • 4. Variabel Endogen • 5. Variabel Intervening/Mediasi • 6. Variabel Moderating •Berdasarkan cara pengukurannya • 1. Variabel Laten (variabel kosntrak) • 2. Variabel Indikator / Manifest
  • 36. Berdasarkan perannya dalam suatu hubungan 1. Variabel Independen/Prediktor/Bebas Merupakan variabel yang mempengaruhi variabel lain dalam suatu hubungan. Variabel ini dapat dijumpai di model regresi linier, regresi logistik, model probit/gompit, analisis data panel, model GLM dan lainnya. 2. Variabel Dependent/Respon/Terikat Merupakan variabel yang dipengaruhi oleh variabel lain dalam suatu model hubungan. Variabel ini dapat dijumpai di model regresi linier, regresi logistik, model probit/gompit, analisis data panel, model GLM dan lainnya. Seringkali, di bidang Bisnis/Ekonomi cenderung menggunakan nama variabel dependent, Sedangkan di bidang Ilmu Kehidupan (Biologi dan Pertanian) cenderung akan menggunakan nama variabel Respon. 3. Variabel Eksogen Pengertian variabel ini sama dengan variabel independent, namun tidak dikatakan variabel independent karena dalam hubungannya ada yang bertindak sebagai variabel independent sekaligus variabel dependent. Jenis variabel ini dapat dijumpai dalam analisis Jalur (Path Analysis).
  • 37. 4. Variabel Endogen Pengertian variabel ini sama dengan variabel dependent, namun tidak dikatakan variabel dependent karena dalam hubungannya ada yang bertindak sebagai variabel independent sekaligus variabel dependent. Jenis variabel ini dapat dijumpai dalam analisis Jalur (Path Analysis). 5. Variabel Intervening/Mediasi Variabel ini seolah-olah bertindak sebagai variabel independent dan dependent variabel sekaligus dalam suatu set hubungan. Variabel ini dapat dijumpai dalam analisis jalur (Path Analysis) 6. Variabel Moderating Merupakan variabel yang dapat melemahkan atau memperkuat hubungan antara variabel satu dengan variabel lainnya.
  • 38. Berdasarkan cara pengukurannya 1. Variabel Laten (variabel kosntrak) Merupakan variabel yang tidak bisa diukur secara langsung. Oleh karena itu, kita perlu sejumlah variabel lain untuk menyatakannya. Contoh variabel laten adalah Tingkat Kesehatan, Loyalitas, Kebijaksanaan, dan Kepuasan. Untuk mengukur variabel ini kita perlu kombinasi variabel lain (a.k.a indikator). Contohnya, variabel Tingkat Kesehatan bisa diukur menggunakan kombinasi beberapa indikator seperti tekanan darah, kadar asam urat, kadar glukosa dalam darah, dan kolesterol. 2. Variabel Indikator / Manifest Merupakan variabel yang bisa diukur secara langsung sehingga dia seringkali menjadi penyusun variabel laten. Contoh variabel Manifest adalah tinggi badan, berat badan, dan suhu.
  • 42. Standardized Coefficients B Std. Error Beta (Constant) 2.705 0.905 2.988 0.020 X1 0.323 0.237 0.437 1.360 0.216 X2 -0.045 0.055 -0.264 -0.820 0.439 a. Dependent Variable: Y Coefficientsa Model Unstandardized Coefficients t Sig. 1
  • 43. Standardized Coefficients B Std. Error Beta (Constant) 2.364 0.787 3.002 0.017 X1 0.364 0.227 0.492 1.600 0.148 Standardized Coefficients B Std. Error Beta (Constant) 3.873 0.301 12.870 0.000 X2 -0.061 0.056 -0.355 -1.075 0.314 Sig. 1 a. Dependent Variable: Y Coefficients a Model Unstandardized Coefficients t Sig. 1 a. Dependent Variable: Y Coefficientsa Model Unstandardized Coefficients t
  • 46. Standardized Coefficients B Std. Error Beta (Constant) 8.264 2.676 3.088 0.018 X1 0.304 0.239 0.410 1.270 0.245 X2 -0.047 0.053 -0.289 -0.896 0.400 Standardized Coefficients B Std. Error Beta (Constant) 7.231 2.385 3.032 0.016 X1 0.343 0.232 0.463 1.478 0.178 Standardized Coefficients B Std. Error Beta (Constant) 11.501 0.849 13.553 0.000 X2 -0.059 0.054 -0.364 -1.107 0.301 1 a. Dependent Variable: Y 1 a. Dependent Variable: Y Coefficients a Model Unstandardized Coefficients t Sig. 1 a. Dependent Variable: Y Coefficientsa Model Unstandardized Coefficients t Sig. Coefficientsa Model Unstandardized Coefficients t Sig.
  • 47. Standardized Coefficients B Std. Error Beta (Constant) 8.264 2.676 3.088 0.018 X1 0.304 0.239 0.410 1.270 0.245 X2 -0.047 0.053 -0.289 -0.896 0.400 1 a. Dependent Variable: Y Coefficientsa Model Unstandardized Coefficients t Sig.
  • 49. R R Square Adjusted R Square Std. Error of the Estimate 1 .543a 0.295 0.094 1.34995 Model Summary Model a. Predictors: (Constant), X2, X1
  • 52. Standardiz ed Coefficient s B Std. Error Beta (Constant) 4.363 2.101 2.076 0.077 X1 -0.003 0.050 -0.025 -0.064 0.951 X2 0.036 0.036 0.388 0.997 0.352 Coefficientsa Model Unstandardized Coefficients t Sig. 1 a. Dependent Variable: Y
  • 55. R R Square Adjusted R Square Std. Error of the Estimate 1 .378 a 0.143 -0.102 1.12854 Model Summary Model a. Predictors: (Constant), X2, X1
  • 56. Standardiz ed Coefficient s B Std. Error Beta (Constant) 5.772 1.554 3.715 0.006 X1 0.019 0.045 0.145 0.415 0.689 Standardiz ed Coefficient s B Std. Error Beta (Constant) 4.315 1.840 2.345 0.047 X2 0.035 0.030 0.377 1.152 0.283 Standardiz ed Coefficient s B Std. Error Beta (Constant) 4.363 2.101 2.076 0.077 X1 -0.003 0.050 -0.025 -0.064 0.951 X2 0.036 0.036 0.388 0.997 0.352 Coefficients a Model Unstandardized Coefficients t Sig. 1 a. Dependent Variable: Y 1 a. Dependent Variable: Y 1 a. Dependent Variable: Y Coefficients a Model Unstandardized Coefficients t Sig. Coefficientsa Model Unstandardized Coefficients t Sig.
  • 59. b = xy/x^2 = 0.611 a = Ybar - b(Xbar) = 39.63 MANUAL Standardize d Coefficients B Std. Error Beta (Constant) 39.635 15.405 2.573 0.033 X1 0.611 0.444 0.438 1.378 0.205 1 a. Dependent Variable: YX2 Coefficientsa Model Unstandardized Coefficients t Sig. b = xy/x^2 = 0.438 a = Ybar - b(Xbar) = 0.00 Standardized Unstandardized