SlideShare ist ein Scribd-Unternehmen logo
1 von 61
Downloaden Sie, um offline zu lesen
The Enterobacteriaceae
   Basic Properties
     Dr. John R. Warren
  Department of Pathology
   Northwestern University
 Feinberg School of Medicine
          June 2007
Characteristics of the
        Enterobacteriaceae
• Gram-negative rods
• Glucose is fermented with strong acid
  formation and often gas
• Cytochrome oxidase activity is
  negative
• Nitrate is reduced to nitrite
Gram’s Stain for Bacterial
          Morphology
• Crystal violet binds to cell wall
  peptidoglycan with Gram’s iodine as a
  mordant
• Safranin or basic fuchsin counterstains
  bacterial cells decolorized by alcohol-
  acetone
Gram’s Stain for Bacterial
           Morphology
• Thick cell-wall peptidoglycan layer of gram-
  positive bacteria strongly binds crystal violet
  and resists decolorization by alcohol-acetone
• Thin cell-wall peptidoglycan layer of gram-
  negative bacteria located beneath a thick
  lipid-rich outer membrane weakly binds
  crystal violet that is readily removed by
  alcohol-acetone decolorization
Gram’s Stain Procedure
•   Flood surface of smear with crystal violet solution
•   After 1 min thoroughly rinse with cold tap water
•   Flood smear with Gram’s iodine for 1 min
•   Rinse smear with acetone-alcohol decolorizer until
    no more crystal violet in rinse effluent
•   Rinse with cold tap water
•   Flood smear with safranin (regular Gram’s stain) or
    basic fuchsin (enhanced Gram’s stain)
•   Rinse with cold tap water
•   Dry smear in slide rack
•   Microscopically examine stained smear using oil-
    immersion light microscopy
Glucose Fermentation
•   Oxidation-reduction of glucose in the absence of molecular oxygen
    (anaerobic glycolysis)
•   Energy from hydrolysis of chemical bonds in anaerobic glycolysis
    captured as high energy phosphate bonds of adenosine triphosphate
    (ATP)
•   NAD is reduced to NADH2 by accepting electrons during glycolytic
    conversion of glucose to pyruvate
•   NADH2 in turn reduces pyruvate with oxidation of NADH2 to NAD which
    supports continued anaerobic glycolysis, and generation from
    pyruvate of alcohols, carboxylic acids, and CO2 gas
•   End products of glucose fermentation: organic acids and CO 2 gas
•   Fermentation detected by acidification of glucose-containing broth
    (color change in broth or agar medium containing pH indicators), and
    (for aerogenic species) production of gas (fractures in agar, gas
    bubbles in inverted Durham tube)
•   pH indicators: phenol red (yellow at acid pH), methyl red (red at acid
    pH), neutral red (red at acid pH), bromcresol purple (yellow at acid pH)
Spot Cytochrome Oxidase Test
• The spot cytochrome oxidase test is
  the first test performed with gram-
  negative bacteria recovered in culture
• The optimal plate medium for a spot
  cytochrome oxidase test is a trypticase
  soy agar (TSA) containing 5% sheep
  blood
• Bacterial colonies should be 18 to 24 hr
   old
Spot Cytochrome Oxidase Test
• In a positive test, bacterial cytochrome
  oxidase oxidizes the colorless reduced
  substrate tetramethyl-p-phenylenediamine
  dihydrochloride (TPDD) forming a dark
  purple oxidized indophenol product
• Streak a small portion of bacterial colony to
  filter paper soaked with a 1% solution of
  TPDD
• If the streak mark turns purple in 10 sec or
  less, the spot oxidase test is interpreted as
  positive
Nitrate Reduction
• Enterobacteriaceae extract oxygen from
  nitrate (NO3) producing nitrite (NO2)
• NO2 detected by reaction with α-
  naphthylamine and sulfanilic acid producing
  a red colored complex
• Absence of red color indicates either no
  reduction of NO3 or reduction to products
  other than NO2 (denitrification)
• Confirmation of true negative test: addition
  of zinc ions which reduce NO3 to NO2
  producing a red color in the presence of α-
  naphthylamine and sulfanilic acid
Enterobacteriaceae: Genetic
           Properties
• Chromosomal DNA has 39-59%
  guanine-plus-cytosine (G+C) content
• Escherichia coli is the type genus and
  species of the Enterobacteriaceae
• Species of Enterobacteriaceae more
  closely related by evolutionary
  distance to Escherichia coli than to
  organisms of other families
  (Pseudomonadaceae,
  Aeromonadaceae)
Enterobacteriaceae: Major
               Genera
•   Escherichia
•   Shigella
•   Salmonella
•   Edwardsiella
•   Citrobacter
•   Yersinia
•   Klebsiella
•   Enterobacter
•   Serratia
•   Proteus
•   Morganella
•   Providencia
Enterobacteriaceae:
    Microbiological Properties
• Gram-negative and rod shaped (bacilli)
• Ferment rather than oxidize D-glucose
  with acid and (often) gas production
• Reduce nitrate to nitrite
• Grow readily on 5% sheep blood or
  chocolate agar in carbon dioxide or
  ambient air
• Grow anaerobically (facultative
  anaerobes)
Enterobacteriaceae:
     Microbiological Properties
• Catalase positive and cytochrome oxidase
  negative
• Grow readily on MacConkey (MAC) and eosin
  methylene blue (EMB) agars
• Grow readily at 35oC except Yersinia (25o-
  30oC)
• Motile by peritrichous flagella except Shigella
  and Klebsiella which are non-motile
• Do not form spores
Enterobacteriaceae: Natural
            Habitats
• Environmental sites (soil, water, and
  plants)
• Intestines of humans and animals
Enterobacteriaceae: Modes of
           Infection
• Contaminated food and water (Salmonella
  spp., Shigella spp., Yersinia enterocolitica,
  Escherichia coli O157:H7)
• Endogenous (urinary tract infection, primary
  bacterial peritonitis, abdominal abscess)
• Abnormal host colonization (nosocomial
  pneumonia)
• Transfer between debilitated patients
• Insect (flea) vector (unique for Yersinia
  pestis)
Enterobacteriaceae: Types of
       Infectious Disease
• Intestinal (diarrheal) infection
• Extraintestinal infection
      Urinary tract (primarily cystitis)
      Respiratory (nosocomial pneumonia)
      Wound (surgical wound infection)
      Bloodstream (gram-negative
      bacteremia)
      Central nervous system (neonatal
      meningitis)
Enterobacteriaceae: Urinary
   Tract Infection, Pneumonia
• Urinary tract infection: Escherichia coli,
  Klebsiella pneumoniae, Enterobacter
  spp., and Proteus mirabilis
• Pneumonia: Enterobacter spp.,
  Klebsiella pneumoniae, Escherichia
  coli, and Proteus mirabilis
Enterobacteriaceae: Wound
      Infection, Bacteremia
• Wound Infection: Escherichia coli,
  Enterobacter spp., Klebsiella
  pneumoniae, and Proteus mirabilis
• Bacteremia: Escherichia coli,
  Enterobacter spp., Klebsiella
  pneumoniae, and Proteus mirabilis
Enterobacteriaceae: Nosocomial
 Infections in the United States
   1986-1989 and 1990-19961
•  Escherichia coli              27,871 (13.7%)
•  Enterobacter spp.             12,757 (6.2%)
•  Klebsiella pneumoniae         11,015 (5.4%)
•  Proteus mirabilis              4,662 (2.3%)
•  Serratia marcescens            3,010 (1.5%)
•  Citrobacter spp.               2,912 (1.4%)
1
 Enteric Reference Laboratory, Centers for
  Disease Control and Prevention
Enterobacteriaceae: Intestinal
             Infection
•   Shigella sonnei (serogroup D)
•   Salmonella serotype Enteritidis
•   Salmonella serotype Typhimurium
•   Shigella flexneri (serogroup B)
•   Escherichia coli O157:H7
•   Yersinia enterocolitica
Triple Sugar Iron (TSI) Agar
• Yeast extract        0.3% (% = grams/100 mL)
• Beef extract         0.3%
• Peptone              1.5%
• Proteose peptone 0.5%
     Total Protein = 2.6%
• Lactose              1.0%
• Sucrose1       1.0%
• Glucose              0.1%
     Carbohydrate = 2.1%
1
 Absent in Kligler Iron Agar
Triple Sugar Iron (TSI) Agar
•   Ferrous sulfate
•   Sodium thiosulfate
•   Sodium chloride
•   Agar (1.2%)
•   Phenol red
•   pH = 7.4
TSI Reactions of the
              Enterobacteriaceae
•   Yellow deep, purple slant: acid deep due to glucose
    fermentation , no lactose or sucrose fermentation with alkaline
    slant due to production of amine’s from protein
•   Black deep, purple slant: acid deep due to glucose
    fermentation with H2S production, no lactose or sucrose
    fermentation
•   Yellow deep and slant: acid deep and slant due to glucose as
    well as lactose and/or sucrose fermentation
•   Black deep and yellow or black slant: acid deep and slant with
    glucose and lactose and/or sucrose fermentation with H 2S
    production
•   Fracturing or lifting of agar from base of culture tube: CO2
    production
TSI Reactions of the
         Enterobacteriaceae
• A/A + g = acid/acid plus gas (CO2)
• A/A = acid/acid
• A/A + g, H2S = acid/acid plus gas, H2S
• Alk/A = alkaline/acid
• Alk/A + g = alkaline/acid plus gas
• Alk/A + g, H2S = alkaline/acid plus gas, H2S
• Alk/A + g, H2S (w) = alkaline/acid plus gas,
  H2S (weak)
A/A + g
•   Escherichia coli
•   Klebsiella pneumoniae
•   Klebsiella oxytoca
•   Enterobacter aerogenes
•   Enterobacter cloacae
•   Serratia marcescens1, 2

1
 Non-lactose, sucrose fermenter
2
 55% + g
A/A
• Serratia marcescens1, 2
• Yersinia enterocolitica2
1
  45% of strains
2
  Non-lactose, sucrose fermenter
A/A + g, H2S
• Citrobacter freundii
• Proteus vulgaris1
1
  Non-lactose, sucrose fermenter
Alk/A
• Shigella
• Providencia
Alk/A + g
• Salmonella serotype Paratyphi A
Alk/A + g, H2S
• Salmonella (most serotypes)
• Proteus mirabilis
• Edwardsiella tarda
Alk/A + g, H2S (w)
• Salmonella serotype Typhi
MacConkey (MAC) Agar
•      Peptone                  1.7%
•      Polypeptone              0.3%
•      Lactose1                 1.0%
•      Bile salts2              0.15%
•      Crystal violet2
•      Neutral red3
•      Sodium chloride          0.5%
•      Agar                     1.35%
•      pH=7.1

1
    Differential medium for lactose fermentation

2
    Inhibit gram positives and fastidious gram-negatives; MAC agar selective for
     gram-negatives

3
    Red color at pH < 6.8
Eosin Methylene Blue (EMB)
            Agar (Levine)
•   Peptone    1.0%
•   Lactose1   0.5%
•   Eosin y2
•   Methylene blue2
•   Agar
•   pH = 7.2

Modified formula also contains sucrose (0.5%)
1



Inhibit gram-positives and fastidious gram-negatives; selective
2

for gram-negatives. Eosin y and methylene blue form a
precipitate at acid pH; differential for lactose fermentation
Bacterial Utilization of Lactose
• Presence of β-galactoside permease:
  Transport of β-galactoside (lactose)
  across the bacterial cell wall
• Presence of β-galactosidase:
  Hydrolysis of β-galactoside bond
  (lactose⇒glucose + galactose)
• ONPG: Orthonitrophenyl-β-D-galacto-
  pyranoside
Differential Reactions of the
      Enterobacteriaceae by TSI,
            ONPG, and MAC
•   Escherichia coli                Red colonies,
    (A/A, ONPG+)                     pitted
•   Klebsiella1                     Red colonies,
    (A/A, ONPG+)                     mucoid
•   Enterobacter                    Red colonies
    (A/A, ONPG+)
•   Citrobacter2                    Red or colorless
    (A/A or Alk/A, ONPG+)            colonies
•   Serratia                        Colorless colonies
    (A/A, ONPG+)

1
 K. pneumoniae, indole –, K. oxytoca, indole +
2
 C. freundii, indole – and H2S +, C. koseri, indole + and H2S –
Differential Reactions of the
      Enterobacteriaceae by TSI,
            ONPG, and MAC
•   Shigella                      Colorless Colonies
    (Alk/A; ONPG – A, B, and C1; ONPG + D1)
•   Salmonella                    Colorless Colonies
    (Alk/A + H2S; ONPG –)
•   Proteus                       Colorless Colonies
    (Alk/A + H2S2; ONPG –)
•   Edwardsiella tarda            Colorless Colonies
    (Alk/A + H2S; ONPG–)
•   Yersinia                      Colorless Colonies
    (A/A, ONPG +)

1
  Shigella A, B, and C, ornithine –; Shigella D, ornithine +
2
  Proteus mirabilis. P. vulgaris sucrose + with A/A + H2S on
  TSI
Differential Reactions of the
     Enterobacteriaceae by EMB
• Escherichia coli   Colonies with metallic green
                     sheen
• Klebsiella         Colonies with precipitate (ppt)
                      and mucoid appearance
•   Enterobacter     Colonies with ppt
•   Citrobacter      Colonies with/without ppt
•   Serratia         Colonies without ppt
•   Shigella         Colonies without ppt
•   Salmonella       Colonies without ppt
•   Proteus          Colonies without ppt
•   Yersinia         Colonies without ppt
ONPG Reaction and Lactose
     Fermentation (Lac)
                        ONPG   Lac
Escherichia coli         +      +
Shigella sonnei          +      –
Citrobacter              +      +/–
Yersinia enterocolitica  +      –
Klebsiella               +      +
Serratia marcescens      +      –
Xylose Lysine Deoxycholate
      (XLD) Agar: Composition
•   Xylose                    0.35%
•   Lysine                    0.5%
•   Lactose                   0.75%
•   Sucrose                   0.75%
•   Sodium chloride           0.5%
•   Yeast extract             0.3%
•   Sodium deoxycholate       0.25%
•   Sodium thiosulfate
•   Ferric ammonium citrate
•   Agar                      1.35%
•   Phenol red
•   pH = 7.4
XLD Agar: Growth of
          Salmonella
• Salmonella selective due to bile salt.
• Xylose fermentation (except Salmonella
  serotype Paratyphi A) acidifies agar
  activating lysine decarboxylase. With
  xylose depletion fermentation ceases,
  and colonies of Salmonella (except S.
  Paratyphi A) alkalinize the agar due to
  amines from lysine decarboxylation.
• Xylose fermentation provides H+ for
  H2S production (except S. Paratyphi A).
XLD Agar: Appearance of
         Salmonella
• Ferric ammonium citrate present in
  XLD agar reacts with H2S gas and
  forms black precipitates within
  colonies of Salmonella.
• Agar becomes red-purple due to
  alkaline pH produced by amines.
• Back colonies growing on red-purple
  agar-presumptive for Salmonella.
XLD Agar: Growth of Escherichia
 coli and Klebsiella pneumoniae

Escherichia coli and Klebsiella pneumoniae are
lysine-positive coliforms that are also lactose
and sucrose fermenters. The high lactose and
sucrose concentrations result in strong acid
production, which quenches amines produced
by lysine decarboxylation. Colonies and agar
appear bright yellow. Neither Escherichia coli
nor Klebsiella pneumoniae produce H2S.
XLD Agar: Growth of Shigella
         and Proteus
• Shigella species do not ferment xylose,
  lactose, and sucrose, do not decarboxylate
  lysine, and do not produce H2S. Colonies
  appear colorless.
• Proteus mirabilis ferments xylose, and
  thereby provides H+ for H2S production.
  Colonies appear black on an agar unchanged
  in color (Proteus deaminates rather than
  decarboxylates amino acids). Proteus
  vulgaris ferments sucrose, and colonies
  appear black on a yellow agar.
Hektoen Enteric (HE) Agar:
            Composition
•   Peptone                   1.2%
•   Yeast extract             0.3%
•   Bile salts                0.9%
•   Lactose                   1.2%
•   Sucrose                   1.2%
•   Salicin                   0.2%
•   Sodium chloride           0.5%
•   Ferric ammonium citrate
•   Acid fuchsin
•   Thymol blue
•   Agar                      1.4%
•   pH = 7.6
HE Agar: Growth of Enteric
   Pathogens and Commensals
• High bile salt concentration inhibits growth of gram-
  positive and gram-negative intestinal commensals,
  and thereby selects for pathogenic Salmonella (bile-
  resistant growth) present in fecal specimens.
• Salmonella species as non-lactose and non-sucrose
  fermenters that produce H2S form colorless colonies
  with black centers.
• Shigella species (non-lactose and non-sucrose
  fermenters, no H2S production) form colorless
  colonies.
• Lactose and sucrose fermenters (E. coli, K.
  pneumoniae) form orange to yellow colonies due to
  acid production.
Salmonella-Shigella Agar
•   Beef extract          0.5%
•   Peptone               0.5%
•   Bile salts            0.85%
•   Sodium citrate        0.85%
•   Brilliant green dye   Trace
•   Lactose               1.0%
•   Sodium thiosulfate    0.85%
•   Ferric citrate        0.1%
•   Neutral red
•   Agar                  1.4%
•   pH = 7.4
Salmonella-Shigella (SS) Agar
• Bile salts, citrates, and brilliant green dye inhibit
  gram-positives and most gram-negative coliforms
• Lactose the sole carbohydrate
• Sodium thiosulfate a source of sulfur for H2S
  production
• Salmonella forms transparent colonies with black
  centers
• Shigella forms transparent colonies without
  blackening
• Lactose fermentative Enterobacteriaceae produce
  pink to red colonies with bile precipitate for strong
  lactose fermenters
Use of Selective-Differential Agars for
    Recovery of the Enterobacteriaceae from
         Different Types of Specimens
•    Feces1: MAC or EMB + XLD &/or SS or HE2
•    Sputum and Urine1: MAC or EMB
•    Wound3:MAC or EMB
•    Peritoneal and pleural fluid4: MAC or EMB
•    Subculture of blood positive for gram-negative’s in broth
     culture4: MAC or EMB
•    CSF, pericardial fluid, synovial fluid, bone marrow 5: Not
     required

1
 Heavy population of commensal bacteria
2
 Utilized with enrichment broth containing selenite or mannitol to
  differentially inhibit enteric commensals
3
 Commensal bacteria (skin) and frequent polymicrobial etiology
4
 Possible polymicrobial etiology (normally sterile fluids)
5
 Normally sterile, unimicrobial etiology predominant
Selectivity of Differential Agars
  for Salmonella1 and Shigella2
• HE or SS agar (absence of lactose
  fermentation1,2, H2S production1)
• XLD agar (absence of lactose fermentation1,2,
  H2S production1, lysine decarboxylation1)
• MAC or EMB agar (absence of lactose
  fermentation1,2)
• TSI agar (glucose fermentation1,2, absence of
  lactose fermentation1,2, H2S production1)
Descending Order of Selectivity for Salmonella
  and Shigella
Recommended Reading
Winn, W., Jr., Allen, S., Janda, W., Koneman, E.,
Procop, G., Schrenckenberger, P., Woods, G.
Koneman’s Color Atlas and Textbook of
Diagnostic Microbiology, Sixth Edition,
Lippincott Williams & Wilkins, 2006:
• Chapter 5. Medical Bacteriology: Taxonomy,
  Morphology, Physiology, and Virulence.
• Chapter 6. The Enterobacteriaceae.
Recommended Reading
Murray, P., Baron, E., Jorgensen, J.,
  Landry,
M., Pfaller, M.
Manual of Clinical Microbiology, 9th
Edition, ASM Press, 2007:
• Farmer, J.J., III, Boatwright, K.D., and
  Janda J.M. Chapter 42.
  Enterobacteriaceae: Introduction and
  Identification

Weitere ähnliche Inhalte

Was ist angesagt? (20)

Clostridium tetani, botulinum, and difficile, by Dr. Himanshu Khatri
Clostridium tetani, botulinum, and difficile, by Dr. Himanshu KhatriClostridium tetani, botulinum, and difficile, by Dr. Himanshu Khatri
Clostridium tetani, botulinum, and difficile, by Dr. Himanshu Khatri
 
Klebsiella Dr. Mahadi ppt
Klebsiella Dr. Mahadi pptKlebsiella Dr. Mahadi ppt
Klebsiella Dr. Mahadi ppt
 
Salmonella presentation
Salmonella presentationSalmonella presentation
Salmonella presentation
 
Bacteriology Update 2021 (Part 2.)
Bacteriology Update 2021 (Part 2.)Bacteriology Update 2021 (Part 2.)
Bacteriology Update 2021 (Part 2.)
 
Aerobic Non-Spore-Forming Gram-Positive Bacilli
Aerobic Non-Spore-Forming Gram-Positive BacilliAerobic Non-Spore-Forming Gram-Positive Bacilli
Aerobic Non-Spore-Forming Gram-Positive Bacilli
 
Automation of microbiology
Automation of microbiologyAutomation of microbiology
Automation of microbiology
 
E coli
E coliE coli
E coli
 
Genus listeria
Genus listeriaGenus listeria
Genus listeria
 
Enterobacteriaceae
EnterobacteriaceaeEnterobacteriaceae
Enterobacteriaceae
 
E coli
E coliE coli
E coli
 
Tsi test
Tsi testTsi test
Tsi test
 
Bacillus anthracis
Bacillus anthracisBacillus anthracis
Bacillus anthracis
 
Enterobacteriaceae
EnterobacteriaceaeEnterobacteriaceae
Enterobacteriaceae
 
Streptococcus
StreptococcusStreptococcus
Streptococcus
 
Neisseria - Prac. Microbiology
Neisseria - Prac. MicrobiologyNeisseria - Prac. Microbiology
Neisseria - Prac. Microbiology
 
Ok s. aureus mehre 92
Ok  s. aureus  mehre 92Ok  s. aureus  mehre 92
Ok s. aureus mehre 92
 
HISTOPLASMOSIS.pptx
HISTOPLASMOSIS.pptxHISTOPLASMOSIS.pptx
HISTOPLASMOSIS.pptx
 
Clostridium
ClostridiumClostridium
Clostridium
 
Shigella
ShigellaShigella
Shigella
 
Clostridium species
Clostridium species Clostridium species
Clostridium species
 

Andere mochten auch

Andere mochten auch (10)

Classification of Enterobacteriaceae family
Classification of Enterobacteriaceae familyClassification of Enterobacteriaceae family
Classification of Enterobacteriaceae family
 
16. enterobacteriaceae
16. enterobacteriaceae16. enterobacteriaceae
16. enterobacteriaceae
 
Invaders 09 10-2012
Invaders 09 10-2012Invaders 09 10-2012
Invaders 09 10-2012
 
Enterobacteriaceae
EnterobacteriaceaeEnterobacteriaceae
Enterobacteriaceae
 
Enterobacteriaceae & Brucella
Enterobacteriaceae & BrucellaEnterobacteriaceae & Brucella
Enterobacteriaceae & Brucella
 
Bacterial aerobic respiration
Bacterial aerobic respirationBacterial aerobic respiration
Bacterial aerobic respiration
 
Enterobacteriaceae
EnterobacteriaceaeEnterobacteriaceae
Enterobacteriaceae
 
Enterobacteriaceae
EnterobacteriaceaeEnterobacteriaceae
Enterobacteriaceae
 
E coli, klebsiella, enterobacter lecture notes
E coli, klebsiella, enterobacter lecture notesE coli, klebsiella, enterobacter lecture notes
E coli, klebsiella, enterobacter lecture notes
 
Culture media
Culture mediaCulture media
Culture media
 

Ähnlich wie Enterobacteriaceae basic properties

01 enterobacteriaceae basic-properties_____v1-_3
01 enterobacteriaceae basic-properties_____v1-_301 enterobacteriaceae basic-properties_____v1-_3
01 enterobacteriaceae basic-properties_____v1-_3امجد معوض
 
01 enterobacteriaceae basic-properties_____v1-_3
01 enterobacteriaceae basic-properties_____v1-_301 enterobacteriaceae basic-properties_____v1-_3
01 enterobacteriaceae basic-properties_____v1-_3امجد معوض
 
The enterobacteriaceae basic properties.ppsx x
The enterobacteriaceae basic properties.ppsx xThe enterobacteriaceae basic properties.ppsx x
The enterobacteriaceae basic properties.ppsx xNursing Path
 
Isolation and identification of salmonella &e.coli
Isolation and identification of salmonella &e.coliIsolation and identification of salmonella &e.coli
Isolation and identification of salmonella &e.coliNoman Ch
 
Class-6, Identification of microbes.pptx
Class-6, Identification of microbes.pptxClass-6, Identification of microbes.pptx
Class-6, Identification of microbes.pptxyadavshubham8902
 
biochemicalreactionsnew-190412162327.pdf
biochemicalreactionsnew-190412162327.pdfbiochemicalreactionsnew-190412162327.pdf
biochemicalreactionsnew-190412162327.pdfssuser668f10
 
Biochemical reactions new
Biochemical reactions newBiochemical reactions new
Biochemical reactions newRockstarvj009
 
Isolation and identification of bacteria by sworna
Isolation and identification of bacteria by swornaIsolation and identification of bacteria by sworna
Isolation and identification of bacteria by swornasworna kumari chithiraivelu
 
biochemical reactions(gnb)-4.pptx
biochemical reactions(gnb)-4.pptxbiochemical reactions(gnb)-4.pptx
biochemical reactions(gnb)-4.pptxVaisHali822687
 
Enterobacteriacea ii biochemical reaction 2بكتريا عملي
Enterobacteriacea ii   biochemical reaction 2بكتريا عملي Enterobacteriacea ii   biochemical reaction 2بكتريا عملي
Enterobacteriacea ii biochemical reaction 2بكتريا عملي في رحاب الله
 
Biochemical Identification of bacteria 2023 sk.ppt
Biochemical Identification of bacteria 2023 sk.pptBiochemical Identification of bacteria 2023 sk.ppt
Biochemical Identification of bacteria 2023 sk.pptSandhya Kulkarni
 
Biochemical reactions
Biochemical     reactionsBiochemical     reactions
Biochemical reactionsSaumya Singh
 
MICROBIOLOGICAL TESTS (CONVENTIONAL METHODS )
MICROBIOLOGICAL TESTS (CONVENTIONAL METHODS )MICROBIOLOGICAL TESTS (CONVENTIONAL METHODS )
MICROBIOLOGICAL TESTS (CONVENTIONAL METHODS )Reshma Balakrishnan
 
microorganism stain.pptx
microorganism stain.pptxmicroorganism stain.pptx
microorganism stain.pptxAllanIbnSuma
 
Medical Microbiology Laboratory (biochemical tests - ii)
Medical Microbiology Laboratory (biochemical tests - ii)Medical Microbiology Laboratory (biochemical tests - ii)
Medical Microbiology Laboratory (biochemical tests - ii)Hussein Al-tameemi
 
New Microsoft PowerPoint Presentation.pptx
New Microsoft PowerPoint Presentation.pptxNew Microsoft PowerPoint Presentation.pptx
New Microsoft PowerPoint Presentation.pptxPratikShinde189184
 
Cara's microbiology presentation
Cara's microbiology presentationCara's microbiology presentation
Cara's microbiology presentationCara Mullen
 

Ähnlich wie Enterobacteriaceae basic properties (20)

01 enterobacteriaceae basic-properties_____v1-_3
01 enterobacteriaceae basic-properties_____v1-_301 enterobacteriaceae basic-properties_____v1-_3
01 enterobacteriaceae basic-properties_____v1-_3
 
01 enterobacteriaceae basic-properties_____v1-_3
01 enterobacteriaceae basic-properties_____v1-_301 enterobacteriaceae basic-properties_____v1-_3
01 enterobacteriaceae basic-properties_____v1-_3
 
The enterobacteriaceae basic properties.ppsx x
The enterobacteriaceae basic properties.ppsx xThe enterobacteriaceae basic properties.ppsx x
The enterobacteriaceae basic properties.ppsx x
 
Isolation and identification of salmonella &e.coli
Isolation and identification of salmonella &e.coliIsolation and identification of salmonella &e.coli
Isolation and identification of salmonella &e.coli
 
Class-6, Identification of microbes.pptx
Class-6, Identification of microbes.pptxClass-6, Identification of microbes.pptx
Class-6, Identification of microbes.pptx
 
biochemicalreactionsnew-190412162327.pdf
biochemicalreactionsnew-190412162327.pdfbiochemicalreactionsnew-190412162327.pdf
biochemicalreactionsnew-190412162327.pdf
 
Biochemical reactions new
Biochemical reactions newBiochemical reactions new
Biochemical reactions new
 
Isolation and identification of bacteria by sworna
Isolation and identification of bacteria by swornaIsolation and identification of bacteria by sworna
Isolation and identification of bacteria by sworna
 
biochemical reactions(gnb)-4.pptx
biochemical reactions(gnb)-4.pptxbiochemical reactions(gnb)-4.pptx
biochemical reactions(gnb)-4.pptx
 
Enterobacteriacea ii biochemical reaction 2بكتريا عملي
Enterobacteriacea ii   biochemical reaction 2بكتريا عملي Enterobacteriacea ii   biochemical reaction 2بكتريا عملي
Enterobacteriacea ii biochemical reaction 2بكتريا عملي
 
Biochemical Identification of bacteria 2023 sk.ppt
Biochemical Identification of bacteria 2023 sk.pptBiochemical Identification of bacteria 2023 sk.ppt
Biochemical Identification of bacteria 2023 sk.ppt
 
Culture media part-2
Culture media part-2Culture media part-2
Culture media part-2
 
Biochemical reactions
Biochemical     reactionsBiochemical     reactions
Biochemical reactions
 
MICROBIOLOGICAL TESTS (CONVENTIONAL METHODS )
MICROBIOLOGICAL TESTS (CONVENTIONAL METHODS )MICROBIOLOGICAL TESTS (CONVENTIONAL METHODS )
MICROBIOLOGICAL TESTS (CONVENTIONAL METHODS )
 
microorganism stain.pptx
microorganism stain.pptxmicroorganism stain.pptx
microorganism stain.pptx
 
urinepractical.pptx
urinepractical.pptxurinepractical.pptx
urinepractical.pptx
 
urinepractical.pptx
urinepractical.pptxurinepractical.pptx
urinepractical.pptx
 
Medical Microbiology Laboratory (biochemical tests - ii)
Medical Microbiology Laboratory (biochemical tests - ii)Medical Microbiology Laboratory (biochemical tests - ii)
Medical Microbiology Laboratory (biochemical tests - ii)
 
New Microsoft PowerPoint Presentation.pptx
New Microsoft PowerPoint Presentation.pptxNew Microsoft PowerPoint Presentation.pptx
New Microsoft PowerPoint Presentation.pptx
 
Cara's microbiology presentation
Cara's microbiology presentationCara's microbiology presentation
Cara's microbiology presentation
 

Mehr von Alia Najiha

Guideline report format
Guideline report formatGuideline report format
Guideline report formatAlia Najiha
 
Guideline for etr presentation
Guideline for etr presentationGuideline for etr presentation
Guideline for etr presentationAlia Najiha
 
ENT300 Presentation
ENT300 Presentation ENT300 Presentation
ENT300 Presentation Alia Najiha
 
ENT300 Business Proposal Jeruk madu tip top
ENT300 Business Proposal Jeruk madu tip topENT300 Business Proposal Jeruk madu tip top
ENT300 Business Proposal Jeruk madu tip topAlia Najiha
 
ENT300 Business Proposal
ENT300 Business ProposalENT300 Business Proposal
ENT300 Business ProposalAlia Najiha
 
Chapter 2 – normal flora
Chapter 2 – normal floraChapter 2 – normal flora
Chapter 2 – normal floraAlia Najiha
 
basic principles and protocol in plant tissue culture
basic principles and protocol in plant tissue culturebasic principles and protocol in plant tissue culture
basic principles and protocol in plant tissue cultureAlia Najiha
 
plant disease control
plant disease controlplant disease control
plant disease controlAlia Najiha
 
plant disease development
plant disease developmentplant disease development
plant disease developmentAlia Najiha
 
causes of plant disease
causes of plant diseasecauses of plant disease
causes of plant diseaseAlia Najiha
 
introduction to plant pathology
introduction to plant pathologyintroduction to plant pathology
introduction to plant pathologyAlia Najiha
 
organic matter decomposition
organic matter decompositionorganic matter decomposition
organic matter decompositionAlia Najiha
 
Gene Expresssion
Gene ExpresssionGene Expresssion
Gene ExpresssionAlia Najiha
 
Recombinant DNA Technology
Recombinant DNA TechnologyRecombinant DNA Technology
Recombinant DNA TechnologyAlia Najiha
 

Mehr von Alia Najiha (20)

Guideline report format
Guideline report formatGuideline report format
Guideline report format
 
Guideline for etr presentation
Guideline for etr presentationGuideline for etr presentation
Guideline for etr presentation
 
ENT300 Presentation
ENT300 Presentation ENT300 Presentation
ENT300 Presentation
 
ENT300 Business Proposal Jeruk madu tip top
ENT300 Business Proposal Jeruk madu tip topENT300 Business Proposal Jeruk madu tip top
ENT300 Business Proposal Jeruk madu tip top
 
ENT300 Business Proposal
ENT300 Business ProposalENT300 Business Proposal
ENT300 Business Proposal
 
Chapter 2 – normal flora
Chapter 2 – normal floraChapter 2 – normal flora
Chapter 2 – normal flora
 
Biofertilizer
BiofertilizerBiofertilizer
Biofertilizer
 
basic principles and protocol in plant tissue culture
basic principles and protocol in plant tissue culturebasic principles and protocol in plant tissue culture
basic principles and protocol in plant tissue culture
 
Mycorrhizae
MycorrhizaeMycorrhizae
Mycorrhizae
 
nutrients cycle
nutrients cyclenutrients cycle
nutrients cycle
 
plant disease control
plant disease controlplant disease control
plant disease control
 
C4 mic319
C4 mic319C4 mic319
C4 mic319
 
plant disease development
plant disease developmentplant disease development
plant disease development
 
causes of plant disease
causes of plant diseasecauses of plant disease
causes of plant disease
 
introduction to plant pathology
introduction to plant pathologyintroduction to plant pathology
introduction to plant pathology
 
organic matter decomposition
organic matter decompositionorganic matter decomposition
organic matter decomposition
 
PCR
PCRPCR
PCR
 
DNA Cloning
DNA CloningDNA Cloning
DNA Cloning
 
Gene Expresssion
Gene ExpresssionGene Expresssion
Gene Expresssion
 
Recombinant DNA Technology
Recombinant DNA TechnologyRecombinant DNA Technology
Recombinant DNA Technology
 

Kürzlich hochgeladen

MS4 level being good citizen -imperative- (1) (1).pdf
MS4 level   being good citizen -imperative- (1) (1).pdfMS4 level   being good citizen -imperative- (1) (1).pdf
MS4 level being good citizen -imperative- (1) (1).pdfMr Bounab Samir
 
4.11.24 Mass Incarceration and the New Jim Crow.pptx
4.11.24 Mass Incarceration and the New Jim Crow.pptx4.11.24 Mass Incarceration and the New Jim Crow.pptx
4.11.24 Mass Incarceration and the New Jim Crow.pptxmary850239
 
Expanded definition: technical and operational
Expanded definition: technical and operationalExpanded definition: technical and operational
Expanded definition: technical and operationalssuser3e220a
 
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxQ4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxlancelewisportillo
 
Unraveling Hypertext_ Analyzing Postmodern Elements in Literature.pptx
Unraveling Hypertext_ Analyzing  Postmodern Elements in  Literature.pptxUnraveling Hypertext_ Analyzing  Postmodern Elements in  Literature.pptx
Unraveling Hypertext_ Analyzing Postmodern Elements in Literature.pptxDhatriParmar
 
Oppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and FilmOppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and FilmStan Meyer
 
Congestive Cardiac Failure..presentation
Congestive Cardiac Failure..presentationCongestive Cardiac Failure..presentation
Congestive Cardiac Failure..presentationdeepaannamalai16
 
Transaction Management in Database Management System
Transaction Management in Database Management SystemTransaction Management in Database Management System
Transaction Management in Database Management SystemChristalin Nelson
 
Textual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHSTextual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHSMae Pangan
 
Mythology Quiz-4th April 2024, Quiz Club NITW
Mythology Quiz-4th April 2024, Quiz Club NITWMythology Quiz-4th April 2024, Quiz Club NITW
Mythology Quiz-4th April 2024, Quiz Club NITWQuiz Club NITW
 
How to Make a Duplicate of Your Odoo 17 Database
How to Make a Duplicate of Your Odoo 17 DatabaseHow to Make a Duplicate of Your Odoo 17 Database
How to Make a Duplicate of Your Odoo 17 DatabaseCeline George
 
Decoding the Tweet _ Practical Criticism in the Age of Hashtag.pptx
Decoding the Tweet _ Practical Criticism in the Age of Hashtag.pptxDecoding the Tweet _ Practical Criticism in the Age of Hashtag.pptx
Decoding the Tweet _ Practical Criticism in the Age of Hashtag.pptxDhatriParmar
 
Sulphonamides, mechanisms and their uses
Sulphonamides, mechanisms and their usesSulphonamides, mechanisms and their uses
Sulphonamides, mechanisms and their usesVijayaLaxmi84
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management systemChristalin Nelson
 
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...Association for Project Management
 
ICS 2208 Lecture Slide Notes for Topic 6
ICS 2208 Lecture Slide Notes for Topic 6ICS 2208 Lecture Slide Notes for Topic 6
ICS 2208 Lecture Slide Notes for Topic 6Vanessa Camilleri
 
CHEST Proprioceptive neuromuscular facilitation.pptx
CHEST Proprioceptive neuromuscular facilitation.pptxCHEST Proprioceptive neuromuscular facilitation.pptx
CHEST Proprioceptive neuromuscular facilitation.pptxAneriPatwari
 

Kürzlich hochgeladen (20)

MS4 level being good citizen -imperative- (1) (1).pdf
MS4 level   being good citizen -imperative- (1) (1).pdfMS4 level   being good citizen -imperative- (1) (1).pdf
MS4 level being good citizen -imperative- (1) (1).pdf
 
4.11.24 Mass Incarceration and the New Jim Crow.pptx
4.11.24 Mass Incarceration and the New Jim Crow.pptx4.11.24 Mass Incarceration and the New Jim Crow.pptx
4.11.24 Mass Incarceration and the New Jim Crow.pptx
 
Expanded definition: technical and operational
Expanded definition: technical and operationalExpanded definition: technical and operational
Expanded definition: technical and operational
 
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxQ4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
 
INCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptx
INCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptxINCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptx
INCLUSIVE EDUCATION PRACTICES FOR TEACHERS AND TRAINERS.pptx
 
Unraveling Hypertext_ Analyzing Postmodern Elements in Literature.pptx
Unraveling Hypertext_ Analyzing  Postmodern Elements in  Literature.pptxUnraveling Hypertext_ Analyzing  Postmodern Elements in  Literature.pptx
Unraveling Hypertext_ Analyzing Postmodern Elements in Literature.pptx
 
Oppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and FilmOppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and Film
 
Congestive Cardiac Failure..presentation
Congestive Cardiac Failure..presentationCongestive Cardiac Failure..presentation
Congestive Cardiac Failure..presentation
 
Transaction Management in Database Management System
Transaction Management in Database Management SystemTransaction Management in Database Management System
Transaction Management in Database Management System
 
Textual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHSTextual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHS
 
Paradigm shift in nursing research by RS MEHTA
Paradigm shift in nursing research by RS MEHTAParadigm shift in nursing research by RS MEHTA
Paradigm shift in nursing research by RS MEHTA
 
Mythology Quiz-4th April 2024, Quiz Club NITW
Mythology Quiz-4th April 2024, Quiz Club NITWMythology Quiz-4th April 2024, Quiz Club NITW
Mythology Quiz-4th April 2024, Quiz Club NITW
 
prashanth updated resume 2024 for Teaching Profession
prashanth updated resume 2024 for Teaching Professionprashanth updated resume 2024 for Teaching Profession
prashanth updated resume 2024 for Teaching Profession
 
How to Make a Duplicate of Your Odoo 17 Database
How to Make a Duplicate of Your Odoo 17 DatabaseHow to Make a Duplicate of Your Odoo 17 Database
How to Make a Duplicate of Your Odoo 17 Database
 
Decoding the Tweet _ Practical Criticism in the Age of Hashtag.pptx
Decoding the Tweet _ Practical Criticism in the Age of Hashtag.pptxDecoding the Tweet _ Practical Criticism in the Age of Hashtag.pptx
Decoding the Tweet _ Practical Criticism in the Age of Hashtag.pptx
 
Sulphonamides, mechanisms and their uses
Sulphonamides, mechanisms and their usesSulphonamides, mechanisms and their uses
Sulphonamides, mechanisms and their uses
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management system
 
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
 
ICS 2208 Lecture Slide Notes for Topic 6
ICS 2208 Lecture Slide Notes for Topic 6ICS 2208 Lecture Slide Notes for Topic 6
ICS 2208 Lecture Slide Notes for Topic 6
 
CHEST Proprioceptive neuromuscular facilitation.pptx
CHEST Proprioceptive neuromuscular facilitation.pptxCHEST Proprioceptive neuromuscular facilitation.pptx
CHEST Proprioceptive neuromuscular facilitation.pptx
 

Enterobacteriaceae basic properties

  • 1. The Enterobacteriaceae Basic Properties Dr. John R. Warren Department of Pathology Northwestern University Feinberg School of Medicine June 2007
  • 2. Characteristics of the Enterobacteriaceae • Gram-negative rods • Glucose is fermented with strong acid formation and often gas • Cytochrome oxidase activity is negative • Nitrate is reduced to nitrite
  • 3. Gram’s Stain for Bacterial Morphology • Crystal violet binds to cell wall peptidoglycan with Gram’s iodine as a mordant • Safranin or basic fuchsin counterstains bacterial cells decolorized by alcohol- acetone
  • 4. Gram’s Stain for Bacterial Morphology • Thick cell-wall peptidoglycan layer of gram- positive bacteria strongly binds crystal violet and resists decolorization by alcohol-acetone • Thin cell-wall peptidoglycan layer of gram- negative bacteria located beneath a thick lipid-rich outer membrane weakly binds crystal violet that is readily removed by alcohol-acetone decolorization
  • 5. Gram’s Stain Procedure • Flood surface of smear with crystal violet solution • After 1 min thoroughly rinse with cold tap water • Flood smear with Gram’s iodine for 1 min • Rinse smear with acetone-alcohol decolorizer until no more crystal violet in rinse effluent • Rinse with cold tap water • Flood smear with safranin (regular Gram’s stain) or basic fuchsin (enhanced Gram’s stain) • Rinse with cold tap water • Dry smear in slide rack • Microscopically examine stained smear using oil- immersion light microscopy
  • 6. Glucose Fermentation • Oxidation-reduction of glucose in the absence of molecular oxygen (anaerobic glycolysis) • Energy from hydrolysis of chemical bonds in anaerobic glycolysis captured as high energy phosphate bonds of adenosine triphosphate (ATP) • NAD is reduced to NADH2 by accepting electrons during glycolytic conversion of glucose to pyruvate • NADH2 in turn reduces pyruvate with oxidation of NADH2 to NAD which supports continued anaerobic glycolysis, and generation from pyruvate of alcohols, carboxylic acids, and CO2 gas • End products of glucose fermentation: organic acids and CO 2 gas • Fermentation detected by acidification of glucose-containing broth (color change in broth or agar medium containing pH indicators), and (for aerogenic species) production of gas (fractures in agar, gas bubbles in inverted Durham tube) • pH indicators: phenol red (yellow at acid pH), methyl red (red at acid pH), neutral red (red at acid pH), bromcresol purple (yellow at acid pH)
  • 7. Spot Cytochrome Oxidase Test • The spot cytochrome oxidase test is the first test performed with gram- negative bacteria recovered in culture • The optimal plate medium for a spot cytochrome oxidase test is a trypticase soy agar (TSA) containing 5% sheep blood • Bacterial colonies should be 18 to 24 hr old
  • 8. Spot Cytochrome Oxidase Test • In a positive test, bacterial cytochrome oxidase oxidizes the colorless reduced substrate tetramethyl-p-phenylenediamine dihydrochloride (TPDD) forming a dark purple oxidized indophenol product • Streak a small portion of bacterial colony to filter paper soaked with a 1% solution of TPDD • If the streak mark turns purple in 10 sec or less, the spot oxidase test is interpreted as positive
  • 9. Nitrate Reduction • Enterobacteriaceae extract oxygen from nitrate (NO3) producing nitrite (NO2) • NO2 detected by reaction with α- naphthylamine and sulfanilic acid producing a red colored complex • Absence of red color indicates either no reduction of NO3 or reduction to products other than NO2 (denitrification) • Confirmation of true negative test: addition of zinc ions which reduce NO3 to NO2 producing a red color in the presence of α- naphthylamine and sulfanilic acid
  • 10. Enterobacteriaceae: Genetic Properties • Chromosomal DNA has 39-59% guanine-plus-cytosine (G+C) content • Escherichia coli is the type genus and species of the Enterobacteriaceae • Species of Enterobacteriaceae more closely related by evolutionary distance to Escherichia coli than to organisms of other families (Pseudomonadaceae, Aeromonadaceae)
  • 11. Enterobacteriaceae: Major Genera • Escherichia • Shigella • Salmonella • Edwardsiella • Citrobacter • Yersinia • Klebsiella • Enterobacter • Serratia • Proteus • Morganella • Providencia
  • 12. Enterobacteriaceae: Microbiological Properties • Gram-negative and rod shaped (bacilli) • Ferment rather than oxidize D-glucose with acid and (often) gas production • Reduce nitrate to nitrite • Grow readily on 5% sheep blood or chocolate agar in carbon dioxide or ambient air • Grow anaerobically (facultative anaerobes)
  • 13. Enterobacteriaceae: Microbiological Properties • Catalase positive and cytochrome oxidase negative • Grow readily on MacConkey (MAC) and eosin methylene blue (EMB) agars • Grow readily at 35oC except Yersinia (25o- 30oC) • Motile by peritrichous flagella except Shigella and Klebsiella which are non-motile • Do not form spores
  • 14. Enterobacteriaceae: Natural Habitats • Environmental sites (soil, water, and plants) • Intestines of humans and animals
  • 15. Enterobacteriaceae: Modes of Infection • Contaminated food and water (Salmonella spp., Shigella spp., Yersinia enterocolitica, Escherichia coli O157:H7) • Endogenous (urinary tract infection, primary bacterial peritonitis, abdominal abscess) • Abnormal host colonization (nosocomial pneumonia) • Transfer between debilitated patients • Insect (flea) vector (unique for Yersinia pestis)
  • 16. Enterobacteriaceae: Types of Infectious Disease • Intestinal (diarrheal) infection • Extraintestinal infection Urinary tract (primarily cystitis) Respiratory (nosocomial pneumonia) Wound (surgical wound infection) Bloodstream (gram-negative bacteremia) Central nervous system (neonatal meningitis)
  • 17. Enterobacteriaceae: Urinary Tract Infection, Pneumonia • Urinary tract infection: Escherichia coli, Klebsiella pneumoniae, Enterobacter spp., and Proteus mirabilis • Pneumonia: Enterobacter spp., Klebsiella pneumoniae, Escherichia coli, and Proteus mirabilis
  • 18. Enterobacteriaceae: Wound Infection, Bacteremia • Wound Infection: Escherichia coli, Enterobacter spp., Klebsiella pneumoniae, and Proteus mirabilis • Bacteremia: Escherichia coli, Enterobacter spp., Klebsiella pneumoniae, and Proteus mirabilis
  • 19. Enterobacteriaceae: Nosocomial Infections in the United States 1986-1989 and 1990-19961 • Escherichia coli 27,871 (13.7%) • Enterobacter spp. 12,757 (6.2%) • Klebsiella pneumoniae 11,015 (5.4%) • Proteus mirabilis 4,662 (2.3%) • Serratia marcescens 3,010 (1.5%) • Citrobacter spp. 2,912 (1.4%) 1 Enteric Reference Laboratory, Centers for Disease Control and Prevention
  • 20. Enterobacteriaceae: Intestinal Infection • Shigella sonnei (serogroup D) • Salmonella serotype Enteritidis • Salmonella serotype Typhimurium • Shigella flexneri (serogroup B) • Escherichia coli O157:H7 • Yersinia enterocolitica
  • 21. Triple Sugar Iron (TSI) Agar • Yeast extract 0.3% (% = grams/100 mL) • Beef extract 0.3% • Peptone 1.5% • Proteose peptone 0.5% Total Protein = 2.6% • Lactose 1.0% • Sucrose1 1.0% • Glucose 0.1% Carbohydrate = 2.1% 1 Absent in Kligler Iron Agar
  • 22. Triple Sugar Iron (TSI) Agar • Ferrous sulfate • Sodium thiosulfate • Sodium chloride • Agar (1.2%) • Phenol red • pH = 7.4
  • 23. TSI Reactions of the Enterobacteriaceae • Yellow deep, purple slant: acid deep due to glucose fermentation , no lactose or sucrose fermentation with alkaline slant due to production of amine’s from protein • Black deep, purple slant: acid deep due to glucose fermentation with H2S production, no lactose or sucrose fermentation • Yellow deep and slant: acid deep and slant due to glucose as well as lactose and/or sucrose fermentation • Black deep and yellow or black slant: acid deep and slant with glucose and lactose and/or sucrose fermentation with H 2S production • Fracturing or lifting of agar from base of culture tube: CO2 production
  • 24.
  • 25. TSI Reactions of the Enterobacteriaceae • A/A + g = acid/acid plus gas (CO2) • A/A = acid/acid • A/A + g, H2S = acid/acid plus gas, H2S • Alk/A = alkaline/acid • Alk/A + g = alkaline/acid plus gas • Alk/A + g, H2S = alkaline/acid plus gas, H2S • Alk/A + g, H2S (w) = alkaline/acid plus gas, H2S (weak)
  • 26. A/A + g • Escherichia coli • Klebsiella pneumoniae • Klebsiella oxytoca • Enterobacter aerogenes • Enterobacter cloacae • Serratia marcescens1, 2 1 Non-lactose, sucrose fermenter 2 55% + g
  • 27. A/A • Serratia marcescens1, 2 • Yersinia enterocolitica2 1 45% of strains 2 Non-lactose, sucrose fermenter
  • 28. A/A + g, H2S • Citrobacter freundii • Proteus vulgaris1 1 Non-lactose, sucrose fermenter
  • 30. Alk/A + g • Salmonella serotype Paratyphi A
  • 31. Alk/A + g, H2S • Salmonella (most serotypes) • Proteus mirabilis • Edwardsiella tarda
  • 32. Alk/A + g, H2S (w) • Salmonella serotype Typhi
  • 33. MacConkey (MAC) Agar • Peptone 1.7% • Polypeptone 0.3% • Lactose1 1.0% • Bile salts2 0.15% • Crystal violet2 • Neutral red3 • Sodium chloride 0.5% • Agar 1.35% • pH=7.1 1 Differential medium for lactose fermentation 2 Inhibit gram positives and fastidious gram-negatives; MAC agar selective for gram-negatives 3 Red color at pH < 6.8
  • 34.
  • 35.
  • 36. Eosin Methylene Blue (EMB) Agar (Levine) • Peptone 1.0% • Lactose1 0.5% • Eosin y2 • Methylene blue2 • Agar • pH = 7.2 Modified formula also contains sucrose (0.5%) 1 Inhibit gram-positives and fastidious gram-negatives; selective 2 for gram-negatives. Eosin y and methylene blue form a precipitate at acid pH; differential for lactose fermentation
  • 37.
  • 38.
  • 39. Bacterial Utilization of Lactose • Presence of β-galactoside permease: Transport of β-galactoside (lactose) across the bacterial cell wall • Presence of β-galactosidase: Hydrolysis of β-galactoside bond (lactose⇒glucose + galactose) • ONPG: Orthonitrophenyl-β-D-galacto- pyranoside
  • 40. Differential Reactions of the Enterobacteriaceae by TSI, ONPG, and MAC • Escherichia coli Red colonies, (A/A, ONPG+) pitted • Klebsiella1 Red colonies, (A/A, ONPG+) mucoid • Enterobacter Red colonies (A/A, ONPG+) • Citrobacter2 Red or colorless (A/A or Alk/A, ONPG+) colonies • Serratia Colorless colonies (A/A, ONPG+) 1 K. pneumoniae, indole –, K. oxytoca, indole + 2 C. freundii, indole – and H2S +, C. koseri, indole + and H2S –
  • 41. Differential Reactions of the Enterobacteriaceae by TSI, ONPG, and MAC • Shigella Colorless Colonies (Alk/A; ONPG – A, B, and C1; ONPG + D1) • Salmonella Colorless Colonies (Alk/A + H2S; ONPG –) • Proteus Colorless Colonies (Alk/A + H2S2; ONPG –) • Edwardsiella tarda Colorless Colonies (Alk/A + H2S; ONPG–) • Yersinia Colorless Colonies (A/A, ONPG +) 1 Shigella A, B, and C, ornithine –; Shigella D, ornithine + 2 Proteus mirabilis. P. vulgaris sucrose + with A/A + H2S on TSI
  • 42. Differential Reactions of the Enterobacteriaceae by EMB • Escherichia coli Colonies with metallic green sheen • Klebsiella Colonies with precipitate (ppt) and mucoid appearance • Enterobacter Colonies with ppt • Citrobacter Colonies with/without ppt • Serratia Colonies without ppt • Shigella Colonies without ppt • Salmonella Colonies without ppt • Proteus Colonies without ppt • Yersinia Colonies without ppt
  • 43. ONPG Reaction and Lactose Fermentation (Lac) ONPG Lac Escherichia coli + + Shigella sonnei + – Citrobacter + +/– Yersinia enterocolitica + – Klebsiella + + Serratia marcescens + –
  • 44. Xylose Lysine Deoxycholate (XLD) Agar: Composition • Xylose 0.35% • Lysine 0.5% • Lactose 0.75% • Sucrose 0.75% • Sodium chloride 0.5% • Yeast extract 0.3% • Sodium deoxycholate 0.25% • Sodium thiosulfate • Ferric ammonium citrate • Agar 1.35% • Phenol red • pH = 7.4
  • 45. XLD Agar: Growth of Salmonella • Salmonella selective due to bile salt. • Xylose fermentation (except Salmonella serotype Paratyphi A) acidifies agar activating lysine decarboxylase. With xylose depletion fermentation ceases, and colonies of Salmonella (except S. Paratyphi A) alkalinize the agar due to amines from lysine decarboxylation. • Xylose fermentation provides H+ for H2S production (except S. Paratyphi A).
  • 46. XLD Agar: Appearance of Salmonella • Ferric ammonium citrate present in XLD agar reacts with H2S gas and forms black precipitates within colonies of Salmonella. • Agar becomes red-purple due to alkaline pH produced by amines. • Back colonies growing on red-purple agar-presumptive for Salmonella.
  • 47.
  • 48.
  • 49. XLD Agar: Growth of Escherichia coli and Klebsiella pneumoniae Escherichia coli and Klebsiella pneumoniae are lysine-positive coliforms that are also lactose and sucrose fermenters. The high lactose and sucrose concentrations result in strong acid production, which quenches amines produced by lysine decarboxylation. Colonies and agar appear bright yellow. Neither Escherichia coli nor Klebsiella pneumoniae produce H2S.
  • 50. XLD Agar: Growth of Shigella and Proteus • Shigella species do not ferment xylose, lactose, and sucrose, do not decarboxylate lysine, and do not produce H2S. Colonies appear colorless. • Proteus mirabilis ferments xylose, and thereby provides H+ for H2S production. Colonies appear black on an agar unchanged in color (Proteus deaminates rather than decarboxylates amino acids). Proteus vulgaris ferments sucrose, and colonies appear black on a yellow agar.
  • 51.
  • 52.
  • 53. Hektoen Enteric (HE) Agar: Composition • Peptone 1.2% • Yeast extract 0.3% • Bile salts 0.9% • Lactose 1.2% • Sucrose 1.2% • Salicin 0.2% • Sodium chloride 0.5% • Ferric ammonium citrate • Acid fuchsin • Thymol blue • Agar 1.4% • pH = 7.6
  • 54. HE Agar: Growth of Enteric Pathogens and Commensals • High bile salt concentration inhibits growth of gram- positive and gram-negative intestinal commensals, and thereby selects for pathogenic Salmonella (bile- resistant growth) present in fecal specimens. • Salmonella species as non-lactose and non-sucrose fermenters that produce H2S form colorless colonies with black centers. • Shigella species (non-lactose and non-sucrose fermenters, no H2S production) form colorless colonies. • Lactose and sucrose fermenters (E. coli, K. pneumoniae) form orange to yellow colonies due to acid production.
  • 55.
  • 56. Salmonella-Shigella Agar • Beef extract 0.5% • Peptone 0.5% • Bile salts 0.85% • Sodium citrate 0.85% • Brilliant green dye Trace • Lactose 1.0% • Sodium thiosulfate 0.85% • Ferric citrate 0.1% • Neutral red • Agar 1.4% • pH = 7.4
  • 57. Salmonella-Shigella (SS) Agar • Bile salts, citrates, and brilliant green dye inhibit gram-positives and most gram-negative coliforms • Lactose the sole carbohydrate • Sodium thiosulfate a source of sulfur for H2S production • Salmonella forms transparent colonies with black centers • Shigella forms transparent colonies without blackening • Lactose fermentative Enterobacteriaceae produce pink to red colonies with bile precipitate for strong lactose fermenters
  • 58. Use of Selective-Differential Agars for Recovery of the Enterobacteriaceae from Different Types of Specimens • Feces1: MAC or EMB + XLD &/or SS or HE2 • Sputum and Urine1: MAC or EMB • Wound3:MAC or EMB • Peritoneal and pleural fluid4: MAC or EMB • Subculture of blood positive for gram-negative’s in broth culture4: MAC or EMB • CSF, pericardial fluid, synovial fluid, bone marrow 5: Not required 1 Heavy population of commensal bacteria 2 Utilized with enrichment broth containing selenite or mannitol to differentially inhibit enteric commensals 3 Commensal bacteria (skin) and frequent polymicrobial etiology 4 Possible polymicrobial etiology (normally sterile fluids) 5 Normally sterile, unimicrobial etiology predominant
  • 59. Selectivity of Differential Agars for Salmonella1 and Shigella2 • HE or SS agar (absence of lactose fermentation1,2, H2S production1) • XLD agar (absence of lactose fermentation1,2, H2S production1, lysine decarboxylation1) • MAC or EMB agar (absence of lactose fermentation1,2) • TSI agar (glucose fermentation1,2, absence of lactose fermentation1,2, H2S production1) Descending Order of Selectivity for Salmonella and Shigella
  • 60. Recommended Reading Winn, W., Jr., Allen, S., Janda, W., Koneman, E., Procop, G., Schrenckenberger, P., Woods, G. Koneman’s Color Atlas and Textbook of Diagnostic Microbiology, Sixth Edition, Lippincott Williams & Wilkins, 2006: • Chapter 5. Medical Bacteriology: Taxonomy, Morphology, Physiology, and Virulence. • Chapter 6. The Enterobacteriaceae.
  • 61. Recommended Reading Murray, P., Baron, E., Jorgensen, J., Landry, M., Pfaller, M. Manual of Clinical Microbiology, 9th Edition, ASM Press, 2007: • Farmer, J.J., III, Boatwright, K.D., and Janda J.M. Chapter 42. Enterobacteriaceae: Introduction and Identification