Solving 100-Digit Challenge with Score 100 by Extended Running Time and Parallel Benchmarking
1. Introduction Backgrounds DIFFERENTIAL EVOLUTION Method Results Conclusion Appendix
The 17th International Symposium on Operations Research
in Slovenia (SOR ’23)
20th – 22nd September 2023, Hotel Astoria, Bled, Slovenia
Friday, September 22, 2023, at 11.30 in Hall I: Special Session 6,
Industry & Society 5.0: Optimization and Learning in Human and Industrial Environments
Organized by the Slovenian Society Informatika, Section of Operations Research
Solving 100-Digit Challenge
with Score 100 by
Extended Running Time and
Parallel Benchmarking
22 September 2023
@ SOR23, Bled
Aleš Zamuda
<ales.zamuda@um.si>
Acknowledgement: this work is supported by ARRS programme P2-0041 and EU project no. 957407.
10000
1x106
1x108
1x1010
1x1012
0 1 2 3 4 5 6 7 8 9
FES
Digits
f1
f2
f3
f4
f5
f6
f7
f8
f9
f10
Aleš Zamuda 7@aleszamuda Solving 100-Digit Challenge w/ Score 100 by Extended Running Time & Parallel Bench. 1/64
2. Introduction Backgrounds DIFFERENTIAL EVOLUTION Method Results Conclusion Appendix
Introduction & Outline: Aims of this Talk
1 (5 minutes) Part I: Background – Optimization Algorithms
and 100-Digit Challenge
2 (5 minutes) Part II: Method: DISHchain3e+12 Algorithm
3 (2 minutes) Part III: Results
4 (1 minutes) Part IV: Conclusion with Takeaways
5 (1 minute) Questions, Misc
6 (Appendix) Business, Marketing
Aleš Zamuda 7@aleszamuda Solving 100-Digit Challenge w/ Score 100 by Extended Running Time & Parallel Bench. 2/64
3. Introduction Backgrounds DIFFERENTIAL EVOLUTION Method Results Conclusion Appendix
The 17th International Symposium on Operations Research
in Slovenia (SOR ’23)
20th – 22nd September 2023, Hotel Astoria, Bled, Slovenia
Friday, September 22, 2023, at 11.30 in Hall I: Special Session 6,
Industry & Society 5.0: Optimization and Learning in Human and Industrial Environments
Organized by the Slovenian Society Informatika, Section of Operations Research
Solving 100-Digit Challenge
with Score 100 by
Extended Running Time and
Parallel Benchmarking
—
I. Background: Optimization,
100-Digit Challenge
—
Aleš Zamuda 7@aleszamuda Solving 100-Digit Challenge w/ Score 100 by Extended Running Time & Parallel Bench. 3/64
4. Introduction Backgrounds DIFFERENTIAL EVOLUTION Method Results Conclusion Appendix
Optimization Beginnings - Optimization is
”Everywhere”
• Time: optimizing distribution of what is matter and what is not
(anti-matter), what is energy and what is not (dark energy), etc.:
according to the function of Nature, the system is propelled through
optimizing its constituents dynamics.
• Organic systems combination and propulsion: life (optimization).
• Optimality and optimization modeling (human builds tools).
• Describing ways of acchieving optimality.
• Mathematical optimization procedure defined (Kepler).
• Stepping towards optimum (Newton), gradient method (Lagrange).
• Multi-objective optimization (Pareto):
• meta-criterion (A ⪯ B): make criteria ordered by
dominance.
f′
(x) =
∆f(x)
∆x
,
f∗
(x) = f(x) + ∆xf′
(x).
1
2 2
f
x
x 1
f
( )
A
B
C
D
f x
f(B)
(A)
f
f(D)
0
0
E
f(E)
F
G f
(C)
f
f(F)
(G)
Aleš Zamuda 7@aleszamuda Solving 100-Digit Challenge w/ Score 100 by Extended Running Time & Parallel Bench. 4/64
5. Introduction Backgrounds DIFFERENTIAL EVOLUTION Method Results Conclusion Appendix
Introduction to Optimization Algorithms
and Mathematical Programming
• Global optimization, mathematical programming, digital computers.
• Computing Machines + Intelligence = Artificial Intelligence.
• Computational Intelligence.
• Simplistic numerical optimization algorithms:
hill climbing, Nelder-Mead, supervised random search,
simulated annealing, tabu search.
• Optimization: constrained, inseparable, multi-modal, multi-objective,
dynamic, noisy, high dimensional/large-scale/big-data, deceptive, etc.
• multi-objective: f(x)): Pareto optimal approximation set.
Aleš Zamuda 7@aleszamuda Solving 100-Digit Challenge w/ Score 100 by Extended Running Time & Parallel Bench. 5/64
6. Introduction Backgrounds DIFFERENTIAL EVOLUTION Method Results Conclusion Appendix
Evolutionary Computation and Algorithms
• Evolution theory: C. Darwin (1859), Weismann, Mendel.
• Popularization: darwinism (Huxley), neodarwinism
(Romanes).
• Generational: reproduction, mutation, competition,
selection.
• Evolutionary Computation: Evolutionary Algorithms (EAs)
• population generations (reproduction-based),
• mutation, crossover, selection (evolutionary operators),
• EAs comprised of different mechanisms.
• These algorithms share several common
mechanisms/operators,
• good configured DEs were prevalent at the winning
positions of all (CEC, including ICEC 1996) competitions on
optimization.
Aleš Zamuda 7@aleszamuda Solving 100-Digit Challenge w/ Score 100 by Extended Running Time & Parallel Bench. 6/64
7. Introduction Backgrounds DIFFERENTIAL EVOLUTION Method Results Conclusion Appendix
Evolutionary Computation and Algorithms: Given
Names
• Simulated Annealing (SA),
• Tabu Search (TS),
• Genetic Algorithms (GA),
• Genetic Programming (GP),
• Evolutionary Programming (EP),
• Memetic Algorithms (MA),
• Evolution Strategy (ES),
• Artificial Immune Systems (AIS),
• Cultural Algorithms (CA)
• Swarm Intelligence (SI),
• Particle Swarm Optimization
(PSO),
• Firefly Algorithm (FA),
• Ant Colony Optimization (ACO),
• Artificial Bee Colony (ABC),
• Cuckoo Search (CS),
• Artificial Weed Optimization (IWO),
• Bacterial Foraging
Optimization(BFO),
• Estimation of Distribution Alg. (EDA),
• Harmony Search (HS),
• Gravitational Search Algorithm
(GSA),
• Biogeography-based
Optimization(BBO),
• Differential Evolution (DE)
and its variants (jDE, L-SHADE,
DISH),
• ... and many more, including
hybrids.
Aleš Zamuda 7@aleszamuda Solving 100-Digit Challenge w/ Score 100 by Extended Running Time & Parallel Bench. 7/64
8. Introduction Backgrounds DIFFERENTIAL EVOLUTION Method Results Conclusion Appendix
Range of Applications of the Optimization Algorithms
• Meta-heuristics algorithms, applicable to:
• (architectural) morphology (re)construction
(vivo/technical),
• artificial life:
• modeling ecosystem and environmental living conditions,
• e.g.: (automatic) procedural tree modeling,
interactive ecosystem breeding.
• pattern recognition, image processing, computer vision,
• language/documents understanding, speech processing,
• robotics, bioinformatics, chemical engineering,
manufacturing,
• oil search, nuclear plant safety, finance, electrical
engineering,
• energy, big data, data mining, security, ocean/space
research,
• systems of systems, ..., artificial intelligence.
Aleš Zamuda 7@aleszamuda Solving 100-Digit Challenge w/ Score 100 by Extended Running Time & Parallel Bench. 8/64
9. Introduction Backgrounds DIFFERENTIAL EVOLUTION Method Results Conclusion Appendix
Differential Evolution (DE)
• A floating point encoding EA for global optimization over
continuous spaces,
• through generations,
the evolution process improves population of vectors,
• iteratively by combining a parent individual and
several other individuals of the same population,
using evolutionary operators.
• We choose the strategy jDE/rand/1/bin
• mutation: vi,G+1 = xr1,G + F × (xr2,G − xr3,G),
• crossover:
ui,j,G+1 =
(
vi,j,G+1 if rand(0, 1) ≤ CR or j = jrand
xi,j,G otherwise
,
• selection: xi,G+1 =
(
ui,G+1 if f(ui,G+1) < f(xi,G)
xi,G otherwise
,
Aleš Zamuda 7@aleszamuda Solving 100-Digit Challenge w/ Score 100 by Extended Running Time & Parallel Bench. 9/64
10. Introduction Backgrounds DIFFERENTIAL EVOLUTION Method Results Conclusion Appendix
Algorithm DE
1: algorithm canonical algorithm DE/rand/1/bin (Storn,
1997)
Require: f(x) – fitness function; D, NP, G – DE control parameters
Ensure: xbest – includes optimized parameters for the fitness function
2: Uniform randomly initialize the population (xi,0, i = 1..NP);
3: for DE generation loop g (until g < G) do
4: for DE iteration loop i (for all vectors xi,g in current population) do
5: DE trial vector computation xi,g (mutation, crossover):
6: vi,g+1 = xr1,g + F × (xr2,g − xr3,g);
7: ui,j,g+1 =
(
vi,j,g+1 if rand(0, 1) ≤ CR or j = jrand
xi,j,g otherwise
;
8: DE selection using fitness evaluation f(ui,G+1):
9: xi,g+1 =
(
ui,g+1 if f(ui,g+1) < f(xi,g)
xi,g otherwise
;
10: end for
11: end for
12: return best obtained vector (xbest);
Aleš Zamuda 7@aleszamuda Solving 100-Digit Challenge w/ Score 100 by Extended Running Time & Parallel Bench. 10/64
11. Introduction Backgrounds DIFFERENTIAL EVOLUTION Method Results Conclusion Appendix
Control Parameters Self-Adaptation
• Through more suitable values of control parameters the
search process exhibits a better convergence,
• therefore the search converges faster to better solutions,
which survive with greater probability and they create
more offspring and propagate their control parameters
• Recent study with cca. 10 million runs of SPSRDEMMS:
A. Zamuda, J. Brest. Self-adaptive control parameters’
randomization frequency and propagations in differential
evolution. Swarm and Evolutionary Computation, 2015,
vol. 25C, pp. 72-99.
DOI 10.1016/j.swevo.2015.10.007.
– SWEVO 2015 RAMONA / SNIP 5.220
Aleš Zamuda 7@aleszamuda Solving 100-Digit Challenge w/ Score 100 by Extended Running Time & Parallel Bench. 11/64
12. Introduction Backgrounds DIFFERENTIAL EVOLUTION Method Results Conclusion Appendix
Self-adaptive control parameters’ randomization
frequency and propagations in differential evolution
– Overview
• Randomization frequency
influences performance
(SPSRDEMMS on right)
• Suggesting values for
different problems
• 0.1 to 0.8 for τF,
0.05 to 0.25 for τCR
• Empirical insight into
operation of the
randomization mechanism
Aleš Zamuda 7@aleszamuda Solving 100-Digit Challenge w/ Score 100 by Extended Running Time & Parallel Bench. 12/64
13. Introduction Backgrounds DIFFERENTIAL EVOLUTION Method Results Conclusion Appendix
Listing Some More DE-Family Algorithms Proposed
• My algorithms (CEC – world championships on EAs):
• SA-DE (CEC 2005: SO) – book chapter JCR,
• MOjDE (CEC 2007: MO) – vs. DEMO 40/57 IR, 39/57 IH,
• DEMOwSA (CEC 2007: MO) – rank #3, 53 citations,
• DEwSAcc (CEC 2008: LSGO) – 63 citations,
• DEMOwSA-SQP (CEC 2009: CMO) – rank #2, 47 citations,
• DECMOSA-SQP (CEC 2009: CMO) – rank #3 at 2 functions,
• jDENP,MM (CEC 2011: RWIC) – LNCS SIDE 2012,
• SPSRDEMMS (CEC 2013: RPSOO); Large-scale @SWEVO.
• DISH (SWEVO 2019) – best CEC 2015 & 2017 results.
• Performance assessment of the algorithms at world EA
championships: several times best on some criteria
(also won CEC 2009 dynamic optimization competition).
• Performance assessment on several industry challenges
• procedural tree models reconstruction (ASOC 2011, INS
2013),
• underwater glider path planning (ASOC 2014),
• hydro-thermal energy scheduling (APEN 2015),
• RWIC (Real World Industry Challenges) - CEC 2011; 2013, ...
Aleš Zamuda 7@aleszamuda Solving 100-Digit Challenge w/ Score 100 by Extended Running Time & Parallel Bench. 13/64
14. Introduction Backgrounds DIFFERENTIAL EVOLUTION Method Results Conclusion Appendix
SPSRDEMMS: Example of Optimization Mechanisms
• SPSRDEMMS = Structured Population Size Reduction
Differential Evolution with Multiple Mutation Strategies
• canonical DE, upgraded with: mechanism of F and CR
control parameters self-adaptation, mutation strategy
ensembles, population structuring (distributed islands),
and population size reduction.
• is an extension of the jDENP,MM variant (Zamuda and
Brest, SIDE 2012) and was published at CEC 2013
(competition).
• The SPSRDEMMS, for a fixed part of the population (NPbest
number of individuals at end of the entire population),
executes only the best/1 strategy.
• This part of population (which might be seen as a
sub-population) has a separate best vector index, xbest bestpop.
• The first part of the population (mainpop) operates on target
vectors xi ∈ {x1...xNP−NPbest} and second part (bestpop)
operates on target vectors xi = {xNP−NPbest+1...xNP}.
• Both strategies generate mutation vectors using all vectors of
the population x1...xNP, i.e. r1, r2, r3 ∈ {1..NP}.
Aleš Zamuda 7@aleszamuda Solving 100-Digit Challenge w/ Score 100 by Extended Running Time & Parallel Bench. 14/64
15. Introduction Backgrounds DIFFERENTIAL EVOLUTION Method Results Conclusion Appendix
Self-adaptive control parameters’ randomization
frequency and propagations in differential evolution
– Methods
• G. Karafotias, M. Hoogendoorn, A. Eiben,
Parameter control in evolutionary algorithms:
trends and challenges, IEEE Trans. Evolut.
Comput. 19 (2) (2015) 167–187.
• A. Zamuda, J. Brest, E. Mezura-Montes,
Structured population size reduction
differential evolution with multiple mutation
strategies on CEC 2013 real parameter
optimization, in: Proceedings of the 2013 IEEE
Congress on Evolutionary Computation (CEC),
vol. 1, 2013, pp. 1925–1931.
• J. Brest, S. Greiner, B. Bošković, M. Mernik, V.
Žumer, Self-adapting control parameters in
differential evolution: a comparative study on
numerical benchmark problems, IEEE Trans.
Evolut. Comput. 10 (6) (2006) 646–657.
• Parameter control study
• Systematic approach to
answering questions about the
control parameters
mechanism
• For certain interesting
functions, deeper insight is
shown
Aleš Zamuda 7@aleszamuda Solving 100-Digit Challenge w/ Score 100 by Extended Running Time & Parallel Bench. 15/64
16. Introduction Backgrounds DIFFERENTIAL EVOLUTION Method Results Conclusion Appendix
Other Enhancements / Improvements / Mechanisms
in DE
DE, jDE, SaDE, ODE, DEGL, JADE, EPSDE; ϵ-DE, DDE, CDE; PDE,
GDE, DEMO, MOEA/D, ...
• Swagatam Das and Ponnuthurai Nagaratnam Suganthan.
”Differential evolution: a survey of the
state-of-the-art.” IEEE Transactions on Evolutionary
Computation 15(1), 2011: 4-31. DOI:
10.1109/TEVC.2010.2059031.
CoDE, Compact DE, L-SHADE, Binary DE,
Successful-Parent-Selecting Framework DE, ...
• Swagatam Das, Sankha Subhra Mullick, and Ponnuthurai
Nagaratnam Suganthan.
”Recent Advances in Differential Evolution –
An Updated Survey.”
Swarm and Evolutionary Computation, Volume 27, April
2016, Pages 1-30, 2016.
DOI: 10.1016/j.swevo.2016.01.004.
Several hybridizations, improvements, and general
mechanisms.
Aleš Zamuda 7@aleszamuda Solving 100-Digit Challenge w/ Score 100 by Extended Running Time & Parallel Bench. 16/64
17. Introduction Backgrounds DIFFERENTIAL EVOLUTION Method Results Conclusion Appendix
Functions of the Problems in 100-Digit Challenge
• The stated goal of the 100-Digit Challenge benchmark is:
• to understand better “the behavior of swarm and evolutionary algorithms
as single objective optimizers” (explainable AI)
• Continuous multi-dimensional (D) numerical functions, f(x)
• Solution quality is measured in number of precise digits (max. 10 per function)
• 10 digits added up per 10 functions = score of 100
No. Problem name X∗
D Search Range
1 Storn’s Chebyshev Polynomial Fitting Problem 1 9 [-8192,8192]
2 Inverse Hilbert Matrix Problem 1 16 [-16384,16384]
3 Lennard-Jones Minimum Energy Cluster 1 18 [-4,4]
4 Rastrigin’s Function 1 10 [-100,100]
5 Griewangk’s Function 1 10 [-100,100]
6 Weierstrass Function 1 10 [-100,100]
7 Modified Schwefel’s Function 1 10 [-100,100]
8 Expanded Schaffer’s F6 Function 1 10 [-100,100]
9 Happy Cat Function 1 10 [-100,100]
10 Ackley Function 1 10 [-100,100]
X∗
denotes an optimum (transformed to 1 for all functions).
Aleš Zamuda 7@aleszamuda Solving 100-Digit Challenge w/ Score 100 by Extended Running Time & Parallel Bench. 17/64
18. Introduction Backgrounds DIFFERENTIAL EVOLUTION Method Results Conclusion Appendix
The 17th International Symposium on Operations Research
in Slovenia (SOR ’23)
20th – 22nd September 2023, Hotel Astoria, Bled, Slovenia
Friday, September 22, 2023, at 11.30 in Hall I: Special Session 6,
Industry & Society 5.0: Optimization and Learning in Human and Industrial Environments
Organized by the Slovenian Society Informatika, Section of Operations Research
Solving 100-Digit Challenge
with Score 100 by
Extended Running Time and
Parallel Benchmarking
—
II. Method: DISHchain3e+12
Algorithm
—
Aleš Zamuda 7@aleszamuda Solving 100-Digit Challenge w/ Score 100 by Extended Running Time & Parallel Bench. 18/64
19. Introduction Backgrounds DIFFERENTIAL EVOLUTION Method Results Conclusion Appendix
DISH - a Population-based Optimizer at SWEVO (Q1)
Aleš Zamuda 7@aleszamuda Solving 100-Digit Challenge w/ Score 100 by Extended Running Time & Parallel Bench. 19/64
20. Introduction Backgrounds DIFFERENTIAL EVOLUTION Method Results Conclusion Appendix
DISH – Algorithm Definition (Pseudocode,
Parameters)
• DISH in C++ code,
• published in SWEVO (served BM),
• mow applied for 100-digit challenge,
• benchmarked using HPC (SLING).
• Historical memory size H = 5,
• archive size A = NP,
• initial population size
NP0 = 25
√
D log D and
• minimum population size
NPmin = 4,
• for pBest mutation p = 0.25 and
pmin = pmax/2,
• with initialization of all but one
memory values at MF = 0.5 and
MCR = 0.8 and
• the one memory entry with
MF = MCR = 0.9, and
• pBest-w strategy with weight value
limits Fw at 0.7F, 0.8F, and 1.2F for
Aleš Zamuda 7@aleszamuda Solving 100-Digit Challenge w/ Score 100 by Extended Running Time & Parallel Bench. 20/64
21. Introduction Backgrounds DIFFERENTIAL EVOLUTION Method Results Conclusion Appendix
DISH – Algorithm Mechanisms Detailed
xj,i = U
h
lowerj, upperj
i
; ∀j = 1, . . . , D; ∀i = 1, . . . , NP, (1)
MCR,i = MF,i = 0.5; ∀i = 1, . . . , H, (2)
vi = xr1 + F (xr2 − xr3) , (3)
vi = xi + Fi
xpbest − xi
+ Fi (xr1 − xr2) , (4)
Fi = C
MF,r, 0.1
, (5)
uj,i =
vj,i if U [0, 1] ≤ CRi or j = jrand
xj,i otherwise
. (6)
CRi = N
h
MCR,r, 0.1
i
. (7)
xi,G+1 =
(
ui,G if f
ui,G
≤ f
xi,G
xi,G otherwise
, (8)
MF,k =
meanWL (SF) if SF ̸= ∅
MF,k otherwise
, (9)
MCR,k =
meanWL (SCR) if SCR ̸= ∅
MCR,k otherwise
, (10)
meanWL (S) =
P|S|
k=1
wk • S2
k
P|S|
k=1
wk • Sk
(11)
wk =
abs
f
uk,G
− f
xk,G
P|SCR|
m=1
abs
f
um,G
− f
xm,G
. (12)
NPnew = round
NPinit −
FES
MAXFES
∗ (NPinit − NPf)
,
(13)
p = pmin +
FES
MAXFES
(pmax − pmin). (14)
vi = xi + Fw(xpBest − xi) + F(xr1 − xr2), (15)
Fw =
0.7F, FES 0.2MAXFES,
0.8F, FES 0.4MAXFES,
1.2F, otherwise.
(16)
wk =
r
PD
j=1
uk,j,G − xk,j,G
2
P|SCR|
m=1
r
PD
j=1
um,j,G − xm,j,G
2
. (17)
Colors:
• black – L-SHADE base,
• gray – overloaded,
• blue – new w/ DISH.
Aleš Zamuda 7@aleszamuda Solving 100-Digit Challenge w/ Score 100 by Extended Running Time Parallel Bench. 21/64
22. Introduction Backgrounds DIFFERENTIAL EVOLUTION Method Results Conclusion Appendix
The 17th International Symposium on Operations Research
in Slovenia (SOR ’23)
20th – 22nd September 2023, Hotel Astoria, Bled, Slovenia
Friday, September 22, 2023, at 11.30 in Hall I: Special Session 6,
Industry Society 5.0: Optimization and Learning in Human and Industrial Environments
Organized by the Slovenian Society Informatika, Section of Operations Research
Solving 100-Digit Challenge
with Score 100 by
Extended Running Time and
Parallel Benchmarking
—
III. Results – Scores, Comparison,
Impact
—
Aleš Zamuda 7@aleszamuda Solving 100-Digit Challenge w/ Score 100 by Extended Running Time Parallel Bench. 22/64
23. Introduction Backgrounds DIFFERENTIAL EVOLUTION Method Results Conclusion Appendix
Tuned parameter values
for DISHchain3e+12 algorithm
Function MAX FES NP0
1 1e+5 25
√
D log D
2 1e+6 25
√
D log D
3 1e+7 25
√
D log D
4 1e+8 250
√
D log D
5 1e+6 25
√
D log D
6 1e+5 25
√
D log D
7 1e+8 2500
√
D log D
8 1e+11 10000
√
D log D
9 3e+12 25
√
D log D
10 1e+7 25
√
D log D
• MAX FES: the maximum function evaluations allowed
• Function 9 required the most MAX FES to solve
• For functions 4, 7, and 8, larger population NP0 used
Aleš Zamuda 7@aleszamuda Solving 100-Digit Challenge w/ Score 100 by Extended Running Time Parallel Bench. 23/64
24. Introduction Backgrounds DIFFERENTIAL EVOLUTION Method Results Conclusion Appendix
Observed Problem Difficulty
Function evaluations to reach accuracy up to certain digit
10000
1x106
1x108
1x1010
1x1012
0 1 2 3 4 5 6 7 8 9
FES
Digits
f1
f2
f3
f4
f5
f6
f7
f8
f9
f10
• combined on all functions 1–10, accuracy evolution plot
• using logscale axis for FES (function evaluations)
Aleš Zamuda 7@aleszamuda Solving 100-Digit Challenge w/ Score 100 by Extended Running Time Parallel Bench. 24/64
25. Introduction Backgrounds DIFFERENTIAL EVOLUTION Method Results Conclusion Appendix
Score Obtained: 100
Fifty runs for each function sorted by the number of correct
digits (for DISHchain3e+12 algorithm)
Num. correct digits
No. Problem name X∗
D Search Range 0 1 2 3 4 5 6 7 8 9 10 Score
1 Storn’s Chebyshev Polynomial Fitting Problem 1 9 [-8192,8192] 0 0 0 0 0 0 0 0 0 0 50 10
2 Inverse Hilbert Matrix Problem 1 16 [-16384,16384] 0 0 0 0 0 0 0 0 0 0 50 10
3 Lennard-Jones Minimum Energy Cluster 1 18 [-4,4] 0 0 0 0 0 0 0 0 0 0 50 10
4 Rastrigin’s Function 1 10 [-100,100] 0 0 0 0 0 0 0 0 0 0 50 10
5 Griewangk’s Function 1 10 [-100,100] 0 0 0 0 0 0 0 0 0 0 50 10
6 Weierstrass Function 1 10 [-100,100] 0 0 0 0 0 0 0 0 0 0 50 10
7 Modified Schwefel’s Function 1 10 [-100,100] 0 0 0 0 0 0 0 0 0 0 50 10
8 Expanded Schaffer’s F6 Function 1 10 [-100,100] 0 0 0 0 0 0 0 0 0 0 50 10
9 Happy Cat Function 1 10 [-100,100] 0 0 0 0 0 3 5 1 6 1 34 10
10 Ackley Function 1 10 [-100,100] 0 0 0 0 0 0 0 0 0 0 50 10
Score (total):) 100
X∗
denotes an optimum (transformed to 1 for all functions).
Aleš Zamuda 7@aleszamuda Solving 100-Digit Challenge w/ Score 100 by Extended Running Time Parallel Bench. 25/64
26. Introduction Backgrounds DIFFERENTIAL EVOLUTION Method Results Conclusion Appendix
Impact: Comparing Score to Other Entries – Rank 1
https://github.com/P-N-Suganthan/CEC2019/blob/master/100-DigitChallengeAnalysisofResults.pdf
Aleš Zamuda 7@aleszamuda Solving 100-Digit Challenge w/ Score 100 by Extended Running Time Parallel Bench. 26/64
27. Introduction Backgrounds DIFFERENTIAL EVOLUTION Method Results Conclusion Appendix
The 17th International Symposium on Operations Research
in Slovenia (SOR ’23)
20th – 22nd September 2023, Hotel Astoria, Bled, Slovenia
Friday, September 22, 2023, at 11.30 in Hall I: Special Session 6,
Industry Society 5.0: Optimization and Learning in Human and Industrial Environments
Organized by the Slovenian Society Informatika, Section of Operations Research
Solving 100-Digit Challenge
with Score 100 by
Extended Running Time and
Parallel Benchmarking
—
IV: Conclusion
with Takeaways
—
Aleš Zamuda 7@aleszamuda Solving 100-Digit Challenge w/ Score 100 by Extended Running Time Parallel Bench. 27/64
28. Introduction Backgrounds DIFFERENTIAL EVOLUTION Method Results Conclusion Appendix
Conclusion with Takeaways
Conclusion: score of 100 (rank 1)
Takeaways: 100-digit Challenge; EAs; HPC a key element
Thanks!
Acknowledgement: this work is supported by ARRS programme P2-0041; and
DAPHNE, funded by the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 957407.
10000
1x106
1x108
1x1010
1x1012
0 1 2 3 4 5 6 7 8 9
FES
Digits
f1
f2
f3
f4
f5
f6
f7
f8
f9
f10
0 1 2 3 4 5 6 7 8 9
Combined power from 110 MW to 975 MW, step 0.01 MW#104
0
100
200
300
400
500
600
700
Individual
output
(power
[MW]
or
unit
total
cost
[$])
Cost, TC / 3
Powerplant P1 power
Powerplant P2 power
Powerplant P3 power
150
200
250
300
350
400
450
500
550
16 32 48 64 80
Seconds
to
compute
a
workload
Number of tasks (equals 16 times the SLURM --nodes parameter)
Summarizer workload
Real examples: science and HPC
Aleš Zamuda 7@aleszamuda Solving 100-Digit Challenge w/ Score 100 by Extended Running Time Parallel Bench. 28/64
29. Introduction Backgrounds DIFFERENTIAL EVOLUTION Method Results Conclusion Appendix
The 17th International Symposium on Operations Research
in Slovenia (SOR ’23)
20th – 22nd September 2023, Hotel Astoria, Bled, Slovenia
Friday, September 22, 2023, at 11.30 in Hall I: Special Session 6,
Industry Society 5.0: Optimization and Learning in Human and Industrial Environments
Organized by the Slovenian Society Informatika, Section of Operations Research
Solving 100-Digit Challenge
with Score 100 by
Extended Running Time and
Parallel Benchmarking
—
Final Slide:
Questions, Misc
Acknowledgement: this work is supported by ARRS programme
P2-0041 and EU project no. 957407 (DAPHNE).
Aleš Zamuda 7@aleszamuda Solving 100-Digit Challenge w/ Score 100 by Extended Running Time Parallel Bench. 29/64
30. Introduction Backgrounds DIFFERENTIAL EVOLUTION Method Results Conclusion Appendix
The 17th International Symposium on Operations Research
in Slovenia (SOR ’23)
20th – 22nd September 2023, Hotel Astoria, Bled, Slovenia
Friday, September 22, 2023, at 11.30 in Hall I: Special Session 6,
Industry Society 5.0: Optimization and Learning in Human and Industrial Environments
Organized by the Slovenian Society Informatika, Section of Operations Research
Solving 100-Digit Challenge
with Score 100 by
Extended Running Time and
Parallel Benchmarking
—
Appendix
with Marketing Materials
—
Aleš Zamuda 7@aleszamuda Solving 100-Digit Challenge w/ Score 100 by Extended Running Time Parallel Bench. 30/64
31. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
Appendix
(Vega supercomputer in TOP500)
— A Multimedia Tour —
Aleš Zamuda 7@aleszamuda Solving 100-Digit Challenge w/ Score 100 by Extended Running Time Parallel Bench. 31/64
32. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
TOP500: EuroHPC Vega (tour at ASHPC23)
Aleš Zamuda 7@aleszamuda Solving 100-Digit Challenge w/ Score 100 by Extended Running Time Parallel Bench. 32/64
33. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
TOP500: EuroHPC Vega (tour at ASHPC23)
Aleš Zamuda 7@aleszamuda Solving 100-Digit Challenge w/ Score 100 by Extended Running Time Parallel Bench. 33/64
34. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
TOP500: EuroHPC Vega (tour at ASHPC23)
Aleš Zamuda 7@aleszamuda Solving 100-Digit Challenge w/ Score 100 by Extended Running Time Parallel Bench. 34/64
35. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
TOP500: EuroHPC Vega (tour at ASHPC23)
Aleš Zamuda 7@aleszamuda Solving 100-Digit Challenge w/ Score 100 by Extended Running Time Parallel Bench. 35/64
36. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
AI Challenges Shortlist
(Part II: First subpart)
Faced 5 types of challenges, leading to the needs to apply HPC
architectures for benchmarking state-of-the-art topics in
1 text summarization,
2 forest ecosystem modeling, simulation, and
visualization,
3 underwater robotic mission planning,
4 energy production scheduling for hydro-thermal power
plants, and
5 understanding evolutionary algorithms.
Aleš Zamuda 7@aleszamuda Solving 100-Digit Challenge w/ Score 100 by Extended Running Time Parallel Bench. 36/64
37. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
Challenges 1: Text Summarization (Language)
For NLP (Natural Language Processing),
part of ”Big Data”.
Terms across sentences are determined
using a semantic analysis using both:
• coreference resolution (using WordNet) and
• a Concept Matrix (from Freeling).
INPUT
CORPUS
NATURAL
LANGUAGE
PROCESSING
ANALYSIS
CONCEPTS
DISTRIBUTION
PER
SENTENCES
MATRIX OF
CONCEPTS
PROCESSING
CORPUS
PREPROCESSING
PHASE
OPTIMIZATION
TASKS
EXECUTION
PHASE
ASSEMBLE
TASK
DESCRIPTION
SUBMIT
TASKS
TO PARALLEL
EXECUTION
OPTIMIZER
+
TASK DATA
ROUGE
EVALUATION
The detailed new method called
CaBiSDETS is developed in the HPC
approach comprising of:
• a version of evolutionary algorithm
(Differential Evolution, DE),
• self-adaptation, binarization,
constraint adjusting, and some more
pre-computation,
• optimizing the inputs to define the
summarization optimization model.
Aleš Zamuda, Elena Lloret. Optimizing Data-Driven
Models for Summarization as Parallel Tasks. Journal
of Computational Science, 2020, vol. 42, pp. 101101.
DOI: 10.1016/j.jocs.2020.101101
Aleš Zamuda 7@aleszamuda Solving 100-Digit Challenge w/ Score 100 by Extended Running Time Parallel Bench. 37/64
38. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
Challenges 2: Forest Ecosystem Modeling,
Simulation, and Visualization (Real World / Video)
• HPC need to process spatial data and add procedural
content, generating real-world items for producing a
video of 3D space.
Videos: https://www.youtube.com/watch?list=PL7pmTW8neV7tZf2qx1wV5zbD74sUyHL3Bv=V9YJgYO_sIA
Aleš Zamuda 7@aleszamuda Solving 100-Digit Challenge w/ Score 100 by Extended Running Time Parallel Bench. 38/64
39. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
Challenges 3: Underwater Robotic Mission Planning
• Computational Fluid Dynamics (CFD) spatio-temporal model of the
ocean currents for autonomous vehicle navigation path planning.
• Constrained Differential Evolution Optimization
for Underwater Glider Path Planning
in Sub-mesoscale Eddy Sampling.
• Corridor-constrained optimization: eddy
border region sampling — new challenge
for UGPP DE.
• Feasible path area is constrained —
trajectory in corridor around the border of
an ocean eddy.
The objective of the glider here is to sample the
oceanographic variables more efficiently,
while keeping a bounded trajectory.
HPC: develop new methods and evaluate them.
Video: https://www.youtube.com/watch?v=4kCsXAehAmU
Aleš Zamuda 7@aleszamuda Solving 100-Digit Challenge w/ Score 100 by Extended Running Time Parallel Bench. 39/64
40. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
Challenges 4: Energy Production Scheduling for
Hydro-thermal Power Plants
A. Glotić, A. Zamuda. Short-term combined economic and emission
hydrothermal optimization by surrogate differential evolution.
Applied Energy, 1 March 2015, vol. 141, pp. 42-56.
DOI: 10.1016/j.apenergy.2014.12.020
Aleš Zamuda 7@aleszamuda Solving 100-Digit Challenge w/ Score 100 by Extended Running Time Parallel Bench. 40/64
41. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
Challenges 5: Understanding Evolutionary Algorithms
• Evolutionary algorithms benchmarking to
understand computational intelligence of
these algorithms (→ storage requirement!),
• aim: Machine Learning to design
an optimization algorithm
(learning to learn).
• Example CI Algorithm Mechanism Design:
Control Parameters Self-Adaptation (in DE).
Video: https://www.youtube.com/watch?v=R244LZpZSG0
Application stacks for real code:
inspired by previous computational
optimization competitions in
continuous settings that used
test functions for
optimization application domains:
• single-objective: CEC 2005,
2013, 2014, 2015
• constrained: CEC 2006, CEC 2007, CEC 2010
• multi-modal: CEC 2010, SWEVO 2016
• black-box (target value): BBOB 2009, COCO
2016
• noisy optimization: BBOB 2009
• large-scale: CEC 2008, CEC 2010
• dynamic: CEC 2009, CEC 2014
• real-world: CEC 2011
• computationally expensive: CEC 2013, CEC
2015
• learning-based: CEC 2015
• 100-digit (50% targets): 2019 joined CEC,
SEMCCO, GECCO
• multi-objective: CEC 2002, CEC 2007, CEC
2009, CEC 2014
• bi-objective: CEC 2008
• many objective: CEC 2018
Tuning/ranking/hyperheuristics use. → DEs as usual
winner algorithms.
Aleš Zamuda 7@aleszamuda Solving 100-Digit Challenge w/ Score 100 by Extended Running Time Parallel Bench. 41/64
42. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
Challenges 6: new DAPHNE Use Cases
Example Use Cases
• DLR Earth Observation
• ESA Sentinel-1/2 datasets 4PB/year
• Training of local climate zone classifiers on So2Sat LCZ42
(15 experts, 400K instances, 10 labels each, ~55GB HDF5)
• ML pipeline: preprocessing,
ResNet-20, climate models
• IFAT Semiconductor Ion Beam Tuning
• KAI Semiconductor Material Degradation
• AVL Vehicle Development Process (ejector geometries, KPIs)
• ML-assisted simulations, data cleaning, augmentation
• Cleaning during exploratory query processing
[So2Sat LC42: https://mediatum.ub.tum.de/1454690]
[Xiao Xiang Zhu et al: So2Sat LCZ42: A
Benchmark Dataset for the Classification of
Global Local Climate Zones. GRSM 8(3) 2020]
Aleš Zamuda 7@aleszamuda Solving 100-Digit Challenge w/ Score 100 by Extended Running Time Parallel Bench. 42/64
43. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
HPC Initiatives
(Part II: Second subpart)
Timeline (as member) of recent impactful HPC initiatives including Slovenia:
• SLING: Slovenian national supercomputing network, 2010-05-03–,
• SIHPC: Slovenian High-Performance Computing Centre, 2016-03-04–
• ImAppNIO: Improving Applicability of Nature-Inspired Optimisation
by Joining Theory and Practice, 2016-03-09–2020-10-31
• cHiPSet: High-Performance Modelling and Simulation for Big Data
Applications, 2015-04-08–2019-04-07,
• HPC RIVR: UPGRADING OF NATIONAL RESEARCH INFRASTRUCTURES,
Investment Program, 2018-03-01–2020-09-15,
• TFoB: IEEE CIS Task Force on Benchmarking, January 2020–,
• EuroCC: National Competence Centres in the framework of EuroHPC,
2020-09-01–(2022-08-31),
• DAPHNE: Integrated Data Analysis Pipelines for Large-Scale Data
Management, HPC, and Machine Learning, 2020-12-01–(2024-11-30).
Aleš Zamuda 7@aleszamuda Solving 100-Digit Challenge w/ Score 100 by Extended Running Time Parallel Bench. 43/64
44. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
Initiatives: SLING, SIHPC, HPC RIVR, EuroCC
• There is a federated and orchestrated aim
towards HPC infrastructure in Slovenia,
especially through:
• SLING: Slovenian national supercomputing network
→ has federated the initiative push towards
orchestration of HPC resources across the country.
• SIHPC: Slovenian High-Performance Computing Centre
→ has orchestrated the first EU funds application
towards HPC Teaming in the country
(and Participation of Slovenia in PRACE 2).
• HPC RIVR: UPGRADING OF NATIONAL RESEARCH
INFRASTRUCTURES, Investment Program
→ has provided an investment in experimental HPC
infrastructure.
• EuroCC: National Competence Centres in the framework of
EuroHPC
→ has secured a National Competence Centre (EuroHPC).
Vega supercomputer online
Consortium Slovenian High-Performance Computing Centre
Aškerčeva ulica 6
SI-1000 Ljubljana
Slovenia
Ljubljana, 22. 2. 2017
prof. dr. Anwar Osseyran
PRACE Council Chair
Subject: Participation of Slovenia in PRACE 2
Dear professor Osseyran,
In March 2016 a consortium Slovenski superračunalniški center (Slovenian High-Performance
Computing Centre - SIHPC) was established with a founding act (Attachment 1) where article 6
claims that the consortium will join PRACE and that University of Ljubljana, Faculty of
mechanical engineering (ULFME) will represent the consortium in the PRACE. The legal
representative of ULFME in the consortium and therefore, also in the PRACE (i.e., the delegate
in PRACE Council with full authorization) is prof. dr. Jožef Duhovnik, as follows from
appointment of the dean of ULFME (Attachment 2).
The consortium has also agreed that it joins PRACE 2 optional programme as contributing GP.
With best regards,
assist. prof. dr. Aleš Zamuda, vice-president of SIHPC
Aleš Zamuda 7@aleszamuda Solving 100-Digit Challenge w/ Score 100 by Extended Running Time Parallel Bench. 44/64
45. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
Initiatives: ImAppNIO, cHiPSet, TFoB, DAPHNE
Aim towards software to run HPC and improve capabilities:
• ImAppNIO: Improving Applicability of Nature-Inspired Optimisation
by Joining Theory and Practice,
→ improve capabilities through benchmarking (to understand (and to
learn to learn)) CI algorithms
• cHiPSet: High-Performance Modelling and Simulation for Big Data
Applications,
→ include HPC in Modelling and Simulation (of the process to be
learned)
• TFoB: IEEE CIS Task Force on Benchmarking,
→ includes CI benchmarking opportunities, where HPC would enable
new capabilities.
• DAPHNE: Integrated Data Analysis Pipelines for Large-Scale Data
Management, HPC, and Machine Learning.
→ to define and build an open and extensible system infrastructure
for integrated data analysis pipelines, including data management and
processing, high-performance computing (HPC), and machine learning
(ML) training and scoring https://daphne-eu.github.io/
Aleš Zamuda 7@aleszamuda Solving 100-Digit Challenge w/ Score 100 by Extended Running Time Parallel Bench. 45/64
46. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
EuroHPC Vega
Deploying DAPHNE
(Part II: Third subpart)
MODA (Monitoring and Operational Data Analytics) tools for
• collecting, analyzing, and visualizing
• rich system and application data, and
• my opinion on how one can make sense of the data for
actionable insights.
• Explained through previous examples:
from a HPC User Perspective.
Aleš Zamuda 7@aleszamuda Solving 100-Digit Challenge w/ Score 100 by Extended Running Time Parallel Bench. 46/64
47. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
MODA Actionable Insights, Explained From a HPC
User Perspective, Through the Example of
Summarization
Most interesting findings of summarization on HPC example
are
• the fitness of the NLP model keeps increasing with prolonging
the dedicated HPC resources (see below) and that
• the fitness improvement correlates with ROUGE evaluation in
the benchmark, i.e. better summaries.
-0.05
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
1 10 100 1000 10000
ROUGE-1R
ROUGE-2R
ROUGE-LR
ROUGE-SU4R
Fitness (scaled)
Hence, the use of HPC
significantly
contributes to
capability of this NLP
challenge.
However, the MODA insight also provided the
useful task running times and resource
usage.
Aleš Zamuda 7@aleszamuda Solving 100-Digit Challenge w/ Score 100 by Extended Running Time Parallel Bench. 47/64
48. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
Running the Tasks on HPC: ARC Job Preparation
Parallel summarization tasks on grid through ARC.
Aleš Zamuda 7@aleszamuda Solving 100-Digit Challenge w/ Score 100 by Extended Running Time Parallel Bench. 48/64
49. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
Running the Tasks on HPC: ARC Job Submission,
Results Retrieval Merging [JoCS2020]
Through an HPC
approach and by
parallelization of tasks,
a data-driven
summarization model
optimization yields
improved benchmark
metric results (drawn
using gnuplot merge).
MODA is needed
to run again and
improve upon, to
forecast how to
set required task
running time and
resources
(predicting system
response).
Aleš Zamuda 7@aleszamuda Solving 100-Digit Challenge w/ Score 100 by Extended Running Time Parallel Bench. 49/64
50. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
Monitoring and Operational Data Analytics
• Monitor used (jobs, CPU/wall time, etc.):
Smirnova, Oxana. The Grid Monitor. Usage manual,
Tech. Rep. NORDUGRID-MANUAL-5, The NorduGrid
Collaboration, 2003.
http://www.nordugrid.org/documents/
http://www.nordugrid.org/manuals.html
http://www.nordugrid.org/documents/monitor.pdf
• Deployed at:
www.nordugrid.org/monitor/
• NorduGrid Grid Monitor
Sampled: 2021-06-28 at 17-57-08
• Nation-wide in Slovenia:
https://www.sling.si/gridmonitor/loadmon.php
http://www.nordugrid.org/monitor/index.php?
display=vo=Slovenia
Aleš Zamuda 7@aleszamuda Solving 100-Digit Challenge w/ Score 100 by Extended Running Time Parallel Bench. 50/64
51. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
MODA Example From: ARC at Jost
Example experiments from DOI: 10.1016/j.swevo.2015.10.007 (SPSRDEMMS)
– job YYULDmGOXpmnmmR0Xox1SiGmABFKDmABFKDmrtMKDmABFKDm66faPo.
Sample ARC file gridlog/diag (2–3 day Wall Times).
runtimeenvironments=APPS/ARNES/MPI−1.6−R ;
CPUUsage=99%
MaxResidentMemory=5824kB
AverageUnsharedMemory=0kB
AverageUnsharedStack=0kB
AverageSharedMemory=0kB
PageSize=4096B
MajorPageFaults=4
MinorPageFaults=1213758
Swaps=0
ForcedSwitches=36371494
WaitSwitches=170435
Inputs=45608
Outputs=477168
SocketReceived=0
SocketSent=0
Signals =0
nodename=wn003 . arnes . s i
WallTime=148332s
Processors=16
UserTime=147921.14s
KernelTime =2.54 s
AverageTotalMemory=0kB
AverageResidentMemory=0kB
LRMSStartTime=20150906104626Z
LRMSEndTime=20150908035838Z
exitcode=0
Aleš Zamuda 7@aleszamuda Solving 100-Digit Challenge w/ Score 100 by Extended Running Time Parallel Bench. 51/64
52. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
EuroCC HPC: Vega (TOP500 #106, HPCG #56 — June 2021)
• Researchers apply to EuroHPC JU calls for access.
• Regular calls opened in 2021 fall (Benchmark Development).
• https://prace-ri.eu/benchmark-and-development-access-information-for-applicants/
• 60% capacities for national share (70% OA, 20% commercial, 10% host (community, urgent
priority of national importance, maintenance)) + 35% EuroHPC JU share (approved applications)
• Has a SLURM dev partition for SSH login (SLURM partitions w/ CPUs: login[0001-0004]=128;
login[0005-0008]=64; cn[0001-384,0577-0960]=256; cn[0385-0576]=256; gn[01-60]=256).
Listing 1: Setting up at Vega — slurm dev partition access (login).
1 [ ales . zamuda@vglogin0007 ˜]$ s i n g u l a r i t y pull qmake . s i f docker : / / ak352 /qmake−opencv
2 [ ales . zamuda@vglogin0007 ˜]$ s i n g u l a r i t y run qmake . s i f bash
3 cd sum; qmake ; make clean ; make
4
5 [ ales . zamuda@vglogin0007 ˜]$ cat runme . sh
6 # ! / bin / bash
7 cd sum time mpirun
8 −
−mca btl openib warn no device params found 0
9 . / summarizer
10 −
−useBinaryDEMPI −
−i n p u t f i l e mRNA−1273−t x t
11 −
−withoutStatementMarkersInput
12 −
−printPreprocessProgress calcInverseTermFrequencyndTermWeights
13 −
−printOptimizationBestInGeneration
14 −
−summarylength 600 −
−NP 200
15 −
−GMAX 400
16 summarizer . out . $SLURM PROCID
17 2 summarizer . err . $SLURM PROCID
Text summarization/generation systems
are getting more and more useful
and accessible on deployed systems
(e.g. OpenAI’s ChatGPT, Microsoft’s Bing AI part,
NVIDIA’s (Fin)Megatron, BLOOM,
LaMDA, BERT, VALL-E, Point-E, etc.). -0.65
-0.6
-0.55
-0.5
-0.45
-0.4
-0.35
-0.3
-0.25
-0.2
-0.15
-0.1
1 10 100
Evaluation
Aleš Zamuda 7@aleszamuda Solving 100-Digit Challenge w/ Score 100 by Extended Running Time Parallel Bench. 52/64
53. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
MODA at First EuroCC HPC Vega Supercomputer
Listing 2: Runnig at Vega MODA.
1 ===================================================================== GMAX=200 =====
2 [ ales . zamuda@vglogin0002 ˜]$ srun −
−cpu−bind=cores −
−nodes=1 −
−ntasks−per−node=101
3 −
−cpus−per−task=2 −
−
mem=180G s i n g u l a r i t y run qmake . s i f bash
4 srun : job 4531374 queued and waiting for resources
5 srun : job 4531374 has been allocated resources
6 [ ”$SLURM PROCID” = 0 ] . / runme . sh
7 real 5m22.475 s
8 user 484m42.262 s
9 sys 1m38.304 s
10 ===================================================================== NODES=51 =====
11 [ ales . zamuda@vglogin0002 ˜]$ srun −
−cpu−bind=cores −
−nodes=1 −
−ntasks−per−node=51
12 −
−cpus−per−task=2 −
−
mem=180G s i n g u l a r i t y run qmake . s i f bash
13 srun : job 4531746 queued and waiting for resources
14 srun : job 4531746 has been allocated resources
15 [ ”$SLURM PROCID” = 0 ] . / runme . sh
16 real 13m57.851 s
17 user 431m25.833 s
18 sys 0m29.272 s
19 ===================================================================== GMAX=400 =====
20 [ ales . zamuda@vglogin0002 ˜]$ srun −
−cpu−bind=cores −
−nodes=1 −
−ntasks−per−node=101
21 −
−cpus−per−task=2 −
−
mem=180G s i n g u l a r i t y run qmake . s i f bash
22 srun : job 4532697 queued and waiting for resources
23 srun : job 4532697 has been allocated resources
24 [ ”$SLURM PROCID” = 0 ] . / runme . sh
25 real 6m14.687 s
26 user 590m45.641 s
27 sys 1m40.930 s
Aleš Zamuda 7@aleszamuda Solving 100-Digit Challenge w/ Score 100 by Extended Running Time Parallel Bench. 53/64
54. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
More Output: SLURM accounting
Listing 3: Example accounting tool at Vega: sacct.
[ ales . zamuda@vglogin0002 ˜]$ sacct
4531374. ext+ extern vega−users 202 COMPLETED 0:0
4531746. ext+ extern vega−users 102 COMPLETED 0:0
4532697. ext+ extern vega−users 202 COMPLETED 0:0
[ ales . zamuda@vglogin0002 ˜]$ sacct −j 4531374 −j 4531746 −j 4532697
−o MaxRSS , MaxVMSize , AvePages
MaxRSS MaxVMSize AvePages
−
−
−
−
−
−
−
−
−
− −
−
−
−
−
−
−
−
−
− −
−
−
−
−
−
−
−
−
−
0 217052K 0
26403828K 1264384K 22
0 217052K 0
13325268K 1264380K 0
0 217052K 0
26404356K 1264384K 30
Future MODA testings:
• testing the web interface for job analysis (as available from HPC RIVR);
• profiling MPI inter-node communication;
• use profilers and monitoring tools available
— in the context of heterogeneous setups, like e.g.
• TAU Performance System — http://www.cs.uoregon.edu/research/tau/home.php,
• LIKWID Performance Tools — https://hpc.fau.de/research/tools/likwid/.
Aleš Zamuda 7@aleszamuda Solving 100-Digit Challenge w/ Score 100 by Extended Running Time Parallel Bench. 54/64
55. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
Deploying DAPHNE on Vega
Main documentation file:
Deploy.md
Aleš Zamuda 7@aleszamuda Solving 100-Digit Challenge w/ Score 100 by Extended Running Time Parallel Bench. 55/64
56. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
SLURM
Aleš Zamuda 7@aleszamuda Solving 100-Digit Challenge w/ Score 100 by Extended Running Time Parallel Bench. 56/64
57. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
Aleš Zamuda 7@aleszamuda Solving 100-Digit Challenge w/ Score 100 by Extended Running Time Parallel Bench. 57/64
58. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
Aleš Zamuda 7@aleszamuda Solving 100-Digit Challenge w/ Score 100 by Extended Running Time Parallel Bench. 58/64
59. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
More HPC User Perspective Nation-wide in Slovenia
More: at University of Maribor, Bologna study courses for
teaching (training) of Computer Science at cycles — click URL:
• level 1 (BSc)
• year 1: Programming I – e.g. C++ syntax
• year 2: Computer Architectures – e.g. assembly, microcode, ILP
• year 3: Parallell and Distributed Computing – e.g. OpenMP, MPI, CUDA
• level 2 (MSc)
• year 1: Cloud Computing Deployment and Management – e.g. arc, slurm,
Hadoop, containers (docker, singularity) through
virtualization
• level 3 (PhD)
• EU and other national projects research:
HPC RIVR, EuroCC, DAPHNE, ... – e.g. scaling new systems
of CI Operational Research of ... over HPC
• IEEE Computational Intelligence Task Force on Benchmarking
• Scientific Journals (e.g. SWEVO, TEVC, JoCS, ASOC, INS)
These contribute towards Sustainable Development of HPC.
Aleš Zamuda 7@aleszamuda Solving 100-Digit Challenge w/ Score 100 by Extended Running Time Parallel Bench. 59/64
60. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
Biography and References: Organizations
• Associate Professor at University of Maribor, Slovenia
• Continuous research programme funded by Slovenian Research Agency,
P2-0041: Computer Systems, Methodologies, and Intelligent Services
• EU H2020 Research and Innovation project, holder for UM part: Integrated
Data Analysis Pipelines for Large-Scale Data Management, HPC, and
Machine Learning (DAPHNE), https://cordis.europa.eu/project/id/957407
• IEEE (Institute of Electrical and Electronics Engineers) SM
• IEEE Computational Intelligence Society (CIS), senior member
• IEEE CIS Task Force on Benchmarking, chair Website link
• IEEE CIS, Slovenia Section Chapter (CH08873), chair
• IEEE Slovenia Section, 2018–2021 vice chair, 2018-21
• IEEE Young Professionals Slovenia, 2016-19 chair
• ACM SIGEVO (Special Interest Group on Genetic and Evolutionary Computation); EurAI; SLAIS
• Associate Editor: Swarm and Evolutionary Computation (2016-’22), Human-centric Computing and
Information Sciences, Frontiers in robotics and AI (section Robot Learning and Evolution)
• Co-operation in Science and Techology (COST) Association Management Committee, member:
• CA COST Action CA15140: Improving Applicability of Nature-Inspired
Optimisation by Joining Theory and Practice (ImAppNIO), WG3 VC
• ICT COST Action IC1406 High-Performance Modelling and Simulation for
Big Data Applications (cHiPSet);
• More: SI-HPC vice-chair; HPC-RIVR user; EuroHPC Vega user; SLAIS Honorary Tribunal; SLING KO member;
Aleš Zamuda 7@aleszamuda Solving 100-Digit Challenge w/ Score 100 by Extended Running Time Parallel Bench. 60/64
61. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
Biography and References: Top Publications
• Aleš Zamuda, Elena Lloret. Optimizing Data-Driven Models for Summarization as Parallel Tasks.
Journal of Computational Science, 2020, vol. 42, pp. 101101. DOI 10.1016/j.jocs.2020.101101.
• A. Zamuda, J. D. Hernández Sosa. Success history applied to expert system for underwater glider path
planning using differential evolution. Expert Systems with Applications, 2019, vol. 119, pp. 155-170. DOI
10.1016/j.eswa.2018.10.048
• C. Lucas, D. Hernández-Sosa, D. Greiner, A. Zamuda, R. Caldeira. An Approach to Multi-Objective Path
Planning Optimization for Underwater Gliders. Sensors, 2019, vol. 19, no. 24, pp. 5506. DOI
10.3390/s19245506.
• A. Viktorin, R. Senkerik, M. Pluhacek, T. Kadavy, A. Zamuda. Distance Based Parameter Adaptation for
Success-History based Differential Evolution. Swarm and Evolutionary Computation, 2019, vol. 50, pp.
100462. DOI 10.1016/j.swevo.2018.10.013.
• A. Zamuda, J. Brest. Self-adaptive control parameters’ randomization frequency and propagations
in differential evolution. Swarm and Evolutionary Computation, 2015, vol. 25C, pp. 72-99.
DOI 10.1016/j.swevo.2015.10.007.
• A. Zamuda, J. D. Hernández Sosa, L. Adler. Constrained Differential Evolution Optimization for
Underwater Glider Path Planning in Sub-mesoscale Eddy Sampling. Applied Soft Computing, 2016,
vol. 42, pp. 93-118. DOI 10.1016/j.asoc.2016.01.038.
• A. Zamuda, J. D. Hernández Sosa. Differential Evolution and Underwater Glider Path Planning
Applied to the Short-Term Opportunistic Sampling of Dynamic Mesoscale Ocean Structures.
Applied Soft Computing, vol. 24, November 2014, pp. 95-108. DOI 10.1016/j.asoc.2014.06.048.
• A. Zamuda, J. Brest. Vectorized Procedural Models for Animated Trees Reconstruction using
Differential Evolution. Information Sciences, vol. 278, pp. 1-21, 2014. DOI 10.1016/j.ins.2014.04.037.
• A. Zamuda, J. Brest. Environmental Framework to Visualize Emergent Artificial Forest Ecosystems.
Information Sciences, vol. 220, pp. 522-540, 2013. DOI 10.1016/j.ins.2012.07.031.
• A. Glotić, A. Zamuda. Short-term combined economic and emission hydrothermal optimization by
surrogate differential evolution. Applied Energy, 1 March 2015, vol. 141, pp. 42-56.
DOI 10.1016/j.apenergy.2014.12.020.
• H. Hamann, Y. Khaluf, J. Botev, M. Divband Soorati, E. Ferrante, O. Kosak, J.-M. Montanier, S. Mostaghim,
R. Redpath, J. Timmis, F. Veenstra, M. Wahby and A. Zamuda. Hybrid Societies: Challenges and
Perspectives in the Design of Collective Behavior in Self-organizing Systems. Frontiers in Robotics
and AI, 2016, vol. 3, no. 14. DOI 10.3389/frobt.2016.00014.
• J. Šilc, A. Zamuda. Special Issue on ”Bioinspired Optimization” (guest editors). Informatica - An
International Journal of Computing and Informatics, 2015, vol. 39, no. 2, pp. 1-122.
Aleš Zamuda 7@aleszamuda Solving 100-Digit Challenge w/ Score 100 by Extended Running Time Parallel Bench. 61/64
62. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
Biography and References: Bound Specific to HPC
PROJECTS:
• DAPHNE: Integrated Data Analysis Pipelines for Large-Scale Data Management, HPC, and Machine Learning
• ICT COST Action IC1406 High-Performance Modelling and Simulation for Big Data Applications
• SLING: Slovenian national supercomputing network
• SI-HPC: Slovenian corsortium for High-Performance Computing
• UM HPC-RIVR: Supercomputer at UM, https://www.hpc-rivr.si/
• SmartVillages: Smart digital transformation of villages in the Alpine Space
• Interreg Alpine Space, https://www.alpine-space.eu/projects/smartvillages/en/home
• Interactive multimedia digital signage (PKP, Adin DS)
EDITOR:
• Associate Editor in journals:
• Swarm and Evolutionary Computation (2016-2022),
• Human-centric Computing and Information Sciences (2020-2023),
• Frontiers in robotics and AI, section Robot Learning and Evolution (2021-2023),
• etc.
• Mathematics-MDPI, Special Issue Guest Editor: ”Innovations in High-Performance Computing”
• Mathematics-MDPI, Special Issue Guest Editor: ”Evolutionary Algorithms in Engineering Design
Optimization”
• Journal of advanced engineering and computation (member of editorial board since 2019). Viet Nam: Ton
Duc Thang University, 2017-. ISSN 2588-123X.
• Cloud Computing and Data Science (Associate Editor, since 2019). Universal Wiser Publisher Pte.Ltd.
• D. Gleich, P. Planinšič, A. Zamuda. 2018 25th International Conference on Systems, Signals and Image
Processing (IWSSIP). IEEE Xplore, Maribor, 20-22 June 2018.
• General Chair: 7-th Joint International Conferences on Swarm, Evolutionary and Memetic Computing
Conference (SEMCCO 2019) Fuzzy And Neural Computing Conference (FANCCO 2019), Maribor, Slovenia,
EU, 10-12 July 2019; co-editors: Aleš Zamuda, Swagatam Das, Ponnuthurai Nagaratnam Suganthan, Bijaya
Ketan Panigrahi.
• Organizers member: GECCO 2022, GECCO 2023
Aleš Zamuda 7@aleszamuda Solving 100-Digit Challenge w/ Score 100 by Extended Running Time Parallel Bench. 62/64
63. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
Biography and References: More Publications on HPC
• Aleš Zamuda, Elena Lloret. Optimizing Data-Driven Models for Summarization as Parallel Tasks.
Journal of Computational Science, 2020, vol. 42, pp. 101101. DOI 10.1016/j.jocs.2020.101101.
• Patrick Damme, Marius Birkenbach, Constantinos Bitsakos, Matthias Boehm, Philippe Bonnet, Florina
Ciorba, Mark Dokter, Pawel Dowgiallo, Ahmed Eleliemy, Christian Faerber, Georgios Goumas, Dirk Habich,
Niclas Hedam, Marlies Hofer, Wenjun Huang, Kevin Innerebner, Vasileios Karakostas, Roman Kern, Tomaž
Kosar, Alexander Krause, Daniel Krems, Andreas Laber, Wolfgang Lehner, Eric Mier, Marcus Paradies,
Bernhard Peischl, Gabrielle Poerwawinata, Stratos Psomadakis, Tilmann Rabl, Piotr Ratuszniak, Pedro
Silva, Nikolai Skuppin, Andreas Starzacher, Benjamin Steinwender, Ilin Tolovski, Pınar Tözün, Wojciech
Ulatowski, Yuanyuan Wang, Izajasz Wrosz, Aleš Zamuda, Ce Zhang, Xiao Xiang Zhu. DAPHNE: An Open
and Extensible System Infrastructure for Integrated Data Analysis Pipelines. 12th Conference on
Innovative Data Systems Research, CIDR 2022, Chaminade, CA, January 9-12, 2022.
• Aleš Zamuda, Vincenzo Crescimanna, Juan C. Burguillo, Joana Matos Dias, Katarzyna Wegrzyn-Wolska,
Imen Rached, Horacio González-Vélez, Roman Senkerik, Claudia Pop, Tudor Cioara, Ioan Salomie, Andrea
Bracciali. Forecasting Cryptocurrency Value by Sentiment Analysis: An HPC-Oriented Survey of the
State-of-the-Art in the Cloud Era. Kołodziej J., González-Vélez H. (eds) High-Performance Modelling and
Simulation for Big Data Applications. Lecture Notes in Computer Science, vol 11400, 2019, pp. 325-349.
DOI 10.1007/978-3-030-16272-6 12.
• Nenad Karolija, Aleš Zamuda. On cloud-supported web-based integrated development environment
for programming dataflow architectures. MILUTINOVIĆ, Veljko (ur.), KOTLAR, Milos (ur.). Exploring the
DataFlow supercomputing paradigm: example algorithms for selected applications, (Computer
communications and networks (Internet), ISSN 2197-8433), 2019, pp. 41-51. DOI
10.1007/978-3-030-13803-5 2.
• Simone Spolaor, Marco Gribaudo, Mauro Iacono, Tomas Kadavy, Zuzana Komı́nková Oplatková, Giancarlo
Mauri, Sabri Pllana, Roman Senkerik, Natalija Stojanovic, Esko Turunen, Adam Viktorin, Salvatore Vitabile,
Aleš Zamuda, Marco S. Nobile. Towards Human Cell Simulation. Kołodziej J., González-Vélez H. (eds)
High-Performance Modelling and Simulation for Big Data Applications. Lecture Notes in Computer
Science, vol 11400, 2019, pp. 221-249. DOI 10.1007/978-3-030-16272-6 8.
• A. Zamuda, J. D. Hernandez Sosa, L. Adler. Improving Constrained Glider Trajectories for Ocean Eddy
Border Sampling within Extended Mission Planning Time. IEEE Congress on Evolutionary Computation
(CEC) 2016, 2016, pp. 1727-1734.
• A. Zamuda. Function evaluations upto 1e+12 and large population sizes assessed in distance-based
success history differential evolution for 100-digit challenge and numerical optimization scenarios
(DISHchain 1e+12): a competition entry for ”100-digit challenge, and four other numerical optimization
competitions” at the genetic and evolutionary computation conference (GECCO) 2019. Proceedings of the
Genetic and Evolutionary Computation Conference Companion (GECCO 2019), 2019, pp. 11-12.
• ... several more experiments for papers run using HPCs.
• ... also, pedagogic materials in Slovenian and English — see Conclusion .
Aleš Zamuda 7@aleszamuda Solving 100-Digit Challenge w/ Score 100 by Extended Running Time Parallel Bench. 63/64
64. AI Challenges Shortlist HPC Initiatives EuroHPC Vega ,Deploying DAPHNE References
Promo materials: Calls for Papers, Websites
CS FERI WWW
CIS TFoB
CFPs WWW LI Twitter
Aleš Zamuda 7@aleszamuda Solving 100-Digit Challenge w/ Score 100 by Extended Running Time Parallel Bench. 64/64