Anzeige

DISSERTATION DEFENSE_AHASANUL HASAN_PRESENTATION.pptx

1. Apr 2023
Anzeige

Más contenido relacionado

Similar a DISSERTATION DEFENSE_AHASANUL HASAN_PRESENTATION.pptx(20)

Último(20)

Anzeige

DISSERTATION DEFENSE_AHASANUL HASAN_PRESENTATION.pptx

  1. Direct vasodilatory effects of sodium glucose co- transporter 2 inhibitors (SGLT2is) and the underlying molecular mechanisms in resistance mesenteric arteries Ahasanul Hasan
  2. • CVDs include hypertension, coronary artery disease, diabetes, stroke etc. • CVDs ranked No. 1 cause of death globally • In the USA • 1 person dies every 37 seconds • 1 person has a heart attack every 40 seconds • 1 in every 4 deaths is due to CVD • Hypertension is the primary contributor to all CVDs • Approximately 20% of patients with hypertension also have T2DM and 50% of T2DM patients have hypertension Cardiovascular diseases (CVDs) facts Center for Disease Control and Prevention, 2019; Tatsumi et al., 2017; World Health Organization, 2017
  3. • New class of orally active anti-diabetic drugs used in T2DM. • They are derivatives of glucoside phlorizin (a type of flavonoid) • Inhibits sodium glucose co-transporter2 (SGLT2) in proximal tubule • Canagliflozin (2013) • Empagliflozin (2014) • Dapagliflozin (2014) • Ertugliflozin (2017) • Bexagliflozin (2023) Fediuk et al., 2020; Giugliano et al., 2019; Haider et al., 2019 Sodium glucose co-transporter 2 inhibitors (SGLT2is)
  4. Giugliano et al., 2019; van Bommel et al., 2017 Mechanism of action of SGLT2is
  5. SGLT2 Inhibitors (SGLT2is) Systemic Effects ↑ Glycosuria ↑ Natriuresis Direct Effects ↓ Inflammation ↓ Oxidative Stress ↓ Apoptosis ↓ Autophagy ↓ Mitochondrial Dysfunction ↓ Ionic Dyshomeostasis ↓Gluocotoxicity ↑Insulin sensitivity ↑Glucagon ↑Fuel shift to lipid ↑Ketone bodies ↓Body weight ↓Fat mass ↓ Plasma volume ↓ Blood pressure ↓ Arterial stiffness ↓ Albuminuria ↓ Glomerular hyperfiltration ↓ NLRP3 inflammasome ↓ IL-1β, IL-18 +M2 macrophage ↓ Macrophage infiltration ↓ Fibrosis +STAT3 activation ↓ Superoxide ↓ Nitrotyrosine ↓ Malondialdehyde ↓ Inflammation ↓ Apoptosis ↓ ERS ↓ Bax/Bcl-2 ratio ↓ Caspase activity ↓ Apoptosis ↓ Anomalies ↓ Swelling ↑ PGC1-α, CPT1 ↓ Fission, Fusion ↑ Energy Production ↓ ROS +NHE inhibition ↓[Na+]c, [Ca2+]c ↑[Ca2+]m ↑ Ca2+ handling ↑ SERCA activity ↑ Rhythm ↑ Contraction +NHE inhibition While these effects can occur upon long-term use of SGLT2is, it is not known if acute SGLT2is application has any effects on the regulation of systemic blood pressure. Pleiotropic effects of SGLT2is Lahnwong et al., 2018
  6. • Several cardiovascular outcome trials (CVOTs) namely EMPA-REG, CANVAS and DECLARE-TIMI have shown that SGLT-2is reduce heart failure, hospitalization and related death (Zinman et al., 2015; Neal et al., 2017; Wiviott et al., 2019) • Hypertension has been linked in numerous studies to the development and progression of cardiovascular disease in diabetics (Long & Dagogo-Jack, 2011; Yamazaki, Hitomi, & Nishiyama, 2018) Therefore, it is important to understand whether SGLT-2is have a blood pressure lowering action in diabetic patients to explain for the favorable outcomes in CVOTs Cardio-protective effects of SGLT2is
  7. Several pre-clinical studies have suggested that SGLT2is have anti-hypertensive action. Proposed mechanisms that have been linked to the antihypertensive action involve: • Diuresis (Briasoulis, Al Dhaybi, & Bakris, 2018) • Modulation of sympathetic nervous system (Wan, Rahman, Hitomi, & Nishiyama, 2018) • Increased nitric oxide (NO) production (Han et al., 2015) • Reversal of renal dysfunction (Kelly, Lewis, Huntsberry, Dea, & Portillo, 2019) • Inhibition of oxidative stress (Yaribeygi, Panahi, Javadi, & Sahebkar, 2018), etc. Our study examined the direct effects of three SGLT-2is on the contractility of resistance mesenteric arteries that regulate vascular resistance and systemic blood pressure Antihypertensive effects of SGLT-2is
  8. Cardiac Output Peripheral Resistance Blood Pressure X = Regulation of blood pressure Marieb et al., 2019
  9. Arterial diameter regulates peripheral resistance Klabunde, 2012
  10. General architecture of the artery Marieb et al., 2019
  11. Ion Intracellular Concentration (mM) Extracellular concentration (mM) Membrane Permeability at rest K+ 140 4 1 Na+ 15 145 0.05 Cl+ 4 110 0.1 Ca2+ 0.0001 5 0 Resting membrane potential = -70 mV Hyperpolarization, < -70 mV K+ efflux Depolarization > -70 mV Ca2+, Na+ influx, Cl- efflux Contraction Relaxation Depolarization Membrane potential controls the activity of Ca2+ channels to regulate SMC contractility Membrane potential and SMC contractility Slide courtesy: Dr. Hasan
  12. MLCK: myosin light chain kinase; MLCP: myosin light chain phosphatase; SR: sarcoplasmic reticulum; eNOS: endothelial nitric oxide synthase; PKG: protein kinase G, GC: guanylate cyclase, LTCC: L-type Ca2+ channel Ca2+ Ca2+ Ca2+ Ca2+ SR LTCC Ca2+ Ca2+ Ca2+ Ca2+ Ca2+ Calmodulin MLCK Contraction Myosin Myosin-p Smooth muscle cell Endothelial cell NO eNOS L-arginine sGC cGMP PKG MLCP Myosin Relaxation Mechanism of SM contraction and relaxation Slide courtesy: Dr. Hasan
  13. Originality of this research Recently, pre-clinical studies using rabbit aorta have shown that SGLT-2is relax aorta. However, aorta is a conduit vessel that does not control systemic blood pressure (Li et al., 2018; Seo et al., 2020; Seo et al., 2021). Research using resistance arteries, which play a crucial role in regulating systemic blood pressure by regulating peripheral resistance, is necessary. Klabunde, 2012
  14. Specific aims [1]. We examined whether SGLT2is have direct vasodilatory effects in resistance mesenteric arteries [2]. We investigated if SGLT2is stimulate endothelial signaling to induce vasodilation in mesenteric arteries [3]. We investigated if SGLT2is act on a smooth muscle target(s) to induce vasodilation in mesenteric arteries
  15. Experimental tools • Experimental technique: Pressure Myography • Animal: Normotensive, Sprague Dawley Rat (SD, 7-10 weeks) • Tissue: Resistance mesenteric arteries (1-2 mm segment, 150-250 µm in diameter) • Drugs to be investigated: SGLT2is (Canagliflozin, Empagliflozin, and Dapagliflozin) • Dose range for concentration curve: 0.001 – 100 µM • Dose for mechanistic study: 100 µM
  16. Typical pressure myography trace Time (ms) Vessel diameter (µm)
  17. % 𝑀𝑦𝑜𝑔𝑒𝑛𝑖𝑐 𝑇𝑜𝑛𝑒 = (1 − 𝐷𝑎𝑐𝑡𝑖𝑣𝑒 (80 𝑚𝑚𝐻𝑔) 𝐷𝑝𝑎𝑠𝑠𝑖𝑣𝑒 (80 𝑚𝑚𝐻𝑔) ) 𝑥 100 Dactive = Active diameter at 80 mmHg Dpassive = Passive diameter at 80 mmHg Data processing % 𝐷𝑖𝑙𝑎𝑡𝑖𝑜𝑛 = ( 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑤𝑖𝑡ℎ 𝐷𝑟𝑢𝑔 −𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑎𝑓𝑡𝑒𝑟 𝑀𝑇 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑎𝑓𝑡𝑒𝑟 𝑀𝑇 ) 𝑥 100 % 𝐷𝑖𝑙𝑎𝑡𝑖𝑜𝑛 = ( 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑤𝑖𝑡ℎ 𝐷𝑟𝑢𝑔 −𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑤𝑖𝑡ℎ 𝑃𝐸 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟 𝑤𝑖𝑡ℎ 𝑃𝐸 ) 𝑥 100
  18. Results
  19. Results for Aim 1 Aim 1: To examine whether SGLT2is (Cana, Empa, and Dapa) have direct vasodilatory effects in resistance mesenteric arteries Experiment 1A: Determination of direct effect of SGLT2is on the contractility of resistance mesenteric arteries under myogenic vasoconstriction Experiment 1B: Determination of direct effect of SGLT2is on the contractility of phenylephrine (PE) pre-constricted mesenteric arteries Experiment 1C: To determine whether the vasomodulatory effects of SGLT2is are mediated by the inhibition of SGLT2
  20. Experiment 1A Determination of direct effect of SGLT2is (Cana, Empa, and Dapa) on the contractility of resistance mesenteric arteries under myogenic vasoconstriction Drugs: Cana, Empa, and Dapa Dose: 0.001-100 µM Cumulative drug application
  21. Results 1A SGLT2is (Cana, Empa, and Dapa) vasodilates pressurized myogenic toned artery 1A 2A 3A 1B 2B 3B
  22. Results 1A (continued) SGLT2is (Cana, Empa, and Dapa) vasodilates pressurized myogenic toned artery Cana > Empa > Dapa at 100 µM: 24.37% > 13.31% > 12.68% at 100 µM: 85 µm > 60 µm > 43 µm 1A 2A 3A
  23. Experiment 1B Determination of direct effect of SGLT2is (Cana, Empa, and Dapa) on the contractility of phenylephrine (PE) pre-constricted mesenteric arteries 0 1000 2000 3000 4000 5000 250 300 350 400 B A B Baseline (40 mmHg) PE-baseline Cumulative drug application Drugs: Cana, Empa, and Dapa Dose: 0.001-100 µM
  24. Results 1B SGLT2is (Cana, Empa, and Dapa) vasodilates PE-preconstricted arteries 1A 2A 3A 1B 2B 3B
  25. Results 1B (continued) SGLT2is (Cana, Empa, and Dapa) vasodilates PE-preconstricted arteries Cana > Empa > Dapa at 100 µM: 95.60% > 72.24% > 62.52% at 100 µM: 120 µm > 102 µm > 93 µm Cana 10 µM > Empa 1 µM > Dapa 0.5 µM 62 µm > 25 µm > 15 µm 1A 2A 3A
  26. Experiment 1C To determine whether the vasomodulatory effects of SGLT2is (Cana, Empa, and Dapa) are mediated by the inhibition of SGLT2 Baseline (40 mmHg) PE SGLT2is + PE PE Phlorizin+ PE PE SGLT2is + Phlorizin + PE Group 1: SGLT2is (100 µM; Cana, Empa, and Dapa) Group 2: Phlorizin (1 µM) Group 3: SGLT2is + Phlorizin Baseline (40 mmHg) Baseline (40 mmHg) Baseline (40 mmHg)
  27. Results 1C SGLT2is (Cana, Empa, and Dapa)-induced vasodilation is independent of SGLT-2 inhibition 1A 2A 3A 1B 2B 3B
  28. Conclusion 1 23 • SGLT2is (Cana, Empa, and Dapa) dilate pressurized resistance mesenteric arteries in a dose-dependent manner. • SGLT2is (Cana, Empa, and Dapa) dilate PE-preconstricted resistance mesenteric arteries in a dose-dependent manner. • SGLT2is (Cana, Empa, and Dapa)-induced vasodilation of resistance mesenteric arteries is independent of SGLT2 inhibition. • Cana as a vasodilator is superior to either Empa or Dapa.
  29. Results for Aim 2 Aim 2: To investigate if SGLT2is (Cana, Empa, and Dapa) stimulate endothelial signaling to induce vasodilation in mesenteric arteries Experiment 2A: To determine the role of NO-sGC-PKG signaling axis in SGLT2is-mediated vasodilation in PE pre-constricted mesenteric arteries Experiment 2B: To determine the role of prostacyclin I2 (PGI2) in SGLT2is-mediated vasodilation in PE pre-constricted mesenteric arteries Experiment 2C: To determination the role of endothelium in SGLT-2is-mediated vasodilation in PE pre-constricted mesenteric arteries 23
  30. Experiment 2A To determine the role of NO-sGC-PKG signaling axis in SGLT2is (Cana, Empa, and Dapa)- mediated vasodilation in PE pre-constricted mesenteric arteries PE SGLT2is + PE PE Inhibitor + PE SGLT2is + Inhibitor + PE Group 1: SGLT2is (100 µM; Cana, Empa, and Dapa) Group 2: SGLT2is + Inhibitors eNOS inhibitor: L-NNA (10 µM) sGC inhibitor: ODQ (10 µM) PKG inhibitor: KT5823 (1 µM) Baseline (40 mmHg) Baseline (40 mmHg) Baseline (40 mmHg)
  31. Results 2A SGLT2is (Cana, Empa, and Dapa)-induced vasodilation is independent of NO-sGC- PKG signaling axis 1A 2A 3A 1B 2B 3B
  32. Experiment 2B To determine the role of prostacyclin I2 (PGI2) in SGLT2is (Cana, Empa, and Dapa)- mediated vasodilation in PE pre-constricted mesenteric arteries PE SGLT2is + PE PE Inhibitor + PE SGLT2is + Inhibitor + PE Group 1: SGLT2is (100 µM; Cana, Empa, and Dapa) Group 2: SGLT2is + Inhibitor COX inhibitor: Indomethacin (10 µM) 25 Baseline (40 mmHg) Baseline (40 mmHg) Baseline (40 mmHg)
  33. Results 2B SGLT2is (Cana, Empa, and Dapa)-induced vasodilation is independent of PGI2 signaling axis 1A 2A 3A 1B 2B 3B
  34. Experiment 2C To determine the role of endothelium in SGLT2is (Cana, Empa, and Dapa)-mediated vasodilation in PE pre-constricted mesenteric arteries PE SGLT2is + PE PE SGLT2is + PE Endo-intact artery Endo-denuded artery Denudation Process: Passage of air bubble through the lumen of artery SGLT2is: Cana, Empa, and Dapa (100 µM) Baseline (40 mmHg) Baseline (40 mmHg) Baseline (40 mmHg) Baseline (40 mmHg)
  35. Results 2C SGLT2is (Cana, Empa, and Dapa)-induced vasodilation is independent of endothelium 1A 2A 3A 1B 2B 3B
  36. Results 2C (continued) SGLT2is (Cana, Empa, and Dapa)-induced vasodilation is independent of endothelium 1A 2A 3A 1B 2B 3B
  37. Conclusion 2 23 • SGLT2is (Cana, Empa, and Dapa)-induced vasodilation of resistance mesenteric arteries is independent of NO-sGC-PKG signaling axis. • SGLT2is (Cana, Empa, and Dapa)-induced vasodilation of resistance mesenteric arteries is independent of endothelial PGI2 synthesis. • SGLT2is (Cana, Empa, and Dapa)-induced vasodilation of resistance mesenteric arteries is independent of endothelium denudation and thus, cancels out the role of EDHF or endothelial SKCa and IKCa channels in vasodilation.
  38. Results for Aim 3 Aim 3: To investigate if SGLT2is (Cana, Empa, and Dapa) act on a smooth muscle target(s) to induce vasodilation in mesenteric arteries Experiment 3A: To determine the role of smooth muscle cells voltage gated potassium (KV) channels in SGLT2is-mediated vasodilation in PE pre-constricted mesenteric arteries Experiment 3B: To determine the role of calcium activated potassium (KCa) channels (BKCa) and ATP-sensitive K+ (KATP) channels in SGLT2is-mediated vasodilation in PE pre- constricted mesenteric arteries Experiment 3C: To determine the role of calcium activated potassium (KCa) channels IKCa and SKCa channels in SGLT2is-mediated vasodilation in PE pre-constricted mesenteric arteries Experiment 3D: To determine the role of Ca2+-ATPase (SERCA) pump in SGLT2is- mediated vasodilation in PE pre-constricted mesenteric arteries
  39. Experiment 3A To determine the role of smooth muscle cells voltage gated potassium (KV) channels in SGLT2is (Cana, Empa, and Dapa)-mediated vasodilation in PE pre-constricted mesenteric arteries PE SGLT2is + PE PE Inhibitor + PE SGLT2is + Inhibitor + PE Group 1: SGLT2is (100 µM; Cana, Empa, and Dapa) Group 2: SGLT2is + Inhibitors Baseline (40 mmHg) Baseline (40 mmHg) Baseline (40 mmHg) Non-selective Kv channel inhibitor: 4-AP (1 mM) Kv1.3 channel inhibitor: Psora-4 (100 nM) Kv1.5 channel inhibitor: DPO-1 (1 µM) Kv2.1 channel inhibitor: Guangxitoxin (100 nM) Kv7 channel Inhibitor: Linopirdine (10 µM)
  40. Results 3A SGLT2is (Cana, Empa, and Dapa)-induced vasodilation involves SMC Kv channels 1A 2A 3A 1B 2B 3B
  41. Results 3A (continued) SGLT2is (Cana, Empa, and Dapa)-induced vasodilation involves SMC Kv1.5, Kv2.1, and Kv7.x channels 1A 2A 3A 1B 2B 3B
  42. Experiment 3B To determine the role of calcium activated potassium (KCa) channels (BKCa) in SGLT2is (Cana, Empa, and Dapa)-mediated vasodilation in PE pre-constricted mesenteric arteries PE SGLT2is + PE PE Inhibitor + PE SGLT2is + Inhibitor + PE Group 1: SGLT2is (100 µM; Cana, Empa, and Dapa) Group 2: SGLT2is + Inhibitors BKCa channel inhibitor: Paxilline (10 µM) Baseline (40 mmHg) Baseline (40 mmHg) Baseline (40 mmHg)
  43. Results 3B SGLT2is (Cana, Empa, and Dapa)-induced vasodilation is independent of SMC BKCa and KATP channels 1A 2A 3A 1B 2B 3B
  44. Experiment 3C To determine the role of calcium activated potassium (KCa) channels (IKCa and SKCa) in SGLT2is (Cana)-mediated vasodilation in PE pre-constricted mesenteric arteries PE SGLT2is + PE PE Inhibitor + PE SGLT2is + Inhibitor + PE Group 1: SGLT2is (100 µM; Cana, Empa, and Dapa) Group 2: SGLT2is + Inhibitors IKCa channel inhibitor: TRAM-34 (10 µM) SKCa channel inhibitor: Apamin (1 µM) Baseline (40 mmHg) Baseline (40 mmHg) Baseline (40 mmHg)
  45. Results 3C SGLT2is (Cana)-induced vasodilation is independent of SMC IKCa and SKCa channels 1A 1B
  46. Experiment 3D To determine the role of Ca2+-ATPase (SERCA) pump in SGLT2is (Cana)-mediated vasodilation in PE pre-constricted mesenteric arteries PE SGLT2is + PE PE Inhibitor + PE SGLT2is + Inhibitor + PE Group 1: SGLT2is (100 µM; Cana, Empa, and Dapa) Group 2: SGLT2is + Inhibitors SERCA pump inhibitor: Thapsigargin (0.1 µM) Baseline (40 mmHg) Baseline (40 mmHg) Baseline (40 mmHg)
  47. Results 3D SGLT2is (Cana)-induced vasodilation is independent of SMC SERCA pumps 1A 1B
  48. Conclusion 3 • SGLT2is (Cana, Empa, and Dapa)-induced vasodilation of resistance mesenteric arteries is dependent on activation of smooth muscle cells voltage gated potassium (Kv) channels. • Cana activates Kv1.5, Kv2.1, and Kv7.x; Empa activates Kv1.5, and Kv7.x; Dapa activates Kv7.x. • SGLT2is (Cana, Empa, and Dapa)-induced vasodilation of resistance mesenteric arteries is independent of SMC BKCa and KATP channels. • SGLT2is (Cana)-induced vasodilation of resistance mesenteric arteries is independent of SMC SKCa and IKCa channels. • SGLT2is (Cana)-induced vasodilation of resistance mesenteric arteries is independent of SMC SERCA pumps.
  49. Summary • SGLT2is (Cana, Empa, and Dapa) dilate pressurized and Pe-preconstricted resistance mesenteric arteries in a dose-dependent manner and independent of both SGLT2 inhibition and endothelial signals. • SGLT2is (Cana, Empa, and Dapa)-induced vasodilation of resistance mesenteric arteries is dependent on activation of smooth muscle cells voltage gated potassium (Kv) channels. However, SGLT2is vary in specificity as Cana activates Kv1.5, Kv2.1, and Kv7.x; Empa activates Kv1.5, and Kv7.x; Dapa activates Kv7.x. • SGLT2is (Cana, Empa, and Dapa)-induced vasodilation is a ‘class effect’ and Cana as a vasodilator is superior to either Empa or Dapa.
  50. Summary
  51. Future directions • To extend this study using diabetic animal models • To conduct preliminary pre-clinical studies including blood pressure measurement in ambulatory animals and in vivo blood flow monitoring • To conduct preliminary clinical studies using human vasculature and measuring blood flow and blood pressure in humans • Finally, to extend our mechanistic experiments using electrophysiology, membrane potential monitoring, and isoform-specific knockdown of Kv channels. 35
  52. References • Briasoulis, A., Al Dhaybi, O., & Bakris, G. L. (2018). SGLT2 Inhibitors and Mechanisms of Hypertension. Curr Cardiol Rep, 20(1), 1. doi:10.1007/s11886-018-0943-5 • Center for Disease Control and Prevention (CDC), 2019 • Fediuk, D. J., Nucci, G., Dawra, V. K., Cutler, D. L., Amin, N. B., Terra, S. G., Boyd, R. A., Krishna, R., & Sahasrabudhe, V. (2020, 2020/08/01). Overview of the Clinical Pharmacology of Ertugliflozin, a Novel Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitor. Clinical Pharmacokinetics, 59(8), 949-965. https://doi.org/10.1007/s40262-020-00875-1 • Giugliano, D., Esposito, K. (2019). “Class effect for SGLT-2 inhibitors: a tale of 9 drugs”. Cardiovasc Diabetol. 18: 94. • Haider, K., Pathak, A., Rohilla, A., Haider, M. R., Ahmad, K., & Yar, M. S. (2019, 2019/12/15/). Synthetic strategy and SAR studies of C-glucoside heteroaryls as SGLT2 inhibitor: A review. European Journal of Medicinal Chemistry, 184, 111773. https://doi.org/https://doi.org/10.1016/j.ejmech.2019.111773 • Han, Y., Cho, Y. E., Ayon, R., Guo, R., Youssef, K. D., Pan, M., . . . Makino, A. (2015). SGLT inhibitors attenuate NO-dependent vascular relaxation in the pulmonary artery but not in the coronary artery. Am J Physiol Lung Cell Mol Physiol, 309(9), L1027-1036. doi:10.1152/ajplung.00167.2015 • Kelly, M. S., Lewis, J., Huntsberry, A. M., Dea, L., & Portillo, I. (2019). Efficacy and renal outcomes of SGLT2 inhibitors in patients with type 2 diabetes and chronic kidney disease. Postgrad Med, 131(1), 31-42. doi:10.1080/00325481.2019.1549459 • Klabunde, Richard E. (2012). Cardiovascular Physiology Concepts. Second ed. Philadelphia, PA :Lippincott Williams & Wilkins/Wolters Kluwer.
  53. References • Lahnwong, S et al. (2018). “Potential mechanisms responsible for cardioprotective effects of sodium–glucose co-transporter 2 inhibitors”. Cardiovascular Diabetology. 17(1):101. • Li, H., Shin, S. E., Seo, M. S., An, J. R., Choi, I. W., Jung, W. K., . . . Park, W. S. (2018). The anti-diabetic drug dapagliflozin induces vasodilation via activation of PKG and Kv channels. Life Sci, 197, 46-55. doi:10.1016/j.lfs.2018.01.032 • Long, A. N., & Dagogo-Jack, S. (2011). Comorbidities of diabetes and hypertension: mechanisms and approach to target organ protection. J Clin Hypertens (Greenwich), 13(4), 244-251. doi:10.1111/j.1751-7176.2011.00434.x • Marieb E. N., & Hoehn, K. (2019) Human Anatomy & Physiology. Eleventh ed. Hoboken New Jersey: Pearson Education. • Neal, B., Perkovic, V., Mahaffey, K. W., de Zeeuw, D., Fulcher, G., Erondu, N., . . . Matthews, D. R. (2017). Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N Engl J Med, 377(7), 644-657. doi:10.1056/NEJMoa1611925 • Rosenstock, J., Jelaska, A., Frappin, G., Salsali, A., Kim, G., Woerle, H. J., & Broedl, U. C. (2014). Improved glucose control with weight loss, lower insulin doses, and no increased hypoglycemia with empagliflozin added to titrated multiple daily injections of insulin in obese inadequately controlled type 2 diabetes. Diabetes Care, 37(7), 1815-1823. doi:10.2337/dc13-3055 • Seo, M. S., An, J. R., Kang, M., Heo, R., Park, H., Han, E. T., . . . Park, W. S. (2021). Mechanisms underlying the vasodilatory effects of canagliflozin in the rabbit thoracic aorta: Involvement of the SERCA pump and Kv channels. Life Sci, 287, 120101. doi:10.1016/j.lfs.2021.120101 • Seo, M. S., Jung, H. S., An, J. R., Kang, M., Heo, R., Li, H., . . . Park, W. S. (2020). Empagliflozin dilates the rabbit aorta by activating PKG and voltage-dependent K(+) channels. Toxicol Appl Pharmacol, 403, 115153. doi:10.1016/j.taap.2020.115153
  54. References • Tatsumi, Y.; Ohkubo, T. Hypertension with diabetes mellitus: significance from an epidemiological perspective for Japanese. Hypertens Res. 2017, 40(9), 795-806 • van Bommel EJM, et al. (2017). “SGLT2 Inhibition in the Diabetic Kidney—From Mechanisms to Clinical Outcome.” Clinical Journal of the American Society of Nephrology. 12(4):700-710. • Wan, N., Rahman, A., Hitomi, H., & Nishiyama, A. (2018). The Effects of Sodium-Glucose Cotransporter 2 Inhibitors on Sympathetic Nervous Activity. Front Endocrinol (Lausanne), 9, 421. doi:10.3389/fendo.2018.00421 • World Health Organization (WHO), 2017 • Wiviott, S. D., Raz, I., Bonaca, M. P., Mosenzon, O., Kato, E. T., Cahn, A., . . . Sabatine, M. S. (2019). Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med, 380(4), 347-357. doi:10.1056/NEJMoa1812389 • Yamazaki, D., Hitomi, H., & Nishiyama, A. (2018). Hypertension with diabetes mellitus complications. Hypertens Res, 41(3), 147-156. doi:10.1038/s41440-017-0008-y • Yaribeygi, H., Panahi, Y., Javadi, B., & Sahebkar, A. (2018). The Underlying Role of Oxidative Stress in Neurodegeneration: A Mechanistic Review. CNS Neurol Disord Drug Targets, 17(3), 207-215. doi:10.2174/1871527317666180425122557 • Zinman, B., Wanner, C., Lachin, J. M., Fitchett, D., Bluhmki, E., Hantel, S., Inzucchi, S. E. (2015). Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med, 373(22), 2117-2128. doi:10.1056/NEJMoa1504720

Hinweis der Redaktion

  1. Explain this from my recording
  2. Explain this from my recording
Anzeige