SlideShare a Scribd company logo
Suche senden
Hochladen
Einloggen
Registrieren
Good LTE MOTO.pdf
Melden
AhmadEmara1
Folgen
27. May 2023
•
0 gefällt mir
•
13 views
Good LTE MOTO.pdf
27. May 2023
•
0 gefällt mir
•
13 views
AhmadEmara1
Folgen
Melden
Technologie
Good LTE MOTOROLLA
Good LTE MOTO.pdf
1 von 441
Jetzt herunterladen
1
von
441
Recomendados
136280714-LTE100-Motorola-LTE-Training.pdf
MohamedShabana37
3 views
•
188 Folien
Ap51 xx reference_guide
Advantec Distribution
1.5K views
•
622 Folien
Ap51 xx reference_guide
Advantec Distribution
3.9K views
•
622 Folien
Motorola solutions wing 4.4 ap7131 n access point product reference guide (pa...
Advantec Distribution
629 views
•
592 Folien
Motorola solutions wing 4.4 ap7131 n access point product reference guide (pa...
Advantec Distribution
852 views
•
592 Folien
Motorola mtm5400 197380
ivan ion
635 views
•
80 Folien
Más contenido relacionado
Similar a Good LTE MOTO.pdf
Ap 51xx access point product reference guide
Advantec Distribution
1.9K views
•
724 Folien
Ap 51xx access point product reference guide
Advantec Distribution
1.7K views
•
724 Folien
Bx310x Product Specification
Frederic Petit
283 views
•
37 Folien
Service Manual.pdf
ManuelHernandez894642
7 views
•
198 Folien
MTX Series service manual 6881200C75-B.pdf
ViorelAldea3
221 views
•
170 Folien
Ap7181 product referenceguide
Advantec Distribution
2.4K views
•
572 Folien
Similar a Good LTE MOTO.pdf
(20)
Ap 51xx access point product reference guide
Advantec Distribution
•
1.9K views
Ap 51xx access point product reference guide
Advantec Distribution
•
1.7K views
Bx310x Product Specification
Frederic Petit
•
283 views
Service Manual.pdf
ManuelHernandez894642
•
7 views
MTX Series service manual 6881200C75-B.pdf
ViorelAldea3
•
221 views
Ap7181 product referenceguide
Advantec Distribution
•
2.4K views
Simocode dp = manual de parametrização e operação
confidencial
•
4K views
Motorola ap 7131 series access point product reference guide
Advantec Distribution
•
2.4K views
Motorola ap 7131 series access point product reference guide
Advantec Distribution
•
1.3K views
Rfs7000 series switch system reference guide
Advantec Distribution
•
11.7K views
Rfs7000 series switch system reference guide
Advantec Distribution
•
6.4K views
41713559 radio-access-network-protocols-and-signalling-analysis
Kevin Kang
•
6.7K views
Manual de PLC Micrologix 1500.pdf
SANTIAGO PABLO ALBERTO
•
174 views
PLC: Manual de usuario de PLC Micrologix1500.pdf
SantiagoPabloAlberto1
•
112 views
430ug slau049f
Eduardo Roque
•
337 views
Manual CLP Omron CP1H
Jorge Eduardo Uliana
•
2.8K views
Manual de PLC Micrologix 1500
SANTIAGO PABLO ALBERTO
•
527 views
Medrad Vistron CT Injection System - Service manual.pdf
joelKouakou5
•
32 views
Emf2102 ib _lecom-a-b-li aif module__v2-0__en
Charles Santos
•
1.5K views
Ap 51xx access point product reference guide (part no. 72 e-113664-01 rev. b)
Advantec Distribution
•
6.9K views
Último
GDSC Cloud Lead Presentation.pptx
AbhinavNautiyal8
62 views
•
13 Folien
Product Research Presentation-Maidy Veloso.pptx
MaidyVeloso
22 views
•
23 Folien
Product Listing Presentation-Maidy Veloso.pptx
MaidyVeloso
15 views
•
11 Folien
Accelerating Data Science through Feature Platform, Transformers and GenAI
FeatureByte
56 views
•
44 Folien
Uber Clone Script - Keys to Understanding the Ride Hailing Industry
eSiteWorld TechnoLabs Pvt. Ltd.
19 views
•
8 Folien
Product Research Presentation-Maidy Veloso.pptx
MaidyVeloso
35 views
•
23 Folien
Último
(20)
GDSC Cloud Lead Presentation.pptx
AbhinavNautiyal8
•
62 views
Product Research Presentation-Maidy Veloso.pptx
MaidyVeloso
•
22 views
Product Listing Presentation-Maidy Veloso.pptx
MaidyVeloso
•
15 views
Accelerating Data Science through Feature Platform, Transformers and GenAI
FeatureByte
•
56 views
Uber Clone Script - Keys to Understanding the Ride Hailing Industry
eSiteWorld TechnoLabs Pvt. Ltd.
•
19 views
Product Research Presentation-Maidy Veloso.pptx
MaidyVeloso
•
35 views
Solving today’s Traffic Problems with Sustainable Ride Hailing Solution
On Demand Clone
•
26 views
Common WordPress APIs_ Settings API
Jonathan Bossenger
•
0 views
Framing Few Shot Knowledge Graph Completion with Large Language Models
MODUL Technology GmbH
•
41 views
Safe Community Call #12.pdf
LornyPfeifer
•
24 views
Need for Speed: Removing speed bumps in API Projects
Łukasz Chruściel
•
103 views
The Flutter Job Market At The Moment
Ahmed Abu Eldahab
•
21 views
How is AI changing journalism? Strategic considerations for publishers and ne...
Damian Radcliffe
•
94 views
Mastering Automation Quality: Exploring UiPath's Test Suite for Seamless Test...
DianaGray10
•
24 views
"Stateful app as an efficient way to build dispatching for riders and drivers...
Fwdays
•
14 views
Future of Skills
Alison B. Lowndes
•
65 views
Empowering City Clerks
OnBoard
•
0 views
How to reduce expenses on monitoring
RomanKhavronenko
•
18 views
GDSC ZHCET Google Study Jams 23.pdf
AbhishekSingh313342
•
18 views
Salesforce Miami User Group Event - 3rd Quarter
SkyPlanner
•
0 views
Good LTE MOTO.pdf
1.
LTE300: LTE Radio
Link and EPS Signaling LTE300: LTE Radio Link and EPS Signaling FOR TRAINING PURPOSES ONLY - THIS MANUAL WILL NOT BE UPDATED © 2010 Motorola, Inc. 2010
2.
Copyrights The Motorola products
described in this document may include copyrighted Motorola computer programs stored in semiconductor memories or other media. Laws in the United States and other countries preserve for Motorola certain exclusive rights for copyright computer programs, including the exclusive right to copy or reproduce in any form the copyright computer program. Accordingly, any copyright Motorola computer programs contained in the Motorola products described in this document may not be copied or reproduced in any manner without the express written permission of Motorola. Furthermore, the purchase of Motorola products shall not be deemed to grant either directly or by implication, estoppel or otherwise, any license under the copyrights, patents or patent applications of Motorola, except for the rights that arise by operation of law in the sale of a product. Restrictions The software described in this document is the property of Motorola. It is furnished under a license agreement and may be used and/or disclosed only in accordance with the terms of the agreement. Software and documentation are copyright materials. Making unauthorized copies is prohibited by law. No part of the software or documentation may be reproduced, transmitted, transcribed, stored in a retrieval system, or translated into any language or computer language, in any form or by any means, without prior written permission of Motorola. Accuracy While reasonable efforts have been made to assure the accuracy of this document, Motorola assumes no liability resulting from any inaccuracies or omissions in this document, or from the use of the information obtained herein. Motorola reserves the right to make changes to any products described herein to improve reliability, function, or design, and reserves the right to revise this document and to make changes from time to time in content hereof with no obligation to notify any person of revisions or changes. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey license under its patent rights of others. Trademarks Motorola and the Motorola logo are registered trademarks of Motorola Inc. M-Cell™, Taskfinder™ and Intelligence Everywhere™ are trademarks of Motorola Inc. All other brands and corporate names are trademarks of their respective owners. CE Compliance The CE mark confirms Motorola Ltd’s statement of compliance with EU directives applicable to this product. Copies of the Declaration of Compliance and installation information in accordance with the requirements of EN50385 can be obtained from the local Motorola representative or the CNRC help desk, contact details below: Email: csc.emea@motorola.com Tel: +44 (0) 1793 565 444 © 2010 Motorola, Inc. LTE300: LTE Radio Link and EPS Signaling FOR TRAINING PURPOSES ONLY - THIS MANUAL WILL NOT BE UPDATED 2010
3.
Contents ■ ■ ■
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ LTE300: LTE Radio Link and EPS Signaling Chapter 1: Introduction to the 3GPP Evolved Packet System Course Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1- 3 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1- 3 Prerequisite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1- 3 Target Audience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1- 3 Conventions Used in this Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1- 3 Purpose of the Participant Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1- 3 References and Resources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1- 3 Expectations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1- 5 Practicalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1- 5 Course Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1- 6 Course Schedule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1- 6 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1- 8 Drivers for Long Term Evolution (LTE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-10 3rd Generation Partnership Project (3GPP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-12 GSM Network Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-14 Global System for Mobile Communication (GSM) . . . . . . . . . . . . . . . . . . . . . . . 1-14 General Packet Radio Service (GPRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-15 Enhanced Data Rates for GSM Evolution (EDGE) . . . . . . . . . . . . . . . . . . . . . . . 1-15 Universal Mobile Telecommunications System (UMTS) Release 99 . . . . . . . . . . . . . . . 1-16 UMTS Release 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-16 UMTS Release 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-17 UMTS Release 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-18 UMTS Release 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-19 UMTS Release 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-20 How Does LTE Fit into 3GPP Roadmap? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-21 EPS Network Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-22 EPS Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-22 E-UTRAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-24 E-UTRAN Air Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-24 evolved NodeB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-24 User Equipment (UE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-25 Evolved Packet Core (EPC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-28 Mobility Management Entity (MME) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-29 Serving Gateway (S-GW). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-30 Packet Data Network Gateway (P-GW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-30 Selected EPS Reference Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-31 Other EPC Network Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-32 Interworking with Other Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-34 Motorola LTE Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-36 eNodeB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-36 Wireless Broadband Controller (WBC) 700 . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-38 Wireless Broadband Core (WBC) 700 as S-GW . . . . . . . . . . . . . . . . . . . . . . . . 1-39 Wireless Broadband Core (WBC) 700 as P-GW . . . . . . . . . . . . . . . . . . . . . . . . 1-40 Wireless Broadband Manager (WBM) 700 . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-40 WBM 700 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-41 Motorola Support for GSM to LTE Migration/Overlay . . . . . . . . . . . . . . . . . . . . . . 1-41 Motorola Support for CDMA to LTE Overlay. . . . . . . . . . . . . . . . . . . . . . . . . . . 1-42 CDMA Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-42 Lesson Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-46 Memory Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-48 Chapter 2: LTE Air Interface – Physical Layer Basics Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2- 3 Radio Frequency Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2- 4 © 2010 Motorola, Inc. LTE300: LTE Radio Link and EPS Signaling FOR TRAINING PURPOSES ONLY - THIS MANUAL WILL NOT BE UPDATED i 2010
4.
Contents LTE300: LTE
Radio Link and EPS Signaling LTE Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2- 4 3GPP LTE Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2- 4 Channel Bandwidth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2- 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2- 6 Sampling Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2- 7 Orthogonal Frequency Division Multiplexing (OFDM) . . . . . . . . . . . . . . . . . . . . . . . . 2- 8 Non-Orthogonal Subcarriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2- 9 Orthogonal Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10 OFDM Signal Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-10 Subcarrier Transmitter Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-11 Subcarrier Receiver Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12 IFFT Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-13 FFT Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14 FFT Algorithm Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14 Scalable OFDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-15 Subcarrier Spacing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16 Symbol Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-17 Multipath Delay and Inter-Symbol Interference . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-18 Cyclic Prefix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-19 Subcarrier Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20 DC Subcarrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20 Guard Subcarrier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-21 Data Subcarriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-22 Reference Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-22 Occupied Subcarriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-23 LTE Frame Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-25 LTE Frame Length and Subcarriers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-26 Channel Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-27 Frequency Division Duplexing (FDD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-28 Time Division Duplexing (TDD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-29 FDD and Frame Type 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-30 Slots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-30 Resource Blocks and Resource Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-32 Physical and Virtual Resource Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-33 Reference Signals, Normal TCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-34 Reference Signals, Extended TCP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-35 Subframes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-37 FDD DL Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-38 FDD UL Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-39 TDD Operation and Frame Type 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-40 Frame Type 2 Special Subframe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-40 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-41 Frame Type 2 Configuration Exercise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-42 Modulation Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-44 Modulation and Signal Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-44 Measuring Signal Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-45 Estimating FDD Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-46 Lesson Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-48 Memory Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-49 Chapter 3: LTE Air Interface – PHY Layer Advanced Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3- 3 OFDMA Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3- 4 OFDMA Transmitter Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3- 4 OFDMA Receiver Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3- 4 OFDM Bandwidth Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3- 5 OFDMA Bandwidth Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3- 6 OFDMA Modulation Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3- 7 OFDMA Subcarrier Encoding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3- 8 OFDMA Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3- 9 Single Carrier-Frequency Division Multiple Access (SC-FDMA) . . . . . . . . . . . . . . . . . . 3-11 UE Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-11 SC-FDMA Transmitter Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-12 SC-FDMA Receiver Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-13 SC-FDMA Subcarrier Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-13 ii LTE300: LTE Radio Link and EPS Signaling FOR TRAINING PURPOSES ONLY - THIS MANUAL WILL NOT BE UPDATED © 2010 Motorola, Inc. 2010
5.
LTE300: LTE Radio
Link and EPS Signaling Contents SC-FDMA Subcarrier Encoding, Continued . . . . . . . . . . . . . . . . . . . . . . . . . . 3-15 SC-FDMA Precoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-16 Time Domain SC-FDMA Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-17 Moving the SC-FDMA Symbol in the Frequency Domain . . . . . . . . . . . . . . . . . . . . 3-18 Channel Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-19 Scrambling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-19 Forward Error Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-19 FEC Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-20 Rate Matching and HARQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-20 LTE Physical Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-22 Single Port Antenna . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-22 2 Port Antenna DL Reference Signals, Normal TCP . . . . . . . . . . . . . . . . . . . . . . . 3-23 2 Port Antenna DL Reference Signals, Extended TCP . . . . . . . . . . . . . . . . . . . . . . 3-24 Antenna Port Layering, 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-25 4 Port Antenna DL Reference Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-26 4 Port Antenna DL Reference Signals – continued . . . . . . . . . . . . . . . . . . . . . . . 3-27 Antenna Port Layering, 4 Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-27 Synchronization Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-28 Synchronization Signals, Frame Type 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-28 Synchronization Signals, Frame Type 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-28 UL Demodulation Reference Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-30 Sounding Reference Signals (SRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-31 Random Access Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-32 Lesson Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-34 Memory Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-35 Chapter 4: LTE Channels Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4- 3 Uu Interface Sublayers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4- 4 LTE Channel Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4- 5 SAE Bearer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4- 5 Radio Bearer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4- 5 Signaling Radio Bearer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4- 5 Logical Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4- 6 Transport Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4- 6 Physical Channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4- 6 Logical Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4- 7 Control Channels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4- 8 Traffic Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4- 8 Transport Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4- 9 Downlink Transport Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4- 9 Uplink Transport Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4- 9 Logical Channel to Transport Channel Mapping . . . . . . . . . . . . . . . . . . . . . . . . 4-10 Physical Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-11 Downlink Physical Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-11 Uplink Physical Channels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-12 Transport to Physical Channel Mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-12 Mapping DL Physical Channels to Subframes . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-13 Mapping PDSCH Subframes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-13 Resource Mapping for DL Control Channels . . . . . . . . . . . . . . . . . . . . . . . . . . 4-14 Mapping DL Control Channels to Subframes . . . . . . . . . . . . . . . . . . . . . . . . . . 4-15 PDCCH Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-16 PDCCH Scheduling Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-16 PDCCH MCS Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-18 PDCCH Transport Block Size Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-20 Discontinuous Reception (DRX) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-21 Broadcast Channel (PBCH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-21 System Information Blocks (SIBs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-23 Mapping UL Physical Channels to Subframes . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-24 Mapping PUSCH to Subframes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-24 Mapping PUCCH to Subframes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-24 Multiple PUCCH in One Subframe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-25 Random Access Channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-26 Lesson Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-28 Memory Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-29 © 2010 Motorola, Inc. LTE300: LTE Radio Link and EPS Signaling FOR TRAINING PURPOSES ONLY - THIS MANUAL WILL NOT BE UPDATED iii 2010
6.
Contents LTE300: LTE
Radio Link and EPS Signaling Chapter 5: Uu Interface Layer 2 Operation Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5- 3 TCP/IP Protocol Suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5- 4 Uu Interface Sublayers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5- 5 Radio Resource Control (RRC) Sublayer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5- 5 Packet Data Convergence Protocol (PDCP) Sublayer. . . . . . . . . . . . . . . . . . . . . . 5- 6 Radio Link Control (RLC) Sublayer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5- 6 Medium Access Control (MAC) Sublayer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5- 7 Uu Physical Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5- 9 Uu Sublayers and Service Access Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-10 Data Flow Through the Uu Sublayers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11 PDCP Headers and Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-12 PDCP Header for Data Packets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-13 PDCP Header for Control Packets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-14 PDCP and Header Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-15 TCP/IP Protocol Suite and Headers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-15 ROHC Compressor States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-16 Robust Header Compression (ROHC) Profiles . . . . . . . . . . . . . . . . . . . . . . . . . 5-16 ROHC Status PDU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-18 PDCP Status Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-19 Radio Link Control (RLC) Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-20 RLC Packet Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-20 Transport Block Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-21 RLC Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-22 Unacknowledged Mode RLC PDU – One Data Element. . . . . . . . . . . . . . . . . . . . . 5-22 Acknowledged Mode RLC PDU – One Data Element . . . . . . . . . . . . . . . . . . . . . . 5-24 RLC Concatenation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-25 Acknowledged Mode RLC PDU – Multiple Data Elements . . . . . . . . . . . . . . . . . . . 5-25 RLC Segmenting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-26 Acknowledged Mode RLC PDU – Data Segment . . . . . . . . . . . . . . . . . . . . . . . . 5-27 ARQ Error Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-29 LTE and TCP/IP Error Handling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-29 ARQ Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-29 RLC Status PDU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-31 MAC Headers and Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-33 Packet Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-33 MAC Subheader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-35 MAC Control Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-38 Random Access Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-40 Random Access Response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-40 Backoff Indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-41 Random Access Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-42 Backoff Indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-43 Random Access Response (RAR) Control Element Fields . . . . . . . . . . . . . . . . . . . 5-45 Random Access Response UL Grant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-46 HARQ Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-47 DL and UL Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-48 DL Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-48 UL Grant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-48 UE Cell-Based Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-48 Dynamic UL Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-49 Semi-Persistent Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-50 Buffer Status Report (BSR) Control Element . . . . . . . . . . . . . . . . . . . . . . . . . . 5-51 Buffer Size Values for Buffer Status Reports (BSRs) . . . . . . . . . . . . . . . . . . . . . . 5-53 Lesson Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-54 Memory Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-55 Chapter 6: EPC Protocol Overview Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6- 3 Selected EPS Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6- 4 EPS and TCP/IP Protocol Suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6- 5 Control Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6- 6 Generic Control Message Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6- 7 Control Packet Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6- 8 iv LTE300: LTE Radio Link and EPS Signaling FOR TRAINING PURPOSES ONLY - THIS MANUAL WILL NOT BE UPDATED © 2010 Motorola, Inc. 2010
7.
LTE300: LTE Radio
Link and EPS Signaling Contents 3–way Control Handshake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6- 9 User Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-10 RRC Functions and Signaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-11 RRC Signaling Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-12 RRC Signaling Messages and SRBs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-14 S1-MME Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-15 S1-MME Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-15 S1-MME Interface Control Protocol Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-16 S1 Application Protocol (S1AP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-17 S1AP Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-17 S1AP Signaling Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-18 Non-Access Stratum Signaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-20 UE to MME Control Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-20 Non-Access Stratum (NAS) Signaling Transport . . . . . . . . . . . . . . . . . . . . . . . . . . 6-21 Non Access Stratum (NAS) Signaling Messages . . . . . . . . . . . . . . . . . . . . . . . . . . 6-22 S1–U and S5 Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-24 S1-U Interface User Plane Protocol Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-25 S5-U User Plane Protocol Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-26 S5 Control Plane Protocol Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-27 Selected GTP-C Message Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-28 UE to P-GW User Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-29 S10 and S11 Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-30 S10 Interface Control Plane Protocol Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-31 S11 Interface Control Plane Protocol Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-32 S6a Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-33 S6a Control Plane Protocol Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-34 Diameter Messages for E-UTRAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-35 X2 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-36 X2 Interface Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-36 X2 Control Plane Protocol Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-37 X2 Application Protocol (X2AP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-38 X2AP Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-38 X2AP Signaling Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-39 X2 User Plane Protocol Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-40 Mobility and X2 Data Transport. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-41 Subscriber and Network Element Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-43 PLMN IDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-43 MME Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-43 Subscriber IDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-44 Selected EPS IDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-46 Lesson Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-47 Memory Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-48 Chapter 7: UE States and LTE/SAE Signaling Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7- 3 Radio Resource Control (RRC) States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7- 4 Radio Resource Control (RRC) – Idle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7- 4 Radio Resource Control (RRC) – Connect . . . . . . . . . . . . . . . . . . . . . . . . . . . 7- 4 Radio Resource Control (RRC) Connection. . . . . . . . . . . . . . . . . . . . . . . . . . . 7- 4 EPS Mobility Management (EMM) States. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7- 6 EPS Mobility Management (EMM) – Deregistered . . . . . . . . . . . . . . . . . . . . . . . 7- 6 EPS Mobility Management (EMM) – Registered . . . . . . . . . . . . . . . . . . . . . . . . 7- 6 EPS Connection Management (ECM) States . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7- 7 EPS Connection Management (ECM) – Idle . . . . . . . . . . . . . . . . . . . . . . . . . . 7- 7 EPS Connection Management (ECM) – Connect . . . . . . . . . . . . . . . . . . . . . . . . 7- 7 EPS Session Management (ESM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7- 8 ESM_INACTIVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7- 8 ESM_ACTIVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7- 8 Non Access Stratum (NAS) States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7- 9 EMM_DEREGISTERED, ECM_IDLE and ESM_INACTIVE . . . . . . . . . . . . . . . . . . . 7- 9 EMM_REGISTERED, ECM_IDLE and ESM_ACTIVE. . . . . . . . . . . . . . . . . . . . . . 7- 9 EMM_REGISTERED, ECM_CONNECT and ESM_ACTIVE. . . . . . . . . . . . . . . . . . . 7- 9 Context Information in the HSS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-10 Context Information in the P-GW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-11 Context Information in the UE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-12 © 2010 Motorola, Inc. LTE300: LTE Radio Link and EPS Signaling FOR TRAINING PURPOSES ONLY - THIS MANUAL WILL NOT BE UPDATED v 2010
8.
Contents LTE300: LTE
Radio Link and EPS Signaling Context Information in the MME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-13 Context Information in the S-GW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-14 Basic LTE Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-15 Attaching to the Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-16 NodeB Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-17 System Information (SI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-18 Cell Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-20 Cell Service Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-20 UE Service Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-20 Network Attach Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-22 Procedure Starting Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-22 Procedure Ending Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-22 Network Attach Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-23 UE Service Request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-27 Network Triggered Service Request . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-29 UE Triggered Detach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-31 Security in LTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-34 LTE Security Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-34 Function of LTE Security Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-35 Authentication and Key Agreement Process (AKA) . . . . . . . . . . . . . . . . . . . . . . . 7-35 Lesson Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-37 Memory Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-38 Chapter 8: Mobility Operation and Signaling Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8- 3 Mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8- 4 Physical Layer Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8- 5 UE Measurement Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8- 5 E-UTRAN Measurement Abilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8- 6 General Description of Idle Mode Procedures. . . . . . . . . . . . . . . . . . . . . . . . . . . . 8- 8 Closed Subscriber Group (CSG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8- 9 Cell Selection and Reselection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-10 Cell Selection Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-11 Service Types in Idle Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-11 Cell Selection Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-12 Cell Reselection Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-13 Reselection priorities handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-13 Intra-frequency Measurement Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-13 Non Intra-frequency Measurement Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-14 Mobility States of a UE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-14 Intra-frequency and Equal Priority Inter-Frequency Cell Reselection Criteria. . . . . . . . . . . 8-15 E-UTRAN Inter-frequency and Inter-RAT Cell Reselection Criteria . . . . . . . . . . . . . . . 8-15 Tracking Area (TA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-17 Tracking Area Identifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-17 Tracking Area Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-18 MME and S-GW Pools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-19 MME Pool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-19 MME Pool Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-19 Serving Gateway (S-GW) Service Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-19 S-GW Serving Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-20 Serving Gateway (S-GW) Pool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-20 Tracking Area Updates (TAUs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-21 Tracking Area Update Triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-21 Tracking Area Update (TAU) with no MME/S-GW Change . . . . . . . . . . . . . . . . . . . . . 8-22 Procedure Starting Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-22 Procedure Ending Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-22 Tracking Area Update (TAU) Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-23 TAU with MME and S-GW Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-26 Procedure Starting Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-26 Procedure Ending Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-26 TAU with MME and S-GW Change Procedure Steps . . . . . . . . . . . . . . . . . . . . . . 8-27 Connected Mode Mobility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-32 Inter-RAT Measurements in Connected Mode. . . . . . . . . . . . . . . . . . . . . . . . . . 8-33 Measurement Report Triggering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-33 eNodeB (X2) Active Handover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-36 vi LTE300: LTE Radio Link and EPS Signaling FOR TRAINING PURPOSES ONLY - THIS MANUAL WILL NOT BE UPDATED © 2010 Motorola, Inc. 2010
9.
LTE300: LTE Radio
Link and EPS Signaling Contents Procedure Starting Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-36 Procedure Ending Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-36 eNodeB (X2) Active Handover Procedure Steps . . . . . . . . . . . . . . . . . . . . . . . . 8-37 Active Handover with MME and S-GW Change . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-42 Procedure Starting Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-42 Procedure Ending Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-42 Direct vs. Indirect Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-43 Active Handover with MME and S-GW Change Procedure Steps . . . . . . . . . . . . . . . . 8-44 Lesson Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-52 Memory Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-53 Chapter 9: Services and Bearer QoS Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9- 3 Quality of Service (QoS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9- 4 QoS Functional Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9- 5 Bearer Protocol Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9- 6 Packet Forwarding and QoS Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9- 7 Quality of Service (QoS) / EPS Bearer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9- 8 End-to-End Bearer Service Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-10 QoS Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-11 Traffic Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-12 Selected EPS Services. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-13 Basic Broadband . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-13 VoIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-13 Video On Demand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-13 Push To Talk (PTT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-13 Basic Lawful Intercept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-13 Self Organizing Network (SON) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-14 IP Multimedia Subsystem (IMS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-15 Simplified IMS Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-15 Serving Call Session Control Function (S-CSCF) . . . . . . . . . . . . . . . . . . . . . . . . 9-16 Proxy Call Session Control Function (P-CSCF) . . . . . . . . . . . . . . . . . . . . . . . . . 9-16 Media Gateway Control Function (MGCF) . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-16 Media Gateway (MGW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-16 Application Servers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-16 IMS Signaling and Bearer Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-16 Signaling Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-17 VoIP to PSTN Bearer Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-17 VoIP to IP Device, Data, Other Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-17 Multimedia Broadcast/Multicast Service (MBMS) . . . . . . . . . . . . . . . . . . . . . . . . . . 9-18 MBMS Functional Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-18 Content Provider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-19 Broadcast Multicast Service Center (BM CS) . . . . . . . . . . . . . . . . . . . . . . . . . . 9-19 MBMS GW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-19 Multicell/Multicast Coordination Entity (MCE) . . . . . . . . . . . . . . . . . . . . . . . . . . 9-19 Lawful Intercept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-20 P-LIG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-20 MME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-20 S-GW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-20 P-GW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-20 HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-20 P-LIG Functions and Interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-21 Self-Organizing Network (SON) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-22 Motorola SON Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-23 Proposed Motorola SON Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-24 Lesson Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-26 Memory Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-27 Chapter 10: Inter-Technology Mobility Chapter 10 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10- 3 3GPP/3GPP2 Specifications Referenced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10- 4 What is Inter-RAT/Technology Mobility and Why is it Needed? . . . . . . . . . . . . . . . . . . . 10- 5 Cell Selection and Reselection in Idle Mode . . . . . . . . . . . . . . . . . . . . . . . . . . 10- 5 Mobility in Connected Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10- 6 © 2010 Motorola, Inc. LTE300: LTE Radio Link and EPS Signaling FOR TRAINING PURPOSES ONLY - THIS MANUAL WILL NOT BE UPDATED vii 2010
10.
Contents LTE300: LTE
Radio Link and EPS Signaling Inter-RAT Mobility States Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10- 8 E-UTRA states and inter RAT mobility procedures, 3GPP . . . . . . . . . . . . . . . . . . . . 10- 8 Mobility procedures between E-UTRA and cdma2000 . . . . . . . . . . . . . . . . . . . . . 10- 9 Inter-RAT Handover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-10 E-UTRAN to UTRAN Iu mode Inter RAT handover . . . . . . . . . . . . . . . . . . . . . . . 10-10 E-UTRAN to GERAN A/Gb Mode Inter RAT Handover . . . . . . . . . . . . . . . . . . . . . 10-14 Circuit Switch Fallback in EPS for 3GPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-19 Functional Entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-20 Mobility Management. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-20 Mobile Calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-22 EPS and CDMA Inter-Technology Working . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-24 Solutions to Inter-Technology Working . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-24 eHRPD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-25 Architecture for Optimized Handovers between E-UTRAN Access and cdma2000 HRPD Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-26 Overview of Handover Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-27 Optimized Active Handover: E-UTRAN Access to cdma2000 HRPD Access . . . . . . . . . . 10-28 Single Radio Voice Call Continuity (SRVCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-34 E-UTRAN and 3GPP2 1xCS SRVCC Concept . . . . . . . . . . . . . . . . . . . . . . . . . 10-34 E-UTRAN and 3GPP2 1xCS SRVCC Architecture . . . . . . . . . . . . . . . . . . . . . . . 10-34 SRVCC from E-UTRAN to 3GPP2 1xCS Procedure and Flow. . . . . . . . . . . . . . . . . . 10-36 Lesson Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-40 Memory Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-41 viii LTE300: LTE Radio Link and EPS Signaling FOR TRAINING PURPOSES ONLY - THIS MANUAL WILL NOT BE UPDATED © 2010 Motorola, Inc. 2010
11.
About This Manual
Version 2 Rev 4 LTE300: LTE Radio Link and EPS Signaling ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ © 2010 Motorola, Inc. LTE300: LTE Radio Link and EPS Signaling FOR TRAINING PURPOSES ONLY - THIS MANUAL WILL NOT BE UPDATED 1 2010
12.
Version 2 Rev
4 This page intentionally left blank. 2 LTE300: LTE Radio Link and EPS Signaling FOR TRAINING PURPOSES ONLY - THIS MANUAL WILL NOT BE UPDATED © 2010 Motorola, Inc. 2010
13.
Introduction to the
3GPP Evolved Packet System Version 2 Rev 4 Chapter 1 Introduction to the 3GPP Evolved Packet System © 2010 Motorola, Inc. LTE300: LTE Radio Link and EPS Signaling FOR TRAINING PURPOSES ONLY - THIS MANUAL WILL NOT BE UPDATED 1-1 2010
14.
Version 2 Rev
4 Introduction to the 3GPP Evolved Packet System This page intentionally left blank. 1-2 LTE300: LTE Radio Link and EPS Signaling FOR TRAINING PURPOSES ONLY - THIS MANUAL WILL NOT BE UPDATED © 2010 Motorola, Inc. 2010
15.
Course Introduction Version
2 Rev 4 Course Introduction Preface The course is designed to provide an in depth technical introduction to the Evolved Packet System (EPS), including the Long Term Evolution (LTE) and Evolved Packet Core (EPC) infrastructure, operations, and signaling. In this course, we will focus on the LTE Uu (air) interface and LTE/SAE signaling and operation. Prerequisite Students should attend LTE100 Introduction to LTE before attending this course. Target Audience The primary audience of this course is Motorola and customer RF Engineers, Network Planning Engineers, and Senior Technical Staff. A secondary audience includes anyone who requires a detailed understanding of LTE/SAE concepts, operation, and signaling. Conventions Used in this Guide Throughout this guide, you will find icons representing various types of information. These icons serve as reminders of their associated text. Table 1-1 Indicates a Note or additional information that might be helpful to you. Indicates If/then situations. These are found in many of the labs. LTE 300 Telecoms Indicates a list of References that provide additional information about a topic. Indicates a Warning or Caution. These generally flag a service affecting operation. Indicates a Lab that provides the opportunity for you to exercise what you’ve learned. Indicates a Memory Point. These provide a chance for the candidate to reflect on the training and if necessary ask a relevant question. Purpose of the Participant Guide The Participant Guide contains the content that the instructor will cover during the course. Given the interactive nature of instructor-led courses, this guide may not contain everything the instructor discusses. Since the book is yours to take with you, feel free to make notes in it. You can also use it to document key points, questions you’d like to pose and the answer(s), and if you are inclined, you can doodle in it. While the Participant Guide can act as reference when you return to work, keep in mind that the information does change. If you require technical references to the information presented in this Participant Guide, always use the most current versions of the pertinent technical documentation. © 2010 Motorola, Inc. LTE300: LTE Radio Link and EPS Signaling FOR TRAINING PURPOSES ONLY - THIS MANUAL WILL NOT BE UPDATED 1-3 2010
16.
Version 2 Rev
4 Course Introduction Course Introduction References and Resources The Participant Guide is not a technical book in the traditional, analytical sense. The material and information contained here is subject to change. The following references were used in the development of this course and should be used for most current information: Table 1-2 Trade Press Books • Dahlman, Parkvall, Skolk, Beming; 3G Evolution: HSPA and LTE for Mobile Broadband, Ac Press, 2nd edition 2008 • Lescuyer, Lucidarme; Evolved Packet System (EPS): The LTE and SAE Evolution of 3G U John Wiley and Sons, 2008 LTE 300 Telecoms 3GPP Technical Specifications (www.3gpp.org) • 23.122 NAS Procedures for Idle MS • 23.401 GPRS Enhancements for E-UTRAN Access • 23.402 Architecture Enhancements for non-3GPP Access • 24.301 NAS Protocol for EPS • 36.201 LTE Physical Layer, General Description • 36.211 Physical Channels and Modulation • 36.212 Multiplexing and Channel Coding • 36.213 Physical Layer Procedures • 36.214 Physical Layer Measurements • 36.300 E-UTRA/E-UTRAN Overall description; Stage 2 • 36.321 Medium Access Control (MAC) Protocol Specification • 36.322 Radio Link Control (RLC) Protocol Specification • 36.323 Packet Data Convergence Protocol (PDCP) Specification • 36.331 Radio Resource Control (RRC) Protocol Specification • 36.410 S1 General Aspects and Principles • 36.411 S1 Layer 1 • 36.412 S1 Signaling Transport • 36.413 S1 Application Program (S1AP) • 36.414 S1 Data Transport • 36.420 X2 General Aspects and Principles • 36.421 X2 Layer 1 • 36.422 X2 Signaling Transport • 36.423 X2 Application Program (S1AP) • 36.424 X2 Data Transport MyNetworkSupport Web Page The on-line support allows customers to open cases trouble tickets, open RMA’s to send boards back for repair, and download technical documentation. 1-4 LTE300: LTE Radio Link and EPS Signaling FOR TRAINING PURPOSES ONLY - THIS MANUAL WILL NOT BE UPDATED © 2010 Motorola, Inc. 2010
17.
Course Introduction Version
2 Rev 4 Course Introduction Figure 1-1 The URLof the customer support web page is: h! ps://mynetworksupport.motorola.com This is a secure web site. Apassword request form can be downloaded from this page. The URLof the customer support web page is: h! ps://mynetworksupport.motorola.com This is a secure web site. Apassword request form can be downloaded from this p pag ge. The URLof the customer support web page is: h! ps://mynetworksupport.motorola.com This is a secure web site. Apassword request form can be downloaded from this page. As LTE products continue to evolve, we will make a continued effort to keep this material up-to-date. All suggestions and recommendations are welcomed. Please submit your recommended changes to the instructor. Thanks for all your constructive feedback. Expectations The activities in this course will require individual and team participation and we ask you to: • Ask questions • Share openly • Return promptly from lunch and breaks • Avoid distracting others by turning off cell phones or setting them to voicemail or vibrate • Respect others • Have fun!!! Practicalities Many participants who attend this course may not be familiar with this location’s facilities or the surrounding area. To ensure your comfort during this course, please make notes on the following helpful information. Locations Restrooms close to classroom: _______________________________________________________ Restroom locations in building: _______________________________________________________ Lunch facilities in building: __________________________________________________________ Lunch facilities nearby: _____________________________________________________________ After hours activities Where to eat?.........What to see?.........What to do?........ During class breaks, ask the instructor and other participants about local sites that may be of interest. Jot down the information below. © 2010 Motorola, Inc. LTE300: LTE Radio Link and EPS Signaling FOR TRAINING PURPOSES ONLY - THIS MANUAL WILL NOT BE UPDATED 1-5 2010
18.
Version 2 Rev
4 Course Introduction Course Introduction Course Objectives • Describe the EPS architecture and functional elements • List LTE performance goals • List Motorola LTE/SAE products • Describe radio system components, operation and impairments • Describe the LTE (Uu) air interface Physical Layer characteristics and operation • Describe Uu scheduling and bandwidth management • List the LTE air (Uu) interface Layer 2 functions and channels • Describe the LTE air (Uu) interface Layer 2 headers and operation • Describe UE states, including connected, active, and idle state • Describe LTE and SAE signaling, including network entry and exit, data transfer, and mobility between eNodeBs, MMEs, and SGWs • List common services and QoS requirements • Describe various inter-RAT interworking scenarios Course Schedule Table 1-3 Day 1 Course Introduction Lesson 1 – Introduction to the 3GPP Evolved Packet System (EPS) Lesson 2 – LTE Air Interface – Physical Layer Basics Day 2 Lesson 3 – LTE Air Interface – Physical Layer Advanced Lesson 4 – LTE Air (Uu) Interface Layer 2 Operation Day 3 Lesson 5 – LTE Channels Lesson 6 – LTE/SAE Interfaces and Protocol Stacks Day 4 Lesson 7 – UE States and LTE/SAE Signaling Lesson 8 – Mobility Operation and Signaling Day 5 Lesson 9 – Services and Bearer QoS Lesson 10 – Inter-RAT interworking 1-6 LTE300: LTE Radio Link and EPS Signaling FOR TRAINING PURPOSES ONLY - THIS MANUAL WILL NOT BE UPDATED © 2010 Motorola, Inc. 2010
19.
Version 2 Rev
4 Course Introduction This page intentionally left blank. © 2010 Motorola, Inc. LTE300: LTE Radio Link and EPS Signaling FOR TRAINING PURPOSES ONLY - THIS MANUAL WILL NOT BE UPDATED 1-7 2010
20.
Version 2 Rev
4 Objectives Objectives At the completion of this lesson, you’ll be able to: • Explain where LTE fits in the evolution of GSM/UMTS networks • Describe the changes in network architecture introduced by LTE • Describe the functional elements that comprise an EPS network • List the performance goals of LTE • Describe Motorola’s LTE network architecture Figure 1-2 Lesson Context 1-8 LTE300: LTE Radio Link and EPS Signaling FOR TRAINING PURPOSES ONLY - THIS MANUAL WILL NOT BE UPDATED © 2010 Motorola, Inc. 2010
21.
Version 2 Rev
4 Objectives This page intentionally left blank. © 2010 Motorola, Inc. LTE300: LTE Radio Link and EPS Signaling FOR TRAINING PURPOSES ONLY - THIS MANUAL WILL NOT BE UPDATED 1-9 2010
22.
Version 2 Rev
4 Drivers for Long Term Evolution (LTE) Drivers for Long Term Evolution (LTE) Figure 1-3 Drivers for Long Term Evolution (LTE) Over the last several decades, technological advancements have had a huge impact on the telecom industry as well as the consumer. Consumers are moving from the traditional “fixed” wireline or mobile experience toward fixed/mobile convergence, an expectation that services and information are available anytime, anywhere. This expectation has forced changes in carrier business plans and services: fixed-line operators are expanding their boundaries outside the home or business, while mobile operators are moving into the fixed line voice and broadband business. The goal of both is to capture maximum revenue while trying to meet the customer’s needs with what is referred to as Quadruple Play: TV, Internet, Telephone, and Mobility. Carrier success depends on providing Quadruple Play services with a low cost per bit, higher (broadband) capacity, increased flexibility, and with global appeal. To that end, the 3rd Generation Partnership Project (3GPP) has drafted a set of standards for the next generation mobile broadband network: Long Term Evolution (LTE). 1-10 LTE300: LTE Radio Link and EPS Signaling FOR TRAINING PURPOSES ONLY - THIS MANUAL WILL NOT BE UPDATED © 2010 Motorola, Inc. 2010
23.
Version 2 Rev
4 Drivers for Long Term Evolution (LTE) This page intentionally left blank. © 2010 Motorola, Inc. LTE300: LTE Radio Link and EPS Signaling FOR TRAINING PURPOSES ONLY - THIS MANUAL WILL NOT BE UPDATED 1-11 2010
24.
Version 2 Rev
4 3rd Generation Partnership Project (3GPP) 3rd Generation Partnership Project (3GPP) Figure 1-4 3GPP Standards Organization Formalized in December 1998, the 3rd Generation Partnership Project (3GPP) is a group of telecommunications associations whose main goal is to make globally applicable specifications for Third Generation (3G) mobile phone systems. 3GPP is responsible for developing global standards for Global System for Mobile Communication (GSM) and all of its subsequent releases; General Packet Radio Service (GPRS), Enhanced Data rates for GSM Evolution (EDGE), High-Speed Downlink Packet Access (HSDPA), High-Speed Uplink Packet Access (HSUPA), IP Multimedia Subsystem (IMS), Multimedia Broadcast/Multicast Service (MBMS), and Long Term Evolution (LTE). 1-12 LTE300: LTE Radio Link and EPS Signaling FOR TRAINING PURPOSES ONLY - THIS MANUAL WILL NOT BE UPDATED © 2010 Motorola, Inc. 2010
25.
Version 2 Rev
4 3rd Generation Partnership Project (3GPP) This page intentionally left blank. © 2010 Motorola, Inc. LTE300: LTE Radio Link and EPS Signaling FOR TRAINING PURPOSES ONLY - THIS MANUAL WILL NOT BE UPDATED 1-13 2010
26.
Version 2 Rev
4 GSM Network Evolution GSM Network Evolution Figure 1-5 GSM Network Evolution To understand where LTE fits into the GSM/UMTS network, let’s look at the evolution of GSM and UMTS networks. The following section is a brief review of GSM network evolution. Talk with your instructor during breaks, before, or after class if you need further explanation. Global System for Mobile Communication (GSM) Figure 1-6 GSM – The Starting Point The Global System for Mobile Communication (GSM) is the most popular 2G standard for mobile communication. It is estimated that over 80% of the global market uses GSM. Standardized in two phases in 1992-1995, GSM initially supported circuit-switched voice services, circuit-switched data at 2.4, 4.8, and 9.6 kbps, and introduced Short Message Service (SMS). 1-14 LTE300: LTE Radio Link and EPS Signaling FOR TRAINING PURPOSES ONLY - THIS MANUAL WILL NOT BE UPDATED © 2010 Motorola, Inc. 2010
27.
GSM Network Evolution
Version 2 Rev 4 GSM Network Evolution GSM Release 96 introduced higher speed circuit-switched data rates. The 2G GSM network uses a 200 kHz air interface, and a Circuit Switched (CS) domain for digital voice/signaling. The CS domain consists of one or more Mobile Switching Centers (MSC) and (possibly) a Gateway Mobile Switching Center (GMSC) to interconnect with the Public Switched Telephone Network (PSTN). The Home Location Register (HLR) contains the subscriber records, including authentication information and services associated with a subscriber. The graphic shows an extremely simplified view of GSM, ignoring critical functions such as Visited Location Register (VLR) and service architectures. General Packet Radio Service (GPRS) Figure 1-7 GPRS/EDGE Introduced in GSM Release 97, General Packet Radio Service (GPRS) is a 2.5 G packet data network that shares the radio access network with GSM but has a separate Packet Switched (PS) core network. In a GSM/GPRS network, data traffic is forwarded through the PS domain, while voice and SMS traffic goes through the CS domain. GPRS consists of Serving GPRS Support Nodes (SGSN) and Gateway GPRS Support Nodes (GGSN). SGSNs and GGSNs support IP mobility tunnels based on the GPRS Tunneling Protocol (GTP). GPRS has theoretical data rates between 56 and 114 kbps. Enhanced Data Rates for GSM Evolution (EDGE) Introduced in Release 99, Enhanced Data Rates for GSM Evolution (EDGE) provides coding and modulation improvements to GPRS that support minimum 3G data rates from 236 kbps to 473 kbps depending on coding and modulation techniques used. EDGE does not introduce any changes to the network other than coding and modulation enhancements to the air interface to increase data speed. © 2010 Motorola, Inc. LTE300: LTE Radio Link and EPS Signaling FOR TRAINING PURPOSES ONLY - THIS MANUAL WILL NOT BE UPDATED 1-15 2010
28.
Version 2 Rev
4 GSM Network Evolution GSM Network Evolution Universal Mobile Telecommunications System (UMTS) Release 99 Figure 1-8 UMTS Release 99 Introduced in Release 99, Universal Mobile Telecommunications System (UMTS) was designed as the 3G replacement/evolution of GSM/GPRS. UMTS changes the air interface from 200 kHz Time Division Multiple Access (TDMA) to 5 MHz Wideband Code Division Multiple Access (WCDMA). Also, the BTS and BSC were replaced by the NodeB and Radio Network Controller . (RNC) While UMTS was designed to coexist with GSM/GPRS, each new 3GPP release from this point forward is referred to as UMTS Release n. UMTS Release 4 Figure 1-9 UMTS Release 4 1-16 LTE300: LTE Radio Link and EPS Signaling FOR TRAINING PURPOSES ONLY - THIS MANUAL WILL NOT BE UPDATED © 2010 Motorola, Inc. 2010
29.
GSM Network Evolution
Version 2 Rev 4 GSM Network Evolution Introduced in 2000-1, UMTS Release 4 provided a more efficient circuit-switched domain by replacing the MSC with an MSC Server and Media Gateways (MGW). This upgrade to the CS domain dramatically reduced capital and upgrade costs, as well as reducing operational expenses for CS domain trunk circuits. Essentially, a MGW converts PCM voice samples to packet voice, and forwards the voice packets to a terminating MGW over a data circuit. The terminating MGW converts the voice packets back to PCM voice samples, and forwards the voice stream to the PSTN. The MSC Server, also called a soft-switch, controls the MGWs, manages call setup, and handles all signaling requirements. Although the MGW was intended to forward voice packets over IP, Bearer Independent Call Control (BICC) allowed carriers to also use other packet data technologies such as ATM. UMTS R4 does not affect data rates, services, or RAN or CS signaling techniques. The MSC Server and MGWs emulate a traditional MSC. With this release, 3GPP abandoned the “annual” release format (R97, R98, etc.) and began numbering releases consecutively from 4. UMTS Release 5 Figure 1-10 UMTS Release 5 UMTS Release 5 (R5) introduced big changes to the UMTS network. Beginning in R5, all traffic is transported via the PS domain using IP. Because all traffic is now forwarded by the PS domain, Release 5 removes the Circuit Switched domain from the network architecture. Critical circuit switched functions, such as voice call setup, interconnecting with the PSTN, and so on, are performed by the IP Multimedia Subsystem (IMS). An R5 compliant UE must communicate with IMS using Session Initiation Protocol (SIP) signaling, and generate and receive voice over IP traffic within the subscriber device. UMTS R5 also introduced High Speed Downlink Packet Access (HSDPA); HSDPA increased peak downlink throughput to 14.4 Mbps. © 2010 Motorola, Inc. LTE300: LTE Radio Link and EPS Signaling FOR TRAINING PURPOSES ONLY - THIS MANUAL WILL NOT BE UPDATED 1-17 2010
30.
Version 2 Rev
4 GSM Network Evolution GSM Network Evolution UMTS Release 6 Figure 1-11 UMTS Release 6 With the introduction of High Speed Uplink Packet Access (HSUPA), UMTS Release 6 increased the peak uplink speed to 5.76 Mbps. UMTS R6 also enhanced IMS, and introduced Multimedia Broadcast Multicast Services (MBMS) to support broadcast services such as mobile TV. MBMS offers broadcast and/or multicast, unidirectional, point-to-multipoint, multimedia flows. Broadcast and multicast are two completely different services. A broadcast service is transmitted to all user devices which have the service activated in their equipment. A service provider does not attempt to charge for or limit the broadcast transmission. In contrast, a multicast service is subscription-based. A UE must have subscribed to the service and explicitly joined the multicast group to receive the multicast transmission. A service provider may track, control, and charge for the multicast transmission. Examples of possible MBMS applications include audio/video streaming, audio/video downloading, file downloading, and text/image distribution. 1-18 LTE300: LTE Radio Link and EPS Signaling FOR TRAINING PURPOSES ONLY - THIS MANUAL WILL NOT BE UPDATED © 2010 Motorola, Inc. 2010
31.
GSM Network Evolution
Version 2 Rev 4 GSM Network Evolution UMTS Release 7 Figure 1-12 UMTS Release 7 Along with enhancing IMS, UMTS Release 7 introduced Multiple Input Multiple Output (MIMO) antenna technology and High Speed Packet Access+ (HSPA+). MIMO antenna systems significantly improve radio network throughput and coverage. HSPA+ with 2X2 MIMO increases uplink speeds to 11.5 Mbps and downlink speeds to 22 Mbps. © 2010 Motorola, Inc. LTE300: LTE Radio Link and EPS Signaling FOR TRAINING PURPOSES ONLY - THIS MANUAL WILL NOT BE UPDATED 1-19 2010
32.
Version 2 Rev
4 GSM Network Evolution GSM Network Evolution UMTS Release 8 Figure 1-13 UMTS Release 8 UMTS Release 8 introduced the Evolved Universal Terrestrial Radio Access Network (E-UTRAN) and the Evolved Packet Core (EPC). To reduce latency, the E-UTRAN collapsed the UMTS NodeB and RNC functionality into the evolved NodeB (eNodeB). In addition to 5 MHz, the E-UTRAN radio access network supports 1.4, 3, 10, 15, and 20 MHz channels. R8 with 2x2 MIMO and 64QAM modulation increases UL speeds to 23 Mbps, and DL speeds to 42 Mbps. In the Evolved Packet Core, the SGSN and GGSN are replaced by the Serving Gateway (S-GW) and Packet Data Network Gateway (P-GW). The Mobility Management Entity (MME) manages UE mobility and paging functions. 1-20 LTE300: LTE Radio Link and EPS Signaling FOR TRAINING PURPOSES ONLY - THIS MANUAL WILL NOT BE UPDATED © 2010 Motorola, Inc. 2010
33.
GSM Network Evolution
Version 2 Rev 4 GSM Network Evolution How Does LTE Fit into 3GPP Roadmap? Figure 1-14 How Does LTE Fit into 3GPP Roadmap? LTE can evolve directly from UMTS R5, R6 or R7. If using dual mode UEs or other overlay techniques, LTE can interoperate with GSM/GPRS. © 2010 Motorola, Inc. LTE300: LTE Radio Link and EPS Signaling FOR TRAINING PURPOSES ONLY - THIS MANUAL WILL NOT BE UPDATED 1-21 2010
34.
Version 2 Rev
4 EPS Network Elements EPS Network Elements EPS Network Architecture Figure 1-15 EPS Network Architecture The UMTS Release 8 architecture consists of the EPC, E-UTRAN, and user entities (UEs). The Evolved Universal Terrestrial Radio Access Network (E-UTRAN) is defined by UMTS Release 8 as Long Term Evolution (LTE). System Architecture Evolution (SAE) defines the Evolved Packet Core (EPC). The EPC is an all IP, packet switched network. The Evolved Packet System (EPS) includes the EPC, LTE, and the end user terminals called User Entities or User Equipment (UE). 1-22 LTE300: LTE Radio Link and EPS Signaling FOR TRAINING PURPOSES ONLY - THIS MANUAL WILL NOT BE UPDATED © 2010 Motorola, Inc. 2010
35.
Version 2 Rev
4 EPS Network Elements This page intentionally left blank. © 2010 Motorola, Inc. LTE300: LTE Radio Link and EPS Signaling FOR TRAINING PURPOSES ONLY - THIS MANUAL WILL NOT BE UPDATED 1-23 2010
36.
Version 2 Rev
4 E-UTRAN E-UTRAN E-UTRAN Air Interface Figure 1-16 E-UTRAN Air Interface E-UTRAN air interface changes include new Physical Layer multiplexing, FDD and TDD duplexing, and Multiple Input Multiple Output (MIMO) antennas The LTE air interface uses Orthogonal Frequency Division Multiple Access (OFDMA) in the downlink and Single Carrier Frequency Division Multiple Access (SC-FDMA) in the uplink. It also supports both Frequency Division Duplex (FDD) and Time Division Duplex (TDD) schemes. MIMO antenna systems are also now fully employed. MIMO uses multiple antennas at both the transmitter and receiver, improving the network efficiency. LTE 300 Telecoms OFDMA, SC-FDMA, TDD, FDD, and MIMO are discussed in greater detail in later lessons. 1-24 LTE300: LTE Radio Link and EPS Signaling FOR TRAINING PURPOSES ONLY - THIS MANUAL WILL NOT BE UPDATED © 2010 Motorola, Inc. 2010
37.
E-UTRAN Version 2
Rev 4 E-UTRAN evolved NodeB Figure 1-17 evolved NodeB The eNodeB is responsible for the following functions: • Radio Resource Management – assignment, reassignment, and release of radio resources • Routing user plane data to/from the S-GW • Scheduling and transmission of paging messages received from the MME • Scheduling and transmission of system broadcast information • Measurement gathering for use in scheduling and mobility decisions • Radio Protocol Support • Non-Access Stratum (NAS) signaling • EPC and RRC bearer activation/deactivation • MME selection for handovers with MME change LTE 300 Telecoms 3GPP TS 36.104 Base Station (BS) Radio Transmission and Reception © 2010 Motorola, Inc. LTE300: LTE Radio Link and EPS Signaling FOR TRAINING PURPOSES ONLY - THIS MANUAL WILL NOT BE UPDATED 1-25 2010
38.
Version 2 Rev
4 E-UTRAN E-UTRAN User Equipment (UE) Figure 1-18 User Equipment (UE) The User Equipment (UE) must perform the following functions: • Signal network entry and other state changes • Report its Tracking Area location while in idle mode • Request UL grants to transmit data while in active mode • Act as PDCP, RLC, MAC, and PHY “client”. The eNodeB controls the air interface and all DL and UL scheduling. The UE reacts to instructions from the eNodeB. LTE 300 Telecoms 3GPP TS 36.101 User Equipment (UE) Radio Transmission and Reception 1-26 LTE300: LTE Radio Link and EPS Signaling FOR TRAINING PURPOSES ONLY - THIS MANUAL WILL NOT BE UPDATED © 2010 Motorola, Inc. 2010
39.
Version 2 Rev
4 E-UTRAN This page intentionally left blank. © 2010 Motorola, Inc. LTE300: LTE Radio Link and EPS Signaling FOR TRAINING PURPOSES ONLY - THIS MANUAL WILL NOT BE UPDATED 1-27 2010
40.
Version 2 Rev
4 Evolved Packet Core (EPC) Evolved Packet Core (EPC) Figure 1-19 Evolved Packet Core (EPC) The Evolved Packet Core network is an all IP, packet switched network. The EPC consists of: • Mobility Management Entity (MME) – key control node for the LTE access network • Serving Gateway (S-GW) – routes and forwards data packets • Packet Data Network Gateway (P-GW) – provides connectivity to external packet data networks 1-28 LTE300: LTE Radio Link and EPS Signaling FOR TRAINING PURPOSES ONLY - THIS MANUAL WILL NOT BE UPDATED © 2010 Motorola, Inc. 2010
41.
Evolved Packet Core
(EPC) Version 2 Rev 4 Evolved Packet Core (EPC) Mobility Management Entity (MME) Figure 1-20 Mobility Management Entity (MME) The MME helps authenticate UEs onto the system, tracks active and idle UEs, and pages UEs when triggered by the arrival of new data. When a UE attaches to an eNodeB, the eNodeB selects an MME. The MME in turn selects the Serving Gateway (S-GW) and the Packet Data Network Gateway (P-GW) that will handle the user’s bearer packets. Other MME functions include: • Non-Access Stratum (NAS) signaling • Authentication (in conjunction with the Home Subscriber Server – HSS) • Idle State Mobility Handling • SAE (EPC) Bearer Control • Lawful Intercept © 2010 Motorola, Inc. LTE300: LTE Radio Link and EPS Signaling FOR TRAINING PURPOSES ONLY - THIS MANUAL WILL NOT BE UPDATED 1-29 2010
42.
Version 2 Rev
4 Evolved Packet Core (EPC) Evolved Packet Core (EPC) Serving Gateway (S-GW) Figure 1-21 Serving Gateway (S-GW) The S-GW routes and forwards user data packets, terminates downlink data for idle UEs, and is also the local mobility anchor for inter-eNodeB handovers. The mobility anchor function applies to both a UE in the E-UTRAN and other 2G/3G technologies. The S-GW also maintains a buffer for each idle UE and holds the packets until the UE is paged and an RF channel is re-established. For each UE associated with the EPC, at a given point of time, there is a single S-GW. Other S-GW functions include: • Policy enforcement point • IP backhaul admission control • IP backhaul congestion control • IP backhaul QoS • Core IP QoS • Billing records • Lawful intercept • Call trace 1-30 LTE300: LTE Radio Link and EPS Signaling FOR TRAINING PURPOSES ONLY - THIS MANUAL WILL NOT BE UPDATED © 2010 Motorola, Inc. 2010
43.
Evolved Packet Core
(EPC) Version 2 Rev 4 Evolved Packet Core (EPC) Packet Data Network Gateway (P-GW) Figure 1-22 Packet Data Network Gateway (P-GW) The P-GW is responsible for the UE IP address assignment and provides UE connectivity to the external packet data networks (operator’s network and Internet). The P-GW provides charging (billing) support, packet filtering/screening, policy enforcement, and lawful intercept. If a UE is accessing multiple packet data networks, it may have connectivity to more than one (1) P-GW. Other P-GW functions include: • Mobile IP (MIP) anchor point across E-UTRAN and non 3GPP technologies (i.e. WiMAX, 3GPP2, WiFi, etc.) • DHCP server and client • Transport level packet marking in uplink and downlink • Transfer of QoS policy and charging rules from Policy and Charging Rules Function (PCRF) to the Policy and Charging Enforcement Function (PCEF) within the P-GW • UL and DL bearer binding • UL bearer binding verification © 2010 Motorola, Inc. LTE300: LTE Radio Link and EPS Signaling FOR TRAINING PURPOSES ONLY - THIS MANUAL WILL NOT BE UPDATED 1-31 2010
44.
Version 2 Rev
4 Evolved Packet Core (EPC) Evolved Packet Core (EPC) Selected EPS Reference Points Figure 1-23 Selected EPS Reference Points • S1-MME – Supports the control plane between E-UTRAN and MME • S1-U – Supports the bearer plane between E-UTRAN and S-GW for the per-user tunneling and inter-eNodeB path switching during handover • S5 – Supports the bearer plane between an S-GW and P-GW in the same network • S8 – Supports the bearer plane between an S-GW and P-GW in different networks • S10 – Supports transfer of context and other information between MMEs • S11 – Supports information transfer between MME and S-GW for session management functions • SGi – Connects the P-GW to an external data network • Uu – Air interface between eNodeB and UE • X2 – The X2 interface is defined between adjacent eNodeBs. The X2 is used for mobility control, bearer forwarding, and load management 1-32 LTE300: LTE Radio Link and EPS Signaling FOR TRAINING PURPOSES ONLY - THIS MANUAL WILL NOT BE UPDATED © 2010 Motorola, Inc. 2010
45.
Evolved Packet Core
(EPC) Version 2 Rev 4 Evolved Packet Core (EPC) Other EPC Network Elements Figure 1-24 Other EPC Network Elements Home Subscriber Server (HSS) The HSS is the master database that contains the UE profiles and authentication data used by the MME for authenticating and authorizing UEs. It also stores the location information of the UE which is used for user mobility and inter-technology handovers. The HSS communicates with the MME using the Diameter protocol over the S6a interface. Diameter is defined in many IETF and 3GPP specifications. The technical specifications listed below are a good starting point for understanding Diameter. LTE 300 Telecoms IETF RFC 3588 Diameter Base Protocol IETF RFC 3589 Diameter Command Codes for 3GPP R5 3GPP TS 29.230 Diameter Applications; 3GPP Specific Codes and Identifiers © 2010 Motorola, Inc. LTE300: LTE Radio Link and EPS Signaling FOR TRAINING PURPOSES ONLY - THIS MANUAL WILL NOT BE UPDATED 1-33 2010
46.
Version 2 Rev
4 Evolved Packet Core (EPC) Evolved Packet Core (EPC) Policy and Charging Rules Function (PCRF) The PCRF creates policy and charging rules for LTE UEs. It provides network control for service data flow detection, gating, QoS authorization and flow based charging. • Applies the security procedures, as required by the operator, before accepting service information • Decides how a certain service data flow will be treated in the P-GW and ensures that the P-GW user plane traffic mapping and treatment matches the user’s subscription profile • Communicates with the P-GW over the S7 interface • Provides the S-GW with QoS policy and traffic flow mapping information over the Gxc interface • Transfers application policy and charging information with IMS over the Rx interface Packet Lawful Intercept Gateway (P-LIG) The P-LIG provides the interfaces between the LTE/EPC network and Law Enforcement Agencies (LEAs), enabling the LEAs to intercept UE communications. • Communicates with the HSS, MME, S-GW, and P-GW over the X1, X2, and X3 interfaces • The P-LIG X2 interface is different from the eNodeB X2 interface Interworking with Other Technologies Figure 1-25 Interworking with Trusted 3GPP and Non-3GPP Networks Serving GPRS Support Node (SGSN) In 2G and 3G systems, the Serving GPRS Support Node (SGSN) is responsible for the delivery of data packets to and from UEs within its geographical service area. The SGSN provides the interfaces between the MME and S-GW in the EPC. Trusted Non-3GPP Access “Non-3GPP IP Access” describes access to the EPC by technologies not defined by 3GPP. Non-3GPP access technologies include WiFi, WiMAX, fixed access such as cable or DSL, and so on. System Architecture Evolution (SAE) describes trusted and untrusted non-3GPP IP access. The individual carrier must decide if a non-3GPP network is trusted or untrusted. This is a business decision and does not depend on the access network technology. 1-34 LTE300: LTE Radio Link and EPS Signaling FOR TRAINING PURPOSES ONLY - THIS MANUAL WILL NOT BE UPDATED © 2010 Motorola, Inc. 2010
47.
Evolved Packet Core
(EPC) Version 2 Rev 4 Evolved Packet Core (EPC) Figure 1-26 Interworking with Untrusted Non-3GPP Networks evolved Packet Data Gateway (ePDG) The evolved Packet Data Gateway (ePDG) connects the LTE network to an untrusted, non-3GPP network. To access the LTE network, the non-3GPP subscriber must establish an IP Security (IPSec) tunnel via the ePDG. The ePDG is the encapsulation/decapsulation point for Mobile IP/Proxy Mobile IP (MIP/PMIP). The ePDG also authenticates, authorizes, and enforces QoS policies in conjunction with the 3GPP AAA server. 3GPP AAA Server The 3GPP AAA server provides authentication, authorization, and accounting services for untrusted, non-3GPP IP access. © 2010 Motorola, Inc. LTE300: LTE Radio Link and EPS Signaling FOR TRAINING PURPOSES ONLY - THIS MANUAL WILL NOT BE UPDATED 1-35 2010
48.
Version 2 Rev
4 Motorola LTE Architecture Motorola LTE Architecture Figure 1-27 Motorola LTE Architecture In this section, we will discuss the platforms used for the Motorola suggested minimum offering; the eNodeB; the Wireless Broadband Core (WBC) 700 MME, the Wireless Broadband Core (WBC) 700 S-GW and P-GW, and the Wireless Broadband Manager (WBM) 700. This section will give you a general idea of Motorola’s solution for each of the LTE Network Elements. 1-36 LTE300: LTE Radio Link and EPS Signaling FOR TRAINING PURPOSES ONLY - THIS MANUAL WILL NOT BE UPDATED © 2010 Motorola, Inc. 2010
49.
Motorola LTE Architecture
Version 2 Rev 4 Motorola LTE Architecture eNodeB Figure 1-28 eNodeB Types Motorola’s eNodeB consists of a site control / baseband chassis and a radio unit. The eNodeB comes in two different configurations: • Traditional Frame where all equipment is co-located in a 19”, indoor frame configuration • Remote Radio Head where the transceiver and Power Amplifier (PA) are mounted on the roof, wall, or pole, and the baseband controller is mounted at the bottom of the tower (enclosed) or mounted indoors in a 19” rack. © 2010 Motorola, Inc. LTE300: LTE Radio Link and EPS Signaling FOR TRAINING PURPOSES ONLY - THIS MANUAL WILL NOT BE UPDATED 1-37 2010
50.
Version 2 Rev
4 Motorola LTE Architecture Motorola LTE Architecture Wireless Broadband Core (WBC) 700 Figure 1-29 Wireless Broadband Core (WBC) 700 Motorola’s Wireless Broadband Core (WBC) 700 performs the functions of the MME. It leverages the WiMAX Carrier Access Point Controller (CAPC) hardware. Subscriber Capacity • Coverage Only Model: 8 Million UEs • Dense Urban or Rural Model: 4 Million UEs • Regional or High Mobility Model: 2 Million UEs Each MME Supports • Up to 8192 eNodeBs • Up to 32 MMEs per MME pool • Up to 8000 Tracking Areas (per MME Pool) • Simultaneous communication to 128 MMEs, however the number of MMEs which can be connected dynamically is unlimited • Up to 128 S-GW Service Areas • Up to 51 eNodeBs per Tracking Area • Up to 64 HSSs • 2 AAAs 1-38 LTE300: LTE Radio Link and EPS Signaling FOR TRAINING PURPOSES ONLY - THIS MANUAL WILL NOT BE UPDATED © 2010 Motorola, Inc. 2010
51.
Motorola LTE Architecture
Version 2 Rev 4 Motorola LTE Architecture Wireless Broadband Core (WBC) 700 as S-GW Figure 1-30 WBC 700 as S-GW Motorola’s Wireless Broadband Core (WBC) 700 performs the functions of the Serving Gateway (S-GW) and Packet Data Network Gateway (P-GW). The WBC 700 is a carrier-grade, fully redundant Linux platform that can be employed in several configurations: • Standalone S-GW or, • Standalone P-GW or, • Combined S-GW and P-GW © 2010 Motorola, Inc. LTE300: LTE Radio Link and EPS Signaling FOR TRAINING PURPOSES ONLY - THIS MANUAL WILL NOT BE UPDATED 1-39 2010
52.
Version 2 Rev
4 Motorola LTE Architecture Motorola LTE Architecture Wireless Broadband Core (WBC) 700 as P-GW Figure 1-31 WBC 700 as P-GW Wireless Broadband Manager (WBM) 700 Figure 1-32 WBM 700 The Element Management System (EMS) for the eNodeB, WBC 700 MME, WBC 700 S-GW, and WBC 700 P-GW is the WBM 700. The WBM 700 leverages the implementation of the low cost reference management architecture defined by the Motorola Public Safety team. The platform is comprised of a collection of Sun T5440 servers to provide the required processing and RAID disk drive array systems to provide multiple Terabytes of storage capability. 1-40 LTE300: LTE Radio Link and EPS Signaling FOR TRAINING PURPOSES ONLY - THIS MANUAL WILL NOT BE UPDATED © 2010 Motorola, Inc. 2010
53.
Motorola LTE Architecture
Version 2 Rev 4 Motorola LTE Architecture WBM 700 Features Figure 1-33 WBM 700 Features Motorola Support for GSM to LTE Migration/Overlay Figure 1-34 GSM to LTE Migration For operators with installed GSM infrastructure, Motorola provides a migration path based on the Motorola GSM Horizon II BTS to support both GSM and LTE access functionality in a single base station. The Horizon II operating in the 900/1800 band supports a smooth migration to LTE. For operators with additional spectrum, Motorola can also provide a complete LTE overlay network to work in conjunction with the installed GSM base. Migration to LTE in the 900/1800 MHz band would entail: • Hardware upgrade of the radio modem by adding the rack mounted LTE BCU 3 • Firmware upgrade to the radio Power Amplifier (PA) • Provisioning an IP connection from the radio modem to link into the EPC • No changes to feeders, antennas or other site ancillary equipment • No other changes to BTS cabinet (apart from LTE BCU 3) © 2010 Motorola, Inc. LTE300: LTE Radio Link and EPS Signaling FOR TRAINING PURPOSES ONLY - THIS MANUAL WILL NOT BE UPDATED 1-41 2010
54.
Version 2 Rev
4 Motorola LTE Architecture Motorola LTE Architecture Motorola Support for CDMA to LTE Overlay Figure 1-35 CDMA LTE Overlay Motorola will offer the ability to add LTE via a modular expansion of installed 1X or DO Universal Base Stations (UBS), regardless of band. Initially both the user interface and backhaul will remain common. Motorola’s solution will enable combining onto existing antennas for use on an existing band or allow the addition of a separate band within the same frame. The above illustration shows the upgrade path – adding LTE in a separate band to an existing UBS frame. 1-42 LTE300: LTE Radio Link and EPS Signaling FOR TRAINING PURPOSES ONLY - THIS MANUAL WILL NOT BE UPDATED © 2010 Motorola, Inc. 2010
55.
Motorola LTE Architecture
Version 2 Rev 4 Motorola LTE Architecture CDMA Evolution Figure 1-36 CDMA Evolution cdma2000 technical specifications are established by the 3rd Generation Partnership Project 2 (3GPP2). 3GPP2 was set up in late 1998 to create globally applicable specifications for CDMA 3G mobile phone systems. 3GPP2 working groups and standards are found at www.3gpp2.org. CDMAOne Introduced in 1993, CDMAOne was based on the IS-95 standard. Like its counterpart GSM, CDMAOne is a voice and low speed circuit switched data network that provides circuit switched data rates of 14.4 kbps. CDMA2000 1x Similar to GPRS, cdma2000 added packet switching to CDMAOne. The packet switching network initially supported peak data rates of 153 kbps in both downlink and uplink. 1x refers to the number of CDMA 1.25 MHz channels. CDMA 1x EV-DO Rev 0 (Evolution-Data Optimized Revision 0) CDMA 1x EV-DO Rev 0 improved packet data throughput to 2.4 Mbps downlink and 153 kbps uplink for FDD operation. In commercial networks, Rev 0 supports an average 300-700 kbps downlink and 70-90 kbps uplink. The UL rate does not provide adequate bandwidth for real-time services. The packet data network provides an “always-on” IP service. © 2010 Motorola, Inc. LTE300: LTE Radio Link and EPS Signaling FOR TRAINING PURPOSES ONLY - THIS MANUAL WILL NOT BE UPDATED 1-43 2010
56.
Version 2 Rev
4 Motorola LTE Architecture Motorola LTE Architecture CDMA 1x EV-DO Rev A (Evolution-Data Optimized Revision A) CDMA 1x EV-DO Rev A increased the downlink data rate to 3.1 Mbps and the uplink data rate to 1.8 Mbps. In commercial networks, Rev A supports an average 450-800 kbps downlink and 300-400 kbps uplink. The improved UL bandwidth and low average latency (<50 ms) allow Rev A to support real-time services. Rev A is an all-IP service, supporting Voice Over IP (VoIP). CDMA 1x EV-DO Rev B (Evolution-Data Optimized Revision B) Rev B aggregates multiple Rev A 1x channels into a high performance broadband service. For example, 15x (20 MHz) service supports 46.5 Mbps downlink and 27 Mbps uplink. Rev B also incorporates Orthogonal Frequency Division Multiplexing (OFDM) and Multiple In Multiple Out (MIMO) in the air interface. UMB (Ultra Mobile Broadband) UMB was intended as the next evolutionary step beyond Rev B, incorporating improved MIMO performance and so on. Because Qualcomm dropped support for UMB, this step is essentially dead. 1-44 LTE300: LTE Radio Link and EPS Signaling FOR TRAINING PURPOSES ONLY - THIS MANUAL WILL NOT BE UPDATED © 2010 Motorola, Inc. 2010
57.
Version 2 Rev
4 Motorola LTE Architecture This page intentionally left blank. © 2010 Motorola, Inc. LTE300: LTE Radio Link and EPS Signaling FOR TRAINING PURPOSES ONLY - THIS MANUAL WILL NOT BE UPDATED 1-45 2010
58.
Version 2 Rev
4 Lesson Summary Lesson Summary In this lesson you learned about: • LTE’s role in the GSM/UMTS evolution • The functions of the network elements in the Evolved Packet System (EPS) • LTE performance goals • Motorola’s LTE architecture 1-46 LTE300: LTE Radio Link and EPS Signaling FOR TRAINING PURPOSES ONLY - THIS MANUAL WILL NOT BE UPDATED © 2010 Motorola, Inc. 2010
59.
Version 2 Rev
4 Lesson Summary This page intentionally left blank. © 2010 Motorola, Inc. LTE300: LTE Radio Link and EPS Signaling FOR TRAINING PURPOSES ONLY - THIS MANUAL WILL NOT BE UPDATED 1-47 2010
60.
Version 2 Rev
4 Memory Points Memory Points Take a few minutes to recall key points that you may use in the near future or that may address a current need. This is also a good opportunity to jot down a question. If the debriefing of key points does not address your question, ask it during this exercise or during a break period. Be prepared to share a key point or question with others in the class Key Point – Something New: Key Point – Something Forgotten, but Relearned: Question on what was just covered: 1-48 LTE300: LTE Radio Link and EPS Signaling FOR TRAINING PURPOSES ONLY - THIS MANUAL WILL NOT BE UPDATED © 2010 Motorola, Inc. 2010
61.
LTE Air Interface
– Physical Layer Basics Version 2 Rev 4 Chapter 2 LTE Air Interface – Physical Layer Basics In this lesson, we will discuss LTE Radio Frequency parameters, OFDM concepts, LTE Frame structure, OFDMA and SC-FDMA operation, modulation and coding schemes, and LTE antenna systems. © 2010 Motorola, Inc. LTE300: LTE Radio Link and EPS Signaling FOR TRAINING PURPOSES ONLY - THIS MANUAL WILL NOT BE UPDATED 2-1 2010
62.
Version 2 Rev
4 LTE Air Interface – Physical Layer Basics This page intentionally left blank. 2-2 LTE300: LTE Radio Link and EPS Signaling FOR TRAINING PURPOSES ONLY - THIS MANUAL WILL NOT BE UPDATED © 2010 Motorola, Inc. 2010
63.
Objectives Version 2
Rev 4 Objectives At the completion of this lesson, you will be able to: • State the operating frequencies used by the LTE air interface • Describe OFDM subcarrier and symbol characteristics • Describe LTE duplexing and framing methods • List the modulation techniques used by the LTE air interface • Estimate FDD DL and UL capacity LTE 300 Telecoms 3GPP TS 36.101 UE Radio Transmission and Reception 3GPP TS 36.104 BS Radio Transmission and Reception 3GPP TS 36.201 LTE Physical Layer, General Description 3GPP TS 36.211 Physical Channels and Modulation 3GPP TS 36.212 Multiplexing and Channel Coding 3GPP TS 36.213 Physical Layer Procedures 3GPP TS 36.214 Physical Layer Measurements Figure 2-1 Lesson Context © 2010 Motorola, Inc. LTE300: LTE Radio Link and EPS Signaling FOR TRAINING PURPOSES ONLY - THIS MANUAL WILL NOT BE UPDATED 2-3 2010
64.
Version 2 Rev
4 Radio Frequency Parameters Radio Frequency Parameters LTE Spectrum Figure 2-2 LTE Spectrum In addition to new RF bands, LTE reuses the cellular IMT-2000 spectrum. Because the initial focus is on Frequency Division Duplexing (FDD) operation, LTE needs paired spectrum. An important objective for LTE is RF band coordination to facilitate roaming across each of the global regions. 3GPP LTE Spectrum E-UTRA Frequency Bands E-UTRA Band Uplink (UL) Downlink (DL) Duplex Mode 1 1920–1980 MHz 2110–2170 MHz FDD 2 1850–1910 MHz 1930–1990 MHz FDD 3 1710–1785 MHz 1805–1880 MHz FDD 4 1710–1755 MHz 2110–2155 MHz FDD 5 824–849 MHz 869–894 MHz FDD 6 830–840 MHz 875–885 MHz FDD 7 2500–2570 MHz 2620–2690 MHz FDD 8 880–915 MHz 925–960 MHz FDD 9 1749.9–1784.9 MHz 1844.9–1879.9 MHz FDD 10 1710–1770 MHz 2110–2170 MHz FDD 11 1427.9–1452.9 MHz 1475.9–1500.9 MHz FDD 12 698–716 MHz 728–746 MHz FDD 13 777–787 MHz 746–756 MHz FDD 14 788–798 MHz 758–768 MHz FDD ... 17 704–716 MHz 734–746 MHz FDD ... 2-4 LTE300: LTE Radio Link and EPS Signaling FOR TRAINING PURPOSES ONLY - THIS MANUAL WILL NOT BE UPDATED © 2010 Motorola, Inc. 2010
65.
Radio Frequency Parameters
Version 2 Rev 4 Radio Frequency Parameters E-UTRA Frequency Bands E-UTRA Band Uplink (UL) Downlink (DL) Duplex Mode 33 1900–1920 MHz TDD 34 2010–2025 MHz TDD 35 1850–1910 MHz TDD 36 1930–1990 MHz TDD 37 1910–1930 MHz TDD 38 2570–2620 MHz TDD 39 1880–1920 MHz TDD 40 2300–2400 MHz TDD E-UTRA is designed to operate in the RF bands listed above LTE 300 Telecoms 3GPP TS 36.101 E-UTRA UE Radio Transmission and Reception Channel Bandwidth Figure 2-3 Channel Bandwidth © 2010 Motorola, Inc. LTE300: LTE Radio Link and EPS Signaling FOR TRAINING PURPOSES ONLY - THIS MANUAL WILL NOT BE UPDATED 2-5 2010
66.
Version 2 Rev
4 Radio Frequency Parameters Radio Frequency Parameters E-UTRA Frequency Bands and Channel Bandwidth E-UTRA Uplink (UL) Downlink (DL) Duplex Mode Channel BW Supported 1 1920–1980 MHz 2110–2170 MHz FDD 5, 10, 15, 20 MHz 2 1850–1910 MHz 1930–1990 MHz FDD 1.4, 3, 5, 10, 15Note1, 20Note1 MHz 3 1710–1785 MHz 1805–1880 MHz FDD 1.4, 3, 5, 10, 15Note1, 20Note1 MHz 4 1710–1755 MHz 2110–2155 MHz FDD 1.4, 3, 5, 10, 15, 20 MHz 5 824–849 MHz 869–894 MHz FDD 1.4, 3, 5, 10Note1 MHz 6 830–840 MHz 875–885 MHz FDD 5, 10Note1 MHz 7 2500–2570 MHz 2620–2690 MHz FDD 5, 10, 15, 20Note1 MHz 8 880–915 MHz 925–960 MHz FDD 1.4, 3, 5, 10Note1 MHz 9 1749.9–1784.9 MHz 1844.9–1879.9 MHz FDD 5, 10, 15Note1, 20Note1 MHz 10 1710–1770 MHz 2110–2170 MHz FDD 5, 10, 15, 20 MHz 11 1427.9–1452.9 MHz 1475.9–1500.9 MHz FDD 5, 10Note1, 15Note1, 20Note1 MHz 12 698–716 MHz 728–746 MHz FDD 1.4, 3, 5Note1, 10Note1 MHz 13 777–787 MHz 746–756 MHz FDD 1.4, 3, 5Note1, 10Note1 MHz 14 788–798 MHz 758–768 MHz FDD 1.4, 3, 5Note1, 10Note1 MHz ... 17 704–716 MHz 734–746 MHz FDD 1.4, 3, 5Note1, 10Note1 MHz ... 33 1900–1920 MHz TDD 5, 10, 15, 20 MHz 34 2010–2025 MHz TDD 5, 10, 15 MHz 35 1850–1910 MHz TDD 1.4, 3, 5, 10, 15, 20 MHz 36 1930–1990 MHz TDD 1.4, 3, 5, 10, 15, 20 MHz 37 1910–1930 MHz TDD 5, 10, 15, 20 MHz 38 2570–2620 MHz TDD 5, 10 MHz 39 1880–1920 MHz TDD 5, 10, 15, 20 MHz 40 2300–2400 MHz TDD 10, 15, 20 MHz Note1 The UE receiver sensitivity may be relaxed when operating at this channel bandwidth. LTE 300 Telecoms 3GPP TS 36.101 E-UTRA UE Radio Transmission and Reception 2-6 LTE300: LTE Radio Link and EPS Signaling FOR TRAINING PURPOSES ONLY - THIS MANUAL WILL NOT BE UPDATED © 2010 Motorola, Inc. 2010
67.
Radio Frequency Parameters
Version 2 Rev 4 Radio Frequency Parameters Sampling Frequency Figure 2-4 Channel Sampling Frequency What is the “actual” channel bandwidth? We must “over-sample” the nominal channel bandwidth to account for guard bands and orthogonal spacing of subcarriers. The resulting channel bandwidth is called the Sampling Frequency (FS). The table shows the Sampling Frequency for each supported channel size. We will use FS to calculate subcarrier spacing and, indirectly, symbol time. Sampling Frequencies Nominal Channel Bandwidth Parameters 1.4 MHz 3 MHz 5 MHz 10 MHz 15 MHz 20 MHz Sampling Freq (Fs) 1.92 MHz 3.84 MHz 7.68 MHz 15.36 MHz 23.04 MHz 30.72 MHz © 2010 Motorola, Inc. LTE300: LTE Radio Link and EPS Signaling FOR TRAINING PURPOSES ONLY - THIS MANUAL WILL NOT BE UPDATED 2-7 2010