SlideShare ist ein Scribd-Unternehmen logo
1 von 20
Downloaden Sie, um offline zu lesen
LD7591
3/4/2010
1
Leadtrend Technology Corporation www.leadtrend.com.tw
LD7591-DS-00 March 2010
Transition-Mode PFC Controller with Fault Condition Protection
REV. 00
General Description
The LD7591 is a voltage mode PFC controller operating on
transition mode, with several integrated functions of
protection, such as OVP, OCP, and Brown-in protection. It
reduces the components counts and is available in a
SOP-8 or DIP-8 package. Those make it an ideal design
for low cost applications.
It provides functions of low startup current, over voltage
protection, open feedback protection, disable function,
over current protection, under voltage lockout and
integrated LEB of current sensing. Unlike the traditional
current mode PFC controller, LD7591 is free from extra
rectified AC line voltage information to minimize the power
loss.
The LD7591 will be disabled if INV pin voltage falls below
0.45V and the operating current rises over 65μA
Typical Application for Boost PFC
Features
Transition mode of PFC pre-regulator
Voltage mode control
Programmable max. on-time
Low Startup Current (<30μA)
UVLO (Under Voltage Lockout)
LEB (Leading-Edge Blanking) on CS Pin
Open-Feedback Protection and Disable Function
OVP (Over Voltage Protection)
OCP (Cycle by cycle current limiting)
800/-1200mA Driving Capability
Internal OTP function
Applications
Adaptor of Output above 65W.
Open Frame Switching Power Supply
LCD TV Power Supply
LED Power Supply
AC
Input
LD7591
8
5
3
7
4
6
GATE
CS
GND
ZCD
VCC
RAMP
EMI
Filter
1INV
2COMP
LD7591
2
Leadtrend Technology Corporation www.leadtrend.com.tw
LD7591-DS-00 March 2010
Typical Application for LED (Flyback PFC)
LD7591
3
Leadtrend Technology Corporation www.leadtrend.com.tw
LD7591-DS-00 March 2010
Pin Configuration
YY: Year code (D:2004, E:2005…)
WW: Week code
PP: Production code
1
8
2 3 4
7 6 5
TOP MARK
YYWWPP
INV
COMP
RAMP
CS
VCC
OUT
GND
ZCD
SOP-8 & DIP-8 (TOP VIEW)
Ordering Information
Part number Package Top Mark Shipping
LD7591 GS SOP-8 Green package LD7591GS 2500 /tape & reel
LD7591 GN DIP-8 Green package LD7591GN 3600 /tube /Carton
Pin Descriptions
Pin NAME FUNCTION
1 INV Output voltage feed back control
2 COMP Output of the error amplifier for voltage loop compensation to achieve stable
3 RAMP Ramp generator, connecting a resistor to GND pin to set the saw tooth signal
4 CS Current sense pin, connect to sense the MOSFET current for OCP
5 ZCD Detecting zero crossing of input signal
6 GND Ground
7 OUT Gate drive output to drive the external MOSFET
8 VCC Power source VCC pin
Recommended Operating Conditions
Item Min. Max. Unit
Vcc pin capacitor 22 47 μF
Comp pin capacitor 0.1 4.7 μF
RAMP pin resistor 4.7k 100k Ω
LD7591
4
Leadtrend Technology Corporation www.leadtrend.com.tw
LD7591-DS-00 March 2010
Block Diagram
LD7591
5
Leadtrend Technology Corporation www.leadtrend.com.tw
LD7591-DS-00 March 2010
Absolute Maximum Ratings
Supply Voltage VCC -0.3 ~26V
OUT -0.3 ~VCC +0.3V
COMP, INV, CS, RAMP, ZCD -0.3 ~7V
Maximum Junction Temperature 150°C
Operating Junction Temperature Range -40°C to 125°C
Operating Ambient Temperature Range -40°C to 85°C
Storage Temperature Range -65°C to 150°C
Package Thermal Resistance (SO-8, θJA) 160°C/W
Package Thermal Resistance (DIP-8, θJA) 100°C/W
Power Dissipation (SOT-8, at Ambient Temperature = 85°C) 400mW
Power Dissipation (DIP-8, at Ambient Temperature = 85°C) 650mW
Lead temperature (Soldering, 10sec) 260°C
ESD Voltage Protection, Human Body Model 2.5 KV
ESD Voltage Protection, Machine Model 250 V
Gate Output Current 800mA/-1200mA
Caution:
Stresses beyond the ratings specified in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only
rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification
is not implied.
LD7591
6
Leadtrend Technology Corporation www.leadtrend.com.tw
LD7591-DS-00 March 2010
Electrical Characteristics
(VCC=14.0V, TA = 25°
C unless otherwise specified.)
PARAMETER CONDITIONS MIN TYP MAX UNITS
Supply Voltage (VCC Pin)
Startup Current VCC<UVLO ON 20 30 μA
VCOMP=0V 2.0 mA
VCOMP=3V 2.5 mA
VCC OVP 0.45 mA
Operating Current
(with 1nF load on OUT pin)
VINV=0V 65 95 μA
UVLO (off) 7.5 8.5 9.5 V
UVLO (on) 11.0 12.0 13.0 V
VCC OVP Level 19.5 21 22.5 V
Error Amplifier (Comp Pin)
Feedback Input Voltage, VREF 2.465 2.500 2.535 V
Input Bias Current VINV=1V~4V -0.5 0.5 μA
Transconductance 140 μmho
Output Sink Current VINV= VREF +0.1V 14 μA
Output Source Current VINV= VREF -0.1V -14 μA
Output Source Current VINV= VREF -0.5V -200 μA
Output Upper Clamp Voltage VINV= VREF -0.1V 5.4 5.9 6.4 V
0.95 VBurst Mode COMP pin Threshold
voltage Hysteresis 50 mV
INV pin
2.62 2.675 2.73 V
OVP Trip Level
OVP Hysteresis 0.175 V
0.4 0.45 0.5 V
Enable Threshold Voltage
Enable Hysteresis 0.1 V
Current Sensing (CS Pin)
Current Sense Input Threshold Voltage 0.75 0.8 0.85 V
Input bias current VCS=0V~1V 0 1.0 μA
LEB time 250 ns
Zero Current Detector (ZCD Pin)
Upper Clamp Voltage IDET=100μA 6.0 V
Lower Clamp Voltage IDET=100μA -0.7 V
0.05 0.1 0.15 V
Input Voltage Threshold
Hysteresis 0.1 V
Input bias current VZCD=1V~4V, OUT=OFF 0.0 1.0 μA
Maximum Delay from ZCD to Output 250 ns
LD7591
7
Leadtrend Technology Corporation www.leadtrend.com.tw
LD7591-DS-00 March 2010
PARAMETER CONDITIONS MIN TYP MAX UNITS
Maximum ON-Time, Ton-max (Ramp Pin)
Maximum On Time Voltage RRAMP=40.5K 2.784 2.900V 3.016 V
Maximum On Time Programming RRAMP =40.5K 19 24 29 μs
Maximum On Time RRAMP ≥ 100K 40 μs
Minimum OFF-Time
Minimum OFF-Time 1 μs
Minimum OFF-Time Programming 0.10
Ton-
max
Gate Drive Output (OUT Pin)
Output Low Level VCC=12V, ISINK=20mA 0.5 V
Output High Level VCC=12V, ISOURCE=20mA 9 12 V
Output High Clamp Level VCC=18V 13 V
Rising Time VCC =12V, CL=1000pF 75 150 ns
Falling Time VCC =12V, CL=1000pF 25 100 ns
Starter
Start Timer Period 50 150 300 μs
OTP (Over Temp. Protection)
OTP Trip level 140 °C
OTP Hysteresis 30 °C
LD7591
8
Leadtrend Technology Corporation www.leadtrend.com.tw
LD7591-DS-00 March 2010
Typical Performance Characteristics
UVLO(on)(V)
Fig. 1 UVLO (on) vs. Temperature
Temperature (°C)
11.0
11.5
12.0
12.5
13.0
13.5
-40 0 40 80 120 125
UVLO(off)(V)
Temperature (°C)
Fig. 2 UVLO (off ) vs. Temperature
7.5
8.5
9.0
10
8.0
-40 0 40 80 120 125
9.5
Istartup(μA)
Temperature (°C)
Fig. 3 Startup Current vs. Temperature
-40 0 40 80 120 125
20
22
24
26
28
18
30
VCCOVP(V)
Temperature (°C)
Fig. 4 VCC OVP vs. Temperature
10
15
20
25
30
35
-40 0 40 80 120 125
Vref(V)
Temperature (°C)
Fig. 5 Vref vs. Temperature
2.44
2.46
2.48
2.50
2.52
2.54
-40 0 40 80 120 125
INVOVP(V)
Temperature (°C)
Fig. 6 INV OVP vs. Temperature
2.5
2.55
2.6
2.65
2.7
2.75
-40 0 40 80 120 125
LD7591
9
Leadtrend Technology Corporation www.leadtrend.com.tw
LD7591-DS-00 March 2010
EnableVoltage(V)
Temperature (°C)
Fig. 7 Enable Voltage vs. Temperature
0.3
0.35
0.4
0.45
0.5
0.55
-40 0 40 80 120 125
VCS(off)(V)
Temperature (°C)
Fig. 8 VCS (off) vs. Temperature
0.78
0.79
0.80
0.81
0.82
0.83
-40 0 40 80 120 125
MaximumOn-TimeVoltage(V)
Temperature (°C)
Fig. 9 Maximum On-Time Voltage vs. Temperature
2.86
2.88
2.9
2.92
2.94
2.96
-40 0 40 80 120 125
MaximumOn-Time(μs)
Temperature (°C)
Fig. 10 Maximum On-Time vs. Temperature
-40 0 40 80 120 125
22
23
24
25
26
21
StartTimerPeriod(μs)
Temperature (°C)
Fig. 11 Start Timer Period vs. Temperature
140
145
150
155
160
165
-40 0 40 80 120 125
LD7591
10
Leadtrend Technology Corporation www.leadtrend.com.tw
LD7591-DS-00 March 2010
Application Information
Operation Overview
The LD7591 is an excellent voltage mode PFC controller.
It meets the IEC61000-3-2 requirement and is intended
for the use in those pre-regulator that demand low power
harmonics distortion. It integrated more functions to
reduce the external components counts and the size. Its
major features are described as below.
Under Voltage Lockout (UVLO)
An UVLO comparator is implemented in it to detect the
voltage on the VCC pin. It would assure the supply
voltage enough to turn on the LD7591 PFC controllers
and further to drive the power MOSFET. As shown in
Fig. 12, a hysteresis is built in to prevent the shutdown
from the voltage dip during start up. The turn-on and
turn-off threshold level are set at 12.0V and 8.5V,
respectively.
Vcc
UVLO(on)
UVLO(off)
t
t
I(Vcc)
startup current
(~uA)
operating current
(~ mA)
Fig. 12
Startup Current and Startup Circuit
The typical startup circuit to generate the LD7591 Vcc is
shown in Fig. 13. During the startup transient, the Vcc is
lower than the UVLO threshold thus there is no gate pulse
produced from LD7591 to drive power MOSFET.
Therefore, the current through R1 will provide the startup
current and to charge the capacitor C1. Whenever the
Vcc voltage is high enough to turn on the LD7591 and
further to deliver the gate drive signal, the supply current
is provided from the auxiliary winding of the PFC choke.
Lower startup current requirement on the PFC controller
will help to increase the value of R1 and then reduce the
power consumption on R1. By using CMOS process and
the special circuit design, the maximum startup current of
LD7591 is only 30μA. If a higher resistance value of R1 is
chosen, it usually takes more time to start up. To carefully
select the value of R1 and C1 will optimize the power
consumption and startup time.
Fig. 13
Output Voltage Setting
The LD7591 monitors the output voltage signal at INV pin
through a resistor divider pair Ra and Rb. A
transconductance amplifier is used instead of the
conventional voltage amplifier. The transconductance
amplifier (voltage controlled current source) aids the
implementation of OVP and disables function. The output
current of the amplifier changes according to the voltage
difference of the inverting and non-inverting input of the
amplifier. The output voltage of the amplifier is compared
with the internal ramp signal to generate the turn-off
signal. The output voltage is determined by the following
relationship.
)
Rb
Ra
1(V5.2VOUT +=
LD7591
11
Leadtrend Technology Corporation www.leadtrend.com.tw
LD7591-DS-00 March 2010
Where Ra and Rb are top and bottom feedback resistor
values (as shown in the Fig. 14).
Fig. 14
OVP and Disable on INV pin
To prevent the over voltage on the output capacitor from
the fault condition, LD7591 is implemented with an OVP
function on INV pin. Whenever the INV voltage is higher
than the OVP threshold voltage 2.675V, the output gate
drive circuit will be shutdown simultaneously thus to stop
the switching of the power MOSFET until the INV pin
down to 2.5V. The OVP function in LD7591 is an
auto-recovery type protection. The Fig. 15 shows its
operation. On the other hand, if the OVP condition is
removed, the Vcc level will get back to normal level and
the output will automatically return to the normal
operation.
The disable comparator disables the operation of the
LD7591 when the voltage of the inverting input is lower
than 0.35V and there is 100mV hysteresis. An external
small signal MOSFET can be used to disable the IC,
referring to Fig. 14. The IC operating current decreases
below 65μA to reduce power consumption if the IC is
disabled.
Fig. 15
Zero Current Detection (ZCD)
Fig. 16 shows typical ZCD-block. The Zero Current
Detection block will switch on the external MOSFET as
the current through the boost inductor drops to zero in
using an auxiliary winding coupled with the inductor. This
feature allows transition-mode operation. If the voltage of
the ZCD pin goes higher than 0.2V, the ZCD comparator
waits until the voltage rises above 0.1V. If the voltage
goes below 0.1V, the zero current detector will turn on the
MOSFET. The ZCD pin is protected internally by two
clamps, 6.0V-high clamp and -0.7V-low clamp. The
150μs timer generates a MOSFET turn on signal if the
driver output has been low for more than 150μs from the
falling edge of the driver output.
Fig. 16
LD7591
12
Leadtrend Technology Corporation www.leadtrend.com.tw
LD7591-DS-00 March 2010
Fig. 17 shows typical ZCD-related waveforms. Rz1 will
produce some delay because of the capacitance carried
by ZCD pin, it therefore delay the turn-on time accordingly.
The switch will be turned on when the inductor current
reaches zero; because of the structure of the ZCD delay,
it will be turned on after some delay time. During this
delay time, the stored charge of the COSS (MOSFET
output capacitor) will be discharged through the path
indicated in Fig. 18. This charge is transferred into a small
filter capacitor CIN1, which is connected to the bridge
diode. Therefore, there is no current flowing from the
input side. That is, the input current IIN is zero during this
period. In order to reduce the negative current flowing to
the internal diode, a larger resistance of RZ1 over 47kΩ is
recommended.
Fig. 17
Fig. 18
Ramp Generator Block
The output of the gm error amplifier and the output of the
ramp generator block are compared to determine the
MOSFET on time, as shown in Fig. 19. The slope of the
ramp is determined by an external resistor connected to
the RAMP pin. The voltage of the RAMP pin is 2.9V and
the slope is proportional to the current flowing out of the
RAMP pin. The internal ramp signal has a 1V offset;
therefore, the drive output will be shut down if the voltage
of the COMP pin is lower than 0.95V. The programmed
on-time will be at its maximum when the COMP pin is
open. The COMP pin open voltage is about 5.4~6.6V.
According to the slope of the internal ramp, the maximum
on-time can be programmed. The necessary maximum
on-time will be achieved depending on the boost inductor,
lowest AC line voltage, and maximum output power. The
resistor value should be designed properly. The
maximum on-time can be obtained from below
9
RAMP
)MAX(TimeON
1058.1
R
T
⋅
=−
Fig. 19
LD7591
13
Leadtrend Technology Corporation www.leadtrend.com.tw
LD7591-DS-00 March 2010
Output Drive Stage
An output stage of a CMOS buffer, with typical
800mA/-1200mA driving capability, is incorporated to
drive a power MOSFET directly. The output voltage is
clamped at 13V to protect the MOSFET gate even when
the VCC voltage is higher than 13V.
Current Sensing and Leading-edge
Blanking
The typical voltage mode of PFC controller feedbacks the
voltage signals to close the control loop and achieve
regulation. The LD7591 detects the primary MOSFET
current from the CS pin, which is for the pulse-by-pulse
current limit. The maximum voltage threshold of the
current sensing pin is set at 0.8V. From above, the
MOSFET peak current can be obtained from below.
S
)MAX(PEAK
R
V8.0
I =
A 250ns leading-edge blanking (LEB) time is included in
the input of CS pin to prevent the false-trigger from the
current spike. The R-C filter may be eliminated in some
low power applications, such as the pulse width of the
turn-on spikes is below 250ns and the negative spike on
the CS pin is below -0.3V.
However, the pulse width of the turn-on spike is
determined according to the output power, circuit design
and PCB layout. It is strongly recommended to adopt a
smaller R-C filter for higher power application to avoid the
CS pin being damaged by the negative turn-on spike.
Fig. 20
Fault Protection
There are several critical protections integrated in the
LD7591 to prevent the power supply or adapter from
being damaged. Those damages usually come from open
or short condition on the pins of LD7591.
Under the conditions listed below, the gate output will turn
off immediately to protect the power circuit ---
1. Ramp pin short to ground
2. Ramp pin floating
3. CS pin floating
LD7591
14
Leadtrend Technology Corporation www.leadtrend.com.tw
LD7591-DS-00 March 2010
Reference Application Circuit --- 400V/100W (90~264VAC)
LD7591
15
Leadtrend Technology Corporation www.leadtrend.com.tw
LD7591-DS-00 March 2010
BOM
P/N Component Value Note P/N Component Value Note
Fuse 250V,T2A C1 0.1μF,X-cap
NTC 3A,5Ω C2 0.22μF,X-cap
R1 24 kΩ, 0805 C3 2200pF,Y1-cap
R2 620 kΩ, 0805 C4 2200pF,Y1-cap
R3 330 kΩ, 1206 CY1 NC
R3B 330 kΩ, 1206 C5 0.47μF,400V MPF
R4 270 Ω, 1206 C5B 0.47μF,400V MPF
R5 110 kΩ, 0805 C6 33μF, 50V Electrolytic Capacitor
R6 24 Ω, 0805 C61 100nF, 25V ,0805
R61 24 Ω, 0805 C7 100nF, 50V, 0805
R7 0.18 Ω 1/2W C8 220nF, 25V, 0805
R8 10 kΩ, 0805 C9 100μF, 450V Electrolytic Capacitor
R9 22 kΩ, 1206 C91 1000pF, 1kV, 1206
R10 2 MΩ, 1206 C10 10nF, 100V, 1206
R10B 2 MΩ, 1206 C11 NC
R11 27 kΩ, 0805 C12 100pF/ 16V, 0805
R12 360 kΩ, 0805 C13 330pF/ 1kV/1206
R13 1 MΩ, 1206 C14 100pF/ 1kV/1206
RZ2 11 kΩ, 0805 CB2 100pF/16V, 0805
RZ3 0 Ω, 0805 D1 LL4148 SOD-80
RB4 200 Ω, 0805 D2 ER206 600V/ 2A, DO-15
RZ3 0 Ω, 0805 D3 LL4148 SOD-80
RB4 200 Ω, 0805 DB UF206G 600V/2A, DO-15
ZD1 GLZ18C, 18V Zener SOD-80
BD SBU4J or GBU4J 600V/4A
L1 Leadtrend’s Design 220uH
LF1 Leadtrend’s Design
LF2 Leadtrend’s Design
Q1 FQP13N50C 500V, 13A, TO-220
IC1 LD7591 SOP-8
V1 NC Varistor
T1 400uH EI30, 44/6
LD7591
16
Leadtrend Technology Corporation www.leadtrend.com.tw
LD7591-DS-00 March 2010
Reference Application Circuit --- LED -42V/350mA (90~264VAC)
LD7591
17
Leadtrend Technology Corporation www.leadtrend.com.tw
LD7591-DS-00 March 2010
BOM
P/N Component Value Note P/N Component Value Note
Fuse 2A/250V C1 0.1μF / 275VAC X-cap
NTC 0Ω, 1206 C2 4.7nF/1kV,1206
V1 Varisitor 471 C5 0.047μF / 400V MPF 塑膠電容
R1 27kΩ, 0805 C5B 0.1μF / 400V MPF 塑膠電容
R2 300kΩ, 0805 C6 22uF/ 50V Electrolytic Capacitor
R3 110kΩ, 1206 C61 104pF/25V/0805
R3B 110kΩ, 1206 C62 33uF/ 50V
R4 39Ω, 1206 C9 330μF, 50V Electrolytic Capacitor
R5 100kΩ, 0805 C9A 330μF, 50V Electrolytic Capacitor
R5B 10kΩ, 0805 C11 NC, 0805
R6 51Ω, 0805 C12 10pF, 0805
R61 0Ω, 0805 C13 470pF/500V, 1206
R7 0.75Ω 1/2W C14 0.47μF/ 16V, 0805
R9 20kΩ, 0805 C15 2200pF, Y 電容
R12 0.68Ω, 2W C16 NC /1kV,1206
R12B NC,1206 C101 2.2uF/ 50V
R13 100Ω, 1206 C102 4.7μF/10V/0805
R14 1kΩ, 0805 C103 0.1μF/ 25V, 0805
R15 7.5MEGΩ, 0805 C104 1μF/ 25V, 0805
R15B 620kΩ, 0805 C105 473pF/25V/0805
R16 100kΩ, 1206 CB2 220pF/16V, 0805
R17 100kΩ, 1206 D1 BAV103
RB4 200Ω, 0805 D2 ER502 200V/ 5A,
R101 NC, 0805 D3 LL4148 SOD-80
R102 8.2V Zener D4 LL4148 SOD-80
R103 91k D5 1N4007 1000V/1A
R104 0Ω, 0805 D6 LL4148 SOD-80
R104B 10kΩ, 0805 D7 LL4148 SOD-80
R105 20kΩ, 0805 DZ1 NC
R106 75kΩ, 0805 DZ2 NC
R107 5.6kΩ, 0805 DZ3 P6KE200A DO-15
R108 39kΩ, 0805 BD DI106 600V/1A
R109 10kΩ, 0805 T1 EF20, 1150uH 106/32/13
R110 100kΩ, 0805 LF1 UU9.8
R111 15kΩ LF2 1000uH
R112 4.7kΩ, 0805 Q1 FQPF5N60C 600V, 4.5A, TO-220
R113 NC, 0805 Q2 330R, 0805
R114 0Ω, 0805
IC1 LD7591 SOP-8
IC2 PC817
IC3
LD7591
18
Leadtrend Technology Corporation www.leadtrend.com.tw
LD7591-DS-00 March 2010
Package Information
SOP-8
Dimensions in Millimeters Dimensions in Inch
Symbols
MIN MAX MIN MAX
A 4.801 5.004 0.189 0.197
B 3.810 3.988 0.150 0.157
C 1.346 1.753 0.053 0.069
D 0.330 0.508 0.013 0.020
F 1.194 1.346 0.047 0.053
H 0.178 0.229 0.007 0.009
I 0.102 0.254 0.004 0.010
J 5.791 6.198 0.228 0.244
M 0.406 1.270 0.016 0.050
θ 0° 8° 0° 8°
LD7591
19
Leadtrend Technology Corporation www.leadtrend.com.tw
LD7591-DS-00 March 2010
Package Information
DIP-8
Dimension in Millimeters Dimensions in Inches
Symbol
Min Max Min Max
A 9.017 10.160 0.355 0.400
B 6.096 7.112 0.240 0.280
C ----- 5.334 ------ 0.210
D 0.356 0.584 0.014 0.023
E 1.143 1.778 0.045 0.070
F 2.337 2.743 0.092 0.108
I 2.921 3.556 0.115 0.140
J 7.366 8.255 0.29 0.325
L 0.381 ------ 0.015 --------
Important Notice
Leadtrend Technology Corp. reserves the right to make changes or corrections to its products at any time without notice. Customers
should verify the datasheets are current and complete before placing order.
LD7591
20
Leadtrend Technology Corporation www.leadtrend.com.tw
LD7591-DS-00 March 2010
Revision History
Rev. Date Change Notice
00 3/4/2010 Original Specification

Weitere ähnliche Inhalte

Was ist angesagt?

2n3055 to3
2n3055 to32n3055 to3
2n3055 to3ivan ion
 
Multiband Transceivers - [Chapter 2] Noises and Linearities
Multiband Transceivers - [Chapter 2]  Noises and LinearitiesMultiband Transceivers - [Chapter 2]  Noises and Linearities
Multiband Transceivers - [Chapter 2] Noises and LinearitiesSimen Li
 
Desactivar proteccion
Desactivar proteccionDesactivar proteccion
Desactivar proteccionAxel Amir
 
Lab 5 Report Precision Diodes and Applications
Lab 5 Report Precision Diodes and ApplicationsLab 5 Report Precision Diodes and Applications
Lab 5 Report Precision Diodes and ApplicationsKatrina Little
 
射頻電子 - [第三章] 史密斯圖與阻抗匹配
射頻電子 - [第三章] 史密斯圖與阻抗匹配射頻電子 - [第三章] 史密斯圖與阻抗匹配
射頻電子 - [第三章] 史密斯圖與阻抗匹配Simen Li
 
Hakko 936. Gordak 952. diy. analog soldering station. schematic
Hakko 936. Gordak 952. diy. analog soldering station.  schematicHakko 936. Gordak 952. diy. analog soldering station.  schematic
Hakko 936. Gordak 952. diy. analog soldering station. schematictarzan1a
 
RF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked LoopsRF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked LoopsSimen Li
 
Tabela com conversão de códigos de diodos tipo zener
Tabela com conversão de códigos de diodos tipo zenerTabela com conversão de códigos de diodos tipo zener
Tabela com conversão de códigos de diodos tipo zenerGravatá Eletrônica
 
Ese570 mos theory_p206
Ese570 mos theory_p206Ese570 mos theory_p206
Ese570 mos theory_p206bheemsain
 
Foundation fieldbus technology
Foundation fieldbus technologyFoundation fieldbus technology
Foundation fieldbus technologyMohamed A Hakim
 
RF Circuit Design - [Ch2-1] Resonator and Impedance Matching
RF Circuit Design - [Ch2-1] Resonator and Impedance MatchingRF Circuit Design - [Ch2-1] Resonator and Impedance Matching
RF Circuit Design - [Ch2-1] Resonator and Impedance MatchingSimen Li
 
Phase-locked Loops - Theory and Design
Phase-locked Loops - Theory and DesignPhase-locked Loops - Theory and Design
Phase-locked Loops - Theory and DesignSimen Li
 
射頻電子 - [第五章] 射頻放大器設計
射頻電子 - [第五章] 射頻放大器設計射頻電子 - [第五章] 射頻放大器設計
射頻電子 - [第五章] 射頻放大器設計Simen Li
 
RF Module Design - [Chapter 6] Power Amplifier
RF Module Design - [Chapter 6]  Power AmplifierRF Module Design - [Chapter 6]  Power Amplifier
RF Module Design - [Chapter 6] Power AmplifierSimen Li
 
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013Simen Li
 
射頻電子 - [實驗第一章] 基頻放大器設計
射頻電子 - [實驗第一章] 基頻放大器設計射頻電子 - [實驗第一章] 基頻放大器設計
射頻電子 - [實驗第一章] 基頻放大器設計Simen Li
 
RF Power Amplifier Tutorial (1)
RF Power Amplifier Tutorial (1)RF Power Amplifier Tutorial (1)
RF Power Amplifier Tutorial (1)Seong-Hun Choe
 

Was ist angesagt? (20)

2n3055 to3
2n3055 to32n3055 to3
2n3055 to3
 
Multiband Transceivers - [Chapter 2] Noises and Linearities
Multiband Transceivers - [Chapter 2]  Noises and LinearitiesMultiband Transceivers - [Chapter 2]  Noises and Linearities
Multiband Transceivers - [Chapter 2] Noises and Linearities
 
Desactivar proteccion
Desactivar proteccionDesactivar proteccion
Desactivar proteccion
 
Lab 5 Report Precision Diodes and Applications
Lab 5 Report Precision Diodes and ApplicationsLab 5 Report Precision Diodes and Applications
Lab 5 Report Precision Diodes and Applications
 
Amp op 1000w
Amp op 1000wAmp op 1000w
Amp op 1000w
 
射頻電子 - [第三章] 史密斯圖與阻抗匹配
射頻電子 - [第三章] 史密斯圖與阻抗匹配射頻電子 - [第三章] 史密斯圖與阻抗匹配
射頻電子 - [第三章] 史密斯圖與阻抗匹配
 
Hakko 936. Gordak 952. diy. analog soldering station. schematic
Hakko 936. Gordak 952. diy. analog soldering station.  schematicHakko 936. Gordak 952. diy. analog soldering station.  schematic
Hakko 936. Gordak 952. diy. analog soldering station. schematic
 
555 Timer IC
555 Timer IC555 Timer IC
555 Timer IC
 
RF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked LoopsRF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked Loops
 
Tabela com conversão de códigos de diodos tipo zener
Tabela com conversão de códigos de diodos tipo zenerTabela com conversão de códigos de diodos tipo zener
Tabela com conversão de códigos de diodos tipo zener
 
Ese570 mos theory_p206
Ese570 mos theory_p206Ese570 mos theory_p206
Ese570 mos theory_p206
 
Foundation fieldbus technology
Foundation fieldbus technologyFoundation fieldbus technology
Foundation fieldbus technology
 
Layout rules
Layout rulesLayout rules
Layout rules
 
RF Circuit Design - [Ch2-1] Resonator and Impedance Matching
RF Circuit Design - [Ch2-1] Resonator and Impedance MatchingRF Circuit Design - [Ch2-1] Resonator and Impedance Matching
RF Circuit Design - [Ch2-1] Resonator and Impedance Matching
 
Phase-locked Loops - Theory and Design
Phase-locked Loops - Theory and DesignPhase-locked Loops - Theory and Design
Phase-locked Loops - Theory and Design
 
射頻電子 - [第五章] 射頻放大器設計
射頻電子 - [第五章] 射頻放大器設計射頻電子 - [第五章] 射頻放大器設計
射頻電子 - [第五章] 射頻放大器設計
 
RF Module Design - [Chapter 6] Power Amplifier
RF Module Design - [Chapter 6]  Power AmplifierRF Module Design - [Chapter 6]  Power Amplifier
RF Module Design - [Chapter 6] Power Amplifier
 
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
Voltage Controlled Oscillator Design - Short Course at NKFUST, 2013
 
射頻電子 - [實驗第一章] 基頻放大器設計
射頻電子 - [實驗第一章] 基頻放大器設計射頻電子 - [實驗第一章] 基頻放大器設計
射頻電子 - [實驗第一章] 基頻放大器設計
 
RF Power Amplifier Tutorial (1)
RF Power Amplifier Tutorial (1)RF Power Amplifier Tutorial (1)
RF Power Amplifier Tutorial (1)
 

Ähnlich wie Transition-Mode PFC Controller with Fault Protection

Str x6759 regulador de voltaje
Str x6759 regulador de voltajeStr x6759 regulador de voltaje
Str x6759 regulador de voltajeVictor Leon Jaime
 
Original Opto TLP250 P250 DIP-8 New Toshiba
Original Opto TLP250 P250 DIP-8 New ToshibaOriginal Opto TLP250 P250 DIP-8 New Toshiba
Original Opto TLP250 P250 DIP-8 New ToshibaAUTHELECTRONIC
 
Modulador de Ancho de Pulso en Fuentes ATX Sdc7500
Modulador de Ancho de Pulso en Fuentes ATX Sdc7500Modulador de Ancho de Pulso en Fuentes ATX Sdc7500
Modulador de Ancho de Pulso en Fuentes ATX Sdc7500Juan Carlos Ruiz
 
Uc3842 b d fuente 24vdc stacotec
Uc3842 b d  fuente 24vdc stacotecUc3842 b d  fuente 24vdc stacotec
Uc3842 b d fuente 24vdc stacotectavobecker
 
Original Mosfet MC33151DR2G 33151 MC33151 SOP-8 New
Original Mosfet MC33151DR2G 33151 MC33151 SOP-8 NewOriginal Mosfet MC33151DR2G 33151 MC33151 SOP-8 New
Original Mosfet MC33151DR2G 33151 MC33151 SOP-8 NewAUTHELECTRONIC
 
ICL7660 Monolithic CMOS Voltage Converters
ICL7660 Monolithic CMOS Voltage ConvertersICL7660 Monolithic CMOS Voltage Converters
ICL7660 Monolithic CMOS Voltage ConvertersGeorgage Zim
 
ACPL-K49T - Datasheet - Broadcom Corporation
ACPL-K49T - Datasheet - Broadcom CorporationACPL-K49T - Datasheet - Broadcom Corporation
ACPL-K49T - Datasheet - Broadcom CorporationMarioFarias18
 
SFH6916_08 - Datasheet - VISHAY
SFH6916_08 - Datasheet - VISHAYSFH6916_08 - Datasheet - VISHAY
SFH6916_08 - Datasheet - VISHAYMarioFarias18
 
Original Analog Switch IC CD74HC4066PWR SN74HC4066DR 4066DR 4066PWR 4066 SOP...
Original Analog Switch IC CD74HC4066PWR  SN74HC4066DR 4066DR 4066PWR 4066 SOP...Original Analog Switch IC CD74HC4066PWR  SN74HC4066DR 4066DR 4066PWR 4066 SOP...
Original Analog Switch IC CD74HC4066PWR SN74HC4066DR 4066DR 4066PWR 4066 SOP...AUTHELECTRONIC
 

Ähnlich wie Transition-Mode PFC Controller with Fault Protection (20)

Ucc 3895 dw
Ucc 3895 dwUcc 3895 dw
Ucc 3895 dw
 
RT7257E Datasheet PDF
RT7257E Datasheet PDFRT7257E Datasheet PDF
RT7257E Datasheet PDF
 
Str x6759 regulador de voltaje
Str x6759 regulador de voltajeStr x6759 regulador de voltaje
Str x6759 regulador de voltaje
 
Original Opto TLP250 P250 DIP-8 New Toshiba
Original Opto TLP250 P250 DIP-8 New ToshibaOriginal Opto TLP250 P250 DIP-8 New Toshiba
Original Opto TLP250 P250 DIP-8 New Toshiba
 
Modulador de Ancho de Pulso en Fuentes ATX Sdc7500
Modulador de Ancho de Pulso en Fuentes ATX Sdc7500Modulador de Ancho de Pulso en Fuentes ATX Sdc7500
Modulador de Ancho de Pulso en Fuentes ATX Sdc7500
 
Uc3842 b d fuente 24vdc stacotec
Uc3842 b d  fuente 24vdc stacotecUc3842 b d  fuente 24vdc stacotec
Uc3842 b d fuente 24vdc stacotec
 
Original Mosfet MC33151DR2G 33151 MC33151 SOP-8 New
Original Mosfet MC33151DR2G 33151 MC33151 SOP-8 NewOriginal Mosfet MC33151DR2G 33151 MC33151 SOP-8 New
Original Mosfet MC33151DR2G 33151 MC33151 SOP-8 New
 
ICL7660 Monolithic CMOS Voltage Converters
ICL7660 Monolithic CMOS Voltage ConvertersICL7660 Monolithic CMOS Voltage Converters
ICL7660 Monolithic CMOS Voltage Converters
 
Lm324
Lm324Lm324
Lm324
 
Lm555
Lm555Lm555
Lm555
 
Mp8126 r1.03 1384507
Mp8126 r1.03 1384507Mp8126 r1.03 1384507
Mp8126 r1.03 1384507
 
ACPL-K49T - Datasheet - Broadcom Corporation
ACPL-K49T - Datasheet - Broadcom CorporationACPL-K49T - Datasheet - Broadcom Corporation
ACPL-K49T - Datasheet - Broadcom Corporation
 
SFH6916_08 - Datasheet - VISHAY
SFH6916_08 - Datasheet - VISHAYSFH6916_08 - Datasheet - VISHAY
SFH6916_08 - Datasheet - VISHAY
 
Lm555
Lm555Lm555
Lm555
 
Lm555
Lm555Lm555
Lm555
 
Datasheet
DatasheetDatasheet
Datasheet
 
Original Analog Switch IC CD74HC4066PWR SN74HC4066DR 4066DR 4066PWR 4066 SOP...
Original Analog Switch IC CD74HC4066PWR  SN74HC4066DR 4066DR 4066PWR 4066 SOP...Original Analog Switch IC CD74HC4066PWR  SN74HC4066DR 4066DR 4066PWR 4066 SOP...
Original Analog Switch IC CD74HC4066PWR SN74HC4066DR 4066DR 4066PWR 4066 SOP...
 
Tlv3491 556299
Tlv3491 556299Tlv3491 556299
Tlv3491 556299
 
Lm555
Lm555Lm555
Lm555
 
Datasheet lm358
Datasheet lm358Datasheet lm358
Datasheet lm358
 

Mehr von AUTHELECTRONIC

Original Power Supply IC LNK632DG LNK632 632 SOP-7 New
Original Power Supply IC LNK632DG LNK632 632 SOP-7 NewOriginal Power Supply IC LNK632DG LNK632 632 SOP-7 New
Original Power Supply IC LNK632DG LNK632 632 SOP-7 NewAUTHELECTRONIC
 
Original Relay G5RL 1A 12V New Omron 
Original Relay G5RL 1A 12V New Omron Original Relay G5RL 1A 12V New Omron 
Original Relay G5RL 1A 12V New Omron AUTHELECTRONIC
 
Original NPN Darlington Transistor MC1413DR2G 1413DR2G NCV1413BDG 1413BDG 141...
Original NPN Darlington Transistor MC1413DR2G 1413DR2G NCV1413BDG 1413BDG 141...Original NPN Darlington Transistor MC1413DR2G 1413DR2G NCV1413BDG 1413BDG 141...
Original NPN Darlington Transistor MC1413DR2G 1413DR2G NCV1413BDG 1413BDG 141...AUTHELECTRONIC
 
Original EEPROM IC BR93L76RFJ 93L76 RL76 SOP-8 New Rohm
Original EEPROM IC BR93L76RFJ 93L76 RL76 SOP-8 New RohmOriginal EEPROM IC BR93L76RFJ 93L76 RL76 SOP-8 New Rohm
Original EEPROM IC BR93L76RFJ 93L76 RL76 SOP-8 New RohmAUTHELECTRONIC
 
Original Advanced IGBT/Mosfet Driver TD350E 350E SOP-14 New ST Microelectronics
Original Advanced IGBT/Mosfet Driver TD350E 350E SOP-14 New ST MicroelectronicsOriginal Advanced IGBT/Mosfet Driver TD350E 350E SOP-14 New ST Microelectronics
Original Advanced IGBT/Mosfet Driver TD350E 350E SOP-14 New ST MicroelectronicsAUTHELECTRONIC
 
Original N-Channel Mosfet 2SK3562 3562 TO-220 New Toshiba
Original N-Channel Mosfet 2SK3562  3562 TO-220 New ToshibaOriginal N-Channel Mosfet 2SK3562  3562 TO-220 New Toshiba
Original N-Channel Mosfet 2SK3562 3562 TO-220 New ToshibaAUTHELECTRONIC
 
Original N-Channel Mosfet FDPF33N25 33N25 TO-220 New FairChild
Original N-Channel Mosfet FDPF33N25 33N25 TO-220 New FairChildOriginal N-Channel Mosfet FDPF33N25 33N25 TO-220 New FairChild
Original N-Channel Mosfet FDPF33N25 33N25 TO-220 New FairChildAUTHELECTRONIC
 
Original N-Channel Mosfet IRFB4020PBF 4020 TO-220-3 New International Rectifier
Original N-Channel Mosfet IRFB4020PBF 4020 TO-220-3 New International RectifierOriginal N-Channel Mosfet IRFB4020PBF 4020 TO-220-3 New International Rectifier
Original N-Channel Mosfet IRFB4020PBF 4020 TO-220-3 New International RectifierAUTHELECTRONIC
 
Original Logic IC SN74LVC14A SN54LVC14A 74LVC14A 54LVC14A SOP-14 New Texas In...
Original Logic IC SN74LVC14A SN54LVC14A 74LVC14A 54LVC14A SOP-14 New Texas In...Original Logic IC SN74LVC14A SN54LVC14A 74LVC14A 54LVC14A SOP-14 New Texas In...
Original Logic IC SN74LVC14A SN54LVC14A 74LVC14A 54LVC14A SOP-14 New Texas In...AUTHELECTRONIC
 
Original Logic IC TC74HC238AF 74HC238AF 238AF SOP-16 New Toshiba
Original Logic IC TC74HC238AF 74HC238AF 238AF SOP-16 New ToshibaOriginal Logic IC TC74HC238AF 74HC238AF 238AF SOP-16 New Toshiba
Original Logic IC TC74HC238AF 74HC238AF 238AF SOP-16 New ToshibaAUTHELECTRONIC
 
Original High Voltage Isolation IC ACS710T KLA-12CB 710T SOP-16 New
Original High Voltage Isolation IC ACS710T KLA-12CB 710T SOP-16 NewOriginal High Voltage Isolation IC ACS710T KLA-12CB 710T SOP-16 New
Original High Voltage Isolation IC ACS710T KLA-12CB 710T SOP-16 NewAUTHELECTRONIC
 
Original Voltage Regulator & Controller IC TPS54231DR 54231DR 54231 SOP-8 Ne...
Original  Voltage Regulator & Controller IC TPS54231DR 54231DR 54231 SOP-8 Ne...Original  Voltage Regulator & Controller IC TPS54231DR 54231DR 54231 SOP-8 Ne...
Original Voltage Regulator & Controller IC TPS54231DR 54231DR 54231 SOP-8 Ne...AUTHELECTRONIC
 
Original Power Factor Correction IC UCC28061DR 28061 SOP-16 New Texas Instrum...
Original Power Factor Correction IC UCC28061DR 28061 SOP-16 New Texas Instrum...Original Power Factor Correction IC UCC28061DR 28061 SOP-16 New Texas Instrum...
Original Power Factor Correction IC UCC28061DR 28061 SOP-16 New Texas Instrum...AUTHELECTRONIC
 
Original Led Driver IC TM1620 1620 New Shenzhen
Original Led Driver IC TM1620 1620 New ShenzhenOriginal Led Driver IC TM1620 1620 New Shenzhen
Original Led Driver IC TM1620 1620 New ShenzhenAUTHELECTRONIC
 
Original Gate Driver IC TD62083APG 62083APG 62083 DIP-18 New Toshiba
Original Gate Driver IC TD62083APG  62083APG 62083 DIP-18 New ToshibaOriginal Gate Driver IC TD62083APG  62083APG 62083 DIP-18 New Toshiba
Original Gate Driver IC TD62083APG 62083APG 62083 DIP-18 New ToshibaAUTHELECTRONIC
 
Original Zener Diode 1N5366B 5366B 5366 5W 39V New
Original Zener Diode 1N5366B 5366B 5366 5W 39V NewOriginal Zener Diode 1N5366B 5366B 5366 5W 39V New
Original Zener Diode 1N5366B 5366B 5366 5W 39V NewAUTHELECTRONIC
 
Original Audio Amplifier IC TDA7850 7850 SIP-25 New ST Microelectronics
Original Audio Amplifier IC TDA7850 7850 SIP-25 New ST MicroelectronicsOriginal Audio Amplifier IC TDA7850 7850 SIP-25 New ST Microelectronics
Original Audio Amplifier IC TDA7850 7850 SIP-25 New ST MicroelectronicsAUTHELECTRONIC
 
Original Switch Power Supply IC FSL136MR 136MR 136 DIP-8 New FairChild
Original Switch Power Supply IC FSL136MR 136MR 136 DIP-8 New FairChildOriginal Switch Power Supply IC FSL136MR 136MR 136 DIP-8 New FairChild
Original Switch Power Supply IC FSL136MR 136MR 136 DIP-8 New FairChildAUTHELECTRONIC
 
Original Diode & Rectifier IC BYV26 V26 26 New Vishay Semiconductors
Original  Diode & Rectifier IC BYV26 V26 26 New Vishay SemiconductorsOriginal  Diode & Rectifier IC BYV26 V26 26 New Vishay Semiconductors
Original Diode & Rectifier IC BYV26 V26 26 New Vishay SemiconductorsAUTHELECTRONIC
 
Original High Performance Off-Line Controller IC ACT30 CT30 30 New Active-Semi
Original High Performance Off-Line Controller IC ACT30 CT30 30 New Active-SemiOriginal High Performance Off-Line Controller IC ACT30 CT30 30 New Active-Semi
Original High Performance Off-Line Controller IC ACT30 CT30 30 New Active-SemiAUTHELECTRONIC
 

Mehr von AUTHELECTRONIC (20)

Original Power Supply IC LNK632DG LNK632 632 SOP-7 New
Original Power Supply IC LNK632DG LNK632 632 SOP-7 NewOriginal Power Supply IC LNK632DG LNK632 632 SOP-7 New
Original Power Supply IC LNK632DG LNK632 632 SOP-7 New
 
Original Relay G5RL 1A 12V New Omron 
Original Relay G5RL 1A 12V New Omron Original Relay G5RL 1A 12V New Omron 
Original Relay G5RL 1A 12V New Omron 
 
Original NPN Darlington Transistor MC1413DR2G 1413DR2G NCV1413BDG 1413BDG 141...
Original NPN Darlington Transistor MC1413DR2G 1413DR2G NCV1413BDG 1413BDG 141...Original NPN Darlington Transistor MC1413DR2G 1413DR2G NCV1413BDG 1413BDG 141...
Original NPN Darlington Transistor MC1413DR2G 1413DR2G NCV1413BDG 1413BDG 141...
 
Original EEPROM IC BR93L76RFJ 93L76 RL76 SOP-8 New Rohm
Original EEPROM IC BR93L76RFJ 93L76 RL76 SOP-8 New RohmOriginal EEPROM IC BR93L76RFJ 93L76 RL76 SOP-8 New Rohm
Original EEPROM IC BR93L76RFJ 93L76 RL76 SOP-8 New Rohm
 
Original Advanced IGBT/Mosfet Driver TD350E 350E SOP-14 New ST Microelectronics
Original Advanced IGBT/Mosfet Driver TD350E 350E SOP-14 New ST MicroelectronicsOriginal Advanced IGBT/Mosfet Driver TD350E 350E SOP-14 New ST Microelectronics
Original Advanced IGBT/Mosfet Driver TD350E 350E SOP-14 New ST Microelectronics
 
Original N-Channel Mosfet 2SK3562 3562 TO-220 New Toshiba
Original N-Channel Mosfet 2SK3562  3562 TO-220 New ToshibaOriginal N-Channel Mosfet 2SK3562  3562 TO-220 New Toshiba
Original N-Channel Mosfet 2SK3562 3562 TO-220 New Toshiba
 
Original N-Channel Mosfet FDPF33N25 33N25 TO-220 New FairChild
Original N-Channel Mosfet FDPF33N25 33N25 TO-220 New FairChildOriginal N-Channel Mosfet FDPF33N25 33N25 TO-220 New FairChild
Original N-Channel Mosfet FDPF33N25 33N25 TO-220 New FairChild
 
Original N-Channel Mosfet IRFB4020PBF 4020 TO-220-3 New International Rectifier
Original N-Channel Mosfet IRFB4020PBF 4020 TO-220-3 New International RectifierOriginal N-Channel Mosfet IRFB4020PBF 4020 TO-220-3 New International Rectifier
Original N-Channel Mosfet IRFB4020PBF 4020 TO-220-3 New International Rectifier
 
Original Logic IC SN74LVC14A SN54LVC14A 74LVC14A 54LVC14A SOP-14 New Texas In...
Original Logic IC SN74LVC14A SN54LVC14A 74LVC14A 54LVC14A SOP-14 New Texas In...Original Logic IC SN74LVC14A SN54LVC14A 74LVC14A 54LVC14A SOP-14 New Texas In...
Original Logic IC SN74LVC14A SN54LVC14A 74LVC14A 54LVC14A SOP-14 New Texas In...
 
Original Logic IC TC74HC238AF 74HC238AF 238AF SOP-16 New Toshiba
Original Logic IC TC74HC238AF 74HC238AF 238AF SOP-16 New ToshibaOriginal Logic IC TC74HC238AF 74HC238AF 238AF SOP-16 New Toshiba
Original Logic IC TC74HC238AF 74HC238AF 238AF SOP-16 New Toshiba
 
Original High Voltage Isolation IC ACS710T KLA-12CB 710T SOP-16 New
Original High Voltage Isolation IC ACS710T KLA-12CB 710T SOP-16 NewOriginal High Voltage Isolation IC ACS710T KLA-12CB 710T SOP-16 New
Original High Voltage Isolation IC ACS710T KLA-12CB 710T SOP-16 New
 
Original Voltage Regulator & Controller IC TPS54231DR 54231DR 54231 SOP-8 Ne...
Original  Voltage Regulator & Controller IC TPS54231DR 54231DR 54231 SOP-8 Ne...Original  Voltage Regulator & Controller IC TPS54231DR 54231DR 54231 SOP-8 Ne...
Original Voltage Regulator & Controller IC TPS54231DR 54231DR 54231 SOP-8 Ne...
 
Original Power Factor Correction IC UCC28061DR 28061 SOP-16 New Texas Instrum...
Original Power Factor Correction IC UCC28061DR 28061 SOP-16 New Texas Instrum...Original Power Factor Correction IC UCC28061DR 28061 SOP-16 New Texas Instrum...
Original Power Factor Correction IC UCC28061DR 28061 SOP-16 New Texas Instrum...
 
Original Led Driver IC TM1620 1620 New Shenzhen
Original Led Driver IC TM1620 1620 New ShenzhenOriginal Led Driver IC TM1620 1620 New Shenzhen
Original Led Driver IC TM1620 1620 New Shenzhen
 
Original Gate Driver IC TD62083APG 62083APG 62083 DIP-18 New Toshiba
Original Gate Driver IC TD62083APG  62083APG 62083 DIP-18 New ToshibaOriginal Gate Driver IC TD62083APG  62083APG 62083 DIP-18 New Toshiba
Original Gate Driver IC TD62083APG 62083APG 62083 DIP-18 New Toshiba
 
Original Zener Diode 1N5366B 5366B 5366 5W 39V New
Original Zener Diode 1N5366B 5366B 5366 5W 39V NewOriginal Zener Diode 1N5366B 5366B 5366 5W 39V New
Original Zener Diode 1N5366B 5366B 5366 5W 39V New
 
Original Audio Amplifier IC TDA7850 7850 SIP-25 New ST Microelectronics
Original Audio Amplifier IC TDA7850 7850 SIP-25 New ST MicroelectronicsOriginal Audio Amplifier IC TDA7850 7850 SIP-25 New ST Microelectronics
Original Audio Amplifier IC TDA7850 7850 SIP-25 New ST Microelectronics
 
Original Switch Power Supply IC FSL136MR 136MR 136 DIP-8 New FairChild
Original Switch Power Supply IC FSL136MR 136MR 136 DIP-8 New FairChildOriginal Switch Power Supply IC FSL136MR 136MR 136 DIP-8 New FairChild
Original Switch Power Supply IC FSL136MR 136MR 136 DIP-8 New FairChild
 
Original Diode & Rectifier IC BYV26 V26 26 New Vishay Semiconductors
Original  Diode & Rectifier IC BYV26 V26 26 New Vishay SemiconductorsOriginal  Diode & Rectifier IC BYV26 V26 26 New Vishay Semiconductors
Original Diode & Rectifier IC BYV26 V26 26 New Vishay Semiconductors
 
Original High Performance Off-Line Controller IC ACT30 CT30 30 New Active-Semi
Original High Performance Off-Line Controller IC ACT30 CT30 30 New Active-SemiOriginal High Performance Off-Line Controller IC ACT30 CT30 30 New Active-Semi
Original High Performance Off-Line Controller IC ACT30 CT30 30 New Active-Semi
 

Kürzlich hochgeladen

Energy Awareness training ppt for manufacturing process.pptx
Energy Awareness training ppt for manufacturing process.pptxEnergy Awareness training ppt for manufacturing process.pptx
Energy Awareness training ppt for manufacturing process.pptxsiddharthjain2303
 
multiple access in wireless communication
multiple access in wireless communicationmultiple access in wireless communication
multiple access in wireless communicationpanditadesh123
 
Main Memory Management in Operating System
Main Memory Management in Operating SystemMain Memory Management in Operating System
Main Memory Management in Operating SystemRashmi Bhat
 
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...Stork Webinar | APM Transformational planning, Tool Selection & Performance T...
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...Stork
 
FUNCTIONAL AND NON FUNCTIONAL REQUIREMENT
FUNCTIONAL AND NON FUNCTIONAL REQUIREMENTFUNCTIONAL AND NON FUNCTIONAL REQUIREMENT
FUNCTIONAL AND NON FUNCTIONAL REQUIREMENTSneha Padhiar
 
DEVICE DRIVERS AND INTERRUPTS SERVICE MECHANISM.pdf
DEVICE DRIVERS AND INTERRUPTS  SERVICE MECHANISM.pdfDEVICE DRIVERS AND INTERRUPTS  SERVICE MECHANISM.pdf
DEVICE DRIVERS AND INTERRUPTS SERVICE MECHANISM.pdfAkritiPradhan2
 
Research Methodology for Engineering pdf
Research Methodology for Engineering pdfResearch Methodology for Engineering pdf
Research Methodology for Engineering pdfCaalaaAbdulkerim
 
Paper Tube : Shigeru Ban projects and Case Study of Cardboard Cathedral .pdf
Paper Tube : Shigeru Ban projects and Case Study of Cardboard Cathedral .pdfPaper Tube : Shigeru Ban projects and Case Study of Cardboard Cathedral .pdf
Paper Tube : Shigeru Ban projects and Case Study of Cardboard Cathedral .pdfNainaShrivastava14
 
11. Properties of Liquid Fuels in Energy Engineering.pdf
11. Properties of Liquid Fuels in Energy Engineering.pdf11. Properties of Liquid Fuels in Energy Engineering.pdf
11. Properties of Liquid Fuels in Energy Engineering.pdfHafizMudaserAhmad
 
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor CatchersTechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catcherssdickerson1
 
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMSHigh Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMSsandhya757531
 
TEST CASE GENERATION GENERATION BLOCK BOX APPROACH
TEST CASE GENERATION GENERATION BLOCK BOX APPROACHTEST CASE GENERATION GENERATION BLOCK BOX APPROACH
TEST CASE GENERATION GENERATION BLOCK BOX APPROACHSneha Padhiar
 
OOP concepts -in-Python programming language
OOP concepts -in-Python programming languageOOP concepts -in-Python programming language
OOP concepts -in-Python programming languageSmritiSharma901052
 
Computer Graphics Introduction, Open GL, Line and Circle drawing algorithm
Computer Graphics Introduction, Open GL, Line and Circle drawing algorithmComputer Graphics Introduction, Open GL, Line and Circle drawing algorithm
Computer Graphics Introduction, Open GL, Line and Circle drawing algorithmDeepika Walanjkar
 
US Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of ActionUS Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of ActionMebane Rash
 
Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...
Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...
Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...Sumanth A
 
Engineering Drawing section of solid
Engineering Drawing     section of solidEngineering Drawing     section of solid
Engineering Drawing section of solidnamansinghjarodiya
 
Robotics Group 10 (Control Schemes) cse.pdf
Robotics Group 10  (Control Schemes) cse.pdfRobotics Group 10  (Control Schemes) cse.pdf
Robotics Group 10 (Control Schemes) cse.pdfsahilsajad201
 
Prach: A Feature-Rich Platform Empowering the Autism Community
Prach: A Feature-Rich Platform Empowering the Autism CommunityPrach: A Feature-Rich Platform Empowering the Autism Community
Prach: A Feature-Rich Platform Empowering the Autism Communityprachaibot
 

Kürzlich hochgeladen (20)

Energy Awareness training ppt for manufacturing process.pptx
Energy Awareness training ppt for manufacturing process.pptxEnergy Awareness training ppt for manufacturing process.pptx
Energy Awareness training ppt for manufacturing process.pptx
 
Designing pile caps according to ACI 318-19.pptx
Designing pile caps according to ACI 318-19.pptxDesigning pile caps according to ACI 318-19.pptx
Designing pile caps according to ACI 318-19.pptx
 
multiple access in wireless communication
multiple access in wireless communicationmultiple access in wireless communication
multiple access in wireless communication
 
Main Memory Management in Operating System
Main Memory Management in Operating SystemMain Memory Management in Operating System
Main Memory Management in Operating System
 
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...Stork Webinar | APM Transformational planning, Tool Selection & Performance T...
Stork Webinar | APM Transformational planning, Tool Selection & Performance T...
 
FUNCTIONAL AND NON FUNCTIONAL REQUIREMENT
FUNCTIONAL AND NON FUNCTIONAL REQUIREMENTFUNCTIONAL AND NON FUNCTIONAL REQUIREMENT
FUNCTIONAL AND NON FUNCTIONAL REQUIREMENT
 
DEVICE DRIVERS AND INTERRUPTS SERVICE MECHANISM.pdf
DEVICE DRIVERS AND INTERRUPTS  SERVICE MECHANISM.pdfDEVICE DRIVERS AND INTERRUPTS  SERVICE MECHANISM.pdf
DEVICE DRIVERS AND INTERRUPTS SERVICE MECHANISM.pdf
 
Research Methodology for Engineering pdf
Research Methodology for Engineering pdfResearch Methodology for Engineering pdf
Research Methodology for Engineering pdf
 
Paper Tube : Shigeru Ban projects and Case Study of Cardboard Cathedral .pdf
Paper Tube : Shigeru Ban projects and Case Study of Cardboard Cathedral .pdfPaper Tube : Shigeru Ban projects and Case Study of Cardboard Cathedral .pdf
Paper Tube : Shigeru Ban projects and Case Study of Cardboard Cathedral .pdf
 
11. Properties of Liquid Fuels in Energy Engineering.pdf
11. Properties of Liquid Fuels in Energy Engineering.pdf11. Properties of Liquid Fuels in Energy Engineering.pdf
11. Properties of Liquid Fuels in Energy Engineering.pdf
 
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor CatchersTechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
TechTAC® CFD Report Summary: A Comparison of Two Types of Tubing Anchor Catchers
 
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMSHigh Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
 
TEST CASE GENERATION GENERATION BLOCK BOX APPROACH
TEST CASE GENERATION GENERATION BLOCK BOX APPROACHTEST CASE GENERATION GENERATION BLOCK BOX APPROACH
TEST CASE GENERATION GENERATION BLOCK BOX APPROACH
 
OOP concepts -in-Python programming language
OOP concepts -in-Python programming languageOOP concepts -in-Python programming language
OOP concepts -in-Python programming language
 
Computer Graphics Introduction, Open GL, Line and Circle drawing algorithm
Computer Graphics Introduction, Open GL, Line and Circle drawing algorithmComputer Graphics Introduction, Open GL, Line and Circle drawing algorithm
Computer Graphics Introduction, Open GL, Line and Circle drawing algorithm
 
US Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of ActionUS Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of Action
 
Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...
Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...
Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...
 
Engineering Drawing section of solid
Engineering Drawing     section of solidEngineering Drawing     section of solid
Engineering Drawing section of solid
 
Robotics Group 10 (Control Schemes) cse.pdf
Robotics Group 10  (Control Schemes) cse.pdfRobotics Group 10  (Control Schemes) cse.pdf
Robotics Group 10 (Control Schemes) cse.pdf
 
Prach: A Feature-Rich Platform Empowering the Autism Community
Prach: A Feature-Rich Platform Empowering the Autism CommunityPrach: A Feature-Rich Platform Empowering the Autism Community
Prach: A Feature-Rich Platform Empowering the Autism Community
 

Transition-Mode PFC Controller with Fault Protection

  • 1. LD7591 3/4/2010 1 Leadtrend Technology Corporation www.leadtrend.com.tw LD7591-DS-00 March 2010 Transition-Mode PFC Controller with Fault Condition Protection REV. 00 General Description The LD7591 is a voltage mode PFC controller operating on transition mode, with several integrated functions of protection, such as OVP, OCP, and Brown-in protection. It reduces the components counts and is available in a SOP-8 or DIP-8 package. Those make it an ideal design for low cost applications. It provides functions of low startup current, over voltage protection, open feedback protection, disable function, over current protection, under voltage lockout and integrated LEB of current sensing. Unlike the traditional current mode PFC controller, LD7591 is free from extra rectified AC line voltage information to minimize the power loss. The LD7591 will be disabled if INV pin voltage falls below 0.45V and the operating current rises over 65μA Typical Application for Boost PFC Features Transition mode of PFC pre-regulator Voltage mode control Programmable max. on-time Low Startup Current (<30μA) UVLO (Under Voltage Lockout) LEB (Leading-Edge Blanking) on CS Pin Open-Feedback Protection and Disable Function OVP (Over Voltage Protection) OCP (Cycle by cycle current limiting) 800/-1200mA Driving Capability Internal OTP function Applications Adaptor of Output above 65W. Open Frame Switching Power Supply LCD TV Power Supply LED Power Supply AC Input LD7591 8 5 3 7 4 6 GATE CS GND ZCD VCC RAMP EMI Filter 1INV 2COMP
  • 2. LD7591 2 Leadtrend Technology Corporation www.leadtrend.com.tw LD7591-DS-00 March 2010 Typical Application for LED (Flyback PFC)
  • 3. LD7591 3 Leadtrend Technology Corporation www.leadtrend.com.tw LD7591-DS-00 March 2010 Pin Configuration YY: Year code (D:2004, E:2005…) WW: Week code PP: Production code 1 8 2 3 4 7 6 5 TOP MARK YYWWPP INV COMP RAMP CS VCC OUT GND ZCD SOP-8 & DIP-8 (TOP VIEW) Ordering Information Part number Package Top Mark Shipping LD7591 GS SOP-8 Green package LD7591GS 2500 /tape & reel LD7591 GN DIP-8 Green package LD7591GN 3600 /tube /Carton Pin Descriptions Pin NAME FUNCTION 1 INV Output voltage feed back control 2 COMP Output of the error amplifier for voltage loop compensation to achieve stable 3 RAMP Ramp generator, connecting a resistor to GND pin to set the saw tooth signal 4 CS Current sense pin, connect to sense the MOSFET current for OCP 5 ZCD Detecting zero crossing of input signal 6 GND Ground 7 OUT Gate drive output to drive the external MOSFET 8 VCC Power source VCC pin Recommended Operating Conditions Item Min. Max. Unit Vcc pin capacitor 22 47 μF Comp pin capacitor 0.1 4.7 μF RAMP pin resistor 4.7k 100k Ω
  • 4. LD7591 4 Leadtrend Technology Corporation www.leadtrend.com.tw LD7591-DS-00 March 2010 Block Diagram
  • 5. LD7591 5 Leadtrend Technology Corporation www.leadtrend.com.tw LD7591-DS-00 March 2010 Absolute Maximum Ratings Supply Voltage VCC -0.3 ~26V OUT -0.3 ~VCC +0.3V COMP, INV, CS, RAMP, ZCD -0.3 ~7V Maximum Junction Temperature 150°C Operating Junction Temperature Range -40°C to 125°C Operating Ambient Temperature Range -40°C to 85°C Storage Temperature Range -65°C to 150°C Package Thermal Resistance (SO-8, θJA) 160°C/W Package Thermal Resistance (DIP-8, θJA) 100°C/W Power Dissipation (SOT-8, at Ambient Temperature = 85°C) 400mW Power Dissipation (DIP-8, at Ambient Temperature = 85°C) 650mW Lead temperature (Soldering, 10sec) 260°C ESD Voltage Protection, Human Body Model 2.5 KV ESD Voltage Protection, Machine Model 250 V Gate Output Current 800mA/-1200mA Caution: Stresses beyond the ratings specified in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
  • 6. LD7591 6 Leadtrend Technology Corporation www.leadtrend.com.tw LD7591-DS-00 March 2010 Electrical Characteristics (VCC=14.0V, TA = 25° C unless otherwise specified.) PARAMETER CONDITIONS MIN TYP MAX UNITS Supply Voltage (VCC Pin) Startup Current VCC<UVLO ON 20 30 μA VCOMP=0V 2.0 mA VCOMP=3V 2.5 mA VCC OVP 0.45 mA Operating Current (with 1nF load on OUT pin) VINV=0V 65 95 μA UVLO (off) 7.5 8.5 9.5 V UVLO (on) 11.0 12.0 13.0 V VCC OVP Level 19.5 21 22.5 V Error Amplifier (Comp Pin) Feedback Input Voltage, VREF 2.465 2.500 2.535 V Input Bias Current VINV=1V~4V -0.5 0.5 μA Transconductance 140 μmho Output Sink Current VINV= VREF +0.1V 14 μA Output Source Current VINV= VREF -0.1V -14 μA Output Source Current VINV= VREF -0.5V -200 μA Output Upper Clamp Voltage VINV= VREF -0.1V 5.4 5.9 6.4 V 0.95 VBurst Mode COMP pin Threshold voltage Hysteresis 50 mV INV pin 2.62 2.675 2.73 V OVP Trip Level OVP Hysteresis 0.175 V 0.4 0.45 0.5 V Enable Threshold Voltage Enable Hysteresis 0.1 V Current Sensing (CS Pin) Current Sense Input Threshold Voltage 0.75 0.8 0.85 V Input bias current VCS=0V~1V 0 1.0 μA LEB time 250 ns Zero Current Detector (ZCD Pin) Upper Clamp Voltage IDET=100μA 6.0 V Lower Clamp Voltage IDET=100μA -0.7 V 0.05 0.1 0.15 V Input Voltage Threshold Hysteresis 0.1 V Input bias current VZCD=1V~4V, OUT=OFF 0.0 1.0 μA Maximum Delay from ZCD to Output 250 ns
  • 7. LD7591 7 Leadtrend Technology Corporation www.leadtrend.com.tw LD7591-DS-00 March 2010 PARAMETER CONDITIONS MIN TYP MAX UNITS Maximum ON-Time, Ton-max (Ramp Pin) Maximum On Time Voltage RRAMP=40.5K 2.784 2.900V 3.016 V Maximum On Time Programming RRAMP =40.5K 19 24 29 μs Maximum On Time RRAMP ≥ 100K 40 μs Minimum OFF-Time Minimum OFF-Time 1 μs Minimum OFF-Time Programming 0.10 Ton- max Gate Drive Output (OUT Pin) Output Low Level VCC=12V, ISINK=20mA 0.5 V Output High Level VCC=12V, ISOURCE=20mA 9 12 V Output High Clamp Level VCC=18V 13 V Rising Time VCC =12V, CL=1000pF 75 150 ns Falling Time VCC =12V, CL=1000pF 25 100 ns Starter Start Timer Period 50 150 300 μs OTP (Over Temp. Protection) OTP Trip level 140 °C OTP Hysteresis 30 °C
  • 8. LD7591 8 Leadtrend Technology Corporation www.leadtrend.com.tw LD7591-DS-00 March 2010 Typical Performance Characteristics UVLO(on)(V) Fig. 1 UVLO (on) vs. Temperature Temperature (°C) 11.0 11.5 12.0 12.5 13.0 13.5 -40 0 40 80 120 125 UVLO(off)(V) Temperature (°C) Fig. 2 UVLO (off ) vs. Temperature 7.5 8.5 9.0 10 8.0 -40 0 40 80 120 125 9.5 Istartup(μA) Temperature (°C) Fig. 3 Startup Current vs. Temperature -40 0 40 80 120 125 20 22 24 26 28 18 30 VCCOVP(V) Temperature (°C) Fig. 4 VCC OVP vs. Temperature 10 15 20 25 30 35 -40 0 40 80 120 125 Vref(V) Temperature (°C) Fig. 5 Vref vs. Temperature 2.44 2.46 2.48 2.50 2.52 2.54 -40 0 40 80 120 125 INVOVP(V) Temperature (°C) Fig. 6 INV OVP vs. Temperature 2.5 2.55 2.6 2.65 2.7 2.75 -40 0 40 80 120 125
  • 9. LD7591 9 Leadtrend Technology Corporation www.leadtrend.com.tw LD7591-DS-00 March 2010 EnableVoltage(V) Temperature (°C) Fig. 7 Enable Voltage vs. Temperature 0.3 0.35 0.4 0.45 0.5 0.55 -40 0 40 80 120 125 VCS(off)(V) Temperature (°C) Fig. 8 VCS (off) vs. Temperature 0.78 0.79 0.80 0.81 0.82 0.83 -40 0 40 80 120 125 MaximumOn-TimeVoltage(V) Temperature (°C) Fig. 9 Maximum On-Time Voltage vs. Temperature 2.86 2.88 2.9 2.92 2.94 2.96 -40 0 40 80 120 125 MaximumOn-Time(μs) Temperature (°C) Fig. 10 Maximum On-Time vs. Temperature -40 0 40 80 120 125 22 23 24 25 26 21 StartTimerPeriod(μs) Temperature (°C) Fig. 11 Start Timer Period vs. Temperature 140 145 150 155 160 165 -40 0 40 80 120 125
  • 10. LD7591 10 Leadtrend Technology Corporation www.leadtrend.com.tw LD7591-DS-00 March 2010 Application Information Operation Overview The LD7591 is an excellent voltage mode PFC controller. It meets the IEC61000-3-2 requirement and is intended for the use in those pre-regulator that demand low power harmonics distortion. It integrated more functions to reduce the external components counts and the size. Its major features are described as below. Under Voltage Lockout (UVLO) An UVLO comparator is implemented in it to detect the voltage on the VCC pin. It would assure the supply voltage enough to turn on the LD7591 PFC controllers and further to drive the power MOSFET. As shown in Fig. 12, a hysteresis is built in to prevent the shutdown from the voltage dip during start up. The turn-on and turn-off threshold level are set at 12.0V and 8.5V, respectively. Vcc UVLO(on) UVLO(off) t t I(Vcc) startup current (~uA) operating current (~ mA) Fig. 12 Startup Current and Startup Circuit The typical startup circuit to generate the LD7591 Vcc is shown in Fig. 13. During the startup transient, the Vcc is lower than the UVLO threshold thus there is no gate pulse produced from LD7591 to drive power MOSFET. Therefore, the current through R1 will provide the startup current and to charge the capacitor C1. Whenever the Vcc voltage is high enough to turn on the LD7591 and further to deliver the gate drive signal, the supply current is provided from the auxiliary winding of the PFC choke. Lower startup current requirement on the PFC controller will help to increase the value of R1 and then reduce the power consumption on R1. By using CMOS process and the special circuit design, the maximum startup current of LD7591 is only 30μA. If a higher resistance value of R1 is chosen, it usually takes more time to start up. To carefully select the value of R1 and C1 will optimize the power consumption and startup time. Fig. 13 Output Voltage Setting The LD7591 monitors the output voltage signal at INV pin through a resistor divider pair Ra and Rb. A transconductance amplifier is used instead of the conventional voltage amplifier. The transconductance amplifier (voltage controlled current source) aids the implementation of OVP and disables function. The output current of the amplifier changes according to the voltage difference of the inverting and non-inverting input of the amplifier. The output voltage of the amplifier is compared with the internal ramp signal to generate the turn-off signal. The output voltage is determined by the following relationship. ) Rb Ra 1(V5.2VOUT +=
  • 11. LD7591 11 Leadtrend Technology Corporation www.leadtrend.com.tw LD7591-DS-00 March 2010 Where Ra and Rb are top and bottom feedback resistor values (as shown in the Fig. 14). Fig. 14 OVP and Disable on INV pin To prevent the over voltage on the output capacitor from the fault condition, LD7591 is implemented with an OVP function on INV pin. Whenever the INV voltage is higher than the OVP threshold voltage 2.675V, the output gate drive circuit will be shutdown simultaneously thus to stop the switching of the power MOSFET until the INV pin down to 2.5V. The OVP function in LD7591 is an auto-recovery type protection. The Fig. 15 shows its operation. On the other hand, if the OVP condition is removed, the Vcc level will get back to normal level and the output will automatically return to the normal operation. The disable comparator disables the operation of the LD7591 when the voltage of the inverting input is lower than 0.35V and there is 100mV hysteresis. An external small signal MOSFET can be used to disable the IC, referring to Fig. 14. The IC operating current decreases below 65μA to reduce power consumption if the IC is disabled. Fig. 15 Zero Current Detection (ZCD) Fig. 16 shows typical ZCD-block. The Zero Current Detection block will switch on the external MOSFET as the current through the boost inductor drops to zero in using an auxiliary winding coupled with the inductor. This feature allows transition-mode operation. If the voltage of the ZCD pin goes higher than 0.2V, the ZCD comparator waits until the voltage rises above 0.1V. If the voltage goes below 0.1V, the zero current detector will turn on the MOSFET. The ZCD pin is protected internally by two clamps, 6.0V-high clamp and -0.7V-low clamp. The 150μs timer generates a MOSFET turn on signal if the driver output has been low for more than 150μs from the falling edge of the driver output. Fig. 16
  • 12. LD7591 12 Leadtrend Technology Corporation www.leadtrend.com.tw LD7591-DS-00 March 2010 Fig. 17 shows typical ZCD-related waveforms. Rz1 will produce some delay because of the capacitance carried by ZCD pin, it therefore delay the turn-on time accordingly. The switch will be turned on when the inductor current reaches zero; because of the structure of the ZCD delay, it will be turned on after some delay time. During this delay time, the stored charge of the COSS (MOSFET output capacitor) will be discharged through the path indicated in Fig. 18. This charge is transferred into a small filter capacitor CIN1, which is connected to the bridge diode. Therefore, there is no current flowing from the input side. That is, the input current IIN is zero during this period. In order to reduce the negative current flowing to the internal diode, a larger resistance of RZ1 over 47kΩ is recommended. Fig. 17 Fig. 18 Ramp Generator Block The output of the gm error amplifier and the output of the ramp generator block are compared to determine the MOSFET on time, as shown in Fig. 19. The slope of the ramp is determined by an external resistor connected to the RAMP pin. The voltage of the RAMP pin is 2.9V and the slope is proportional to the current flowing out of the RAMP pin. The internal ramp signal has a 1V offset; therefore, the drive output will be shut down if the voltage of the COMP pin is lower than 0.95V. The programmed on-time will be at its maximum when the COMP pin is open. The COMP pin open voltage is about 5.4~6.6V. According to the slope of the internal ramp, the maximum on-time can be programmed. The necessary maximum on-time will be achieved depending on the boost inductor, lowest AC line voltage, and maximum output power. The resistor value should be designed properly. The maximum on-time can be obtained from below 9 RAMP )MAX(TimeON 1058.1 R T ⋅ =− Fig. 19
  • 13. LD7591 13 Leadtrend Technology Corporation www.leadtrend.com.tw LD7591-DS-00 March 2010 Output Drive Stage An output stage of a CMOS buffer, with typical 800mA/-1200mA driving capability, is incorporated to drive a power MOSFET directly. The output voltage is clamped at 13V to protect the MOSFET gate even when the VCC voltage is higher than 13V. Current Sensing and Leading-edge Blanking The typical voltage mode of PFC controller feedbacks the voltage signals to close the control loop and achieve regulation. The LD7591 detects the primary MOSFET current from the CS pin, which is for the pulse-by-pulse current limit. The maximum voltage threshold of the current sensing pin is set at 0.8V. From above, the MOSFET peak current can be obtained from below. S )MAX(PEAK R V8.0 I = A 250ns leading-edge blanking (LEB) time is included in the input of CS pin to prevent the false-trigger from the current spike. The R-C filter may be eliminated in some low power applications, such as the pulse width of the turn-on spikes is below 250ns and the negative spike on the CS pin is below -0.3V. However, the pulse width of the turn-on spike is determined according to the output power, circuit design and PCB layout. It is strongly recommended to adopt a smaller R-C filter for higher power application to avoid the CS pin being damaged by the negative turn-on spike. Fig. 20 Fault Protection There are several critical protections integrated in the LD7591 to prevent the power supply or adapter from being damaged. Those damages usually come from open or short condition on the pins of LD7591. Under the conditions listed below, the gate output will turn off immediately to protect the power circuit --- 1. Ramp pin short to ground 2. Ramp pin floating 3. CS pin floating
  • 14. LD7591 14 Leadtrend Technology Corporation www.leadtrend.com.tw LD7591-DS-00 March 2010 Reference Application Circuit --- 400V/100W (90~264VAC)
  • 15. LD7591 15 Leadtrend Technology Corporation www.leadtrend.com.tw LD7591-DS-00 March 2010 BOM P/N Component Value Note P/N Component Value Note Fuse 250V,T2A C1 0.1μF,X-cap NTC 3A,5Ω C2 0.22μF,X-cap R1 24 kΩ, 0805 C3 2200pF,Y1-cap R2 620 kΩ, 0805 C4 2200pF,Y1-cap R3 330 kΩ, 1206 CY1 NC R3B 330 kΩ, 1206 C5 0.47μF,400V MPF R4 270 Ω, 1206 C5B 0.47μF,400V MPF R5 110 kΩ, 0805 C6 33μF, 50V Electrolytic Capacitor R6 24 Ω, 0805 C61 100nF, 25V ,0805 R61 24 Ω, 0805 C7 100nF, 50V, 0805 R7 0.18 Ω 1/2W C8 220nF, 25V, 0805 R8 10 kΩ, 0805 C9 100μF, 450V Electrolytic Capacitor R9 22 kΩ, 1206 C91 1000pF, 1kV, 1206 R10 2 MΩ, 1206 C10 10nF, 100V, 1206 R10B 2 MΩ, 1206 C11 NC R11 27 kΩ, 0805 C12 100pF/ 16V, 0805 R12 360 kΩ, 0805 C13 330pF/ 1kV/1206 R13 1 MΩ, 1206 C14 100pF/ 1kV/1206 RZ2 11 kΩ, 0805 CB2 100pF/16V, 0805 RZ3 0 Ω, 0805 D1 LL4148 SOD-80 RB4 200 Ω, 0805 D2 ER206 600V/ 2A, DO-15 RZ3 0 Ω, 0805 D3 LL4148 SOD-80 RB4 200 Ω, 0805 DB UF206G 600V/2A, DO-15 ZD1 GLZ18C, 18V Zener SOD-80 BD SBU4J or GBU4J 600V/4A L1 Leadtrend’s Design 220uH LF1 Leadtrend’s Design LF2 Leadtrend’s Design Q1 FQP13N50C 500V, 13A, TO-220 IC1 LD7591 SOP-8 V1 NC Varistor T1 400uH EI30, 44/6
  • 16. LD7591 16 Leadtrend Technology Corporation www.leadtrend.com.tw LD7591-DS-00 March 2010 Reference Application Circuit --- LED -42V/350mA (90~264VAC)
  • 17. LD7591 17 Leadtrend Technology Corporation www.leadtrend.com.tw LD7591-DS-00 March 2010 BOM P/N Component Value Note P/N Component Value Note Fuse 2A/250V C1 0.1μF / 275VAC X-cap NTC 0Ω, 1206 C2 4.7nF/1kV,1206 V1 Varisitor 471 C5 0.047μF / 400V MPF 塑膠電容 R1 27kΩ, 0805 C5B 0.1μF / 400V MPF 塑膠電容 R2 300kΩ, 0805 C6 22uF/ 50V Electrolytic Capacitor R3 110kΩ, 1206 C61 104pF/25V/0805 R3B 110kΩ, 1206 C62 33uF/ 50V R4 39Ω, 1206 C9 330μF, 50V Electrolytic Capacitor R5 100kΩ, 0805 C9A 330μF, 50V Electrolytic Capacitor R5B 10kΩ, 0805 C11 NC, 0805 R6 51Ω, 0805 C12 10pF, 0805 R61 0Ω, 0805 C13 470pF/500V, 1206 R7 0.75Ω 1/2W C14 0.47μF/ 16V, 0805 R9 20kΩ, 0805 C15 2200pF, Y 電容 R12 0.68Ω, 2W C16 NC /1kV,1206 R12B NC,1206 C101 2.2uF/ 50V R13 100Ω, 1206 C102 4.7μF/10V/0805 R14 1kΩ, 0805 C103 0.1μF/ 25V, 0805 R15 7.5MEGΩ, 0805 C104 1μF/ 25V, 0805 R15B 620kΩ, 0805 C105 473pF/25V/0805 R16 100kΩ, 1206 CB2 220pF/16V, 0805 R17 100kΩ, 1206 D1 BAV103 RB4 200Ω, 0805 D2 ER502 200V/ 5A, R101 NC, 0805 D3 LL4148 SOD-80 R102 8.2V Zener D4 LL4148 SOD-80 R103 91k D5 1N4007 1000V/1A R104 0Ω, 0805 D6 LL4148 SOD-80 R104B 10kΩ, 0805 D7 LL4148 SOD-80 R105 20kΩ, 0805 DZ1 NC R106 75kΩ, 0805 DZ2 NC R107 5.6kΩ, 0805 DZ3 P6KE200A DO-15 R108 39kΩ, 0805 BD DI106 600V/1A R109 10kΩ, 0805 T1 EF20, 1150uH 106/32/13 R110 100kΩ, 0805 LF1 UU9.8 R111 15kΩ LF2 1000uH R112 4.7kΩ, 0805 Q1 FQPF5N60C 600V, 4.5A, TO-220 R113 NC, 0805 Q2 330R, 0805 R114 0Ω, 0805 IC1 LD7591 SOP-8 IC2 PC817 IC3
  • 18. LD7591 18 Leadtrend Technology Corporation www.leadtrend.com.tw LD7591-DS-00 March 2010 Package Information SOP-8 Dimensions in Millimeters Dimensions in Inch Symbols MIN MAX MIN MAX A 4.801 5.004 0.189 0.197 B 3.810 3.988 0.150 0.157 C 1.346 1.753 0.053 0.069 D 0.330 0.508 0.013 0.020 F 1.194 1.346 0.047 0.053 H 0.178 0.229 0.007 0.009 I 0.102 0.254 0.004 0.010 J 5.791 6.198 0.228 0.244 M 0.406 1.270 0.016 0.050 θ 0° 8° 0° 8°
  • 19. LD7591 19 Leadtrend Technology Corporation www.leadtrend.com.tw LD7591-DS-00 March 2010 Package Information DIP-8 Dimension in Millimeters Dimensions in Inches Symbol Min Max Min Max A 9.017 10.160 0.355 0.400 B 6.096 7.112 0.240 0.280 C ----- 5.334 ------ 0.210 D 0.356 0.584 0.014 0.023 E 1.143 1.778 0.045 0.070 F 2.337 2.743 0.092 0.108 I 2.921 3.556 0.115 0.140 J 7.366 8.255 0.29 0.325 L 0.381 ------ 0.015 -------- Important Notice Leadtrend Technology Corp. reserves the right to make changes or corrections to its products at any time without notice. Customers should verify the datasheets are current and complete before placing order.
  • 20. LD7591 20 Leadtrend Technology Corporation www.leadtrend.com.tw LD7591-DS-00 March 2010 Revision History Rev. Date Change Notice 00 3/4/2010 Original Specification