SlideShare ist ein Scribd-Unternehmen logo
1 von 11
Downloaden Sie, um offline zu lesen
352
BIBLIOGRAPHY
• Abramowitz, M. and Stegun, I.A., Handbook of Mathematical Functions, 10th ed,
New York:Dover, 1972.
• Akivis, M.A., Goldberg, V.V., An Introduction to Linear Algebra and Tensors, New York:Dover, 1972.
• Aris, Rutherford, Vectors, Tensors, and the Basic Equations of Fluid Mechanics,
Englewood Cliffs, N.J.:Prentice-Hall, 1962.
• Atkin, R.J., Fox, N., An Introduction to the Theory of Elasticity,
London:Longman Group Limited, 1980.
• Bishop, R.L., Goldberg, S.I.,Tensor Analysis on Manifolds, New York:Dover, 1968.
• Borisenko, A.I., Tarapov, I.E., Vector and Tensor Analysis with Applications, New York:Dover, 1968.
• Chorlton, F., Vector and Tensor Methods, Chichester,England:Ellis Horwood Ltd, 1976.
• Dodson, C.T.J., Poston, T., Tensor Geometry, London:Pittman Publishing Co., 1979.
• Eisenhart, L.P., Riemannian Geometry, Princeton, N.J.:Univ. Princeton Press, 1960.
• Eringen, A.C., Mechanics of Continua, Huntington, N.Y.:Robert E. Krieger, 1980.
• D.J. Griffiths, Introduction to Electrodynamics, Prentice Hall, 1981.
• Fl¨ugge, W., Tensor Analysis and Continuum Mechanics, New York:Springer-Verlag, 1972.
• Fung, Y.C., A First Course in Continuum Mechanics, Englewood Cliffs,N.J.:Prentice-Hall, 1969.
• Goodbody, A.M., Cartesian Tensors, Chichester, England:Ellis Horwood Ltd, 1982.
• Hay, G.E., Vector and Tensor Analysis, New York:Dover, 1953.
• Hughes, W.F., Gaylord, E.W., Basic Equations of Engineering Science, New York:McGraw-Hill, 1964.
• Jeffreys, H., Cartesian Tensors, Cambridge, England:Cambridge Univ. Press, 1974.
• Lass, H., Vector and Tensor Analysis, New York:McGraw-Hill, 1950.
• Levi-Civita, T., The Absolute Differential Calculus, London:Blackie and Son Limited, 1954.
• Lovelock, D., Rund, H. ,Tensors, Differential Forms, and Variational Principles, New York:Dover, 1989.
• Malvern, L.E., Introduction to the Mechanics of a Continuous Media,
Englewood Cliffs, N.J.:Prentice-Hall, 1969.
• McConnell, A.J., Application of Tensor Analysis, New York:Dover, 1947.
• Newell, H.E., Vector Analysis, New York:McGraw Hill, 1955.
• Schouten, J.A., Tensor Analysis for Physicists,New York:Dover, 1989.
• Scipio, L.A., Principles of Continua with Applications, New York:John Wiley and Sons, 1967.
• Sokolnikoff, I.S., Tensor Analysis, New York:John Wiley and Sons, 1958.
• Spiegel, M.R., Vector Analysis, New York:Schaum Outline Series, 1959.
• Synge, J.L., Schild, A., Tensor Calculus, Toronto:Univ. Toronto Press, 1956.
Bibliography
353
APPENDIX A
UNITS OF MEASUREMENT
The following units, abbreviations and prefixes are from the
Syst`eme International d’Unit`es (designated SI in all Languages.)
Prefixes.
Abreviations
Prefix Multiplication factor Symbol
tera 1012
T
giga 109
G
mega 106
M
kilo 103
K
hecto 102
h
deka 10 da
deci 10−1
d
centi 10−2
c
milli 10−3
m
micro 10−6
µ
nano 10−9
n
pico 10−12
p
Basic Units.
Basic units of measurement
Unit Name Symbol
Length meter m
Mass kilogram kg
Time second s
Electric current ampere A
Temperature degree Kelvin ◦
K
Luminous intensity candela cd
Supplementary units
Unit Name Symbol
Plane angle radian rad
Solid angle steradian sr
354
DERIVED UNITS
Name Units Symbol
Area square meter m2
Volume cubic meter m3
Frequency hertz Hz (s−1
)
Density kilogram per cubic meter kg/m3
Velocity meter per second m/s
Angular velocity radian per second rad/s
Acceleration meter per second squared m/s2
Angular acceleration radian per second squared rad/s2
Force newton N (kg · m/s2
)
Pressure newton per square meter N/m2
Kinematic viscosity square meter per second m2
/s
Dynamic viscosity newton second per square meter N · s/m2
Work, energy, quantity of heat joule J (N · m)
Power watt W (J/s)
Electric charge coulomb C (A · s)
Voltage, Potential difference volt V (W/A)
Electromotive force volt V (W/A)
Electric force field volt per meter V/m
Electric resistance ohm Ω (V/A)
Electric capacitance farad F (A · s/V)
Magnetic flux weber Wb (V · s)
Inductance henry H (V · s/A)
Magnetic flux density tesla T (Wb/m2
)
Magnetic field strength ampere per meter A/m
Magnetomotive force ampere A
Physical constants.
4 arctan1 = π = 3.14159 26535 89793 23846 2643 . . .
lim
n→∞
1 +
1
n
n
= e = 2.71828 18284 59045 23536 0287 . . .
Euler’s constant γ = 0.57721 56649 01532 86060 6512 . . .
γ = lim
n→∞
1 +
1
2
+
1
3
+ · · · +
1
n
− log n
speed of light in vacuum = 2.997925(10)8
m s−1
electron charge = 1.60210(10)−19
C
Avogadro’s constant = 6.02252(10)23
mol−1
Plank’s constant = 6.6256(10)−34
J s
Universal gas constant = 8.3143 J K−1
mol−1
= 8314.3 J Kg−1
K−1
Boltzmann constant = 1.38054(10)−23
J K−1
Stefan–Boltzmann constant = 5.6697(10)−8
W m−2
K−4
Gravitational constant = 6.67(10)−11
N m2
kg−2
355
APPENDIX B
CHRISTOFFEL SYMBOLS OF SECOND KIND
1. Cylindrical coordinates (r, θ, z) = (x1
, x2
, x3
)
x = r cos θ
y = r sin θ
z = z
r ≥ 0
0 ≤ θ ≤ 2π
− ∞ < z < ∞
h1 = 1
h2 = r
h3 = 1
The coordinate curves are formed by the intersection of the coordinate surfaces
x2
+ y2
= r2
, Cylinders
y/x = tan θ Planes
z = Constant Planes.
1
2 2
= −r
2
1 2
=
2
2 1
=
1
r
2. Spherical coordinates (ρ, θ, φ) = (x1
, x2
, x3
)
x = ρ sin θ cos φ
y = ρ sin θ sin φ
z = ρ cos θ
ρ ≥ 0
0 ≤ θ ≤ π
0 ≤ φ ≤ 2π
h1 = 1
h2 = ρ
h3 = ρ sin θ
The coordinate curves are formed by the intersection of the coordinate surfaces
x2
+ y2
+ z2
= ρ2
Spheres
x2
+ y2
= tan2
θ z Cones
y = x tan φ Planes.
1
2 2
= −ρ
1
3 3
= −ρ sin2
θ
2
3 3
= − sin θ cos θ
2
1 2
=
2
2 1
=
1
ρ
3
1 3
=
3
3 1
=
1
ρ
3
3 2
=
3
2 3
= cot θ
356
3. Parabolic cylindrical coordinates (ξ, η, z) = (x1
, x2
, x3
)
x = ξη
y =
1
2
(ξ2
− η2
)
z = z
− ∞ < ξ < ∞
− ∞ < z < ∞
η ≥ 0
h1 = ξ2 + η2
h2 = ξ2 + η2
h3 = 1
The coordinate curves are formed by the intersection of the coordinate surfaces
x2
= −2ξ2
(y −
ξ2
2
) Parabolic cylinders
x2
= 2η2
(y +
η2
2
) Parabolic cylinders
z = Constant Planes.
1
1 1
=
ξ
ξ2 + η2
2
2 2
=
η
ξ2 + η2
2
1 1
=
−η
ξ2 + η2
1
2 2
=
−ξ
ξ2 + η2
1
1 2
=
1
2 1
=
η
ξ2 + η2
2
2 1
=
2
1 2
=
ξ
ξ2 + η2
4. Parabolic coordinates (ξ, η, φ) = (x1
, x2
, x3
)
x = ξη cos φ
y = ξη sin φ
z =
1
2
(ξ2
− η2
)
ξ ≥ 0
η ≥ 0
0 < φ < 2π
h1 = ξ2 + η2
h2 = ξ2 + η2
h3 = ξη
The coordinate curves are formed by the intersection of the coordinate surfaces
x2
+ y2
= −2ξ2
(z −
ξ2
2
) Paraboloids
x2
+ y2
= 2η2
(z +
η2
2
) Paraboloids
y = x tan φ Planes.
1
1 1
=
ξ
ξ2 + η2
2
2 2
=
η
ξ2 + η2
1
2 2
=
−ξ
ξ2 + η2
2
1 1
=
−η
ξ2 + η2
2
3 3
=
−ηξ2
ξ2 + η2
1
3 3
=
−ξη2
ξ2 + η2
1
2 1
=
1
2 1
=
η
ξ2 + η2
2
2 1
=
2
1 2
=
ξ
ξ2 + η2
3
3 2
=
3
2 3
=
1
η
3
1 3
=
3
3 1
=
1
ξ
357
5. Elliptic cylindrical coordinates (ξ, η, z) = (x1
, x2
, x3
)
x = cosh ξ cos η
y = sinh ξ sin η
z = z
ξ ≥ 0
0 ≤ η ≤ 2π
− ∞ < z < ∞
h1 = sinh2
ξ + sin2
η
h2 = sinh2
ξ + sin2
η
h3 = 1
The coordinate curves are formed by the intersection of the coordinate surfaces
x2
cosh2
ξ
+
y2
sinh2
ξ
= 1 Elliptic cylinders
x2
cos2 η
−
y2
sin2
η
= 1 Hyperbolic cylinders
z = Constant Planes.
1
1 1
=
sinh ξ cosh ξ
sinh2
ξ + sin2
η
1
2 2
=
− sinh ξ cosh ξ
sinh2
ξ + sin2
η
1
1 2
=
1
2 1
=
sin η cos η
sinh2
ξ + sin2
η
2
2 2
=
sin η cos η
sinh2
ξ + sin2
η
2
1 1
=
− sin η cos η
sinh2
ξ + sin2
η
2
1 2
=
2
2 1
=
sinh ξ cosh ξ
sinh2
ξ + sin2
η
6. Elliptic coordinates (ξ, η, φ) = (x1
, x2
, x3
)
x = (1 − η2)(ξ2 − 1) cos φ
y = (1 − η2)(ξ2 − 1) sin φ
z = ξη
1 ≤ ξ < ∞
− 1 ≤ η ≤ 1
0 ≤ φ < 2π
h1 =
ξ2 − η2
ξ2 − 1
h2 =
ξ2 − η2
1 − η2
h3 = (1 − η2)(ξ2 − 1)
The coordinate curves are formed by the intersection of the coordinate surfaces
x2
ξ2 − 1
+
y2
ξ2 − 1
+
z2
ξ2
= 1 Prolate ellipsoid
z2
η2
−
x2
1 − η2
−
y2
1 − η2
= 1 Two-sheeted hyperboloid
y = x tan φ Planes
1
1 1
= −
ξ
−1 + ξ2
+
ξ
ξ2 − η2
2
2 2
=
η
1 − η2
−
η
ξ2 − η2
1
2 2
= −
ξ −1 + ξ2
(1 − η2) (ξ2 − η2)
1
3 3
= −
ξ −1 + ξ2
1 − η2
ξ2 − η2
2
1 1
=
η 1 − η2
(−1 + ξ2) (ξ2 − η2)
2
3 3
=
−1 + ξ2
η 1 − η2
ξ2 − η2
1
1 2
= −
η
ξ2 − η2
2
2 1
=
ξ
ξ2 − η2
3
3 1
=
ξ
−1 + ξ2
3
3 2
= −
η
1 − η2
358
7. Bipolar coordinates (u, v, z) = (x1
, x2
, x3
)
x =
a sinh v
cosh v − cos u
, 0 ≤ u < 2π
y =
a sin u
cosh v − cos u
, −∞ < v < ∞
z = z − ∞ < z < ∞
h2
1 = h2
2
h2
2 =
a2
(cosh v − cos u)2
h2
3 = 1
The coordinate curves are formed by the intersection of the coordinate surfaces
(x − a coth v)2
+ y2
=
a2
sinh2
v
Cylinders
x2
+ (y − a cot u)2
=
a2
sin2
u
Cylinders
z = Constant Planes.
1
1 1
=
sin u
cos u − cosh v
2
2 2
=
sinh v
cos u − cosh v
1
2 2
=
sin u
− cos u + cosh v
2
1 1
=
sinh v
− cosu + cosh v
1
1 2
=
sinh v
cos u − cosh v
2
2 1
=
sin u
cos u − cosh v
8. Conical coordinates (u, v, w) = (x1
, x2
, x3
)
x =
uvw
ab
, b2
> v2
> a2
> w2
, u ≥ 0
y =
u
a
(v2 − a2)(w2 − a2)
a2 − b2
z =
v
b
(v2 − b2)(w2 − b2)
b2 − a2
h2
1 = 1
h2
2 =
u2
(v2
− w2
)
(v2 − a2)(b2 − v2)
h2
3 =
u2
(v2
− w2
)
(w2 − a2)(w2 − b2)
The coordinate curves are formed by the intersection of the coordinate surfaces
x2
+ y2
+ z2
= u2
Spheres
x2
v2
+
y2
v2 − a2
+
z2
v2 − b2
= 0, Cones
x2
w2
+
y2
w2 − a2
+
z2
w2 − b2
= 0, Cones.
2
2 2
=
v
b2 − v2
−
v
−a2 + v2
+
v
v2 − w2
3
3 3
= −
w
v2 − w2
−
w
−a2 + w2
−
w
−b2 + w2
1
2 2
= −
u v2
− w2
(b2 − v2) (−a2 + v2)
1
3 3
= −
u v2
− w2
(−a2 + w2) (−b2 + w2)
2
3 3
= −
v b2
− v2
−a2
+ v2
(v2 − w2) (−a2 + w2) (−b2 + w2)
3
2 2
=
w −a2
+ w2
−b2
+ w2
(b2 − v2) (−a2 + v2) (v2 − w2)
2
2 1
=
1
u
2
2 3
= −
w
v2 − w2
3
3 1
=
1
u
3
3 2
=
v
v2 − w2
359
9. Prolate spheroidal coordinates (u, v, φ) = (x1
, x2
, x3
)
x = a sinh u sin v cos φ, u ≥ 0
y = a sinh u sin v sin φ, 0 ≤ v ≤ π
z = a coshu cos v, 0 ≤ φ < 2π
h2
1 = h2
2
h2
2 = a2
(sinh2
u + sin2
v)
h2
3 = a2
sinh2
u sin2
v
The coordinate curves are formed by the intersection of the coordinate surfaces
x2
(a sinh u)2
+
y2
a sinh u)2
+
z2
a cosh u)2
= 1, Prolate ellipsoids
x2
(a cos v)2
−
y2
(a sin v)2
−
z2
(a cos v)2
= 1, Two-sheeted hyperpoloid
y = x tan φ, Planes.
1
1 1
=
cosh u sinh u
sin2
v + sinh2
u
2
2 2
=
cos v sin v
sin2
v + sinh2
u
1
2 2
= −
cosh u sinh u
sin2
v + sinh2
u
1
3 3
= −
sin2
v cosh u sinh u
sin2
v + sinh2
u
2
1 1
= −
cos v sin v
sin2
v + sinh2
u
2
3 3
= −
cosv sin vsinh2
u
sin2
v + sinh2
u
1
1 2
=
cos v sin v
sin2
v + sinh2
u
2
2 1
=
cosh u sinh u
sin2
v + sinh2
u
3
3 1
=
cosh u
sinh u
3
3 2
=
cos v
sin v
10. Oblate spheroidal coordinates (ξ, η, φ) = (x1
, x2
, x3
)
x = a cosh ξ cos η cos φ, ξ ≥ 0
y = a cosh ξ cos η sin φ, −
π
2
≤ η ≤
π
2
z = a sinh ξ sin η, 0 ≤ φ ≤ 2π
h2
1 = h2
2
h2
2 = a2
(sinh2
ξ + sin2
η)
h2
3 = a2
cosh2
ξ cos2
η
The coordinate curves are formed by the intersection of the coordinate surfaces
x2
(a cosh ξ)2
+
y2
(a cosh ξ)2
+
z2
(a sinh ξ)2
= 1, Oblate ellipsoids
x2
(a cos η)2
+
y2
(a cos η)2
−
z2
(a sin η)2
= 1, One-sheet hyperboloids
y = x tan φ, Planes.
1
1 1
=
cosh ξ sinh ξ
sin2
η + sinh2
ξ
2
2 2
=
cos η sin η
sin2
η + sinh2
ξ
1
2 2
= −
cosh ξ sinh ξ
sin2
η + sinh2
ξ
1
3 3
= −
cos2
η cosh ξ sinh ξ
sin2
η + sinh2
ξ
2
1 1
= −
cos η sin η
sin2
η + sinh2
ξ
2
3 3
=
cos η sin ηcosh2
ξ
sin2
η + sinh2
ξ
1
1 2
=
cos η sin η
sin2
η + sinh2
ξ
2
2 1
=
cosh ξ sinh ξ
sin2
η + sinh2
ξ
3
3 1
=
sinh ξ
cosh ξ
3
3 2
= −
sin η
cosη
360
11. Toroidal coordinates (u, v, φ) = (x1
, x2
, x3
)
x =
a sinh v cos φ
cosh v − cos u
, 0 ≤ u < 2π
y =
a sinh v sin φ
cosh v − cos u
, −∞ < v < ∞
z =
a sin u
cosh v − cos u
, 0 ≤ φ < 2π
h2
1 = h2
2
h2
2 =
a2
(cosh v − cos u)2
h2
3 =
a2
sinh2
v
(cosh v − cos u)2
The coordinate curves are formed by the intersection of the coordinate surfaces
x2
+ y2
+ z −
a cos u
sin u
2
=
a2
sin2
u
, Spheres
x2 + y2 − a
cosh v
sinh v
2
+ z2
=
a2
sinh2
v
, Tores
y = x tan φ, planes
1
1 1
=
sin u
cos u − cosh v
2
2 2
=
sinh v
cos u − cosh v
1
2 2
=
sin u
− cosu + cosh v
1
3 3
=
sin usinh v2
− cosu + cosh v
2
1 1
=
sinh v
− cosu + cosh v
2
3 3
= −
sinh v (cos u coshv − 1)
cos u − cosh v
1
1 2
=
sinh v
cos u − cosh v
2
2 1
=
sin u
cos u − cosh v
3
3 1
=
sin u
cos u − cosh v
3
3 2
=
cos u cosh v − 1
cos u sinh v − cosh v sinh v
361
12. Confocal ellipsoidal coordinates (u, v, w) = (x1
, x2
, x3
)
x2
=
(a2
− u)(a2
− v)(a2
− w)
(a2 − b2)(a2 − c2)
, u < c2
< b2
< a2
y2
=
(b2
− u)(b2
− v)(b2
− w)
(b2 − a2)(b2 − c2)
, c2
< v < b2
< a2
z2
=
(c2
− u)(c2
− v)(c2
− w)
(c2 − a2)(c2 − b2)
, c2
< b2
< v < a2
h2
1 =
(u − v)(u − w)
4(a2 − u)(b2 − u)(c2 − u)
h2
2 =
(v − u)(v − w)
4(a2 − v)(b2 − v)(c2 − v)
h2
3 =
(w − u)(w − v)
4(a2 − w)(b2 − w)(c2 − w)
1
1 1
=
1
2 (a2 − u)
+
1
2 (b2 − u)
+
1
2 (c2 − u)
+
1
2 (u − v)
+
1
2 (u − w)
2
2 2
=
1
2 (a2 − v)
+
1
2 (b2 − v)
+
1
2 (c2 − v)
+
1
2 (−u + v)
+
1
2 (v − w)
3
3 3
=
1
2 (a2 − w)
+
1
2 (b2 − w)
+
1
2 (c2 − w)
+
1
2 (−u + w)
+
1
2 (−v + w)
1
2 2
=
a2
− u b2
− u c2
− u (v − w)
2 (a2 − v) (b2 − v) (c2 − v) (u − v) (u − w)
1
3 3
=
a2
− u b2
− u c2
− u (−v + w)
2 (u − v) (a2 − w) (b2 − w) (c2 − w) (u − w)
2
1 1
=
a2
− v b2
− v c2
− v (u − w)
2 (a2 − u) (b2 − u) (c2 − u) (−u + v) (v − w)
2
3 3
=
a2
− v b2
− v c2
− v (−u + w)
2 (−u + v) (a2 − w) (b2 − w) (c2 − w) (v − w)
3
1 1
=
(u − v) a2
− w b2
− w c2
− w
2 (a2 − u) (b2 − u) (c2 − u) (−u + w) (−v + w)
3
2 2
=
(−u + v) a2
− w b2
− w c2
− w
2 (a2 − v) (b2 − v) (c2 − v) (−u + w) (−v + w)
1
1 2
=
−1
2 (u − v)
1
1 3
=
−1
2 (u − w)
2
2 1
=
−1
2 (−u + v)
2
2 3
=
−1
2 (v − w)
3
3 1
=
−1
2 (−u + w)
3
3 2
=
−1
2 (−v + w)
362
APPENDIX C
VECTOR IDENTITIES
The following identities assume that A, B, C, D are differentiable vector functions of position while
f, f1, f2 are differentiable scalar functions of position.
1. A · (B × C) = B · (C × A) = C · (A × B)
2. A × (B × C) = B(A · C) − C(A · B)
3. (A × B) · (C × D) = (A · C)(B · D) − (A · D)(B · C)
4. A × (B × C) + B × (C × A) + C × (A × B) = 0
5. (A × B) × (C × D) = B(A · C × D) − A(B · C × D)
= C(A · B × C) − D(A · B × C)
6. (A × B) · (B × C) × (C × A) = (A · B × C)2
7. (f1 + f2) = f1 + f2
8. · (A + B) = · A + · B
9. × (A + B) = × A + × B
10. (fA) = ( f) · A + f · A
11. (f1f2) = f1 f2 + f2 f1
12. × (fA) =) f) × A + f( × A)
13. · (A × B) = B · ( × A) − A · ( × B)
14. (A · )A =
|A|2
2
− A × ( × A)
15. (A · B) = (B · )A + (A · )B + B × ( × A) + A × ( × B)
16. × (A × B) = (B · )A − B( · A) − (A · )B + A( · B)
17. · ( f) = 2
f
18. × ( f) = 0
19. · ( × A) = 0
20. × ( × A) = ( · A) − 2
A

Weitere ähnliche Inhalte

Was ist angesagt?

Numerical Methods: Solution of system of equations
Numerical Methods: Solution of system of equationsNumerical Methods: Solution of system of equations
Numerical Methods: Solution of system of equationsNikolai Priezjev
 
Chapter 9 differential equation
Chapter 9 differential equationChapter 9 differential equation
Chapter 9 differential equationKarunaGupta1982
 
IIT Jam math 2016 solutions BY Trajectoryeducation
IIT Jam math 2016 solutions BY TrajectoryeducationIIT Jam math 2016 solutions BY Trajectoryeducation
IIT Jam math 2016 solutions BY TrajectoryeducationDev Singh
 
Gabarito completo anton_calculo_8ed_caps_01_08
Gabarito completo anton_calculo_8ed_caps_01_08Gabarito completo anton_calculo_8ed_caps_01_08
Gabarito completo anton_calculo_8ed_caps_01_08joseotaviosurdi
 
Iit jam 2016 physics solutions BY Trajectoryeducation
Iit jam 2016 physics solutions BY TrajectoryeducationIit jam 2016 physics solutions BY Trajectoryeducation
Iit jam 2016 physics solutions BY TrajectoryeducationDev Singh
 
Techniques of integration
Techniques of integrationTechniques of integration
Techniques of integrationmusadoto
 
Student manual
Student manualStudent manual
Student manualec931657
 
Shape drawing algs
Shape drawing algsShape drawing algs
Shape drawing algsMusawarNice
 
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1cideni
 
Circle algorithm
Circle algorithmCircle algorithm
Circle algorithmPooja Dixit
 
Vector mechanics for engineers statics 7th chapter 5
Vector mechanics for engineers statics 7th chapter 5 Vector mechanics for engineers statics 7th chapter 5
Vector mechanics for engineers statics 7th chapter 5 Nahla Hazem
 
Internal assessment
Internal assessmentInternal assessment
Internal assessmentgokicchi
 
Ejerciciosderivadasresueltos
EjerciciosderivadasresueltosEjerciciosderivadasresueltos
Ejerciciosderivadasresueltosbellidomates
 
서포트 벡터 머신(Support Vector Machine, SVM)
서포트 벡터 머신(Support Vector Machine, SVM)서포트 벡터 머신(Support Vector Machine, SVM)
서포트 벡터 머신(Support Vector Machine, SVM)Hansol Kang
 
IIT JAM MATH 2018 Question Paper | Sourav Sir's Classes
IIT JAM MATH 2018 Question Paper | Sourav Sir's ClassesIIT JAM MATH 2018 Question Paper | Sourav Sir's Classes
IIT JAM MATH 2018 Question Paper | Sourav Sir's ClassesSOURAV DAS
 

Was ist angesagt? (20)

Numerical Methods: Solution of system of equations
Numerical Methods: Solution of system of equationsNumerical Methods: Solution of system of equations
Numerical Methods: Solution of system of equations
 
Chapter 9 differential equation
Chapter 9 differential equationChapter 9 differential equation
Chapter 9 differential equation
 
IIT Jam math 2016 solutions BY Trajectoryeducation
IIT Jam math 2016 solutions BY TrajectoryeducationIIT Jam math 2016 solutions BY Trajectoryeducation
IIT Jam math 2016 solutions BY Trajectoryeducation
 
Differntials equatoin
Differntials equatoinDifferntials equatoin
Differntials equatoin
 
Gabarito completo anton_calculo_8ed_caps_01_08
Gabarito completo anton_calculo_8ed_caps_01_08Gabarito completo anton_calculo_8ed_caps_01_08
Gabarito completo anton_calculo_8ed_caps_01_08
 
Iit jam 2016 physics solutions BY Trajectoryeducation
Iit jam 2016 physics solutions BY TrajectoryeducationIit jam 2016 physics solutions BY Trajectoryeducation
Iit jam 2016 physics solutions BY Trajectoryeducation
 
Techniques of integration
Techniques of integrationTechniques of integration
Techniques of integration
 
Student manual
Student manualStudent manual
Student manual
 
Shape drawing algs
Shape drawing algsShape drawing algs
Shape drawing algs
 
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1Howard, anton   calculo i- um novo horizonte - exercicio resolvidos v1
Howard, anton calculo i- um novo horizonte - exercicio resolvidos v1
 
Imo 2008
Imo 2008 Imo 2008
Imo 2008
 
Calculo integral - Larson
Calculo integral - LarsonCalculo integral - Larson
Calculo integral - Larson
 
Diff-Eqs
Diff-EqsDiff-Eqs
Diff-Eqs
 
Circle algorithm
Circle algorithmCircle algorithm
Circle algorithm
 
Vector mechanics for engineers statics 7th chapter 5
Vector mechanics for engineers statics 7th chapter 5 Vector mechanics for engineers statics 7th chapter 5
Vector mechanics for engineers statics 7th chapter 5
 
Internal assessment
Internal assessmentInternal assessment
Internal assessment
 
Guia edo todas
Guia edo todasGuia edo todas
Guia edo todas
 
Ejerciciosderivadasresueltos
EjerciciosderivadasresueltosEjerciciosderivadasresueltos
Ejerciciosderivadasresueltos
 
서포트 벡터 머신(Support Vector Machine, SVM)
서포트 벡터 머신(Support Vector Machine, SVM)서포트 벡터 머신(Support Vector Machine, SVM)
서포트 벡터 머신(Support Vector Machine, SVM)
 
IIT JAM MATH 2018 Question Paper | Sourav Sir's Classes
IIT JAM MATH 2018 Question Paper | Sourav Sir's ClassesIIT JAM MATH 2018 Question Paper | Sourav Sir's Classes
IIT JAM MATH 2018 Question Paper | Sourav Sir's Classes
 

Ähnlich wie G e hay's

maths jee formulas.pdf
maths jee formulas.pdfmaths jee formulas.pdf
maths jee formulas.pdfGARRYB4
 
Assignment For Matlab Report Subject Calculus 2
Assignment For Matlab Report Subject  Calculus 2Assignment For Matlab Report Subject  Calculus 2
Assignment For Matlab Report Subject Calculus 2Laurie Smith
 
48 circle part 1 of 2
48 circle part 1 of 248 circle part 1 of 2
48 circle part 1 of 2tutulk
 
Solutions Manual for Calculus Early Transcendentals 10th Edition by Anton
Solutions Manual for Calculus Early Transcendentals 10th Edition by AntonSolutions Manual for Calculus Early Transcendentals 10th Edition by Anton
Solutions Manual for Calculus Early Transcendentals 10th Edition by AntonPamelaew
 
Review for the Third Midterm of Math 150 B 11242014Probl.docx
Review for the Third Midterm of Math 150 B 11242014Probl.docxReview for the Third Midterm of Math 150 B 11242014Probl.docx
Review for the Third Midterm of Math 150 B 11242014Probl.docxjoellemurphey
 
(5) Ellipse (Theory). Module-3pdf
(5) Ellipse (Theory). Module-3pdf(5) Ellipse (Theory). Module-3pdf
(5) Ellipse (Theory). Module-3pdfRajuSingh806014
 
Applications of Differential Calculus in real life
Applications of Differential Calculus in real life Applications of Differential Calculus in real life
Applications of Differential Calculus in real life OlooPundit
 
Straight-Line-Graphs-Final -2.pptx
Straight-Line-Graphs-Final -2.pptxStraight-Line-Graphs-Final -2.pptx
Straight-Line-Graphs-Final -2.pptxKviskvis
 
Brian Covello: Review on Cycloidal Pathways Using Differential Equations
Brian Covello:  Review on Cycloidal Pathways Using Differential EquationsBrian Covello:  Review on Cycloidal Pathways Using Differential Equations
Brian Covello: Review on Cycloidal Pathways Using Differential EquationsBrian Covello
 
Cbse Class 12 Maths Sample Paper 2013 Model 3
Cbse Class 12 Maths Sample Paper 2013 Model 3Cbse Class 12 Maths Sample Paper 2013 Model 3
Cbse Class 12 Maths Sample Paper 2013 Model 3Sunaina Rawat
 
Sistemas de control para ingenieria 3ra edicion norman s. nise sol
Sistemas de control para ingenieria  3ra edicion  norman s. nise solSistemas de control para ingenieria  3ra edicion  norman s. nise sol
Sistemas de control para ingenieria 3ra edicion norman s. nise solNielsy Quiroga
 
Kittel c. introduction to solid state physics 8 th edition - solution manual
Kittel c.  introduction to solid state physics 8 th edition - solution manualKittel c.  introduction to solid state physics 8 th edition - solution manual
Kittel c. introduction to solid state physics 8 th edition - solution manualamnahnura
 
Math06reviewsheet (3)
Math06reviewsheet (3)Math06reviewsheet (3)
Math06reviewsheet (3)Angel Baez
 
Laplace equation
Laplace equationLaplace equation
Laplace equationalexkhan129
 

Ähnlich wie G e hay's (20)

maths jee formulas.pdf
maths jee formulas.pdfmaths jee formulas.pdf
maths jee formulas.pdf
 
Maths05
Maths05Maths05
Maths05
 
Assignment For Matlab Report Subject Calculus 2
Assignment For Matlab Report Subject  Calculus 2Assignment For Matlab Report Subject  Calculus 2
Assignment For Matlab Report Subject Calculus 2
 
48 circle part 1 of 2
48 circle part 1 of 248 circle part 1 of 2
48 circle part 1 of 2
 
Shell theory
Shell theoryShell theory
Shell theory
 
Sect5 1
Sect5 1Sect5 1
Sect5 1
 
Solutions Manual for Calculus Early Transcendentals 10th Edition by Anton
Solutions Manual for Calculus Early Transcendentals 10th Edition by AntonSolutions Manual for Calculus Early Transcendentals 10th Edition by Anton
Solutions Manual for Calculus Early Transcendentals 10th Edition by Anton
 
Review for the Third Midterm of Math 150 B 11242014Probl.docx
Review for the Third Midterm of Math 150 B 11242014Probl.docxReview for the Third Midterm of Math 150 B 11242014Probl.docx
Review for the Third Midterm of Math 150 B 11242014Probl.docx
 
(5) Ellipse (Theory). Module-3pdf
(5) Ellipse (Theory). Module-3pdf(5) Ellipse (Theory). Module-3pdf
(5) Ellipse (Theory). Module-3pdf
 
Applications of Differential Calculus in real life
Applications of Differential Calculus in real life Applications of Differential Calculus in real life
Applications of Differential Calculus in real life
 
Maths04
Maths04Maths04
Maths04
 
Straight-Line-Graphs-Final -2.pptx
Straight-Line-Graphs-Final -2.pptxStraight-Line-Graphs-Final -2.pptx
Straight-Line-Graphs-Final -2.pptx
 
Maths 301 key_sem_1_2007_2008
Maths 301 key_sem_1_2007_2008Maths 301 key_sem_1_2007_2008
Maths 301 key_sem_1_2007_2008
 
Brian Covello: Review on Cycloidal Pathways Using Differential Equations
Brian Covello:  Review on Cycloidal Pathways Using Differential EquationsBrian Covello:  Review on Cycloidal Pathways Using Differential Equations
Brian Covello: Review on Cycloidal Pathways Using Differential Equations
 
Cbse Class 12 Maths Sample Paper 2013 Model 3
Cbse Class 12 Maths Sample Paper 2013 Model 3Cbse Class 12 Maths Sample Paper 2013 Model 3
Cbse Class 12 Maths Sample Paper 2013 Model 3
 
Sistemas de control para ingenieria 3ra edicion norman s. nise sol
Sistemas de control para ingenieria  3ra edicion  norman s. nise solSistemas de control para ingenieria  3ra edicion  norman s. nise sol
Sistemas de control para ingenieria 3ra edicion norman s. nise sol
 
Kittel c. introduction to solid state physics 8 th edition - solution manual
Kittel c.  introduction to solid state physics 8 th edition - solution manualKittel c.  introduction to solid state physics 8 th edition - solution manual
Kittel c. introduction to solid state physics 8 th edition - solution manual
 
Conformal mapping
Conformal mappingConformal mapping
Conformal mapping
 
Math06reviewsheet (3)
Math06reviewsheet (3)Math06reviewsheet (3)
Math06reviewsheet (3)
 
Laplace equation
Laplace equationLaplace equation
Laplace equation
 

Mehr von Kira R. Yamato

Tutorial game-maker-bagi-pemula
Tutorial game-maker-bagi-pemulaTutorial game-maker-bagi-pemula
Tutorial game-maker-bagi-pemulaKira R. Yamato
 
Paparan pembekalan kkl 20 januari 2014
Paparan pembekalan kkl   20 januari 2014Paparan pembekalan kkl   20 januari 2014
Paparan pembekalan kkl 20 januari 2014Kira R. Yamato
 
Paparan pembekalan kkl 9 juli 2013
Paparan pembekalan kkl   9 juli 2013Paparan pembekalan kkl   9 juli 2013
Paparan pembekalan kkl 9 juli 2013Kira R. Yamato
 
Rock mag 1 (2013.15) terjemah
Rock mag 1 (2013.15) terjemahRock mag 1 (2013.15) terjemah
Rock mag 1 (2013.15) terjemahKira R. Yamato
 
Speed of light apparatus modul
Speed of light apparatus modulSpeed of light apparatus modul
Speed of light apparatus modulKira R. Yamato
 
Pembiasan pada trapesium
Pembiasan pada trapesiumPembiasan pada trapesium
Pembiasan pada trapesiumKira R. Yamato
 
Tuntunan menulis artikel
Tuntunan menulis artikel Tuntunan menulis artikel
Tuntunan menulis artikel Kira R. Yamato
 
Supriyanto s komputasi untuk sains dan teknik menggunakan matlab edisi 4 - ...
Supriyanto s   komputasi untuk sains dan teknik menggunakan matlab edisi 4 - ...Supriyanto s   komputasi untuk sains dan teknik menggunakan matlab edisi 4 - ...
Supriyanto s komputasi untuk sains dan teknik menggunakan matlab edisi 4 - ...Kira R. Yamato
 
Laporan eksperimen go 5 kelompok 7
Laporan eksperimen go 5 kelompok 7Laporan eksperimen go 5 kelompok 7
Laporan eksperimen go 5 kelompok 7Kira R. Yamato
 
Mengatasi apache xampp yang tidak bisa berjalan
Mengatasi apache xampp yang tidak bisa berjalanMengatasi apache xampp yang tidak bisa berjalan
Mengatasi apache xampp yang tidak bisa berjalanKira R. Yamato
 
Gelombang elektromagnetik
Gelombang elektromagnetikGelombang elektromagnetik
Gelombang elektromagnetikKira R. Yamato
 
Modul 1 medan elektromagnetik
Modul 1 medan elektromagnetikModul 1 medan elektromagnetik
Modul 1 medan elektromagnetikKira R. Yamato
 

Mehr von Kira R. Yamato (20)

Tutorial game-maker-bagi-pemula
Tutorial game-maker-bagi-pemulaTutorial game-maker-bagi-pemula
Tutorial game-maker-bagi-pemula
 
Fisika komputasi
Fisika komputasiFisika komputasi
Fisika komputasi
 
Fisika komputasi
Fisika komputasiFisika komputasi
Fisika komputasi
 
Fisika komputasi
Fisika komputasiFisika komputasi
Fisika komputasi
 
Sosialisasi+kp+09
Sosialisasi+kp+09Sosialisasi+kp+09
Sosialisasi+kp+09
 
Paparan pembekalan kkl 20 januari 2014
Paparan pembekalan kkl   20 januari 2014Paparan pembekalan kkl   20 januari 2014
Paparan pembekalan kkl 20 januari 2014
 
Ujian pkl
Ujian pkl Ujian pkl
Ujian pkl
 
Paparan pembekalan kkl 9 juli 2013
Paparan pembekalan kkl   9 juli 2013Paparan pembekalan kkl   9 juli 2013
Paparan pembekalan kkl 9 juli 2013
 
Rock mag 1 (2013.15) terjemah
Rock mag 1 (2013.15) terjemahRock mag 1 (2013.15) terjemah
Rock mag 1 (2013.15) terjemah
 
Speed of light apparatus modul
Speed of light apparatus modulSpeed of light apparatus modul
Speed of light apparatus modul
 
Tugas go polarisasi
Tugas go polarisasiTugas go polarisasi
Tugas go polarisasi
 
Pembiasan pada trapesium
Pembiasan pada trapesiumPembiasan pada trapesium
Pembiasan pada trapesium
 
Tuntunan menulis artikel
Tuntunan menulis artikel Tuntunan menulis artikel
Tuntunan menulis artikel
 
Supriyanto s komputasi untuk sains dan teknik menggunakan matlab edisi 4 - ...
Supriyanto s   komputasi untuk sains dan teknik menggunakan matlab edisi 4 - ...Supriyanto s   komputasi untuk sains dan teknik menggunakan matlab edisi 4 - ...
Supriyanto s komputasi untuk sains dan teknik menggunakan matlab edisi 4 - ...
 
Laporan eksperimen go 5 kelompok 7
Laporan eksperimen go 5 kelompok 7Laporan eksperimen go 5 kelompok 7
Laporan eksperimen go 5 kelompok 7
 
Dasar matlab
Dasar matlabDasar matlab
Dasar matlab
 
Modul delphi
Modul delphiModul delphi
Modul delphi
 
Mengatasi apache xampp yang tidak bisa berjalan
Mengatasi apache xampp yang tidak bisa berjalanMengatasi apache xampp yang tidak bisa berjalan
Mengatasi apache xampp yang tidak bisa berjalan
 
Gelombang elektromagnetik
Gelombang elektromagnetikGelombang elektromagnetik
Gelombang elektromagnetik
 
Modul 1 medan elektromagnetik
Modul 1 medan elektromagnetikModul 1 medan elektromagnetik
Modul 1 medan elektromagnetik
 

G e hay's

  • 1. 352 BIBLIOGRAPHY • Abramowitz, M. and Stegun, I.A., Handbook of Mathematical Functions, 10th ed, New York:Dover, 1972. • Akivis, M.A., Goldberg, V.V., An Introduction to Linear Algebra and Tensors, New York:Dover, 1972. • Aris, Rutherford, Vectors, Tensors, and the Basic Equations of Fluid Mechanics, Englewood Cliffs, N.J.:Prentice-Hall, 1962. • Atkin, R.J., Fox, N., An Introduction to the Theory of Elasticity, London:Longman Group Limited, 1980. • Bishop, R.L., Goldberg, S.I.,Tensor Analysis on Manifolds, New York:Dover, 1968. • Borisenko, A.I., Tarapov, I.E., Vector and Tensor Analysis with Applications, New York:Dover, 1968. • Chorlton, F., Vector and Tensor Methods, Chichester,England:Ellis Horwood Ltd, 1976. • Dodson, C.T.J., Poston, T., Tensor Geometry, London:Pittman Publishing Co., 1979. • Eisenhart, L.P., Riemannian Geometry, Princeton, N.J.:Univ. Princeton Press, 1960. • Eringen, A.C., Mechanics of Continua, Huntington, N.Y.:Robert E. Krieger, 1980. • D.J. Griffiths, Introduction to Electrodynamics, Prentice Hall, 1981. • Fl¨ugge, W., Tensor Analysis and Continuum Mechanics, New York:Springer-Verlag, 1972. • Fung, Y.C., A First Course in Continuum Mechanics, Englewood Cliffs,N.J.:Prentice-Hall, 1969. • Goodbody, A.M., Cartesian Tensors, Chichester, England:Ellis Horwood Ltd, 1982. • Hay, G.E., Vector and Tensor Analysis, New York:Dover, 1953. • Hughes, W.F., Gaylord, E.W., Basic Equations of Engineering Science, New York:McGraw-Hill, 1964. • Jeffreys, H., Cartesian Tensors, Cambridge, England:Cambridge Univ. Press, 1974. • Lass, H., Vector and Tensor Analysis, New York:McGraw-Hill, 1950. • Levi-Civita, T., The Absolute Differential Calculus, London:Blackie and Son Limited, 1954. • Lovelock, D., Rund, H. ,Tensors, Differential Forms, and Variational Principles, New York:Dover, 1989. • Malvern, L.E., Introduction to the Mechanics of a Continuous Media, Englewood Cliffs, N.J.:Prentice-Hall, 1969. • McConnell, A.J., Application of Tensor Analysis, New York:Dover, 1947. • Newell, H.E., Vector Analysis, New York:McGraw Hill, 1955. • Schouten, J.A., Tensor Analysis for Physicists,New York:Dover, 1989. • Scipio, L.A., Principles of Continua with Applications, New York:John Wiley and Sons, 1967. • Sokolnikoff, I.S., Tensor Analysis, New York:John Wiley and Sons, 1958. • Spiegel, M.R., Vector Analysis, New York:Schaum Outline Series, 1959. • Synge, J.L., Schild, A., Tensor Calculus, Toronto:Univ. Toronto Press, 1956. Bibliography
  • 2. 353 APPENDIX A UNITS OF MEASUREMENT The following units, abbreviations and prefixes are from the Syst`eme International d’Unit`es (designated SI in all Languages.) Prefixes. Abreviations Prefix Multiplication factor Symbol tera 1012 T giga 109 G mega 106 M kilo 103 K hecto 102 h deka 10 da deci 10−1 d centi 10−2 c milli 10−3 m micro 10−6 µ nano 10−9 n pico 10−12 p Basic Units. Basic units of measurement Unit Name Symbol Length meter m Mass kilogram kg Time second s Electric current ampere A Temperature degree Kelvin ◦ K Luminous intensity candela cd Supplementary units Unit Name Symbol Plane angle radian rad Solid angle steradian sr
  • 3. 354 DERIVED UNITS Name Units Symbol Area square meter m2 Volume cubic meter m3 Frequency hertz Hz (s−1 ) Density kilogram per cubic meter kg/m3 Velocity meter per second m/s Angular velocity radian per second rad/s Acceleration meter per second squared m/s2 Angular acceleration radian per second squared rad/s2 Force newton N (kg · m/s2 ) Pressure newton per square meter N/m2 Kinematic viscosity square meter per second m2 /s Dynamic viscosity newton second per square meter N · s/m2 Work, energy, quantity of heat joule J (N · m) Power watt W (J/s) Electric charge coulomb C (A · s) Voltage, Potential difference volt V (W/A) Electromotive force volt V (W/A) Electric force field volt per meter V/m Electric resistance ohm Ω (V/A) Electric capacitance farad F (A · s/V) Magnetic flux weber Wb (V · s) Inductance henry H (V · s/A) Magnetic flux density tesla T (Wb/m2 ) Magnetic field strength ampere per meter A/m Magnetomotive force ampere A Physical constants. 4 arctan1 = π = 3.14159 26535 89793 23846 2643 . . . lim n→∞ 1 + 1 n n = e = 2.71828 18284 59045 23536 0287 . . . Euler’s constant γ = 0.57721 56649 01532 86060 6512 . . . γ = lim n→∞ 1 + 1 2 + 1 3 + · · · + 1 n − log n speed of light in vacuum = 2.997925(10)8 m s−1 electron charge = 1.60210(10)−19 C Avogadro’s constant = 6.02252(10)23 mol−1 Plank’s constant = 6.6256(10)−34 J s Universal gas constant = 8.3143 J K−1 mol−1 = 8314.3 J Kg−1 K−1 Boltzmann constant = 1.38054(10)−23 J K−1 Stefan–Boltzmann constant = 5.6697(10)−8 W m−2 K−4 Gravitational constant = 6.67(10)−11 N m2 kg−2
  • 4. 355 APPENDIX B CHRISTOFFEL SYMBOLS OF SECOND KIND 1. Cylindrical coordinates (r, θ, z) = (x1 , x2 , x3 ) x = r cos θ y = r sin θ z = z r ≥ 0 0 ≤ θ ≤ 2π − ∞ < z < ∞ h1 = 1 h2 = r h3 = 1 The coordinate curves are formed by the intersection of the coordinate surfaces x2 + y2 = r2 , Cylinders y/x = tan θ Planes z = Constant Planes. 1 2 2 = −r 2 1 2 = 2 2 1 = 1 r 2. Spherical coordinates (ρ, θ, φ) = (x1 , x2 , x3 ) x = ρ sin θ cos φ y = ρ sin θ sin φ z = ρ cos θ ρ ≥ 0 0 ≤ θ ≤ π 0 ≤ φ ≤ 2π h1 = 1 h2 = ρ h3 = ρ sin θ The coordinate curves are formed by the intersection of the coordinate surfaces x2 + y2 + z2 = ρ2 Spheres x2 + y2 = tan2 θ z Cones y = x tan φ Planes. 1 2 2 = −ρ 1 3 3 = −ρ sin2 θ 2 3 3 = − sin θ cos θ 2 1 2 = 2 2 1 = 1 ρ 3 1 3 = 3 3 1 = 1 ρ 3 3 2 = 3 2 3 = cot θ
  • 5. 356 3. Parabolic cylindrical coordinates (ξ, η, z) = (x1 , x2 , x3 ) x = ξη y = 1 2 (ξ2 − η2 ) z = z − ∞ < ξ < ∞ − ∞ < z < ∞ η ≥ 0 h1 = ξ2 + η2 h2 = ξ2 + η2 h3 = 1 The coordinate curves are formed by the intersection of the coordinate surfaces x2 = −2ξ2 (y − ξ2 2 ) Parabolic cylinders x2 = 2η2 (y + η2 2 ) Parabolic cylinders z = Constant Planes. 1 1 1 = ξ ξ2 + η2 2 2 2 = η ξ2 + η2 2 1 1 = −η ξ2 + η2 1 2 2 = −ξ ξ2 + η2 1 1 2 = 1 2 1 = η ξ2 + η2 2 2 1 = 2 1 2 = ξ ξ2 + η2 4. Parabolic coordinates (ξ, η, φ) = (x1 , x2 , x3 ) x = ξη cos φ y = ξη sin φ z = 1 2 (ξ2 − η2 ) ξ ≥ 0 η ≥ 0 0 < φ < 2π h1 = ξ2 + η2 h2 = ξ2 + η2 h3 = ξη The coordinate curves are formed by the intersection of the coordinate surfaces x2 + y2 = −2ξ2 (z − ξ2 2 ) Paraboloids x2 + y2 = 2η2 (z + η2 2 ) Paraboloids y = x tan φ Planes. 1 1 1 = ξ ξ2 + η2 2 2 2 = η ξ2 + η2 1 2 2 = −ξ ξ2 + η2 2 1 1 = −η ξ2 + η2 2 3 3 = −ηξ2 ξ2 + η2 1 3 3 = −ξη2 ξ2 + η2 1 2 1 = 1 2 1 = η ξ2 + η2 2 2 1 = 2 1 2 = ξ ξ2 + η2 3 3 2 = 3 2 3 = 1 η 3 1 3 = 3 3 1 = 1 ξ
  • 6. 357 5. Elliptic cylindrical coordinates (ξ, η, z) = (x1 , x2 , x3 ) x = cosh ξ cos η y = sinh ξ sin η z = z ξ ≥ 0 0 ≤ η ≤ 2π − ∞ < z < ∞ h1 = sinh2 ξ + sin2 η h2 = sinh2 ξ + sin2 η h3 = 1 The coordinate curves are formed by the intersection of the coordinate surfaces x2 cosh2 ξ + y2 sinh2 ξ = 1 Elliptic cylinders x2 cos2 η − y2 sin2 η = 1 Hyperbolic cylinders z = Constant Planes. 1 1 1 = sinh ξ cosh ξ sinh2 ξ + sin2 η 1 2 2 = − sinh ξ cosh ξ sinh2 ξ + sin2 η 1 1 2 = 1 2 1 = sin η cos η sinh2 ξ + sin2 η 2 2 2 = sin η cos η sinh2 ξ + sin2 η 2 1 1 = − sin η cos η sinh2 ξ + sin2 η 2 1 2 = 2 2 1 = sinh ξ cosh ξ sinh2 ξ + sin2 η 6. Elliptic coordinates (ξ, η, φ) = (x1 , x2 , x3 ) x = (1 − η2)(ξ2 − 1) cos φ y = (1 − η2)(ξ2 − 1) sin φ z = ξη 1 ≤ ξ < ∞ − 1 ≤ η ≤ 1 0 ≤ φ < 2π h1 = ξ2 − η2 ξ2 − 1 h2 = ξ2 − η2 1 − η2 h3 = (1 − η2)(ξ2 − 1) The coordinate curves are formed by the intersection of the coordinate surfaces x2 ξ2 − 1 + y2 ξ2 − 1 + z2 ξ2 = 1 Prolate ellipsoid z2 η2 − x2 1 − η2 − y2 1 − η2 = 1 Two-sheeted hyperboloid y = x tan φ Planes 1 1 1 = − ξ −1 + ξ2 + ξ ξ2 − η2 2 2 2 = η 1 − η2 − η ξ2 − η2 1 2 2 = − ξ −1 + ξ2 (1 − η2) (ξ2 − η2) 1 3 3 = − ξ −1 + ξ2 1 − η2 ξ2 − η2 2 1 1 = η 1 − η2 (−1 + ξ2) (ξ2 − η2) 2 3 3 = −1 + ξ2 η 1 − η2 ξ2 − η2 1 1 2 = − η ξ2 − η2 2 2 1 = ξ ξ2 − η2 3 3 1 = ξ −1 + ξ2 3 3 2 = − η 1 − η2
  • 7. 358 7. Bipolar coordinates (u, v, z) = (x1 , x2 , x3 ) x = a sinh v cosh v − cos u , 0 ≤ u < 2π y = a sin u cosh v − cos u , −∞ < v < ∞ z = z − ∞ < z < ∞ h2 1 = h2 2 h2 2 = a2 (cosh v − cos u)2 h2 3 = 1 The coordinate curves are formed by the intersection of the coordinate surfaces (x − a coth v)2 + y2 = a2 sinh2 v Cylinders x2 + (y − a cot u)2 = a2 sin2 u Cylinders z = Constant Planes. 1 1 1 = sin u cos u − cosh v 2 2 2 = sinh v cos u − cosh v 1 2 2 = sin u − cos u + cosh v 2 1 1 = sinh v − cosu + cosh v 1 1 2 = sinh v cos u − cosh v 2 2 1 = sin u cos u − cosh v 8. Conical coordinates (u, v, w) = (x1 , x2 , x3 ) x = uvw ab , b2 > v2 > a2 > w2 , u ≥ 0 y = u a (v2 − a2)(w2 − a2) a2 − b2 z = v b (v2 − b2)(w2 − b2) b2 − a2 h2 1 = 1 h2 2 = u2 (v2 − w2 ) (v2 − a2)(b2 − v2) h2 3 = u2 (v2 − w2 ) (w2 − a2)(w2 − b2) The coordinate curves are formed by the intersection of the coordinate surfaces x2 + y2 + z2 = u2 Spheres x2 v2 + y2 v2 − a2 + z2 v2 − b2 = 0, Cones x2 w2 + y2 w2 − a2 + z2 w2 − b2 = 0, Cones. 2 2 2 = v b2 − v2 − v −a2 + v2 + v v2 − w2 3 3 3 = − w v2 − w2 − w −a2 + w2 − w −b2 + w2 1 2 2 = − u v2 − w2 (b2 − v2) (−a2 + v2) 1 3 3 = − u v2 − w2 (−a2 + w2) (−b2 + w2) 2 3 3 = − v b2 − v2 −a2 + v2 (v2 − w2) (−a2 + w2) (−b2 + w2) 3 2 2 = w −a2 + w2 −b2 + w2 (b2 − v2) (−a2 + v2) (v2 − w2) 2 2 1 = 1 u 2 2 3 = − w v2 − w2 3 3 1 = 1 u 3 3 2 = v v2 − w2
  • 8. 359 9. Prolate spheroidal coordinates (u, v, φ) = (x1 , x2 , x3 ) x = a sinh u sin v cos φ, u ≥ 0 y = a sinh u sin v sin φ, 0 ≤ v ≤ π z = a coshu cos v, 0 ≤ φ < 2π h2 1 = h2 2 h2 2 = a2 (sinh2 u + sin2 v) h2 3 = a2 sinh2 u sin2 v The coordinate curves are formed by the intersection of the coordinate surfaces x2 (a sinh u)2 + y2 a sinh u)2 + z2 a cosh u)2 = 1, Prolate ellipsoids x2 (a cos v)2 − y2 (a sin v)2 − z2 (a cos v)2 = 1, Two-sheeted hyperpoloid y = x tan φ, Planes. 1 1 1 = cosh u sinh u sin2 v + sinh2 u 2 2 2 = cos v sin v sin2 v + sinh2 u 1 2 2 = − cosh u sinh u sin2 v + sinh2 u 1 3 3 = − sin2 v cosh u sinh u sin2 v + sinh2 u 2 1 1 = − cos v sin v sin2 v + sinh2 u 2 3 3 = − cosv sin vsinh2 u sin2 v + sinh2 u 1 1 2 = cos v sin v sin2 v + sinh2 u 2 2 1 = cosh u sinh u sin2 v + sinh2 u 3 3 1 = cosh u sinh u 3 3 2 = cos v sin v 10. Oblate spheroidal coordinates (ξ, η, φ) = (x1 , x2 , x3 ) x = a cosh ξ cos η cos φ, ξ ≥ 0 y = a cosh ξ cos η sin φ, − π 2 ≤ η ≤ π 2 z = a sinh ξ sin η, 0 ≤ φ ≤ 2π h2 1 = h2 2 h2 2 = a2 (sinh2 ξ + sin2 η) h2 3 = a2 cosh2 ξ cos2 η The coordinate curves are formed by the intersection of the coordinate surfaces x2 (a cosh ξ)2 + y2 (a cosh ξ)2 + z2 (a sinh ξ)2 = 1, Oblate ellipsoids x2 (a cos η)2 + y2 (a cos η)2 − z2 (a sin η)2 = 1, One-sheet hyperboloids y = x tan φ, Planes. 1 1 1 = cosh ξ sinh ξ sin2 η + sinh2 ξ 2 2 2 = cos η sin η sin2 η + sinh2 ξ 1 2 2 = − cosh ξ sinh ξ sin2 η + sinh2 ξ 1 3 3 = − cos2 η cosh ξ sinh ξ sin2 η + sinh2 ξ 2 1 1 = − cos η sin η sin2 η + sinh2 ξ 2 3 3 = cos η sin ηcosh2 ξ sin2 η + sinh2 ξ 1 1 2 = cos η sin η sin2 η + sinh2 ξ 2 2 1 = cosh ξ sinh ξ sin2 η + sinh2 ξ 3 3 1 = sinh ξ cosh ξ 3 3 2 = − sin η cosη
  • 9. 360 11. Toroidal coordinates (u, v, φ) = (x1 , x2 , x3 ) x = a sinh v cos φ cosh v − cos u , 0 ≤ u < 2π y = a sinh v sin φ cosh v − cos u , −∞ < v < ∞ z = a sin u cosh v − cos u , 0 ≤ φ < 2π h2 1 = h2 2 h2 2 = a2 (cosh v − cos u)2 h2 3 = a2 sinh2 v (cosh v − cos u)2 The coordinate curves are formed by the intersection of the coordinate surfaces x2 + y2 + z − a cos u sin u 2 = a2 sin2 u , Spheres x2 + y2 − a cosh v sinh v 2 + z2 = a2 sinh2 v , Tores y = x tan φ, planes 1 1 1 = sin u cos u − cosh v 2 2 2 = sinh v cos u − cosh v 1 2 2 = sin u − cosu + cosh v 1 3 3 = sin usinh v2 − cosu + cosh v 2 1 1 = sinh v − cosu + cosh v 2 3 3 = − sinh v (cos u coshv − 1) cos u − cosh v 1 1 2 = sinh v cos u − cosh v 2 2 1 = sin u cos u − cosh v 3 3 1 = sin u cos u − cosh v 3 3 2 = cos u cosh v − 1 cos u sinh v − cosh v sinh v
  • 10. 361 12. Confocal ellipsoidal coordinates (u, v, w) = (x1 , x2 , x3 ) x2 = (a2 − u)(a2 − v)(a2 − w) (a2 − b2)(a2 − c2) , u < c2 < b2 < a2 y2 = (b2 − u)(b2 − v)(b2 − w) (b2 − a2)(b2 − c2) , c2 < v < b2 < a2 z2 = (c2 − u)(c2 − v)(c2 − w) (c2 − a2)(c2 − b2) , c2 < b2 < v < a2 h2 1 = (u − v)(u − w) 4(a2 − u)(b2 − u)(c2 − u) h2 2 = (v − u)(v − w) 4(a2 − v)(b2 − v)(c2 − v) h2 3 = (w − u)(w − v) 4(a2 − w)(b2 − w)(c2 − w) 1 1 1 = 1 2 (a2 − u) + 1 2 (b2 − u) + 1 2 (c2 − u) + 1 2 (u − v) + 1 2 (u − w) 2 2 2 = 1 2 (a2 − v) + 1 2 (b2 − v) + 1 2 (c2 − v) + 1 2 (−u + v) + 1 2 (v − w) 3 3 3 = 1 2 (a2 − w) + 1 2 (b2 − w) + 1 2 (c2 − w) + 1 2 (−u + w) + 1 2 (−v + w) 1 2 2 = a2 − u b2 − u c2 − u (v − w) 2 (a2 − v) (b2 − v) (c2 − v) (u − v) (u − w) 1 3 3 = a2 − u b2 − u c2 − u (−v + w) 2 (u − v) (a2 − w) (b2 − w) (c2 − w) (u − w) 2 1 1 = a2 − v b2 − v c2 − v (u − w) 2 (a2 − u) (b2 − u) (c2 − u) (−u + v) (v − w) 2 3 3 = a2 − v b2 − v c2 − v (−u + w) 2 (−u + v) (a2 − w) (b2 − w) (c2 − w) (v − w) 3 1 1 = (u − v) a2 − w b2 − w c2 − w 2 (a2 − u) (b2 − u) (c2 − u) (−u + w) (−v + w) 3 2 2 = (−u + v) a2 − w b2 − w c2 − w 2 (a2 − v) (b2 − v) (c2 − v) (−u + w) (−v + w) 1 1 2 = −1 2 (u − v) 1 1 3 = −1 2 (u − w) 2 2 1 = −1 2 (−u + v) 2 2 3 = −1 2 (v − w) 3 3 1 = −1 2 (−u + w) 3 3 2 = −1 2 (−v + w)
  • 11. 362 APPENDIX C VECTOR IDENTITIES The following identities assume that A, B, C, D are differentiable vector functions of position while f, f1, f2 are differentiable scalar functions of position. 1. A · (B × C) = B · (C × A) = C · (A × B) 2. A × (B × C) = B(A · C) − C(A · B) 3. (A × B) · (C × D) = (A · C)(B · D) − (A · D)(B · C) 4. A × (B × C) + B × (C × A) + C × (A × B) = 0 5. (A × B) × (C × D) = B(A · C × D) − A(B · C × D) = C(A · B × C) − D(A · B × C) 6. (A × B) · (B × C) × (C × A) = (A · B × C)2 7. (f1 + f2) = f1 + f2 8. · (A + B) = · A + · B 9. × (A + B) = × A + × B 10. (fA) = ( f) · A + f · A 11. (f1f2) = f1 f2 + f2 f1 12. × (fA) =) f) × A + f( × A) 13. · (A × B) = B · ( × A) − A · ( × B) 14. (A · )A = |A|2 2 − A × ( × A) 15. (A · B) = (B · )A + (A · )B + B × ( × A) + A × ( × B) 16. × (A × B) = (B · )A − B( · A) − (A · )B + A( · B) 17. · ( f) = 2 f 18. × ( f) = 0 19. · ( × A) = 0 20. × ( × A) = ( · A) − 2 A