SlideShare ist ein Scribd-Unternehmen logo
1 von 35
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
 
LA TEORÍA DE GRAFOS SE APLICA EN CAMPOS TAN DIVERSOS COMO LAS CIENCIAS SOCIALES, LINGÜÍSTICA, CIENCIAS FÍSICAS, INGENIERÍA DE LA COMUNICACIÓN, ETC. DESEMPEÑA UN PAPEL IMPORTANTE EN LA CIENCIAS DE LA CONMUTACIÓN, CONMUTACIÓN Y DISEÑO LÓGICO, INTELIGENCIA ARTIFICIAL, LENGUAJES FORMALES, GRÁFICOS POR COMPUTADORA, SISTEMAS OPERATIVOS, ESCRITURA DE COMPILADORES Y ORGANIZACIÓN Y RECUPERACIÓN DE INFORMACIÓN.  SE USAN PARA MODELAR PROBLEMAS.
LAS APLICACIONES MÁS IMPORTANTES DE LOS GRAFOS SON LAS SIGUIENTES:  · RUTAS ENTRE CIUDADES. · DETERMINAR TIEMPOS MÁXIMOS Y MÍNIMOS EN UN PROCESO.  · FLUJO Y CONTROL EN UN PROGRAMA.
LA ISLA KUEIPHOF EN KOENIGSBERG (POMERANIA) EL RÍO QUE LA RODEA SE DIVIDE EN DOS BRAZOS. SOBRE LOS BRAZOS ESTABAN CONSTRUIDOS  SIETE PUENTES  Y PARA LOS HABITANTES ERA MOTIVO DE DISTRACCIÓN DESCUBRIR UN CAMINO DE MANERA QUE PUDIERAN REGRESAR AL PUNTO DE PARTIDA, DESPUÉS DE HABER CRUZADO POR LOS SIETE PUENTES PERO PASANDO SÓLO UNA VEZ POR CADA UNO DE ELLOS.  LEONARDO EULER ESTUDIÓ EL ASUNTO, REPRESENTÓ LAS DISTINTAS ZONAS A, B, C Y D POR MEDIO DE PUNTOS, MIENTRAS QUE LOS PUENTES ESTABAN REPRESENTADOS POR LÍNEAS QUE UNÍAN ESTOS PUNTOS. A LA FIGURA LA LLAMÓ GRAFO, A LOS PUNTOS LOS LLAMÓ VÉRTICES Y A LAS LÍNEAS LAS DENOMINÓ ARISTAS.  
EULER ESTUDIÓ SI UNA FIGURA LINEAL SE PODÍA DIBUJAR CON UN SOLO TRAZO, SIN LEVANTAR EL LÁPIZ DEL PAPEL Y SIN PASAR DOS VECES POR EL MISMO SITIO.   LLEGÓ A LA SIGUIENTE CONCLUSIÓN: 1. ES  IMPOSIBLE  SI HAY  MÁS DE DOS VÉRTICES IMPARES . 2. ES  POSIBLE  CUANDO: A)  TODOS LOS VÉRTICES SON PARES  Y EL PUNTO DE PARTIDA PUEDE SER CUALQUIERA. B) CUANDO  NO HAY MÁS DE DOS VÉRTICES IMPARES  Y EN ESTE CASO EL COMIENZO DEL RECORRIDO COMIENZA EN UNO DE ELLOS Y TERMINA EN EL OTRO.
UN GRAFO ES UN ESPACIO TOPOLÓGICO QUE SE ARMA A PARTIR DE UN CONJUNTO DISCRETO DE PUNTOS (LLAMADOS VÉRTICES), PEGANDO (ADJUNTANDO) COPIAS DEL INTERVALO UNITARIO REAL I (QUE FORMARAN LAS ARISTAS DEL GRAFO).
LOS VÉRTICES SE DENOMINAN TAMBIÉN NODOS O PUNTOS. LOS VÉRTICE DE UN GRAFO PUEDEN USARSE PARA REPRESENTAR OBJETOS. LOS ARCOS SE UTILIZAN PARA REPRESENTAR RELACIONES ENTRE ESTOS OBJETOS.
SI TENEMOS UN PAR DE VÉRTICES DE UN GRAFO (U, V) Y SI TENEMOS UN ARISTA QUE LOS UNE, ENTONCES U Y V SON VÉRTICES ADYACENTES Y SE DICE QUE U ES EL VÉRTICE INICIAL Y V EL VÉRTICE ADYACENTE. LOS VÉRTICES A Y B SON ADYACENTES
ES UN VÉRTICE DE GRADO CERO. LOS VÉRTICES QUE LO COMPONEN NO ESTÁN CONECTADOS.
UN ARCO, ES UN PAR ORDENADO DE VÉRTICES (V,E) DONDE V ES EL VÉRTICE INICIAL Y W ES EL VÉRTICE TERMINAL DEL ARCO. UN ARCO SE EXPRESA COMO: V-->E.
COROLARIO.  TODO GRAFO TIENE UN NÚMERO PAR DE VÉRTICES DE GRADO IMPAR. CARDINALIDAD O GRADO.-  LA CARDINALIDAD O GRADO DE UN VÉRTICE (V) DE UN GRAFO (G) ES IGUAL AL NÚMERO DE ARISTAS QUE INCIDEN EN EL VERTICE (V) Y SE DESIGNA COMO DEG(V).
UNA ARISTA ES  INCIDENTE  A UN VÉRTICE SI ÉSTA LO UNE A OTRO VÉRTICE. EL ARCO A, ES INCIDENTE EN A Y B.
VÉRTICE ADYACENTE. SI TENEMOS UN PAR DE VÉRTICES DE UN GRAFO (U, V) Y SI TENEMOS UN ARISTA QUE LOS UNE, ENTONCES U Y V SON VÉRTICES ADYACENTES Y SE DICE QUE U ES EL VÉRTICE INICIAL Y V EL VÉRTICE ADYACENTE.
UN LAZO O BUCLE ES UNA ARISTA QUE RELACIONA AL MISMO NODO; ES DECIR, UNA ARISTA DONDE EL NODO INICIAL Y EL NODO FINAL COINCIDEN.
UN CICLO ES UN CAMINO, ES DECIR UNA SUCESIÓN DE ARISTAS ADYACENTES, DONDE NO SE RECORRE DOS VECES LA MISMA ARISTA, Y DONDE SE REGRESA AL PUNTO INICIAL. UN CICLO HAMILTONIANO TIENE ADEMÁS QUE RECORRER TODAS LOS VÉRTICES.
SI TENEMOS UN PAR DE ARISTAS DE UN GRAFO (U, V) Y SI TENEMOS UN VÉRTICE QUE LAS UNE, ENTONCES U Y V SON ARISTAS ADYACENTES.
CUANDO EN LOS VERTICES O NODOS HAY MAS DE 1 ARISTA .
EXISTEN DOS TIPOS DE GRAFOS LOS NO DIRIGIDOS Y LOS DIRIGIDOS. NO DIRIGIDOS:  SON AQUELLOS EN LOS CUALES LOS LADOS NO ESTÁN ORIENTADOS (NO SON FLECHAS). CADA LADO SE REPRESENTA ENTRE PARÉNTESIS, SEPARANDO SUS VÉRTICES POR COMAS, Y TENIENDO EN CUENTA  (VI,VJ)=(VJ,VI) . FIGURAS 1 Y 2. DIRIGIDOS:  SON AQUELLOS EN LOS CUALES LOS LADOS ESTÁN ORIENTADOS (FLECHAS). CADA LADO SE REPRESENTA ENTRE ÁNGULOS, SEPARANDO SUS VÉRTICES POR COMAS Y TENIENDO EN CUENTA  <VI ,VJ>!=<VJ ,VI> . EN GRAFOS DIRIGIDOS, PARA CADA LADO  <A,B> ,  A , EL CUAL ES EL VÉRTICE ORIGEN, SE CONOCE COMO LA COLA DEL LADO Y  B,  EL CUAL ES EL VÉRTICE DESTINO, SE CONOCE COMO CABEZA DEL LADO.  FIGURA 3
UN GRAFO SIMPLE G=(V,E) CONSISTE DE V, UN CONJUNTO NO VACÍO DE VÉRTICES, Y E, UN CONJUNTO DE PAREJAS NO ORDENADAS DE ELEMENTOS DISTINTOS DE V LLAMADAS ARISTAS. EJEMPLO : UNA RED DE COMPUTADORES COMUNICADOS POR LÍNEAS TELEFÓNICAS, DONDE HAY MÁXIMA UNA LÍNEA ENTRE UN PAR DE COMPUTADORES, LAS LÍNEAS OPERAN EN AMBOS SENTIDOS Y NO HAY UNA LÍNEA DE UN COMPUTADOR A SI MISMO.
UN GRAFO DIRIGIDO  (V,E) CONSISTE DE UN CONJUNTO DE VÉRTICES V Y UN CONJUNTO DE ARISTAS E QUE SON PAREJAS ORDENADAS DE ELEMENTOS DE V. EJEMPLO:  UNA RED DE COMPUTADORES COMUNICADOS POR LÍNEAS TELEFÓNICAS, DONDE SE DEFINE LA DIRECCIÓN DE LA COMUNICACIÓN .
SEA  G=(V,E)  UN GRAFO , UN SUBGRAFO DE  G  ES CUALQUIER GRAFO  H=(V(H),E(H)) , DE MODO QUE  V(H)  ESTÁ CONTENIDO EN  V  Y  E(H)  ESTÁ CONTENIDO EN  E . UN SUBGRAFO SE OBTIENE ELIMINANDO ALGUNA(S) ARISTA(S) Y/O VÉRTICE(S). SI SE SUPRIME UN VÉRTICE, SE SUPRIMEN TODAS LAS ARISTAS QUE TIENEN POR ORIGEN O FIN DICHO VÉRTICE. G’  ES UN SUBGRAFO DE  G , AL SUPRIMIR EL VÉRTICE  X  Y LAS ARISTAS QUE LLEGAN A ÉL.  
UN  GRAFO COMPLETO  ES UN GRAFO SIMPLE EN EL QUE TODO PAR DE VÉRTICES ESTÁ UNIDO POR UNA ARISTA. (SE REPRESENTA CON  K N   AL GRAFO COMPLETO DE N VÉRTICES). DICHO DE OTRA MANERA UN GRAFO ES COMPLETO SI CADA VÉRTICE TIENE UN GRADO IGUAL A N-1, DONDE N ES EL NÚMERO DE VÉRTICES QUE COMPONEN EL GRAFO.
UN GRAFO SE DICE QUE ES REGULAR, SI TODOS LOS VÉRTICES TIENEN EL MISMO GRADO.
ES AQUEL CON CUYOS VÉRTICES PUEDEN FORMARSE DOS CONJUNTOS DISJUNTOS DE MODO QUE NO HAYA ADYACENCIAS ENTRE VÉRTICES PERTENECIENTES AL MISMO CONJUNTO.
SE DENOTA KM,N DONDE M, N ES EL GRADO DE CADA CONJUNTO DISJUNTO DE VÉRTICES.
CONSIDEREMOS EL GRAFO  RN , QUE LLAMAREMOS  GRAFO RUEDA , QUE TIENE  N  + 1 VÉRTICES. VEMOS INMEDIATAMENTE QUE EL VÉRTICE CENTRAL ES ESPECIAL.
EL GRAFO SIMPLE G1=(V1,E1) Y G2=(V2,E2) SON ISOMORFICOS SI HAY UNA FUNCIÓN  (SE DICE DE LAS APLICACIONES DE UN CONJUNTO EN OTRO CUYA CORRESPONDENCIA INVERSA ES TAMBIÉN UNA APLICACIÓN) F DESDE V1 A V2 CON LA PROPIEDAD QUE A Y B SON ADYACENTES EN G1 SI Y SOLO SI F(A) Y F(B) SON ADYACENTES EN G2, PARA TODO A Y B EN V1. TAL FUNCIÓN F ES LLAMADA UN ISOMORFISMO.
EL  ALGORITMO DE FLOYD-WARSHALL  INTENTA RESOLVER EL PROBLEMA DE ENCONTRAR EL CAMINO MÁS CORTO ENTRE TODOS LOS PARES DE NODOS O VÉRTICES DE UN GRAFO. ESTO ES SIMILAR A CONSTRUIR UNA TABLA CON TODAS LAS DISTANCIAS MÍNIMAS ENTRE POR EJEMPLO PARES DE CIUDADES DE UN MAPA, INDICANDO LA RUTA A SEGUIR PARA IR DE LA PRIMERA CIUDAD A LA SEGUNDA. .
VEAMOS UN EJEMPLO DE CÓMO FUNCIONA EL ALGORITMO PARA EL SIGUIENTE GRAFO: LA MATRIZ DEL GRAFO ES:
ESTA MATRIZ REPRESENTA EL COSTE DE IR DE UN NODO A OTRO DEL GRAFO SIN PASAR POR NODOS INTERMEDIOS. EN CADA ITERACIÓN DEL ALGORITMO SE AÑADE UN NODO A TRAVÉS DEL CUAL SE PUEDEN ESTABLECER CAMINOS PARA IR DE UN NODO A OTRO, ASÍ, AL FINAL DE LA  K-ÉSIMA ITERACIÓN, D[I][J] INDICA EL MENOR COSTE DE CUALQUIER CAMINO ENTRE EL NODO I Y EL NODO J QUE PASE POR NODOS CON NÚMERO MENOR O IGUAL QUE K.
UNA MATRIZ DE ADYACENCIA ES AQUELLA QUE MUESTRA DE LA FORMA MAS RUSTICA CÓMO ESTÁ COMPUESTO UN GRAFO, ESTO ES QUE DÓNDE SE COLOQUE UN UNO SE REPRESENTA COMO UNA ARISTA QUE UNA LOS DOS NODOS Y CON CERO DONDE NO HAY UNIÓN.
[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
 

Weitere ähnliche Inhalte

Was ist angesagt? (20)

Teoria de grafos
Teoria de grafosTeoria de grafos
Teoria de grafos
 
Mapa Conceptual
Mapa ConceptualMapa Conceptual
Mapa Conceptual
 
grafos conexos
grafos conexosgrafos conexos
grafos conexos
 
Grafos - Figuras Planas
Grafos - Figuras PlanasGrafos - Figuras Planas
Grafos - Figuras Planas
 
Recorrido de Grafos
Recorrido de GrafosRecorrido de Grafos
Recorrido de Grafos
 
Grafos
GrafosGrafos
Grafos
 
Mapa mental Grafos (Gaby Assouad)
Mapa mental Grafos (Gaby Assouad)Mapa mental Grafos (Gaby Assouad)
Mapa mental Grafos (Gaby Assouad)
 
Grafos eulerianos y hamiltonianos
Grafos eulerianos y hamiltonianosGrafos eulerianos y hamiltonianos
Grafos eulerianos y hamiltonianos
 
Grafos
GrafosGrafos
Grafos
 
Matemáticas discretas- Teoría de Grafos
Matemáticas discretas- Teoría de GrafosMatemáticas discretas- Teoría de Grafos
Matemáticas discretas- Teoría de Grafos
 
Grafos
GrafosGrafos
Grafos
 
Grafo bipartito
Grafo bipartitoGrafo bipartito
Grafo bipartito
 
Grafos
GrafosGrafos
Grafos
 
Mapa conceptual
Mapa conceptualMapa conceptual
Mapa conceptual
 
Presentación1 grafos
Presentación1 grafosPresentación1 grafos
Presentación1 grafos
 
Ejercicios de grafos
Ejercicios de grafosEjercicios de grafos
Ejercicios de grafos
 
Lenguajes Decidibles
Lenguajes DecidiblesLenguajes Decidibles
Lenguajes Decidibles
 
Grafos propuestos
Grafos propuestosGrafos propuestos
Grafos propuestos
 
Mapa Conceptual de Grafos
Mapa Conceptual de GrafosMapa Conceptual de Grafos
Mapa Conceptual de Grafos
 
Aplicaciones de los árboles y grafos
Aplicaciones de los árboles y grafosAplicaciones de los árboles y grafos
Aplicaciones de los árboles y grafos
 

Kürzlich hochgeladen

Presentación de elementos de afilado con esmeril
Presentación de elementos de afilado con esmerilPresentación de elementos de afilado con esmeril
Presentación de elementos de afilado con esmerilJuanGallardo438714
 
Avances tecnológicos del siglo XXI 10-07 eyvana
Avances tecnológicos del siglo XXI 10-07 eyvanaAvances tecnológicos del siglo XXI 10-07 eyvana
Avances tecnológicos del siglo XXI 10-07 eyvanamcerpam
 
presentacion de PowerPoint de la fuente de poder.pptx
presentacion de PowerPoint de la fuente de poder.pptxpresentacion de PowerPoint de la fuente de poder.pptx
presentacion de PowerPoint de la fuente de poder.pptxlosdiosesmanzaneros
 
Modulo-Mini Cargador.................pdf
Modulo-Mini Cargador.................pdfModulo-Mini Cargador.................pdf
Modulo-Mini Cargador.................pdfAnnimoUno1
 
Trabajo Mas Completo De Excel en clase tecnología
Trabajo Mas Completo De Excel en clase tecnologíaTrabajo Mas Completo De Excel en clase tecnología
Trabajo Mas Completo De Excel en clase tecnologíassuserf18419
 
EPA-pdf resultado da prova presencial Uninove
EPA-pdf resultado da prova presencial UninoveEPA-pdf resultado da prova presencial Uninove
EPA-pdf resultado da prova presencial UninoveFagnerLisboa3
 
Global Azure Lima 2024 - Integración de Datos con Microsoft Fabric
Global Azure Lima 2024 - Integración de Datos con Microsoft FabricGlobal Azure Lima 2024 - Integración de Datos con Microsoft Fabric
Global Azure Lima 2024 - Integración de Datos con Microsoft FabricKeyla Dolores Méndez
 
Desarrollo Web Moderno con Svelte 2024.pdf
Desarrollo Web Moderno con Svelte 2024.pdfDesarrollo Web Moderno con Svelte 2024.pdf
Desarrollo Web Moderno con Svelte 2024.pdfJulian Lamprea
 
Refrigerador_Inverter_Samsung_Curso_y_Manual_de_Servicio_Español.pdf
Refrigerador_Inverter_Samsung_Curso_y_Manual_de_Servicio_Español.pdfRefrigerador_Inverter_Samsung_Curso_y_Manual_de_Servicio_Español.pdf
Refrigerador_Inverter_Samsung_Curso_y_Manual_de_Servicio_Español.pdfvladimiroflores1
 
PROYECTO FINAL. Tutorial para publicar en SlideShare.pptx
PROYECTO FINAL. Tutorial para publicar en SlideShare.pptxPROYECTO FINAL. Tutorial para publicar en SlideShare.pptx
PROYECTO FINAL. Tutorial para publicar en SlideShare.pptxAlan779941
 
pruebas unitarias unitarias en java con JUNIT
pruebas unitarias unitarias en java con JUNITpruebas unitarias unitarias en java con JUNIT
pruebas unitarias unitarias en java con JUNITMaricarmen Sánchez Ruiz
 
guía de registro de slideshare por Brayan Joseph
guía de registro de slideshare por Brayan Josephguía de registro de slideshare por Brayan Joseph
guía de registro de slideshare por Brayan JosephBRAYANJOSEPHPEREZGOM
 
EL CICLO PRÁCTICO DE UN MOTOR DE CUATRO TIEMPOS.pptx
EL CICLO PRÁCTICO DE UN MOTOR DE CUATRO TIEMPOS.pptxEL CICLO PRÁCTICO DE UN MOTOR DE CUATRO TIEMPOS.pptx
EL CICLO PRÁCTICO DE UN MOTOR DE CUATRO TIEMPOS.pptxMiguelAtencio10
 
Presentación guía sencilla en Microsoft Excel.pptx
Presentación guía sencilla en Microsoft Excel.pptxPresentación guía sencilla en Microsoft Excel.pptx
Presentación guía sencilla en Microsoft Excel.pptxLolaBunny11
 
Avances tecnológicos del siglo XXI y ejemplos de estos
Avances tecnológicos del siglo XXI y ejemplos de estosAvances tecnológicos del siglo XXI y ejemplos de estos
Avances tecnológicos del siglo XXI y ejemplos de estossgonzalezp1
 

Kürzlich hochgeladen (15)

Presentación de elementos de afilado con esmeril
Presentación de elementos de afilado con esmerilPresentación de elementos de afilado con esmeril
Presentación de elementos de afilado con esmeril
 
Avances tecnológicos del siglo XXI 10-07 eyvana
Avances tecnológicos del siglo XXI 10-07 eyvanaAvances tecnológicos del siglo XXI 10-07 eyvana
Avances tecnológicos del siglo XXI 10-07 eyvana
 
presentacion de PowerPoint de la fuente de poder.pptx
presentacion de PowerPoint de la fuente de poder.pptxpresentacion de PowerPoint de la fuente de poder.pptx
presentacion de PowerPoint de la fuente de poder.pptx
 
Modulo-Mini Cargador.................pdf
Modulo-Mini Cargador.................pdfModulo-Mini Cargador.................pdf
Modulo-Mini Cargador.................pdf
 
Trabajo Mas Completo De Excel en clase tecnología
Trabajo Mas Completo De Excel en clase tecnologíaTrabajo Mas Completo De Excel en clase tecnología
Trabajo Mas Completo De Excel en clase tecnología
 
EPA-pdf resultado da prova presencial Uninove
EPA-pdf resultado da prova presencial UninoveEPA-pdf resultado da prova presencial Uninove
EPA-pdf resultado da prova presencial Uninove
 
Global Azure Lima 2024 - Integración de Datos con Microsoft Fabric
Global Azure Lima 2024 - Integración de Datos con Microsoft FabricGlobal Azure Lima 2024 - Integración de Datos con Microsoft Fabric
Global Azure Lima 2024 - Integración de Datos con Microsoft Fabric
 
Desarrollo Web Moderno con Svelte 2024.pdf
Desarrollo Web Moderno con Svelte 2024.pdfDesarrollo Web Moderno con Svelte 2024.pdf
Desarrollo Web Moderno con Svelte 2024.pdf
 
Refrigerador_Inverter_Samsung_Curso_y_Manual_de_Servicio_Español.pdf
Refrigerador_Inverter_Samsung_Curso_y_Manual_de_Servicio_Español.pdfRefrigerador_Inverter_Samsung_Curso_y_Manual_de_Servicio_Español.pdf
Refrigerador_Inverter_Samsung_Curso_y_Manual_de_Servicio_Español.pdf
 
PROYECTO FINAL. Tutorial para publicar en SlideShare.pptx
PROYECTO FINAL. Tutorial para publicar en SlideShare.pptxPROYECTO FINAL. Tutorial para publicar en SlideShare.pptx
PROYECTO FINAL. Tutorial para publicar en SlideShare.pptx
 
pruebas unitarias unitarias en java con JUNIT
pruebas unitarias unitarias en java con JUNITpruebas unitarias unitarias en java con JUNIT
pruebas unitarias unitarias en java con JUNIT
 
guía de registro de slideshare por Brayan Joseph
guía de registro de slideshare por Brayan Josephguía de registro de slideshare por Brayan Joseph
guía de registro de slideshare por Brayan Joseph
 
EL CICLO PRÁCTICO DE UN MOTOR DE CUATRO TIEMPOS.pptx
EL CICLO PRÁCTICO DE UN MOTOR DE CUATRO TIEMPOS.pptxEL CICLO PRÁCTICO DE UN MOTOR DE CUATRO TIEMPOS.pptx
EL CICLO PRÁCTICO DE UN MOTOR DE CUATRO TIEMPOS.pptx
 
Presentación guía sencilla en Microsoft Excel.pptx
Presentación guía sencilla en Microsoft Excel.pptxPresentación guía sencilla en Microsoft Excel.pptx
Presentación guía sencilla en Microsoft Excel.pptx
 
Avances tecnológicos del siglo XXI y ejemplos de estos
Avances tecnológicos del siglo XXI y ejemplos de estosAvances tecnológicos del siglo XXI y ejemplos de estos
Avances tecnológicos del siglo XXI y ejemplos de estos
 

Grafos

  • 1.
  • 2.  
  • 3. LA TEORÍA DE GRAFOS SE APLICA EN CAMPOS TAN DIVERSOS COMO LAS CIENCIAS SOCIALES, LINGÜÍSTICA, CIENCIAS FÍSICAS, INGENIERÍA DE LA COMUNICACIÓN, ETC. DESEMPEÑA UN PAPEL IMPORTANTE EN LA CIENCIAS DE LA CONMUTACIÓN, CONMUTACIÓN Y DISEÑO LÓGICO, INTELIGENCIA ARTIFICIAL, LENGUAJES FORMALES, GRÁFICOS POR COMPUTADORA, SISTEMAS OPERATIVOS, ESCRITURA DE COMPILADORES Y ORGANIZACIÓN Y RECUPERACIÓN DE INFORMACIÓN. SE USAN PARA MODELAR PROBLEMAS.
  • 4. LAS APLICACIONES MÁS IMPORTANTES DE LOS GRAFOS SON LAS SIGUIENTES: · RUTAS ENTRE CIUDADES. · DETERMINAR TIEMPOS MÁXIMOS Y MÍNIMOS EN UN PROCESO. · FLUJO Y CONTROL EN UN PROGRAMA.
  • 5. LA ISLA KUEIPHOF EN KOENIGSBERG (POMERANIA) EL RÍO QUE LA RODEA SE DIVIDE EN DOS BRAZOS. SOBRE LOS BRAZOS ESTABAN CONSTRUIDOS SIETE PUENTES Y PARA LOS HABITANTES ERA MOTIVO DE DISTRACCIÓN DESCUBRIR UN CAMINO DE MANERA QUE PUDIERAN REGRESAR AL PUNTO DE PARTIDA, DESPUÉS DE HABER CRUZADO POR LOS SIETE PUENTES PERO PASANDO SÓLO UNA VEZ POR CADA UNO DE ELLOS.  LEONARDO EULER ESTUDIÓ EL ASUNTO, REPRESENTÓ LAS DISTINTAS ZONAS A, B, C Y D POR MEDIO DE PUNTOS, MIENTRAS QUE LOS PUENTES ESTABAN REPRESENTADOS POR LÍNEAS QUE UNÍAN ESTOS PUNTOS. A LA FIGURA LA LLAMÓ GRAFO, A LOS PUNTOS LOS LLAMÓ VÉRTICES Y A LAS LÍNEAS LAS DENOMINÓ ARISTAS.  
  • 6. EULER ESTUDIÓ SI UNA FIGURA LINEAL SE PODÍA DIBUJAR CON UN SOLO TRAZO, SIN LEVANTAR EL LÁPIZ DEL PAPEL Y SIN PASAR DOS VECES POR EL MISMO SITIO.   LLEGÓ A LA SIGUIENTE CONCLUSIÓN: 1. ES IMPOSIBLE SI HAY MÁS DE DOS VÉRTICES IMPARES . 2. ES POSIBLE CUANDO: A) TODOS LOS VÉRTICES SON PARES Y EL PUNTO DE PARTIDA PUEDE SER CUALQUIERA. B) CUANDO NO HAY MÁS DE DOS VÉRTICES IMPARES Y EN ESTE CASO EL COMIENZO DEL RECORRIDO COMIENZA EN UNO DE ELLOS Y TERMINA EN EL OTRO.
  • 7. UN GRAFO ES UN ESPACIO TOPOLÓGICO QUE SE ARMA A PARTIR DE UN CONJUNTO DISCRETO DE PUNTOS (LLAMADOS VÉRTICES), PEGANDO (ADJUNTANDO) COPIAS DEL INTERVALO UNITARIO REAL I (QUE FORMARAN LAS ARISTAS DEL GRAFO).
  • 8. LOS VÉRTICES SE DENOMINAN TAMBIÉN NODOS O PUNTOS. LOS VÉRTICE DE UN GRAFO PUEDEN USARSE PARA REPRESENTAR OBJETOS. LOS ARCOS SE UTILIZAN PARA REPRESENTAR RELACIONES ENTRE ESTOS OBJETOS.
  • 9. SI TENEMOS UN PAR DE VÉRTICES DE UN GRAFO (U, V) Y SI TENEMOS UN ARISTA QUE LOS UNE, ENTONCES U Y V SON VÉRTICES ADYACENTES Y SE DICE QUE U ES EL VÉRTICE INICIAL Y V EL VÉRTICE ADYACENTE. LOS VÉRTICES A Y B SON ADYACENTES
  • 10. ES UN VÉRTICE DE GRADO CERO. LOS VÉRTICES QUE LO COMPONEN NO ESTÁN CONECTADOS.
  • 11. UN ARCO, ES UN PAR ORDENADO DE VÉRTICES (V,E) DONDE V ES EL VÉRTICE INICIAL Y W ES EL VÉRTICE TERMINAL DEL ARCO. UN ARCO SE EXPRESA COMO: V-->E.
  • 12. COROLARIO. TODO GRAFO TIENE UN NÚMERO PAR DE VÉRTICES DE GRADO IMPAR. CARDINALIDAD O GRADO.- LA CARDINALIDAD O GRADO DE UN VÉRTICE (V) DE UN GRAFO (G) ES IGUAL AL NÚMERO DE ARISTAS QUE INCIDEN EN EL VERTICE (V) Y SE DESIGNA COMO DEG(V).
  • 13. UNA ARISTA ES INCIDENTE A UN VÉRTICE SI ÉSTA LO UNE A OTRO VÉRTICE. EL ARCO A, ES INCIDENTE EN A Y B.
  • 14. VÉRTICE ADYACENTE. SI TENEMOS UN PAR DE VÉRTICES DE UN GRAFO (U, V) Y SI TENEMOS UN ARISTA QUE LOS UNE, ENTONCES U Y V SON VÉRTICES ADYACENTES Y SE DICE QUE U ES EL VÉRTICE INICIAL Y V EL VÉRTICE ADYACENTE.
  • 15. UN LAZO O BUCLE ES UNA ARISTA QUE RELACIONA AL MISMO NODO; ES DECIR, UNA ARISTA DONDE EL NODO INICIAL Y EL NODO FINAL COINCIDEN.
  • 16. UN CICLO ES UN CAMINO, ES DECIR UNA SUCESIÓN DE ARISTAS ADYACENTES, DONDE NO SE RECORRE DOS VECES LA MISMA ARISTA, Y DONDE SE REGRESA AL PUNTO INICIAL. UN CICLO HAMILTONIANO TIENE ADEMÁS QUE RECORRER TODAS LOS VÉRTICES.
  • 17. SI TENEMOS UN PAR DE ARISTAS DE UN GRAFO (U, V) Y SI TENEMOS UN VÉRTICE QUE LAS UNE, ENTONCES U Y V SON ARISTAS ADYACENTES.
  • 18. CUANDO EN LOS VERTICES O NODOS HAY MAS DE 1 ARISTA .
  • 19. EXISTEN DOS TIPOS DE GRAFOS LOS NO DIRIGIDOS Y LOS DIRIGIDOS. NO DIRIGIDOS: SON AQUELLOS EN LOS CUALES LOS LADOS NO ESTÁN ORIENTADOS (NO SON FLECHAS). CADA LADO SE REPRESENTA ENTRE PARÉNTESIS, SEPARANDO SUS VÉRTICES POR COMAS, Y TENIENDO EN CUENTA (VI,VJ)=(VJ,VI) . FIGURAS 1 Y 2. DIRIGIDOS: SON AQUELLOS EN LOS CUALES LOS LADOS ESTÁN ORIENTADOS (FLECHAS). CADA LADO SE REPRESENTA ENTRE ÁNGULOS, SEPARANDO SUS VÉRTICES POR COMAS Y TENIENDO EN CUENTA <VI ,VJ>!=<VJ ,VI> . EN GRAFOS DIRIGIDOS, PARA CADA LADO <A,B> , A , EL CUAL ES EL VÉRTICE ORIGEN, SE CONOCE COMO LA COLA DEL LADO Y B, EL CUAL ES EL VÉRTICE DESTINO, SE CONOCE COMO CABEZA DEL LADO.  FIGURA 3
  • 20. UN GRAFO SIMPLE G=(V,E) CONSISTE DE V, UN CONJUNTO NO VACÍO DE VÉRTICES, Y E, UN CONJUNTO DE PAREJAS NO ORDENADAS DE ELEMENTOS DISTINTOS DE V LLAMADAS ARISTAS. EJEMPLO : UNA RED DE COMPUTADORES COMUNICADOS POR LÍNEAS TELEFÓNICAS, DONDE HAY MÁXIMA UNA LÍNEA ENTRE UN PAR DE COMPUTADORES, LAS LÍNEAS OPERAN EN AMBOS SENTIDOS Y NO HAY UNA LÍNEA DE UN COMPUTADOR A SI MISMO.
  • 21. UN GRAFO DIRIGIDO (V,E) CONSISTE DE UN CONJUNTO DE VÉRTICES V Y UN CONJUNTO DE ARISTAS E QUE SON PAREJAS ORDENADAS DE ELEMENTOS DE V. EJEMPLO: UNA RED DE COMPUTADORES COMUNICADOS POR LÍNEAS TELEFÓNICAS, DONDE SE DEFINE LA DIRECCIÓN DE LA COMUNICACIÓN .
  • 22. SEA G=(V,E) UN GRAFO , UN SUBGRAFO DE G ES CUALQUIER GRAFO H=(V(H),E(H)) , DE MODO QUE V(H) ESTÁ CONTENIDO EN V Y E(H) ESTÁ CONTENIDO EN E . UN SUBGRAFO SE OBTIENE ELIMINANDO ALGUNA(S) ARISTA(S) Y/O VÉRTICE(S). SI SE SUPRIME UN VÉRTICE, SE SUPRIMEN TODAS LAS ARISTAS QUE TIENEN POR ORIGEN O FIN DICHO VÉRTICE. G’ ES UN SUBGRAFO DE G , AL SUPRIMIR EL VÉRTICE X Y LAS ARISTAS QUE LLEGAN A ÉL.  
  • 23. UN GRAFO COMPLETO ES UN GRAFO SIMPLE EN EL QUE TODO PAR DE VÉRTICES ESTÁ UNIDO POR UNA ARISTA. (SE REPRESENTA CON K N AL GRAFO COMPLETO DE N VÉRTICES). DICHO DE OTRA MANERA UN GRAFO ES COMPLETO SI CADA VÉRTICE TIENE UN GRADO IGUAL A N-1, DONDE N ES EL NÚMERO DE VÉRTICES QUE COMPONEN EL GRAFO.
  • 24. UN GRAFO SE DICE QUE ES REGULAR, SI TODOS LOS VÉRTICES TIENEN EL MISMO GRADO.
  • 25. ES AQUEL CON CUYOS VÉRTICES PUEDEN FORMARSE DOS CONJUNTOS DISJUNTOS DE MODO QUE NO HAYA ADYACENCIAS ENTRE VÉRTICES PERTENECIENTES AL MISMO CONJUNTO.
  • 26. SE DENOTA KM,N DONDE M, N ES EL GRADO DE CADA CONJUNTO DISJUNTO DE VÉRTICES.
  • 27. CONSIDEREMOS EL GRAFO RN , QUE LLAMAREMOS GRAFO RUEDA , QUE TIENE N + 1 VÉRTICES. VEMOS INMEDIATAMENTE QUE EL VÉRTICE CENTRAL ES ESPECIAL.
  • 28. EL GRAFO SIMPLE G1=(V1,E1) Y G2=(V2,E2) SON ISOMORFICOS SI HAY UNA FUNCIÓN (SE DICE DE LAS APLICACIONES DE UN CONJUNTO EN OTRO CUYA CORRESPONDENCIA INVERSA ES TAMBIÉN UNA APLICACIÓN) F DESDE V1 A V2 CON LA PROPIEDAD QUE A Y B SON ADYACENTES EN G1 SI Y SOLO SI F(A) Y F(B) SON ADYACENTES EN G2, PARA TODO A Y B EN V1. TAL FUNCIÓN F ES LLAMADA UN ISOMORFISMO.
  • 29. EL ALGORITMO DE FLOYD-WARSHALL INTENTA RESOLVER EL PROBLEMA DE ENCONTRAR EL CAMINO MÁS CORTO ENTRE TODOS LOS PARES DE NODOS O VÉRTICES DE UN GRAFO. ESTO ES SIMILAR A CONSTRUIR UNA TABLA CON TODAS LAS DISTANCIAS MÍNIMAS ENTRE POR EJEMPLO PARES DE CIUDADES DE UN MAPA, INDICANDO LA RUTA A SEGUIR PARA IR DE LA PRIMERA CIUDAD A LA SEGUNDA. .
  • 30. VEAMOS UN EJEMPLO DE CÓMO FUNCIONA EL ALGORITMO PARA EL SIGUIENTE GRAFO: LA MATRIZ DEL GRAFO ES:
  • 31. ESTA MATRIZ REPRESENTA EL COSTE DE IR DE UN NODO A OTRO DEL GRAFO SIN PASAR POR NODOS INTERMEDIOS. EN CADA ITERACIÓN DEL ALGORITMO SE AÑADE UN NODO A TRAVÉS DEL CUAL SE PUEDEN ESTABLECER CAMINOS PARA IR DE UN NODO A OTRO, ASÍ, AL FINAL DE LA K-ÉSIMA ITERACIÓN, D[I][J] INDICA EL MENOR COSTE DE CUALQUIER CAMINO ENTRE EL NODO I Y EL NODO J QUE PASE POR NODOS CON NÚMERO MENOR O IGUAL QUE K.
  • 32. UNA MATRIZ DE ADYACENCIA ES AQUELLA QUE MUESTRA DE LA FORMA MAS RUSTICA CÓMO ESTÁ COMPUESTO UN GRAFO, ESTO ES QUE DÓNDE SE COLOQUE UN UNO SE REPRESENTA COMO UNA ARISTA QUE UNA LOS DOS NODOS Y CON CERO DONDE NO HAY UNIÓN.
  • 33.
  • 34.
  • 35.