SlideShare ist ein Scribd-Unternehmen logo
1 von 16
http://lawrencekok.blogspot.com
Prepared by
Lawrence Kok
Tutorial on Voltaic Cell, Nernst Equation and
concentration cell.
Types voltaic cell
Conversion electrical energy
to chemical energy
Electrochemistry
Electrolytic cellVoltaic cell
NH4CI and ZnCI2
Redox rxn
(Oxidation/reduction)
Movement electron
Produce electricity
Conversion chemical energy
to electrical energy
Electrodes – different metal (Half cell) Electrodes – same metal (Half cell)
Daniell cell Alkaline cellDry cell Nickel cadmium cell
Primary cell (Non rechargeable)
MnO2 and KOH
Secondary cell (Rechargeable)
Current – measured Amperes or Coulombs per second
1A = 1 Coulomb charge pass through a point in 1 s = 1C/s
1 Coulomb charge (elec) = 6.28 x 10 18
elec passing in 1 s
1 elec/proton carry charge of – 1.6 x 10 -19 C ( very small)
6.28 x 10 18
elec carry charge of - 1 C
Electric current
Flow electric charges (elec, -ve)
From High to low electric potential
Potential Diff – measure with ammeter
ond
electron
ond
Coulomb
A
sec.1
.1028.6
sec1
1
1
18
×
==
Current Electric Current – moving charges in solid wire or solution
Flow of
charges
-
-
-
Solid/WireSolution/Electrolyte
Electron move in random
No current flow cause
No potential difference
Electrons & Protons
-
-
+
+
1A = 6.28 x 1018
e
1 s
Potential Difference across wire
Electron move in one direction
Current flow
+ve ions -ve ions
(cations) (anions)
Potential Diff applied/Battery
ItQ = t = Time/ s
Find amt charges pass through if
Current is 2.ooA, time is 15 min
ItQ =
Current flow
Q = Amt Charges/ C I = Current/ A
CQ 1800601500.2 =××=
Electric Potential
C
J
Volt
1
1 =
-Measured in Volt with Voltmeter
- 1 V = 1 Joule energy released when 1 Coulomb
charge pass through 1 point
- 1 V = 1 J/C
V = Potential Diff
I = Current
R = Resistance
Potential diff bet 2 points is 1 V
↓
1 J energy released when 1 C charge passes through
Voltmeter across
1Volt
1 V
+ -
1 Ω 2 Ω
Charges (-ve)
flow down
A
R
V
I
RIV
2
3
6
===
×=
VV
RIV
212 =×=
×=
-
+
-
+
VV
RIV
422 =×=
×=
Total current
Potential Diff(PD) vs Current
PD = Water Pressure
PD = 1.5V – 1.5J energy released 1C charge flow down
PD – cause charge flow = CURRENT
Potential Diff(PD) vs Current
1.5V = 1.5J/C
A
DElectric potential/PD/Voltage = Electric Pressure = Volt
Electric Current = Charge flow = Amp
Electric Potential Energy = Work done to bring a charge to a point = Joule
Voltage NOT same as energy, Voltage = energy/charge
Battery lift charges, Q to higher potential
Potential Energy bet 2 terminals in battery stored as chemical energy
2A 2A
Potential Diff/VoltagePotential Diff/Voltage
EMF vs PD
V = Potential Diff
I = Current
R = Resistance
Max potential diff bet two
electrodes of battery source.
+ -
1 Ω 2 Ω
A
R
V
I
RIV
2
3
6
===
×=
VV
RIV
212 =×=
×=
VV
RIV
422 =×=
×=
Total current
Current flow Circuit complete
Circuit complete
↓
Current flow
↓
Internal resistance
(battery - 1Ω)
↓
Terminal PD = 8V
(Voltage drop)
Potential Diff/Voltage in Volt
Symbol for EMF = E / ℰ  
No Current flow in circuit
EMF (Electromotive Force) Volt
Battery = EMF = 9V
9 Volt
).(9 currentnoVEMFV
IRV
==
=
EMF Internal resistance Ir
Place voltmeter across – EMF= 9V
No current flow.
A
rR
E
I
rRIE
IrIREMFE
1
9
9
)18(
9
)(
)(
)(
==
+
=
+
=
+=
+=
VV
RIV
881 =×=
×=
VV
RIV
111 =×=
×=
EMF = 8V+1V
8 Volt
1 Volt
EMF (6V) = 2V + 4V
4 Volt2 Volt
Charges passing through wire
Current flow Circuit complete
Internal resistance
Collision bet + ve ions with elec
(drift velocity elec)
- +
Eθ
value DO NOT depend surface area of metal electrode.
E cell = Energy per unit charge. (Joule)/C
E cell- 10v = 10J energy released by 1C of charge
= 100J energy released by 10C of charge
Eθ
– intensive property– independent of amt – Ratio energy/charge
Increasing surface area metal will NOT increase E cell
Eθ
Zn/Cu = 1.10V
Surface area - 10 cm2
Total charge- 100C leave electrode
E cell = 1.1V = 1.1 J energy for 1 C (charges leaving)
1C release 1.1 J energy
100 C release 110 J energy
Voltmeter measure energy for 1C – 110J/100C – 1.1V
E cell no change
Current – measured in Amp or Coulomb per s
1A = 1 Coulomb charge pass through a point in 1 s = 1C/s
1 Coulomb charge (elec) = 6.28 x 10 18
elec passing in 1 s
1 electron/proton carry charge of – 1.6 x 10 -19 C ( very small)
6.28 x 10 18
electron carry charge of - 1 C
ond
electron
ond
Coulomb
A
sec.1
.1028.6
sec1
1
1
18
×
==
Surface area increase ↑
Total Energy increase ↑
Total Charge increase ↑Current increase ↑
BUT E cell remain SAME
E cell = (Energy/charge)
t
Q
I
tIQ
=
×=
Q up ↑ – I up ↑
100C flow
110J released
VEcell
Ecell
eCh
Energy
Ecell
10.1
100
110
arg
=
=
=
Surface area - 100 cm2
Total charge 1000C leave electrode
E cell = 1.1V = 1.1 J energy for 1 C (charges leaving)
1 C release 1.1J energy
1000 C release 1100 J energy
Voltmeter measure energy for 1C – 1100J/1000C – 1.1V
E cell no change
VEcell
Ecell
eCh
Energy
Ecell
10.1
1000
1100
arg
=
=
=
Eθ
Zn/Cu = 1.10V
1000C flow
1100J released
t
Q
I =
t
Q
I =
Surface area exposed 10 cm2
Surface area exposed 100 cm2
∆G θ
=
-nFE θ
cell
Relationship bet ∆G and Kc
cellnFEG −=∆ θ
Relationship bet
Energetics and Equilibrium
cKRTG ln−=∆ θ
STHG ∆−∆=∆
Enthalpy
change
Entropy
change
Equilibrium
constant
Gibbs free
energy change
H∆θ
G∆
Relationship bet ∆G, Kc and E cell
cellnFEG −=∆ θ
STHG ∆−∆=∆ cKRTG ln−=∆ θ
cK
Relationship bet
Energetics and Cell Potential
θ
G∆ cellEθ
Gibbs free
energy change
Cell potential
F = Faraday constant
(96 500 Cmol-1
)
n = number
electron
Relationship bet ∆G, Kc and Ecell
ΔGθ Kc Eθ/V Extent of rxn
> 0 < 1 < 0 No Reaction
Non spontaneous
ΔGθ
= 0 Kc = 1 0 Equilibrium
Mix reactant/product
< 0 > 1 > 0 Reaction complete
Spontaneous
ΔGθ
Kc Eq mixture
ΔGθ
= + 200 9 x 10-36
Reactants
ΔGθ
= + 10 2 x 1-2
Mixture
ΔGθ
= 0 Kc = 1 Equilibrium
ΔGθ
= - 10 5 x 101
Mixture
ΔGθ
= - 200 1 x 1035
Products
shift to left (reactant)
shift to right (products)
cellEθ
θ
G∆
cK
∆G
θ =
-RT
ln
K c
K
nF
RT
E cell ln=°
ΔGθ
ln K Kc Eq mixture
ΔGθ
-ve
< 0
Positive
( + )
Kc > 1 Product
(Right)
ΔGθ
+ve
> 0
Negative
( - )
Kc < 1 Reactant
(left)
ΔGθ = 0 0 Kc = 1 Equilibrium
E cell/Voltage – depend on nature of material
Q
nF
RT
EE ln−= °
T = Temp in K
Q = Rxn Quotient
E0
= std (1M)
n = # e transfer
F = Faraday constant
(96 500C mol -1
)
R = Gas constant
(8.31)
cKRTQRTG lnln −=∆
KRTG
KRTQRTG
o
c
ln
lnln
−=∆
−=∆
When ratio conc, Q = 1,
all in std conc = 1M
Non std condition
01ln
1
=
=
RT
Q
Q
nF
RT
EE ln−= °
QRTGG o
ln+∆=∆
Non std condition
o
nFEG −=∆ θnFEG −=∆
QRTnFEnFE ln+−=− °
Nernst equation
Work or Free energy to do work
depend on quantity material and surface area
E cell depend
Nature of electrode
Type of metal used Conc of ion Temp of sol
Eθ
Q T
Current/I depend
Surface area
of contact
Salt bridge conc Size of
cation/anion
Resistance high – current low↑ ↓E cell depend
Surface area
of contact Salt bridge conc
Size of
cation/anion
cellnFEG −=∆ θ
Gibbs free
energy change
do do WORK
n = number
electron
F = Faraday constant
(96 500 Cmol-1
)
Cell potential
Increasing surface area → increase charge Q and I current - Work increase
Current – depend on quantity and surface area
Zn Zn↔ 2+
+ 2e Eθ
= +0.76
Cu2+
+ 2e Cu E↔ θ
= +0.34
Zn + Cu2+
Zn→ 2+
+ Cu Eθ
= +1.10V
Zn half cell (-ve)
Oxidation
Cu half cell (+ve)
Reduction
Anode Cathode
Zn(s) | Zn2+
(aq) || Cu2+
(aq) | Cu (s)
Anode Cathode
Half Cell Half Cell
(Oxidation) (Reduction)
Salt Bridge Flow
electrons
Zn/Cu Cell - 1M std condition
-e -e
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Eθ
cell = +0.34 – (-0.76) = +1.10V
Zn 2+
+ 2e Zn (anode) E↔ θ
= -0.76V
Cu2+
+ 2e Cu (cathode) E↔ θ
= +0.34V
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Zn 2+
+ 2e Zn E↔ θ
= -0.76V
Cu2+
+ 2e Cu E↔ θ
= +0.34V
Oxidized sp ↔ Reduced sp Eθ
/V
Li+
+ e- Li↔ -3.04
K+
+ e- K↔ -2.93
Ca2+
+ 2e- Ca↔ -2.87
Na+
+ e- Na↔ -2.71
Mg2+
+ 2e- Mg↔ -2.37
Al3+
+ 3e- AI↔ -1.66
Mn2+
+ 2e- Mn↔ -1.19
H2O + e- 1/2H↔ 2 + OH-
-0.83
Zn2+
+ 2e- Zn↔ - 0.76
Fe2+
+ 2e- Fe↔ -0.45
Ni2+
+ 2e- Ni↔ -0.26
Sn2+
+ 2e- Sn↔ -0.14
Pb2+
+ 2e- Pb↔ -0.13
H+
+ e- 1/2H↔ 2 0.00
Cu2+
+ e- Cu↔ +
+0.15
SO4
2-
+ 4H+
+ 2e- H↔ 2SO3 +0.17
Cu2+
+ 2e- ↔ Cu + 0.34
1/2O2 + H2O +2e- ↔ 2OH-
+0.40
+
+1.10 V
Eθ
Zn/Cu = 1.10V
Cu2+
-
-
-
-
Zn Cu
+
+
+
+
cellnFEG −=∆ θ
E cell with ∆G
F = Faraday constant
(96 500 Cmol-1
)
n = number electron
cellnFEG −=∆ θ
kJJG
G
212212300
10.1965002
−=−=∆
××−=∆
θ
θ
Std electrode potential - std reduction potential
STD CONDITION
Zn/Cu half cellCell diagram
Q
nF
RT
EE ln−= °
Ratio conc, Q = 1,
all in std conc = 1M, T = 298K
VE
E
10.1
1ln
965002
298314.8
10.1
=
×
×
−=
Zn Zn↔ 2+
+ 2e Eθ
= +0.76
2Ag+
+2e 2Ag E↔ θ
= +0.80
Zn + Ag+
Zn→ 2+
+ Ag Eθ
= +1.56V
Zn half cell (-ve)
Oxidation
Ag half cell (+ve)
Reduction
Anode Cathode
Zn(s) | Zn2+
(aq) || Ag+
(aq) | Ag (s)
Anode Cathode
Half Cell Half Cell
(Oxidation) (Reduction)
Salt Bridge Flow
electrons
-e -e
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Eθ
cell = +0.80 – (-0.76) = +1.56V
Zn 2+
+ 2e Zn (anode) E↔ θ
= -0.76V
Ag+
+ e Ag(cathode) E↔ θ
= +0.80V
Eθ
cell = Eθ
(cathode) – Eθ
(anode)
Zn 2+
+ 2e Zn E↔ θ
= -0.76V
Ag+
+ e Ag E↔ θ
= +0.80V
Oxidized sp ↔ Reduced sp Eθ
/V
Li+
+ e- Li↔ -3.04
K+
+ e- K↔ -2.93
Ca2+
+ 2e- Ca↔ -2.87
Na+
+ e- Na↔ -2.71
Mg2+
+ 2e- Mg↔ -2.37
Al3+
+ 3e- AI↔ -1.66
Mn2+
+ 2e- Mn↔ -1.19
H2O + e- 1/2H↔ 2 + OH-
-0.83
Zn2+
+ 2e- Zn↔ - 0.76
Fe2+
+ 2e- Fe↔ -0.45
Ni2+
+ 2e- Ni↔ -0.26
Sn2+
+ 2e- Sn↔ -0.14
Pb2+
+ 2e- Pb↔ -0.13
H+
+ e- 1/2H↔ 2 0.00
Cu2+
+ e- Cu↔ +
+0.15
SO4
2-
+ 4H+
+ 2e- H↔ 2SO3 +0.17
Cu2+
+ 2e- ↔ Cu +0.34
1/2O2 + H2O +2e- ↔ 2OH-
+0.40
Cu+
+ e- ↔ Cu +0.52
1/2I2 + e- ↔ I-
+0.54
Fe3+
+ e- ↔ Fe2+
+0.77
Ag+
+ e- ↔ Ag + 0.80
1/2Br2 + e- ↔ Br-
+1.07
+
+1.56 V
Ag
Eθ
Zn/Ag = +1.56V
Ag+
-
-
-
-
+
+
+
+
Zn
E cell with ∆G
cellnFEG −=∆ θ
n = number electron F = Faraday constant
(96 500 Cmol-1
)
cellnFEG −=∆ θ
kJJG
G
301301000
56.1965002
−=−=∆
××−=∆
θ
θ
Cell diagram Zn/Ag half cells
Ratio conc, Q = 1,
all in std conc = 1M, T = 298K
Zn/Ag Cell - 1M std condition
Q
nF
RT
EE ln−= °
VE
E
56.1
1ln
965002
298314.8
56.1
=
×
×
−=
STD CONDITION
Zn half cell (-ve)
Oxidation
Cu half cell (+ve)
Reduction
Zn/Cu Cell
-e -e
Zn 2+
+ 2e Zn E↔ θ
= -0.76V
Cu2+
+ 2e Cu E↔ θ
= +0.34V
Zn Zn↔ 2+
+ 2e Eθ
= +0.76V
Cu2+
+ 2e Cu E↔ θ
= +0.34V
Zn + Cu2+
Zn→ 2+
+ Cu Eθ
= +1.10V
Oxidized sp ↔ Reduced sp Eθ
/V
Li+
+ e- Li↔ -3.04
K+
+ e- K↔ -2.93
Ca2+
+ 2e- Ca↔ -2.87
Na+
+ e- Na↔ -2.71
Mg2+
+ 2e- Mg↔ -2.37
Al3+
+ 3e- AI↔ -1.66
Mn2+
+ 2e- Mn↔ -1.19
H2O + e- 1/2H↔ 2 + OH-
-0.83
Zn2+
+ 2e- Zn↔ - 0.76
Fe2+
+ 2e- Fe↔ -0.45
Ni2+
+ 2e- Ni↔ -0.26
Sn2+
+ 2e- Sn↔ -0.14
Pb2+
+ 2e- Pb↔ -0.13
H+
+ e- 1/2H↔ 2 0.00
Cu2+
+ e- Cu↔ +
+0.15
SO4
2-
+ 4H+
+ 2e- H↔ 2SO3 + H2O +0.17
Cu2+
+ 2e- ↔ Cu + 0.34
1/2O2 + H2O +2e- ↔ 2OH-
+0.40
Cu+
+ e- ↔ Cu +0.52
1/2I2 + e- ↔ I-
+0.54
+1.10 V
Cu2+
-
-
-
-
Zn Cu
+
+
+
+
Q
nF
RT
EE ln−= ° 1M 0.1M
Zn2+
10
]1.0[
]1[
][
][
2
2
=
== +
+
c
c
Q
M
M
Cu
Zn
Q
0.1 M 1 M
Using Nernst Eqn
E0
= Std condition (1M) – 1.10V
R = Gas constant (8.31)
n = # e transfer (2 e)
F = Faraday constant (96500C mol -1
)
VE
E
E
07.1
03.010.1
)10ln(
)965002(
)29831.8(
10.1
=
−=
×
×
−=
Non std 0.1M
E cell decrease ↓ [Cu2+
] decrease ↓
↓
Le Chatelier’s principle
Cu2+
+ 2e Cu↔
↓
[Cu2+
] decrease ↓
↓
Shift to left ←
↓
E cell → less ↓ → Cu2+
less able ↓ to receive e-
[Cu2+
] ↓ E cell < Eθ
1.07 < 1.10
Zn/Cu half cellZn +Cu2+
→Zn2+
+Cu
NON STD CONDITION
Zn half cell (-ve)
Oxidation
Cu half cell (+ve)
Reduction
Zn/Cu Cell
-e -e
Zn 2+
+ 2e Zn E↔ θ
= -0.76V
Cu2+
+ 2e Cu E↔ θ
= +0.34V
Zn Zn↔ 2+
+ 2e Eθ
= +0.76V
Cu2+
+ 2e Cu E↔ θ
= +0.34V
Zn + Cu2+
Zn→ 2+
+ Cu Eθ
= +1.10V
Oxidized sp ↔ Reduced sp Eθ
/V
Li+
+ e- Li↔ -3.04
K+
+ e- K↔ -2.93
Ca2+
+ 2e- Ca↔ -2.87
Na+
+ e- Na↔ -2.71
Mg2+
+ 2e- Mg↔ -2.37
Al3+
+ 3e- AI↔ -1.66
Mn2+
+ 2e- Mn↔ -1.19
H2O + e- 1/2H↔ 2 + OH-
-0.83
Zn2+
+ 2e- Zn↔ - 0.76
Fe2+
+ 2e- Fe↔ -0.45
Ni2+
+ 2e- Ni↔ -0.26
Sn2+
+ 2e- Sn↔ -0.14
Pb2+
+ 2e- Pb↔ -0.13
H+
+ e- 1/2H↔ 2 0.00
Cu2+
+ e- Cu↔ +
+0.15
SO4
2-
+ 4H+
+ 2e- H↔ 2SO3 + H2O +0.17
Cu2+
+ 2e- ↔ Cu + 0.34
1/2O2 + H2O +2e- ↔ 2OH-
+0.40
Cu+
+ e- ↔ Cu +0.52
1/2I2 + e- ↔ I-
+0.54
+1.10 V
Cu2+
-
-
-
-
Zn Cu
+
+
+
+
Q
nF
RT
EE ln−= ° 1M 10M
Zn2+
1.0
]10[
]1[
][
][
2
2
=
== +
+
c
c
Q
M
M
Cu
Zn
Q
10 M 1 M
Using Nernst Eqn
E0
=Std condition (1M) – 1.10V
R = Gas constant (8.31)
n = # e transfer (2 e)
F = Faraday constant (96500C mol -1
)
VE
E
E
13.1
03.010.1
)1.0ln(
)965002(
)29831.8(
10.1
=
+=
×
×
−=
Non std 0.1M
E cell increase ↑ [Cu2+
] increase ↑
↓
Le Chatelier’s principle
Cu2+
+ 2e ↔ Cu
↓
[Cu2+
] increase ↑
↓
Shift to right →
↓
E cell → more ↑→ Cu2+
more able receive e-
[Cu2+
] ↑ E cell > Eθ
1.13 > 1.10
Zn/Cu half cellZn +Cu2+
→Zn2+
+Cu
NON STD CONDITION
Zn half cell (-ve)
Oxidation
Cu half cell (+ve)
Reduction
Zn/Cu Cell
-e -e
Zn 2+
+ 2e Zn E↔ θ
= -0.76V
Cu2+
+ 2e Cu E↔ θ
= +0.34V
Zn Zn↔ 2+
+ 2e Eθ
= +0.76V
Cu2+
+ 2e Cu E↔ θ
= +0.34V
Zn + Cu2+
Zn→ 2+
+ Cu Eθ
= +1.10V
Oxidized sp ↔ Reduced sp Eθ
/V
Li+
+ e- Li↔ -3.04
K+
+ e- K↔ -2.93
Ca2+
+ 2e- Ca↔ -2.87
Na+
+ e- Na↔ -2.71
Mg2+
+ 2e- Mg↔ -2.37
Al3+
+ 3e- AI↔ -1.66
Mn2+
+ 2e- Mn↔ -1.19
H2O + e- 1/2H↔ 2 + OH-
-0.83
Zn2+
+ 2e- Zn↔ - 0.76
Fe2+
+ 2e- Fe↔ -0.45
Ni2+
+ 2e- Ni↔ -0.26
Sn2+
+ 2e- Sn↔ -0.14
Pb2+
+ 2e- Pb↔ -0.13
H+
+ e- 1/2H↔ 2 0.00
Cu2+
+ e- Cu↔ +
+0.15
SO4
2-
+ 4H+
+ 2e- H↔ 2SO3 + H2O +0.17
Cu2+
+ 2e- ↔ Cu + 0.34
1/2O2 + H2O +2e- ↔ 2OH-
+0.40
Cu+
+ e- ↔ Cu +0.52
1/2I2 + e- ↔ I-
+0.54
+1.10 V
Cu2+
-
-
-
-
Zn Cu
+
+
+
+
Q
nF
RT
EE ln−= ° 0.1M 1M
Zn2+
1.0
]1[
]1.0[
][
][
2
2
=
== +
+
c
c
Q
M
M
Cu
Zn
Q
1 M 0.1 M
Using Nernst Eqn
E0
= Std condition (1M) – 1.10V
R = Gas constant (8.31)
n = # e transfer (2 e)
F = Faraday constant (96500C mol -1
)
VE
E
E
13.1
03.010.1
)1.0ln(
)965002(
)29831.8(
10.1
=
+=
×
×
−=
Non std 0.1M
E cell increase ↑ [Zn2+
] decrease ↓
↓
Le Chatelier’s principle
Zn2+
+ 2e ↔ Zn
↓
[Zn2+
] decrease ↓
↓
Shift to left ←
↓
E cell → more ↑→ Zn more able lose elec
[Zn2+
] ↓ E cell > Eθ
1.13 > 1.10
Zn/Cu half cellZn + Cu2+
→ Zn2+
+ Cu
NON STD CONDITION
Cu half cell (-ve)
Oxidation
Cu half cell (+ve)
Reduction
-e
Cu Cu↔ 2+
+ 2e Eθ
= - 0.34V
Cu2+
+ 2e Cu E↔ θ
= +0.34V
Cu Cu↔ 2+
+ 2e Eθ
= - 0.34V
Cu2+
+ 2e Cu E↔ θ
= +0.34V
Cu + Cu2+
Cu→ 2+
+ Cu Eθ
= 0V
Oxidized sp ↔ Reduced sp Eθ
/V
Li+
+ e- Li↔ -3.04
K+
+ e- K↔ -2.93
Ca2+
+ 2e- Ca↔ -2.87
Na+
+ e- Na↔ -2.71
Mg2+
+ 2e- Mg↔ -2.37
Al3+
+ 3e- AI↔ -1.66
Mn2+
+ 2e- Mn↔ -1.19
H2O + e- 1/2H↔ 2 + OH-
-0.83
Zn2+
+ 2e- Zn↔ -0.76
Fe2+
+ 2e- Fe↔ -0.45
Ni2+
+ 2e- Ni↔ -0.26
Sn2+
+ 2e- Sn↔ -0.14
Pb2+
+ 2e- Pb↔ -0.13
H+
+ e- 1/2H↔ 2 0.00
Cu2+
+ e- Cu↔ +
+0.15
SO4
2-
+ 4H+
+ 2e- H↔ 2SO3 + H2O +0.17
Cu2+
+ 2e- ↔ Cu + 0.34
1/2O2 + H2O +2e- ↔ 2OH-
+0.40
Cu2+
Zn Cu
+
+
+
+
Q
nF
RT
EE ln−= °
0.1M
01.0
]1.0[
]001.0[
][
][
2
2
=
== +
+
c
cathode
anode
c
Q
Cu
Cu
Q
0.1 M 0.001 M
Using Nernst Eqn
E0
= Std condition (1M) – 1.10V
R = Gas constant (8.31)
n = # e transfer (2 e)
F = Faraday constant (96500C mol -1
)
VE
E
E
0285.0
0285.00
)01.0ln(
)965002(
)29831.8(
0
=
+=
×
×
−=
Cu2+/
Cu half cell
Cu + Cu2+
→ Cu2+
+ Cu
-e
Cu2+
0.001M
Cu (s) │Cu2+
(aq) (0.001M) ║ Cu2+
(aq) (0.1M)│Cu(s)
-
-
-
-
Concentration cell
Electrode same - diff conc
Oxi cell – anode – lower conc
Red cell – cathode – higher conc
cathode anode
Cu
Conc cell made of Zn/Zn2+
Conc Zn2+
- 0.11M and 0.22M. Find voltage.
Zn (s) │Zn2+
(aq) (0.11M) ║ Zn2+
(aq) (0.22M)│Zn(s)
Zn + Zn2+
→ Zn2+
+ Zn
cathode anode
0.22M 0.11 M
5.0
]22.0[
]11.0[
][
][
2
2
=
== +
+
c
cathode
anode
c
Q
Zn
Zn
Q
Q
nF
RT
EE ln−= °
VE
E
0089.0
)5.0ln(
)965002(
)29831.8(
0
=
×
×
−=
Fe half cell (-ve)
Oxidation
Fe half cell (+ve)
Reduction
-e
Fe Fe↔ 2+
+ 2e Eθ
= + 0.45V
Fe2+
+ 2e Fe E↔ θ
= - 0.45V
Fe Fe↔ 2+
+ 2e Eθ
= + 0.45V
Fe2+
+ 2e Fe E↔ θ
= - 0.45 V
Fe + Fe2+
Fe→ 2+
+Fe Eθ
= 0V
Oxidized sp ↔ Reduced sp Eθ
/V
Li+
+ e- Li↔ -3.04
K+
+ e- K↔ -2.93
Ca2+
+ 2e- Ca↔ -2.87
Na+
+ e- Na↔ -2.71
Mg2+
+ 2e- Mg↔ -2.37
Al3+
+ 3e- AI↔ -1.66
Mn2+
+ 2e- Mn↔ -1.19
H2O + e- 1/2H↔ 2 + OH-
-0.83
Zn2+
+ 2e- Zn↔ -0.76
Fe2+
+ 2e- Fe↔ -0.45
Ni2+
+ 2e- Ni↔ -0.26
Sn2+
+ 2e- Sn↔ -0.14
Pb2+
+ 2e- Pb↔ -0.13
H+
+ e- 1/2H↔ 2 0.00
Cu2+
+ e- Cu↔ +
+0.15
SO4
2-
+ 4H+
+ 2e- H↔ 2SO3 + H2O +0.17
Fe2+
Zn Fe
+
+
+
+
Q
nF
RT
EE ln−= °
0.1M
1.0
]1.0[
]01.0[
][
][
2
2
=
== +
+
c
cathode
anode
c
Q
Fe
Fe
Q
0.1 M 0.01 M
Using Nernst Eqn
E0
= Std condition (1M) – 1.10V
R = Gas constant (8.31)
n = # e transfer (2 e)
F = Faraday constant (96500C mol -1
)
VE
E
E
029.0
029.00
)1.0ln(
)965002(
)29831.8(
0
=
+=
×
×
−=
Fe2+/
Fe half cell
Fe + Fe2+
→ Fe2+
+ Fe
-e
Fe2+
0.01M
Fe(s)│Fe2+
(aq) (0.01M) ║ Fe2+
(aq) (0.1M)│Fe(s)
-
-
-
-
Concentration cell
Electrode same - in diff conc
Oxi cell – anode – lower conc
Red cell – cathode – higher conc
cathode anode
Fe
Find cell potential
Mn (s) │Mn2+
(aq) (0.1M) ║ Pb2+
(aq) (0.0001M)│Pb(s)
Mn + Pb2+
→ Mn2+
+ Pb
0.0001M 0.1 M
cathode anode 001.0
]0001.0[
]1.0[
][
][
2
2
=
== +
+
c
cathode
anode
c
Q
Pb
Mn
Q
Q
nF
RT
EE ln−= °
VE
E
96.0
)001.0ln(
)965002(
)29831.8(
05.1
=
×
×
−=
Acknowledgements
Thanks to source of pictures and video used in this presentation
Thanks to Creative Commons for excellent contribution on licenses
http://creativecommons.org/licenses/
http://spmchemistry.onlinetuition.com.my/2013/10/electrolytic-cell.html
http://www.chemguide.co.uk/physical/redoxeqia/introduction.html
http://educationia.tk/reduction-potential-table
http://2012books.lardbucket.org/books/principles-of-general-chemistry-v1.0/s23-
electrochemistry.html
Prepared by Lawrence Kok
Check out more video tutorials from my site and hope you enjoy this tutorial
http://lawrencekok.blogspot.com

Weitere ähnliche Inhalte

Was ist angesagt?

MODULE - I : BATTERY TECHNOLOGY
MODULE - I : BATTERY TECHNOLOGYMODULE - I : BATTERY TECHNOLOGY
MODULE - I : BATTERY TECHNOLOGYrashmi m rashmi
 
Batteries and Electrochemical Processes
Batteries and Electrochemical ProcessesBatteries and Electrochemical Processes
Batteries and Electrochemical ProcessesEngr Muhammad Imran
 
Measuring photoelectrochemical performance
Measuring photoelectrochemical performanceMeasuring photoelectrochemical performance
Measuring photoelectrochemical performancekamatlab
 
Knocking Door of Cyclic Voltammetry - cv of CV by Monalin Mishra
Knocking Door of Cyclic Voltammetry - cv of CV by Monalin MishraKnocking Door of Cyclic Voltammetry - cv of CV by Monalin Mishra
Knocking Door of Cyclic Voltammetry - cv of CV by Monalin MishraMONALINMISHRA
 
Organic Semiconductor
Organic Semiconductor Organic Semiconductor
Organic Semiconductor Preeti Choudhary
 
Batteries & fuel cells
Batteries & fuel cellsBatteries & fuel cells
Batteries & fuel cellsRohit Shinde
 
potentiometry
potentiometrypotentiometry
potentiometryMelakuMetto
 
Lithium ion battery and sodium ion battery
Lithium ion battery and sodium ion batteryLithium ion battery and sodium ion battery
Lithium ion battery and sodium ion batteryShehzadkhan101
 
Photochemical cell
Photochemical cellPhotochemical cell
Photochemical cellYuvaraja MM
 
Solid oxide fuel cell technology
Solid oxide fuel cell technologySolid oxide fuel cell technology
Solid oxide fuel cell technologyA Reddy
 
Batteries and types
Batteries and typesBatteries and types
Batteries and typesKalyani Basu
 

Was ist angesagt? (20)

MODULE - I : BATTERY TECHNOLOGY
MODULE - I : BATTERY TECHNOLOGYMODULE - I : BATTERY TECHNOLOGY
MODULE - I : BATTERY TECHNOLOGY
 
Batteries and Electrochemical Processes
Batteries and Electrochemical ProcessesBatteries and Electrochemical Processes
Batteries and Electrochemical Processes
 
Miller indecies
Miller indeciesMiller indecies
Miller indecies
 
Measuring photoelectrochemical performance
Measuring photoelectrochemical performanceMeasuring photoelectrochemical performance
Measuring photoelectrochemical performance
 
Electrochemistry
ElectrochemistryElectrochemistry
Electrochemistry
 
FINAL PPT
FINAL PPTFINAL PPT
FINAL PPT
 
Knocking Door of Cyclic Voltammetry - cv of CV by Monalin Mishra
Knocking Door of Cyclic Voltammetry - cv of CV by Monalin MishraKnocking Door of Cyclic Voltammetry - cv of CV by Monalin Mishra
Knocking Door of Cyclic Voltammetry - cv of CV by Monalin Mishra
 
Organic Semiconductor
Organic Semiconductor Organic Semiconductor
Organic Semiconductor
 
Cyclic Voltammetry
Cyclic VoltammetryCyclic Voltammetry
Cyclic Voltammetry
 
conducting polymers
conducting polymersconducting polymers
conducting polymers
 
Batteries ppt
Batteries pptBatteries ppt
Batteries ppt
 
Batteries & fuel cells
Batteries & fuel cellsBatteries & fuel cells
Batteries & fuel cells
 
potentiometry
potentiometrypotentiometry
potentiometry
 
Lithium ion battery and sodium ion battery
Lithium ion battery and sodium ion batteryLithium ion battery and sodium ion battery
Lithium ion battery and sodium ion battery
 
Photochemical cell
Photochemical cellPhotochemical cell
Photochemical cell
 
Solid oxide fuel cell technology
Solid oxide fuel cell technologySolid oxide fuel cell technology
Solid oxide fuel cell technology
 
Potentiometry
PotentiometryPotentiometry
Potentiometry
 
Batteries and types
Batteries and typesBatteries and types
Batteries and types
 
Ion implantation
Ion implantationIon implantation
Ion implantation
 
Battery
BatteryBattery
Battery
 

Andere mochten auch

Effect of Concentration Changes on Cell Potential
Effect of Concentration Changes on Cell PotentialEffect of Concentration Changes on Cell Potential
Effect of Concentration Changes on Cell Potentialwewwchemistry
 
Nernst Equation
Nernst EquationNernst Equation
Nernst Equationguestaed04c
 
IB Chemistry on Redox Design and Nernst Equation
IB Chemistry on Redox Design and Nernst EquationIB Chemistry on Redox Design and Nernst Equation
IB Chemistry on Redox Design and Nernst EquationLawrence kok
 
Voltaic cells
Voltaic cellsVoltaic cells
Voltaic cellsPutDejudom
 
Potensial zeta
Potensial zetaPotensial zeta
Potensial zetamhsunsiq
 
Zeta Potential
Zeta PotentialZeta Potential
Zeta PotentialDeepak Rajput
 
Concentration cells
Concentration cellsConcentration cells
Concentration cellsSuresh Selvaraj
 
Electrolysis part 3 aqueous solution
Electrolysis part 3 aqueous solutionElectrolysis part 3 aqueous solution
Electrolysis part 3 aqueous solutionkaiying
 
Factors affecting electrolysis
Factors affecting electrolysisFactors affecting electrolysis
Factors affecting electrolysisJanadi Gonzalez-Lord
 
Electrolysis
ElectrolysisElectrolysis
Electrolysislisa14hazel
 
1 Potentiometry
1  Potentiometry1  Potentiometry
1 Potentiometryshaisejacob
 
Harris quimica analitica - química analítica - daniel c. harris
Harris   quimica analitica - química analítica - daniel c. harrisHarris   quimica analitica - química analítica - daniel c. harris
Harris quimica analitica - química analítica - daniel c. harrisDalton Almeida
 
Pharmaceutical Suspensions and Emulsions
Pharmaceutical Suspensions and EmulsionsPharmaceutical Suspensions and Emulsions
Pharmaceutical Suspensions and EmulsionsPallavi Kurra
 
Pharmaceutical suspension
Pharmaceutical suspension Pharmaceutical suspension
Pharmaceutical suspension Muwela001
 
Interfacial phenomena
Interfacial phenomenaInterfacial phenomena
Interfacial phenomenaeckotanglao
 
Measurement of surface tension
Measurement of surface tensionMeasurement of surface tension
Measurement of surface tensionpankaj sharma
 

Andere mochten auch (20)

Effect of Concentration Changes on Cell Potential
Effect of Concentration Changes on Cell PotentialEffect of Concentration Changes on Cell Potential
Effect of Concentration Changes on Cell Potential
 
Nernst Equation
Nernst EquationNernst Equation
Nernst Equation
 
IB Chemistry on Redox Design and Nernst Equation
IB Chemistry on Redox Design and Nernst EquationIB Chemistry on Redox Design and Nernst Equation
IB Chemistry on Redox Design and Nernst Equation
 
Voltaic cells
Voltaic cellsVoltaic cells
Voltaic cells
 
Potensial zeta
Potensial zetaPotensial zeta
Potensial zeta
 
Zeta Potential
Zeta PotentialZeta Potential
Zeta Potential
 
Electrolysis calculations
Electrolysis calculationsElectrolysis calculations
Electrolysis calculations
 
Conducto ppt
Conducto pptConducto ppt
Conducto ppt
 
Concentration cells
Concentration cellsConcentration cells
Concentration cells
 
Electrolysis part 3 aqueous solution
Electrolysis part 3 aqueous solutionElectrolysis part 3 aqueous solution
Electrolysis part 3 aqueous solution
 
Factors affecting electrolysis
Factors affecting electrolysisFactors affecting electrolysis
Factors affecting electrolysis
 
Electrolysis
ElectrolysisElectrolysis
Electrolysis
 
1 Potentiometry
1  Potentiometry1  Potentiometry
1 Potentiometry
 
Harris quimica analitica - química analítica - daniel c. harris
Harris   quimica analitica - química analítica - daniel c. harrisHarris   quimica analitica - química analítica - daniel c. harris
Harris quimica analitica - química analítica - daniel c. harris
 
Zeta potential
Zeta potentialZeta potential
Zeta potential
 
potentiometry
potentiometrypotentiometry
potentiometry
 
Pharmaceutical Suspensions and Emulsions
Pharmaceutical Suspensions and EmulsionsPharmaceutical Suspensions and Emulsions
Pharmaceutical Suspensions and Emulsions
 
Pharmaceutical suspension
Pharmaceutical suspension Pharmaceutical suspension
Pharmaceutical suspension
 
Interfacial phenomena
Interfacial phenomenaInterfacial phenomena
Interfacial phenomena
 
Measurement of surface tension
Measurement of surface tensionMeasurement of surface tension
Measurement of surface tension
 

Ähnlich wie Option C Nernst Equation, Voltaic Cell and Concentration Cell

IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...
IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...
IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...Lawrence kok
 
IA on effect of zinc concentration on voltage using nernst equation
IA on effect of zinc concentration on voltage using nernst equationIA on effect of zinc concentration on voltage using nernst equation
IA on effect of zinc concentration on voltage using nernst equationLawrence kok
 
IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...
IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...
IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...Lawrence kok
 
Ch17 z5e electrochem
Ch17 z5e electrochemCh17 z5e electrochem
Ch17 z5e electrochemblachman
 
Vii.electrochemistry
Vii.electrochemistryVii.electrochemistry
Vii.electrochemistryCleophas Rwemera
 
Module 2_S7 and S8_Electrochemical Cells.pptx
Module 2_S7 and S8_Electrochemical Cells.pptxModule 2_S7 and S8_Electrochemical Cells.pptx
Module 2_S7 and S8_Electrochemical Cells.pptxAdittyaSenGupta
 
Chapter - 6 (Electrochemistry).ppt
Chapter - 6 (Electrochemistry).pptChapter - 6 (Electrochemistry).ppt
Chapter - 6 (Electrochemistry).pptshewanehayele2
 
Chemistry chapter 21
Chemistry chapter 21Chemistry chapter 21
Chemistry chapter 21unknownspeciesx
 
Elec chem2.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxddddddddddddddddddddddd...
Elec chem2.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxddddddddddddddddddddddd...Elec chem2.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxddddddddddddddddddddddd...
Elec chem2.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxddddddddddddddddddddddd...KeyredinWabela
 
Elec chem2.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxddddddddddddddddddddddd...
Elec chem2.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxddddddddddddddddddddddd...Elec chem2.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxddddddddddddddddddddddd...
Elec chem2.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxddddddddddddddddddddddd...KeyredinWabela
 
Chapter 2.pdf
Chapter 2.pdfChapter 2.pdf
Chapter 2.pdfAdugnawBiks
 
G12A Chapter 5 Section 5.1 Voltaic cell (1).pptx
G12A Chapter 5 Section 5.1 Voltaic cell (1).pptxG12A Chapter 5 Section 5.1 Voltaic cell (1).pptx
G12A Chapter 5 Section 5.1 Voltaic cell (1).pptxdinasaad30
 
Tutorial 5 - Electrochemistry.ppt
Tutorial 5 - Electrochemistry.pptTutorial 5 - Electrochemistry.ppt
Tutorial 5 - Electrochemistry.pptganesh949298
 
Tutorial 5 - Electrochemistry.ppt
Tutorial 5 - Electrochemistry.pptTutorial 5 - Electrochemistry.ppt
Tutorial 5 - Electrochemistry.pptKimberlyAnnePagdanga1
 
Introduction to electrochemistry by t. hara
Introduction to electrochemistry by t. haraIntroduction to electrochemistry by t. hara
Introduction to electrochemistry by t. haraToru Hara
 
Introduction to electrochemistry by t. hara
Introduction to electrochemistry by t. haraIntroduction to electrochemistry by t. hara
Introduction to electrochemistry by t. haraToru Hara
 
Electrochemistry All.ppt
Electrochemistry  All.pptElectrochemistry  All.ppt
Electrochemistry All.pptMajdolenAhrki
 
Electric Circuit 1 Chapter 1 Basic Concepts of Circuits
Electric Circuit 1 Chapter 1 Basic Concepts of CircuitsElectric Circuit 1 Chapter 1 Basic Concepts of Circuits
Electric Circuit 1 Chapter 1 Basic Concepts of Circuitsahmadalashqar0921
 

Ähnlich wie Option C Nernst Equation, Voltaic Cell and Concentration Cell (20)

IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...
IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...
IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...
 
IA on effect of zinc concentration on voltage using nernst equation
IA on effect of zinc concentration on voltage using nernst equationIA on effect of zinc concentration on voltage using nernst equation
IA on effect of zinc concentration on voltage using nernst equation
 
IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...
IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...
IB Chemistry on Voltaic Cell, Standard Electrode Potential and Standard Hydro...
 
Ch17 z5e electrochem
Ch17 z5e electrochemCh17 z5e electrochem
Ch17 z5e electrochem
 
Vii.electrochemistry
Vii.electrochemistryVii.electrochemistry
Vii.electrochemistry
 
Module 2_S7 and S8_Electrochemical Cells.pptx
Module 2_S7 and S8_Electrochemical Cells.pptxModule 2_S7 and S8_Electrochemical Cells.pptx
Module 2_S7 and S8_Electrochemical Cells.pptx
 
Chapter - 6 (Electrochemistry).ppt
Chapter - 6 (Electrochemistry).pptChapter - 6 (Electrochemistry).ppt
Chapter - 6 (Electrochemistry).ppt
 
Chemistry chapter 21
Chemistry chapter 21Chemistry chapter 21
Chemistry chapter 21
 
Elec chem2.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxddddddddddddddddddddddd...
Elec chem2.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxddddddddddddddddddddddd...Elec chem2.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxddddddddddddddddddddddd...
Elec chem2.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxddddddddddddddddddddddd...
 
Elec chem2.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxddddddddddddddddddddddd...
Elec chem2.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxddddddddddddddddddddddd...Elec chem2.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxddddddddddddddddddddddd...
Elec chem2.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxddddddddddddddddddddddd...
 
Chapter 2.pdf
Chapter 2.pdfChapter 2.pdf
Chapter 2.pdf
 
E2 electrochemistry
E2 electrochemistryE2 electrochemistry
E2 electrochemistry
 
G12A Chapter 5 Section 5.1 Voltaic cell (1).pptx
G12A Chapter 5 Section 5.1 Voltaic cell (1).pptxG12A Chapter 5 Section 5.1 Voltaic cell (1).pptx
G12A Chapter 5 Section 5.1 Voltaic cell (1).pptx
 
Tutorial 5 - Electrochemistry.ppt
Tutorial 5 - Electrochemistry.pptTutorial 5 - Electrochemistry.ppt
Tutorial 5 - Electrochemistry.ppt
 
Tutorial 5 - Electrochemistry.ppt
Tutorial 5 - Electrochemistry.pptTutorial 5 - Electrochemistry.ppt
Tutorial 5 - Electrochemistry.ppt
 
Introduction to electrochemistry by t. hara
Introduction to electrochemistry by t. haraIntroduction to electrochemistry by t. hara
Introduction to electrochemistry by t. hara
 
Introduction to electrochemistry by t. hara
Introduction to electrochemistry by t. haraIntroduction to electrochemistry by t. hara
Introduction to electrochemistry by t. hara
 
Nernst Equation 3.ppt
Nernst Equation 3.pptNernst Equation 3.ppt
Nernst Equation 3.ppt
 
Electrochemistry All.ppt
Electrochemistry  All.pptElectrochemistry  All.ppt
Electrochemistry All.ppt
 
Electric Circuit 1 Chapter 1 Basic Concepts of Circuits
Electric Circuit 1 Chapter 1 Basic Concepts of CircuitsElectric Circuit 1 Chapter 1 Basic Concepts of Circuits
Electric Circuit 1 Chapter 1 Basic Concepts of Circuits
 

Mehr von Lawrence kok

IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...Lawrence kok
 
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...Lawrence kok
 
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...Lawrence kok
 
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...Lawrence kok
 
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...Lawrence kok
 
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...Lawrence kok
 
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...Lawrence kok
 
IA on effect of concentration of sodium alginate and calcium chloride in maki...
IA on effect of concentration of sodium alginate and calcium chloride in maki...IA on effect of concentration of sodium alginate and calcium chloride in maki...
IA on effect of concentration of sodium alginate and calcium chloride in maki...Lawrence kok
 
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...Lawrence kok
 
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...Lawrence kok
 
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...Lawrence kok
 
IA on polyphenol (tannins) quantification between green and black tea using p...
IA on polyphenol (tannins) quantification between green and black tea using p...IA on polyphenol (tannins) quantification between green and black tea using p...
IA on polyphenol (tannins) quantification between green and black tea using p...Lawrence kok
 
IA on temperature on polyphenol (tannins strawberry) quantification using pot...
IA on temperature on polyphenol (tannins strawberry) quantification using pot...IA on temperature on polyphenol (tannins strawberry) quantification using pot...
IA on temperature on polyphenol (tannins strawberry) quantification using pot...Lawrence kok
 
IA on temperature on polyphenol (tannins apple cider) quantification using po...
IA on temperature on polyphenol (tannins apple cider) quantification using po...IA on temperature on polyphenol (tannins apple cider) quantification using po...
IA on temperature on polyphenol (tannins apple cider) quantification using po...Lawrence kok
 
IA on effect of temperature on polyphenol (tannins) quantification using pota...
IA on effect of temperature on polyphenol (tannins) quantification using pota...IA on effect of temperature on polyphenol (tannins) quantification using pota...
IA on effect of temperature on polyphenol (tannins) quantification using pota...Lawrence kok
 
IA on polyphenol quantification using potassium permanganate titration (Lowen...
IA on polyphenol quantification using potassium permanganate titration (Lowen...IA on polyphenol quantification using potassium permanganate titration (Lowen...
IA on polyphenol quantification using potassium permanganate titration (Lowen...Lawrence kok
 
IA on rate of hydrolysis of aspirin at different temperature, measured using ...
IA on rate of hydrolysis of aspirin at different temperature, measured using ...IA on rate of hydrolysis of aspirin at different temperature, measured using ...
IA on rate of hydrolysis of aspirin at different temperature, measured using ...Lawrence kok
 
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...Lawrence kok
 
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...Lawrence kok
 
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...Lawrence kok
 

Mehr von Lawrence kok (20)

IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
 
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
 
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
 
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
 
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
 
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
 
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
 
IA on effect of concentration of sodium alginate and calcium chloride in maki...
IA on effect of concentration of sodium alginate and calcium chloride in maki...IA on effect of concentration of sodium alginate and calcium chloride in maki...
IA on effect of concentration of sodium alginate and calcium chloride in maki...
 
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
 
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
 
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
 
IA on polyphenol (tannins) quantification between green and black tea using p...
IA on polyphenol (tannins) quantification between green and black tea using p...IA on polyphenol (tannins) quantification between green and black tea using p...
IA on polyphenol (tannins) quantification between green and black tea using p...
 
IA on temperature on polyphenol (tannins strawberry) quantification using pot...
IA on temperature on polyphenol (tannins strawberry) quantification using pot...IA on temperature on polyphenol (tannins strawberry) quantification using pot...
IA on temperature on polyphenol (tannins strawberry) quantification using pot...
 
IA on temperature on polyphenol (tannins apple cider) quantification using po...
IA on temperature on polyphenol (tannins apple cider) quantification using po...IA on temperature on polyphenol (tannins apple cider) quantification using po...
IA on temperature on polyphenol (tannins apple cider) quantification using po...
 
IA on effect of temperature on polyphenol (tannins) quantification using pota...
IA on effect of temperature on polyphenol (tannins) quantification using pota...IA on effect of temperature on polyphenol (tannins) quantification using pota...
IA on effect of temperature on polyphenol (tannins) quantification using pota...
 
IA on polyphenol quantification using potassium permanganate titration (Lowen...
IA on polyphenol quantification using potassium permanganate titration (Lowen...IA on polyphenol quantification using potassium permanganate titration (Lowen...
IA on polyphenol quantification using potassium permanganate titration (Lowen...
 
IA on rate of hydrolysis of aspirin at different temperature, measured using ...
IA on rate of hydrolysis of aspirin at different temperature, measured using ...IA on rate of hydrolysis of aspirin at different temperature, measured using ...
IA on rate of hydrolysis of aspirin at different temperature, measured using ...
 
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
 
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
 
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
 

KĂźrzlich hochgeladen

Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxDr. Sarita Anand
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsMebane Rash
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...Poonam Aher Patil
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.pptRamjanShidvankar
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxRamakrishna Reddy Bijjam
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.MaryamAhmad92
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and ModificationsMJDuyan
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfPoh-Sun Goh
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...ZurliaSoop
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfNirmal Dwivedi
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxDenish Jangid
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseAnaAcapella
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Jisc
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibitjbellavia9
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxEsquimalt MFRC
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the ClassroomPooky Knightsmith
 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701bronxfugly43
 
Dyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxDyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxcallscotland1987
 

KĂźrzlich hochgeladen (20)

Google Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptxGoogle Gemini An AI Revolution in Education.pptx
Google Gemini An AI Revolution in Education.pptx
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the Classroom
 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701
 
Dyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxDyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptx
 

Option C Nernst Equation, Voltaic Cell and Concentration Cell

  • 1. http://lawrencekok.blogspot.com Prepared by Lawrence Kok Tutorial on Voltaic Cell, Nernst Equation and concentration cell.
  • 2. Types voltaic cell Conversion electrical energy to chemical energy Electrochemistry Electrolytic cellVoltaic cell NH4CI and ZnCI2 Redox rxn (Oxidation/reduction) Movement electron Produce electricity Conversion chemical energy to electrical energy Electrodes – different metal (Half cell) Electrodes – same metal (Half cell) Daniell cell Alkaline cellDry cell Nickel cadmium cell Primary cell (Non rechargeable) MnO2 and KOH Secondary cell (Rechargeable)
  • 3. Current – measured Amperes or Coulombs per second 1A = 1 Coulomb charge pass through a point in 1 s = 1C/s 1 Coulomb charge (elec) = 6.28 x 10 18 elec passing in 1 s 1 elec/proton carry charge of – 1.6 x 10 -19 C ( very small) 6.28 x 10 18 elec carry charge of - 1 C Electric current Flow electric charges (elec, -ve) From High to low electric potential Potential Diff – measure with ammeter ond electron ond Coulomb A sec.1 .1028.6 sec1 1 1 18 × == Current Electric Current – moving charges in solid wire or solution Flow of charges - - - Solid/WireSolution/Electrolyte Electron move in random No current flow cause No potential difference Electrons & Protons - - + + 1A = 6.28 x 1018 e 1 s Potential Difference across wire Electron move in one direction Current flow +ve ions -ve ions (cations) (anions) Potential Diff applied/Battery ItQ = t = Time/ s Find amt charges pass through if Current is 2.ooA, time is 15 min ItQ = Current flow Q = Amt Charges/ C I = Current/ A CQ 1800601500.2 =××=
  • 4. Electric Potential C J Volt 1 1 = -Measured in Volt with Voltmeter - 1 V = 1 Joule energy released when 1 Coulomb charge pass through 1 point - 1 V = 1 J/C V = Potential Diff I = Current R = Resistance Potential diff bet 2 points is 1 V ↓ 1 J energy released when 1 C charge passes through Voltmeter across 1Volt 1 V + - 1 Ω 2 Ω Charges (-ve) flow down A R V I RIV 2 3 6 === ×= VV RIV 212 =×= ×= - + - + VV RIV 422 =×= ×= Total current Potential Diff(PD) vs Current PD = Water Pressure PD = 1.5V – 1.5J energy released 1C charge flow down PD – cause charge flow = CURRENT Potential Diff(PD) vs Current 1.5V = 1.5J/C A DElectric potential/PD/Voltage = Electric Pressure = Volt Electric Current = Charge flow = Amp Electric Potential Energy = Work done to bring a charge to a point = Joule Voltage NOT same as energy, Voltage = energy/charge Battery lift charges, Q to higher potential Potential Energy bet 2 terminals in battery stored as chemical energy 2A 2A Potential Diff/VoltagePotential Diff/Voltage
  • 5. EMF vs PD V = Potential Diff I = Current R = Resistance Max potential diff bet two electrodes of battery source. + - 1 Ω 2 Ω A R V I RIV 2 3 6 === ×= VV RIV 212 =×= ×= VV RIV 422 =×= ×= Total current Current flow Circuit complete Circuit complete ↓ Current flow ↓ Internal resistance (battery - 1Ω) ↓ Terminal PD = 8V (Voltage drop) Potential Diff/Voltage in Volt Symbol for EMF = E / ℰ   No Current flow in circuit EMF (Electromotive Force) Volt Battery = EMF = 9V 9 Volt ).(9 currentnoVEMFV IRV == = EMF Internal resistance Ir Place voltmeter across – EMF= 9V No current flow. A rR E I rRIE IrIREMFE 1 9 9 )18( 9 )( )( )( == + = + = += += VV RIV 881 =×= ×= VV RIV 111 =×= ×= EMF = 8V+1V 8 Volt 1 Volt EMF (6V) = 2V + 4V 4 Volt2 Volt Charges passing through wire Current flow Circuit complete Internal resistance Collision bet + ve ions with elec (drift velocity elec) - +
  • 6. Eθ value DO NOT depend surface area of metal electrode. E cell = Energy per unit charge. (Joule)/C E cell- 10v = 10J energy released by 1C of charge = 100J energy released by 10C of charge Eθ – intensive property– independent of amt – Ratio energy/charge Increasing surface area metal will NOT increase E cell Eθ Zn/Cu = 1.10V Surface area - 10 cm2 Total charge- 100C leave electrode E cell = 1.1V = 1.1 J energy for 1 C (charges leaving) 1C release 1.1 J energy 100 C release 110 J energy Voltmeter measure energy for 1C – 110J/100C – 1.1V E cell no change Current – measured in Amp or Coulomb per s 1A = 1 Coulomb charge pass through a point in 1 s = 1C/s 1 Coulomb charge (elec) = 6.28 x 10 18 elec passing in 1 s 1 electron/proton carry charge of – 1.6 x 10 -19 C ( very small) 6.28 x 10 18 electron carry charge of - 1 C ond electron ond Coulomb A sec.1 .1028.6 sec1 1 1 18 × == Surface area increase ↑ Total Energy increase ↑ Total Charge increase ↑Current increase ↑ BUT E cell remain SAME E cell = (Energy/charge) t Q I tIQ = ×= Q up ↑ – I up ↑ 100C flow 110J released VEcell Ecell eCh Energy Ecell 10.1 100 110 arg = = = Surface area - 100 cm2 Total charge 1000C leave electrode E cell = 1.1V = 1.1 J energy for 1 C (charges leaving) 1 C release 1.1J energy 1000 C release 1100 J energy Voltmeter measure energy for 1C – 1100J/1000C – 1.1V E cell no change VEcell Ecell eCh Energy Ecell 10.1 1000 1100 arg = = = Eθ Zn/Cu = 1.10V 1000C flow 1100J released t Q I = t Q I = Surface area exposed 10 cm2 Surface area exposed 100 cm2
  • 7. ∆G θ = -nFE θ cell Relationship bet ∆G and Kc cellnFEG −=∆ θ Relationship bet Energetics and Equilibrium cKRTG ln−=∆ θ STHG ∆−∆=∆ Enthalpy change Entropy change Equilibrium constant Gibbs free energy change H∆θ G∆ Relationship bet ∆G, Kc and E cell cellnFEG −=∆ θ STHG ∆−∆=∆ cKRTG ln−=∆ θ cK Relationship bet Energetics and Cell Potential θ G∆ cellEθ Gibbs free energy change Cell potential F = Faraday constant (96 500 Cmol-1 ) n = number electron Relationship bet ∆G, Kc and Ecell ΔGθ Kc Eθ/V Extent of rxn > 0 < 1 < 0 No Reaction Non spontaneous ΔGθ = 0 Kc = 1 0 Equilibrium Mix reactant/product < 0 > 1 > 0 Reaction complete Spontaneous ΔGθ Kc Eq mixture ΔGθ = + 200 9 x 10-36 Reactants ΔGθ = + 10 2 x 1-2 Mixture ΔGθ = 0 Kc = 1 Equilibrium ΔGθ = - 10 5 x 101 Mixture ΔGθ = - 200 1 x 1035 Products shift to left (reactant) shift to right (products) cellEθ θ G∆ cK ∆G θ = -RT ln K c K nF RT E cell ln=° ΔGθ ln K Kc Eq mixture ΔGθ -ve < 0 Positive ( + ) Kc > 1 Product (Right) ΔGθ +ve > 0 Negative ( - ) Kc < 1 Reactant (left) ΔGθ = 0 0 Kc = 1 Equilibrium
  • 8. E cell/Voltage – depend on nature of material Q nF RT EE ln−= ° T = Temp in K Q = Rxn Quotient E0 = std (1M) n = # e transfer F = Faraday constant (96 500C mol -1 ) R = Gas constant (8.31) cKRTQRTG lnln −=∆ KRTG KRTQRTG o c ln lnln −=∆ −=∆ When ratio conc, Q = 1, all in std conc = 1M Non std condition 01ln 1 = = RT Q Q nF RT EE ln−= ° QRTGG o ln+∆=∆ Non std condition o nFEG −=∆ θnFEG −=∆ QRTnFEnFE ln+−=− ° Nernst equation Work or Free energy to do work depend on quantity material and surface area E cell depend Nature of electrode Type of metal used Conc of ion Temp of sol Eθ Q T Current/I depend Surface area of contact Salt bridge conc Size of cation/anion Resistance high – current low↑ ↓E cell depend Surface area of contact Salt bridge conc Size of cation/anion cellnFEG −=∆ θ Gibbs free energy change do do WORK n = number electron F = Faraday constant (96 500 Cmol-1 ) Cell potential Increasing surface area → increase charge Q and I current - Work increase Current – depend on quantity and surface area
  • 9. Zn Zn↔ 2+ + 2e Eθ = +0.76 Cu2+ + 2e Cu E↔ θ = +0.34 Zn + Cu2+ Zn→ 2+ + Cu Eθ = +1.10V Zn half cell (-ve) Oxidation Cu half cell (+ve) Reduction Anode Cathode Zn(s) | Zn2+ (aq) || Cu2+ (aq) | Cu (s) Anode Cathode Half Cell Half Cell (Oxidation) (Reduction) Salt Bridge Flow electrons Zn/Cu Cell - 1M std condition -e -e Eθ cell = Eθ (cathode) – Eθ (anode) Eθ cell = +0.34 – (-0.76) = +1.10V Zn 2+ + 2e Zn (anode) E↔ θ = -0.76V Cu2+ + 2e Cu (cathode) E↔ θ = +0.34V Eθ cell = Eθ (cathode) – Eθ (anode) Zn 2+ + 2e Zn E↔ θ = -0.76V Cu2+ + 2e Cu E↔ θ = +0.34V Oxidized sp ↔ Reduced sp Eθ /V Li+ + e- Li↔ -3.04 K+ + e- K↔ -2.93 Ca2+ + 2e- Ca↔ -2.87 Na+ + e- Na↔ -2.71 Mg2+ + 2e- Mg↔ -2.37 Al3+ + 3e- AI↔ -1.66 Mn2+ + 2e- Mn↔ -1.19 H2O + e- 1/2H↔ 2 + OH- -0.83 Zn2+ + 2e- Zn↔ - 0.76 Fe2+ + 2e- Fe↔ -0.45 Ni2+ + 2e- Ni↔ -0.26 Sn2+ + 2e- Sn↔ -0.14 Pb2+ + 2e- Pb↔ -0.13 H+ + e- 1/2H↔ 2 0.00 Cu2+ + e- Cu↔ + +0.15 SO4 2- + 4H+ + 2e- H↔ 2SO3 +0.17 Cu2+ + 2e- ↔ Cu + 0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 + +1.10 V Eθ Zn/Cu = 1.10V Cu2+ - - - - Zn Cu + + + + cellnFEG −=∆ θ E cell with ∆G F = Faraday constant (96 500 Cmol-1 ) n = number electron cellnFEG −=∆ θ kJJG G 212212300 10.1965002 −=−=∆ ××−=∆ θ θ Std electrode potential - std reduction potential STD CONDITION Zn/Cu half cellCell diagram Q nF RT EE ln−= ° Ratio conc, Q = 1, all in std conc = 1M, T = 298K VE E 10.1 1ln 965002 298314.8 10.1 = × × −=
  • 10. Zn Zn↔ 2+ + 2e Eθ = +0.76 2Ag+ +2e 2Ag E↔ θ = +0.80 Zn + Ag+ Zn→ 2+ + Ag Eθ = +1.56V Zn half cell (-ve) Oxidation Ag half cell (+ve) Reduction Anode Cathode Zn(s) | Zn2+ (aq) || Ag+ (aq) | Ag (s) Anode Cathode Half Cell Half Cell (Oxidation) (Reduction) Salt Bridge Flow electrons -e -e Eθ cell = Eθ (cathode) – Eθ (anode) Eθ cell = +0.80 – (-0.76) = +1.56V Zn 2+ + 2e Zn (anode) E↔ θ = -0.76V Ag+ + e Ag(cathode) E↔ θ = +0.80V Eθ cell = Eθ (cathode) – Eθ (anode) Zn 2+ + 2e Zn E↔ θ = -0.76V Ag+ + e Ag E↔ θ = +0.80V Oxidized sp ↔ Reduced sp Eθ /V Li+ + e- Li↔ -3.04 K+ + e- K↔ -2.93 Ca2+ + 2e- Ca↔ -2.87 Na+ + e- Na↔ -2.71 Mg2+ + 2e- Mg↔ -2.37 Al3+ + 3e- AI↔ -1.66 Mn2+ + 2e- Mn↔ -1.19 H2O + e- 1/2H↔ 2 + OH- -0.83 Zn2+ + 2e- Zn↔ - 0.76 Fe2+ + 2e- Fe↔ -0.45 Ni2+ + 2e- Ni↔ -0.26 Sn2+ + 2e- Sn↔ -0.14 Pb2+ + 2e- Pb↔ -0.13 H+ + e- 1/2H↔ 2 0.00 Cu2+ + e- Cu↔ + +0.15 SO4 2- + 4H+ + 2e- H↔ 2SO3 +0.17 Cu2+ + 2e- ↔ Cu +0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 Cu+ + e- ↔ Cu +0.52 1/2I2 + e- ↔ I- +0.54 Fe3+ + e- ↔ Fe2+ +0.77 Ag+ + e- ↔ Ag + 0.80 1/2Br2 + e- ↔ Br- +1.07 + +1.56 V Ag Eθ Zn/Ag = +1.56V Ag+ - - - - + + + + Zn E cell with ∆G cellnFEG −=∆ θ n = number electron F = Faraday constant (96 500 Cmol-1 ) cellnFEG −=∆ θ kJJG G 301301000 56.1965002 −=−=∆ ××−=∆ θ θ Cell diagram Zn/Ag half cells Ratio conc, Q = 1, all in std conc = 1M, T = 298K Zn/Ag Cell - 1M std condition Q nF RT EE ln−= ° VE E 56.1 1ln 965002 298314.8 56.1 = × × −= STD CONDITION
  • 11. Zn half cell (-ve) Oxidation Cu half cell (+ve) Reduction Zn/Cu Cell -e -e Zn 2+ + 2e Zn E↔ θ = -0.76V Cu2+ + 2e Cu E↔ θ = +0.34V Zn Zn↔ 2+ + 2e Eθ = +0.76V Cu2+ + 2e Cu E↔ θ = +0.34V Zn + Cu2+ Zn→ 2+ + Cu Eθ = +1.10V Oxidized sp ↔ Reduced sp Eθ /V Li+ + e- Li↔ -3.04 K+ + e- K↔ -2.93 Ca2+ + 2e- Ca↔ -2.87 Na+ + e- Na↔ -2.71 Mg2+ + 2e- Mg↔ -2.37 Al3+ + 3e- AI↔ -1.66 Mn2+ + 2e- Mn↔ -1.19 H2O + e- 1/2H↔ 2 + OH- -0.83 Zn2+ + 2e- Zn↔ - 0.76 Fe2+ + 2e- Fe↔ -0.45 Ni2+ + 2e- Ni↔ -0.26 Sn2+ + 2e- Sn↔ -0.14 Pb2+ + 2e- Pb↔ -0.13 H+ + e- 1/2H↔ 2 0.00 Cu2+ + e- Cu↔ + +0.15 SO4 2- + 4H+ + 2e- H↔ 2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu + 0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 Cu+ + e- ↔ Cu +0.52 1/2I2 + e- ↔ I- +0.54 +1.10 V Cu2+ - - - - Zn Cu + + + + Q nF RT EE ln−= ° 1M 0.1M Zn2+ 10 ]1.0[ ]1[ ][ ][ 2 2 = == + + c c Q M M Cu Zn Q 0.1 M 1 M Using Nernst Eqn E0 = Std condition (1M) – 1.10V R = Gas constant (8.31) n = # e transfer (2 e) F = Faraday constant (96500C mol -1 ) VE E E 07.1 03.010.1 )10ln( )965002( )29831.8( 10.1 = −= × × −= Non std 0.1M E cell decrease ↓ [Cu2+ ] decrease ↓ ↓ Le Chatelier’s principle Cu2+ + 2e Cu↔ ↓ [Cu2+ ] decrease ↓ ↓ Shift to left ← ↓ E cell → less ↓ → Cu2+ less able ↓ to receive e- [Cu2+ ] ↓ E cell < Eθ 1.07 < 1.10 Zn/Cu half cellZn +Cu2+ →Zn2+ +Cu NON STD CONDITION
  • 12. Zn half cell (-ve) Oxidation Cu half cell (+ve) Reduction Zn/Cu Cell -e -e Zn 2+ + 2e Zn E↔ θ = -0.76V Cu2+ + 2e Cu E↔ θ = +0.34V Zn Zn↔ 2+ + 2e Eθ = +0.76V Cu2+ + 2e Cu E↔ θ = +0.34V Zn + Cu2+ Zn→ 2+ + Cu Eθ = +1.10V Oxidized sp ↔ Reduced sp Eθ /V Li+ + e- Li↔ -3.04 K+ + e- K↔ -2.93 Ca2+ + 2e- Ca↔ -2.87 Na+ + e- Na↔ -2.71 Mg2+ + 2e- Mg↔ -2.37 Al3+ + 3e- AI↔ -1.66 Mn2+ + 2e- Mn↔ -1.19 H2O + e- 1/2H↔ 2 + OH- -0.83 Zn2+ + 2e- Zn↔ - 0.76 Fe2+ + 2e- Fe↔ -0.45 Ni2+ + 2e- Ni↔ -0.26 Sn2+ + 2e- Sn↔ -0.14 Pb2+ + 2e- Pb↔ -0.13 H+ + e- 1/2H↔ 2 0.00 Cu2+ + e- Cu↔ + +0.15 SO4 2- + 4H+ + 2e- H↔ 2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu + 0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 Cu+ + e- ↔ Cu +0.52 1/2I2 + e- ↔ I- +0.54 +1.10 V Cu2+ - - - - Zn Cu + + + + Q nF RT EE ln−= ° 1M 10M Zn2+ 1.0 ]10[ ]1[ ][ ][ 2 2 = == + + c c Q M M Cu Zn Q 10 M 1 M Using Nernst Eqn E0 =Std condition (1M) – 1.10V R = Gas constant (8.31) n = # e transfer (2 e) F = Faraday constant (96500C mol -1 ) VE E E 13.1 03.010.1 )1.0ln( )965002( )29831.8( 10.1 = += × × −= Non std 0.1M E cell increase ↑ [Cu2+ ] increase ↑ ↓ Le Chatelier’s principle Cu2+ + 2e ↔ Cu ↓ [Cu2+ ] increase ↑ ↓ Shift to right → ↓ E cell → more ↑→ Cu2+ more able receive e- [Cu2+ ] ↑ E cell > Eθ 1.13 > 1.10 Zn/Cu half cellZn +Cu2+ →Zn2+ +Cu NON STD CONDITION
  • 13. Zn half cell (-ve) Oxidation Cu half cell (+ve) Reduction Zn/Cu Cell -e -e Zn 2+ + 2e Zn E↔ θ = -0.76V Cu2+ + 2e Cu E↔ θ = +0.34V Zn Zn↔ 2+ + 2e Eθ = +0.76V Cu2+ + 2e Cu E↔ θ = +0.34V Zn + Cu2+ Zn→ 2+ + Cu Eθ = +1.10V Oxidized sp ↔ Reduced sp Eθ /V Li+ + e- Li↔ -3.04 K+ + e- K↔ -2.93 Ca2+ + 2e- Ca↔ -2.87 Na+ + e- Na↔ -2.71 Mg2+ + 2e- Mg↔ -2.37 Al3+ + 3e- AI↔ -1.66 Mn2+ + 2e- Mn↔ -1.19 H2O + e- 1/2H↔ 2 + OH- -0.83 Zn2+ + 2e- Zn↔ - 0.76 Fe2+ + 2e- Fe↔ -0.45 Ni2+ + 2e- Ni↔ -0.26 Sn2+ + 2e- Sn↔ -0.14 Pb2+ + 2e- Pb↔ -0.13 H+ + e- 1/2H↔ 2 0.00 Cu2+ + e- Cu↔ + +0.15 SO4 2- + 4H+ + 2e- H↔ 2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu + 0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 Cu+ + e- ↔ Cu +0.52 1/2I2 + e- ↔ I- +0.54 +1.10 V Cu2+ - - - - Zn Cu + + + + Q nF RT EE ln−= ° 0.1M 1M Zn2+ 1.0 ]1[ ]1.0[ ][ ][ 2 2 = == + + c c Q M M Cu Zn Q 1 M 0.1 M Using Nernst Eqn E0 = Std condition (1M) – 1.10V R = Gas constant (8.31) n = # e transfer (2 e) F = Faraday constant (96500C mol -1 ) VE E E 13.1 03.010.1 )1.0ln( )965002( )29831.8( 10.1 = += × × −= Non std 0.1M E cell increase ↑ [Zn2+ ] decrease ↓ ↓ Le Chatelier’s principle Zn2+ + 2e ↔ Zn ↓ [Zn2+ ] decrease ↓ ↓ Shift to left ← ↓ E cell → more ↑→ Zn more able lose elec [Zn2+ ] ↓ E cell > Eθ 1.13 > 1.10 Zn/Cu half cellZn + Cu2+ → Zn2+ + Cu NON STD CONDITION
  • 14. Cu half cell (-ve) Oxidation Cu half cell (+ve) Reduction -e Cu Cu↔ 2+ + 2e Eθ = - 0.34V Cu2+ + 2e Cu E↔ θ = +0.34V Cu Cu↔ 2+ + 2e Eθ = - 0.34V Cu2+ + 2e Cu E↔ θ = +0.34V Cu + Cu2+ Cu→ 2+ + Cu Eθ = 0V Oxidized sp ↔ Reduced sp Eθ /V Li+ + e- Li↔ -3.04 K+ + e- K↔ -2.93 Ca2+ + 2e- Ca↔ -2.87 Na+ + e- Na↔ -2.71 Mg2+ + 2e- Mg↔ -2.37 Al3+ + 3e- AI↔ -1.66 Mn2+ + 2e- Mn↔ -1.19 H2O + e- 1/2H↔ 2 + OH- -0.83 Zn2+ + 2e- Zn↔ -0.76 Fe2+ + 2e- Fe↔ -0.45 Ni2+ + 2e- Ni↔ -0.26 Sn2+ + 2e- Sn↔ -0.14 Pb2+ + 2e- Pb↔ -0.13 H+ + e- 1/2H↔ 2 0.00 Cu2+ + e- Cu↔ + +0.15 SO4 2- + 4H+ + 2e- H↔ 2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu + 0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 Cu2+ Zn Cu + + + + Q nF RT EE ln−= ° 0.1M 01.0 ]1.0[ ]001.0[ ][ ][ 2 2 = == + + c cathode anode c Q Cu Cu Q 0.1 M 0.001 M Using Nernst Eqn E0 = Std condition (1M) – 1.10V R = Gas constant (8.31) n = # e transfer (2 e) F = Faraday constant (96500C mol -1 ) VE E E 0285.0 0285.00 )01.0ln( )965002( )29831.8( 0 = += × × −= Cu2+/ Cu half cell Cu + Cu2+ → Cu2+ + Cu -e Cu2+ 0.001M Cu (s) │Cu2+ (aq) (0.001M) ║ Cu2+ (aq) (0.1M)│Cu(s) - - - - Concentration cell Electrode same - diff conc Oxi cell – anode – lower conc Red cell – cathode – higher conc cathode anode Cu Conc cell made of Zn/Zn2+ Conc Zn2+ - 0.11M and 0.22M. Find voltage. Zn (s) │Zn2+ (aq) (0.11M) ║ Zn2+ (aq) (0.22M)│Zn(s) Zn + Zn2+ → Zn2+ + Zn cathode anode 0.22M 0.11 M 5.0 ]22.0[ ]11.0[ ][ ][ 2 2 = == + + c cathode anode c Q Zn Zn Q Q nF RT EE ln−= ° VE E 0089.0 )5.0ln( )965002( )29831.8( 0 = × × −=
  • 15. Fe half cell (-ve) Oxidation Fe half cell (+ve) Reduction -e Fe Fe↔ 2+ + 2e Eθ = + 0.45V Fe2+ + 2e Fe E↔ θ = - 0.45V Fe Fe↔ 2+ + 2e Eθ = + 0.45V Fe2+ + 2e Fe E↔ θ = - 0.45 V Fe + Fe2+ Fe→ 2+ +Fe Eθ = 0V Oxidized sp ↔ Reduced sp Eθ /V Li+ + e- Li↔ -3.04 K+ + e- K↔ -2.93 Ca2+ + 2e- Ca↔ -2.87 Na+ + e- Na↔ -2.71 Mg2+ + 2e- Mg↔ -2.37 Al3+ + 3e- AI↔ -1.66 Mn2+ + 2e- Mn↔ -1.19 H2O + e- 1/2H↔ 2 + OH- -0.83 Zn2+ + 2e- Zn↔ -0.76 Fe2+ + 2e- Fe↔ -0.45 Ni2+ + 2e- Ni↔ -0.26 Sn2+ + 2e- Sn↔ -0.14 Pb2+ + 2e- Pb↔ -0.13 H+ + e- 1/2H↔ 2 0.00 Cu2+ + e- Cu↔ + +0.15 SO4 2- + 4H+ + 2e- H↔ 2SO3 + H2O +0.17 Fe2+ Zn Fe + + + + Q nF RT EE ln−= ° 0.1M 1.0 ]1.0[ ]01.0[ ][ ][ 2 2 = == + + c cathode anode c Q Fe Fe Q 0.1 M 0.01 M Using Nernst Eqn E0 = Std condition (1M) – 1.10V R = Gas constant (8.31) n = # e transfer (2 e) F = Faraday constant (96500C mol -1 ) VE E E 029.0 029.00 )1.0ln( )965002( )29831.8( 0 = += × × −= Fe2+/ Fe half cell Fe + Fe2+ → Fe2+ + Fe -e Fe2+ 0.01M Fe(s)│Fe2+ (aq) (0.01M) ║ Fe2+ (aq) (0.1M)│Fe(s) - - - - Concentration cell Electrode same - in diff conc Oxi cell – anode – lower conc Red cell – cathode – higher conc cathode anode Fe Find cell potential Mn (s) │Mn2+ (aq) (0.1M) ║ Pb2+ (aq) (0.0001M)│Pb(s) Mn + Pb2+ → Mn2+ + Pb 0.0001M 0.1 M cathode anode 001.0 ]0001.0[ ]1.0[ ][ ][ 2 2 = == + + c cathode anode c Q Pb Mn Q Q nF RT EE ln−= ° VE E 96.0 )001.0ln( )965002( )29831.8( 05.1 = × × −=
  • 16. Acknowledgements Thanks to source of pictures and video used in this presentation Thanks to Creative Commons for excellent contribution on licenses http://creativecommons.org/licenses/ http://spmchemistry.onlinetuition.com.my/2013/10/electrolytic-cell.html http://www.chemguide.co.uk/physical/redoxeqia/introduction.html http://educationia.tk/reduction-potential-table http://2012books.lardbucket.org/books/principles-of-general-chemistry-v1.0/s23- electrochemistry.html Prepared by Lawrence Kok Check out more video tutorials from my site and hope you enjoy this tutorial http://lawrencekok.blogspot.com