SlideShare ist ein Scribd-Unternehmen logo
1 von 9
Twentieth Century Surgery Developments

X-RAYS

The Facts

Wilhelm Rontgen, A German scientist, discovered X-rays by chance in 1895. Rontgen discovered
that X-rays (electro-magnetic radiation) could penetrate solid substances and be recorded onto
photographic plates in the same way as light.

Rontgen published his findings in December of 1895, and by the next year, X-ray machines were
being installed in hospitals. In 1901 he was awarded the Nobel Prize.

                                        For the first time, doctors were able to view the insides of the
                                        body without having to perform surgery. X-ray machines
                                        became immediately popular and were essential tools for
                                        surgeons operating on wounded soldiers during the First
                                        World War. Portable machines were taken into the battlefield
                                        and were used to locate bullets and shrapnel from exploded
                                        bombs.

                                        Memory time….
                                        • X-rays, or electro-magnetic radiation, were discovered by
                                          chance by Wilhelm Rontgen
                                        • During the First World War, X-ray machines were
                                          important tools for locating bullet and shrapnel wounds
                                        • Rontgen was awarded the Nobel Prize in 1901 for the
                                          discovery of X-rays.




Marie Curie (1867-1934) and Pierre Curie (1859-1906)

Karl Wilhelm Rontgen (1845-1923) astounded people with the first
X-rays in 1895; this was followed three years later by the discovery
of radium by Pierre and Marie Curie.

Who were the Curies?
In 1894, Marie and Pierre Curie met while studying in Paris. Their
marriage on 25 July 1895 marked the start of a partnership, which
was to receive worldwide recognition.

What brought them to prominence?
The Curies discovered radium, a radioactive substance, in uranium
oxide ore. They developed techniques for extracting it, but first did
not fully understand its properties. Pierre Curie used to carry
radium around in his waistcoat pocket and could not understand
why he was developing a massive sore on his chest. This would

                                        -1-
have been fatal, but Pierre’s life was cut short in 1906 when he was knocked down and killed by a
horse and cart in the street. From then on, Marie devoted herself to completing the work that they
had begun together.

Why did they win the Nobel Prize?
Marie and Pierre Curie were awarded a joint Nobel Prize for Physics in 1904, for their research into
radioactive materials followed up by a second Nobel Prize in Chemistry for Marie in 1911 for her
discovery of radium and polonium. Their research was crucial in the development of X-rays in
surgery. During World War 1 Marie Curie helped to equip ambulances with X-ray equipment, which
she drove to the front lines. The International Red Cross made her head of its Radiological Service
and she held training courses of medical orderlies and doctors in the new techniques.


What happened to Marie Curie?
Despite her success, Marie faced great opposition from male scientists in France and she never
received the recognition she deserved. She died in 1934 from leukaemia, due to exposure to high-
energy radiation used in her research. Radiation has since been used to treat cancer worldwide.


                                 Marie Curie was the first woman to win a Nobel Prize. She is
                                 remembered for her huge contribution to the fight against cancer
                                 and improving the quality of human life. Marie was renowned for
                                 her work with radioactivity, and it was that work that would
                                 eventually end her life.

                                Stage One (1867-1891)
                                She was born Maria Skiodowska in Warsaw Poland on November 7,
                                1867. Her father was a freethinker and her mother was a Catholic.
                                Her family valued education, and so she began her education early.
                                She possessed a remarkable memory. She graduated from
                                Secondary School when she was sixteen receiving a gold medal for
                                her work. Unfortunately, her father made some bad investments and
                                she had to go to work at a young age as a teacher, postponing the
                                continuance of her own education. At the age of 18, she became a
                                governess and put her sister, Bronia, through school with the
                                agreement that Bronia would return the favour and she did.

                                  Stage Two (1891-1897)
In 1891, at the age of 24, Skiodowska went to Paris to study mathematics, physics and chemistry at
the Sorbonne. She studies hard and survived almost entirely on bread, butter and tea. During the
years there she changed the spelling of her name to the French version, Marie. She met Pierre Curie
in Paris while she studied there, and they soon married in a civil ceremony. Marie and Pierre Curie
devoted themselves to the study of radioactivity, and were among the first to work with radium and
polonium. Curie’s choice of a thesis topic was influenced by two recent discoveries of other
scientists. In December 1895, about six months after the Curies married, German physicist Wilhelm
Rontgen discovered a kind of ray that could travel through solid wood or flesh and yield photographs
discovered a kind of ray that could travel through solid wood or flesh and yield photographs of living
people’s bones. Rontgen dubbed these mysterious rays X-rays with X standing for unknown.

Stage Three (1897-1904)



                                       -2-
The Curies became research workers at the School of Chemistry and Physics in Paris and there they
began their pioneering work into invisible rays given off by uranium – a new phenomenon which had
recently been discovered by Professor Becquerel. He had shown that the rays were able to pass-
through solid matter, fog photographic film and caused air to conduct electricity. Marie worked to
isolate radium in its pure state which she and one of Pierre’s students, Mr Debierne, accomplished.
Together with her husband, Marie was awarded half of the Nobel Prize for Physics in 1903, for their
study into the spontaneous radiation discovered by Becquerel, who was awarded the other half of the
Prize. Also in the same year Marie was the first woman to receive a doctorate in France. It was
Marie Curies who coined the term radioactivity, and she named Polonium after her country of Poland.
Throughout her life, Curie actively promoted the use of radium to alleviate suffering.

Stage Four (1903-1905)
Despite being awarded her doctorate, France was less forthcoming than other countries when it came
to honouring the Curies’ work. In early June 1903 both Curies were invited to London as guests of
the prestigious Royal Institution. Custom rules out women lecturers so Pierre alone described their
work in his ‘Friday Evening Discourse.’ He was careful to give great attention to describing Marie’s
crucial role in their collaboration. The audience included representatives of England’s social elite.


Stage Five (1906-1910)
In 1906, Pierre Curie, who health had begun to fail due to the work with radioactivity, was hit by a car
and killed. Marie did not learn the news that would transform her life until that evening. In shock, she
began to attend to the necessary arrangements. Only after Pierre’s older brother, Jacques, arrive the
next day from Montpellier did she break down briefly. This was a deep tragedy for the family, but it
strengthened Marie’s resolve to continue their work. On May 13, she was appointed to fill Pierre’s
position and became the first female professor at the Sorbonne. Few people manage to create an
entirely new institution from scratch, single-handed. That is what Marie Curie set out to do – establish
a lab worthy of Pierre’s memory. She had her fame, her friends, and her fierce determination. A
substantial grant in 1907 from an American philanthropist enabled her to assemble a research staff,
but that was only a start.

Stage Six (1910-1919)
In 1911 Marie Curie won the Nobel Prize for her achievement of isolating radium and examining its
chemical properties. She was the first person ever to receive two Nobel Prizes. In 1911 she received
a second Nobel Prize, this time in Chemistry, in recognition of her work in radioactivity.

In 1914 she co-founded the Radium Institute in Paris and was its first Director. Three German bombs
fell on Paris on September 2, 1914, about a month after Germany declared war on France. By that
time construction of the Radium Institute was complete. Curie’s researchers had gone to war like all
other able-bodied Frenchmen. X-rays could save soldiers’ lives, she realized, by helping doctors see
bullets, shrapnel, and broken bones. She convinced the government to allow her to set up France’s
first military radiology centres. During the First World War, Curie and her daughter, Irene, taught a
team of 150 nurses to use X-rays.

Stage Seven (1919-1934)
In 1920 Curie and a number of her colleagues created the Curie Foundation, whose mission was to
provide both the scientific and the medical divisions of the Radium institute with resources. Over the
next two decades the Curie Foundation became a major international force in the treatment of cancer.

Under Curie’s direction the Radium Institute in Paris became a world centre for the study of
radioactivity (there were only a few others on the same level one being the Cavendish Laboratory in
Cambridge, England). Between 1919 and 1934, scientists at her Radium Institute published 483

                                       -3-
works, including 31 papers and books by Curie herself. Until the end of her life she continued
research to isolate, concentrate, and purify polonium and actinium.

Stage Eight (1934)
Marie Curie died of leukaemia at the age of 67 on the 4th July 1934. Unknown then, her years of
exposure to high levels of radiation were what killed her. Her cremated remains are kept in the
Pantheon in Paris. She was the first woman to be honoured in this way for her personal
achievements. After her death the Radium Institute was renamed the Curie Institute.




                                       -4-
THE ACHIEVEMENTS OF MARIE CURIE

Childhood                Student in Paris        Research breakthrough   Recognition and
                                                                         Disappointment




Tragedy and adjustment   Recovery and war duty   Radium Institute        The Legacy




                             -5-
Did the First World War advance medical practice in anatomy and
surgery?
The First World War interrupted general medical research, but it created other opportunities for
surgeons and doctors. New techniques were needed to deal with the terrible carnage of the
battlefields. Surgeons had to develop new skills quickly and instead of competing with each other,
they now worked together to find answers. Governments devoted industrial resources to provide
equipment and medicine.


                                           The machine gun, high-explosive shells and poison gas
                                           created huge numbers of casualties. One important
                                           advance was the creation of portable X-ray machines, which
                                           helped surgeons locate bullets lodged inside the body. This
                                           dramatically increased their success at removing them.
                                           However, surgeons were hindered by the poor sanitary
                                           conditions of the trenches, where infections caused
                                           gangrene.

                                           Another major advance was that it became possible to store
                                           blood; saved many lives. Discoveries about the four main
                                           blood types had been made in 1900, and army surgeons in
the First World War were able to exploit this knowledge to perform successful transfusions. This
eventually led to the setting up of ‘blood banks’ in 1938. About ten per cent of war wounds were to
the head, so eye, face, ear, nose and throat surgery developed rapidly. Also, because of the degree
of shelling in trench warfare many soldiers suffered massive injuries, as a consequence, major
advances were made in the development of artificial limbs.



Think about this:

   •   The war presented new challenges for
       doctors: injuries were very severe and
       likely to need what we now call ‘plastic
       surgery’ and skin grafts

   •   New types of head injuries would require
       precise and skilful surgery

   •   Better technology was required to
       develop artificial limbs.




                                        -6-
Medical Progress and the First World War

This section of work is based on pages 150 – 153 in the SHP textbook and the information in this
booklet.

Questions
  1. Who discovered X-rays and why are they so called?

   2. What is the link between X-rays and the work of Marie and Pierre Curie?

   3. Why were X-ray machines of great help to surgeons during the First World War?

   4. Before blood transfusions could be successfully given to soldiers in the First World War, what
      further discovery was necessary?

   5. What types of surgery made the greatest improvement during the First World War?


   6. Despite advances in surgery techniques, why did many soldiers continue to die from their
      wounds?

Essay Task
‘The First World War helped more than it hindered developments in medicine.’
Do you agree with this statement?


Was morphine available to medical staff in the First World War?

Morphine is derived from the opium poppy. The name opium comes from the Greek word opion or
poppy juice. The first recorded use of opium as a painkiller is 6000 years ago by the Sumerians.
Babylonian and Egyptian writings also contain many references.

In nineteenth century Britain morphine known as laudanum was a popular panacea and was
available from grocers and markets. In the 1820s, the chemically produced form of morphine was
produced from opium. The introduction of the hypodermic syringe in the 1850s encouraged greater
use of the drug. As doctors became aware of its addictive properties, restrictive legislation was
introduced and prescription only drugs were gradually introduced.

                                      In 1898 the German company Bayer introduced heroin
                                      (diacety/morphine) which they said had the ability of morphine
                                      to relieve pain, yet is safer!



                                      Morphine was widely used by the medical services in the First
                                      World War and it did lead to an increase in post war morphine
                                      addiction amongst ex-soldiers. Hermann Goering is a famous
                                      example of someone who developed a life long addiction to
                                      morphine following his treatment for war time flying injuries.




                                      -7-
Tetanus and the First World War

Another success, proved by the First World War,
came with tetanus. This extremely dangerous
disease (the death-rate is above 40 per cent) is
caused by tetanospasmin, a toxin secreted by the
bacterium Clostridium tetani which lives in the soil.
The bacillus enters the body through agricultural
cuts and battlefield wounds, and the toxin travels
along nerve fibres towards the spinal cord.
Sweating and headaches are followed by
increasingly severe muscular spasms in the head
and neck (lockjaw). Through known to
Hippocrates, nothing could be done until the
bacteriological era. The tetanus bacillus was
discovered, like so many others, in the 1880s. Arthur Nicolaier (1862-1942) produced it in mice by
inoculating them with garden earth; Kitasato grew it in a pure culture in Koch’s laboratory in 1889,
leading to the production of antitoxin. (He also found it grew when deprived of oxygen, an early
example of the anaerobic bacteria group, discovered in 1861 by Pasteur.) Tetanus became a serious
problem at the outset of the 1914-1918 war, when the bacillus entered the body through gaping shell
wounds. From 1915 practically every wounded soldier received antitoxin, and tetanus was
dramatically reduced.

The First World War decisively advanced skin transplants. Shells caused horrific facial injuries.
Harold Gillies set up a plastic surgery unit in Aldershot and dealt with 2000 cases of facial damage
after the Battle of the Somme. Skin from other parts of the patient’s body was used to cover facial
damage and to encourage facial skin to grow back again.



Blood transfusions and transplants
The facts
Blood transfusions were a critical breakthrough at the beginning of the 20th century. In 1900, Karl
Landsteiner discovered that blood was divided into four main groups and that certain blood types
could not be mixed. Transfusions became possible at last and the loss of blood through operations or
injuries could be addressed.



                                                 During the late 20th century, increasingly
                                                 complicated organ transplants have been carried
                                                 out. Transplants are carried out when an organ is
                                                 so badly damaged that it no longer works properly.

                                                 Other major transplants followed: the cornea, a part
                                                 of the eye, in 1905, followed in 1954 by a kidney
                                                 transplant, a liver in 1963, a heart in 1967, lung in




                                       -8-
1982 and brain tissue in 1987. Since the 1980s, one of the most well-known transplants has been
bone marrow for leukaemia sufferers.

For transplants to be possible there must be organ donors – people who are willing for parts of their
bodies to be given to others. For a transplant to be successful the tissues of the donor must be
compatible with those of the patient receiving the organ. If not, the patient’s immune system tries to
reject the organ by treating it very much like an infection. Sometimes the organs are not human, but
come from pigs and apes. Some people object to the use of animal organs on ethical grounds they
argue that it is wrong to forfeit an animal’s life.

Memory time…

   •   Karl Landsteiner discovered the differences between the main blood groups in 1900.
   •   During the First World War, sodium citrate was used to stop blood clotting during transfusions.
   •   The first major heart transplant was performed in 1967.




                                       -9-

Weitere ähnliche Inhalte

Was ist angesagt?

M.S.A._Gallery of Famous Scientists
M.S.A._Gallery of Famous ScientistsM.S.A._Gallery of Famous Scientists
M.S.A._Gallery of Famous ScientistsAn Po
 
Maria Sklodowska Curie
Maria Sklodowska CurieMaria Sklodowska Curie
Maria Sklodowska Curiebeatusest
 
Marie Curie-Class 5 presentation by my son...
Marie Curie-Class 5 presentation by my son...Marie Curie-Class 5 presentation by my son...
Marie Curie-Class 5 presentation by my son...Biju Thomas
 
Antoine henri becquerel
Antoine henri becquerelAntoine henri becquerel
Antoine henri becquerelBugzBunny91
 
Marie%2520 curie%2520project[1][1]
Marie%2520 curie%2520project[1][1]Marie%2520 curie%2520project[1][1]
Marie%2520 curie%2520project[1][1]guesta80de3db
 
Ecc3601 lecture 1
Ecc3601 lecture 1Ecc3601 lecture 1
Ecc3601 lecture 1makhfudzah
 
HISTORY OF SCIENCEEEEEE
HISTORY OF SCIENCEEEEEEHISTORY OF SCIENCEEEEEE
HISTORY OF SCIENCEEEEEEguest4d26f0
 
Marie Curie by Aygiz Akhtyamov
Marie Curie by Aygiz AkhtyamovMarie Curie by Aygiz Akhtyamov
Marie Curie by Aygiz AkhtyamovAygul Gazizova
 
Marie Curie
Marie CurieMarie Curie
Marie Curiedottuta
 

Was ist angesagt? (15)

Marie Curie
Marie CurieMarie Curie
Marie Curie
 
Marie Curie Report
Marie Curie ReportMarie Curie Report
Marie Curie Report
 
Marie curie
Marie curieMarie curie
Marie curie
 
marie curie
marie curiemarie curie
marie curie
 
M.S.A._Gallery of Famous Scientists
M.S.A._Gallery of Famous ScientistsM.S.A._Gallery of Famous Scientists
M.S.A._Gallery of Famous Scientists
 
Maria Sklodowska Curie
Maria Sklodowska CurieMaria Sklodowska Curie
Maria Sklodowska Curie
 
Pierre Curie
Pierre CuriePierre Curie
Pierre Curie
 
Marie Curie-Class 5 presentation by my son...
Marie Curie-Class 5 presentation by my son...Marie Curie-Class 5 presentation by my son...
Marie Curie-Class 5 presentation by my son...
 
Antoine henri becquerel
Antoine henri becquerelAntoine henri becquerel
Antoine henri becquerel
 
Marie%2520 curie%2520project[1][1]
Marie%2520 curie%2520project[1][1]Marie%2520 curie%2520project[1][1]
Marie%2520 curie%2520project[1][1]
 
Ecc3601 lecture 1
Ecc3601 lecture 1Ecc3601 lecture 1
Ecc3601 lecture 1
 
HISTORY OF SCIENCEEEEEE
HISTORY OF SCIENCEEEEEEHISTORY OF SCIENCEEEEEE
HISTORY OF SCIENCEEEEEE
 
Marie Curie by Aygiz Akhtyamov
Marie Curie by Aygiz AkhtyamovMarie Curie by Aygiz Akhtyamov
Marie Curie by Aygiz Akhtyamov
 
Marie Curie
Marie CurieMarie Curie
Marie Curie
 
Marie curie
Marie curieMarie curie
Marie curie
 

Ähnlich wie Y10 20th Century Surgery Notes

Marie curie
Marie curieMarie curie
Marie curieanoop kp
 
9 academic-reading-sample-task-note-completion-and-key.pdf
9 academic-reading-sample-task-note-completion-and-key.pdf9 academic-reading-sample-task-note-completion-and-key.pdf
9 academic-reading-sample-task-note-completion-and-key.pdfTamunotonyeMinayeIlo
 
Marie Curie una cientifica con dos premios nobel
Marie Curie una cientifica con dos premios nobelMarie Curie una cientifica con dos premios nobel
Marie Curie una cientifica con dos premios nobelGumerAbelln
 
Marie sklodowska curie
Marie  sklodowska curieMarie  sklodowska curie
Marie sklodowska curieNatassa An
 
Marie%2520 curie%2520project[1][1]
Marie%2520 curie%2520project[1][1]Marie%2520 curie%2520project[1][1]
Marie%2520 curie%2520project[1][1]guest6c4304
 
7th-Marie-Curie-2.pdf
7th-Marie-Curie-2.pdf7th-Marie-Curie-2.pdf
7th-Marie-Curie-2.pdfstelafrancis
 
Maria sklodowska curie ang
Maria sklodowska curie angMaria sklodowska curie ang
Maria sklodowska curie angannaszsp9
 
tejaswi radio.pptx
tejaswi radio.pptxtejaswi radio.pptx
tejaswi radio.pptxNeerajKrish
 
Marie Curie Sklodowska
Marie Curie SklodowskaMarie Curie Sklodowska
Marie Curie SklodowskaGordana Divic
 
Maria Skłodowska-Curie - Polish scientist
Maria Skłodowska-Curie - Polish scientistMaria Skłodowska-Curie - Polish scientist
Maria Skłodowska-Curie - Polish scientiste-twinning
 
History and basic knowledge of radiology.pptx
History and basic knowledge of radiology.pptxHistory and basic knowledge of radiology.pptx
History and basic knowledge of radiology.pptxGauravPrakashGaurav
 
The genius of Marie Curie
The genius of Marie CurieThe genius of Marie Curie
The genius of Marie CurieAlicia Garcia
 
Marie Curie Obstacles
Marie Curie ObstaclesMarie Curie Obstacles
Marie Curie ObstaclesLori Gilbert
 
Science Week, Day 2
Science Week, Day 2Science Week, Day 2
Science Week, Day 2PLR3
 
Section 2 part 1
Section 2 part 1Section 2 part 1
Section 2 part 1jmocherman
 

Ähnlich wie Y10 20th Century Surgery Notes (20)

Marie curie
Marie curieMarie curie
Marie curie
 
Marie curie
Marie curieMarie curie
Marie curie
 
9 academic-reading-sample-task-note-completion-and-key.pdf
9 academic-reading-sample-task-note-completion-and-key.pdf9 academic-reading-sample-task-note-completion-and-key.pdf
9 academic-reading-sample-task-note-completion-and-key.pdf
 
Marie Curie una cientifica con dos premios nobel
Marie Curie una cientifica con dos premios nobelMarie Curie una cientifica con dos premios nobel
Marie Curie una cientifica con dos premios nobel
 
Marie sklodowska curie
Marie  sklodowska curieMarie  sklodowska curie
Marie sklodowska curie
 
Marie%2520 curie%2520project[1][1]
Marie%2520 curie%2520project[1][1]Marie%2520 curie%2520project[1][1]
Marie%2520 curie%2520project[1][1]
 
Evolution of radiation 2012
Evolution of radiation 2012Evolution of radiation 2012
Evolution of radiation 2012
 
Marie curie
Marie curieMarie curie
Marie curie
 
7th-Marie-Curie-2.pdf
7th-Marie-Curie-2.pdf7th-Marie-Curie-2.pdf
7th-Marie-Curie-2.pdf
 
Maria sklodowska curie ang
Maria sklodowska curie angMaria sklodowska curie ang
Maria sklodowska curie ang
 
My woman inventor
 My woman inventor My woman inventor
My woman inventor
 
tejaswi radio.pptx
tejaswi radio.pptxtejaswi radio.pptx
tejaswi radio.pptx
 
Marie curie 5°2°
Marie curie 5°2°Marie curie 5°2°
Marie curie 5°2°
 
Marie Curie Sklodowska
Marie Curie SklodowskaMarie Curie Sklodowska
Marie Curie Sklodowska
 
Maria Skłodowska-Curie - Polish scientist
Maria Skłodowska-Curie - Polish scientistMaria Skłodowska-Curie - Polish scientist
Maria Skłodowska-Curie - Polish scientist
 
History and basic knowledge of radiology.pptx
History and basic knowledge of radiology.pptxHistory and basic knowledge of radiology.pptx
History and basic knowledge of radiology.pptx
 
The genius of Marie Curie
The genius of Marie CurieThe genius of Marie Curie
The genius of Marie Curie
 
Marie Curie Obstacles
Marie Curie ObstaclesMarie Curie Obstacles
Marie Curie Obstacles
 
Science Week, Day 2
Science Week, Day 2Science Week, Day 2
Science Week, Day 2
 
Section 2 part 1
Section 2 part 1Section 2 part 1
Section 2 part 1
 

Mehr von Bottisham Village College

Identifying different types of Germany Questions
Identifying different types of Germany QuestionsIdentifying different types of Germany Questions
Identifying different types of Germany QuestionsBottisham Village College
 
Extra Germany Questions- Life in Nazi Germany
Extra Germany Questions- Life in Nazi GermanyExtra Germany Questions- Life in Nazi Germany
Extra Germany Questions- Life in Nazi GermanyBottisham Village College
 

Mehr von Bottisham Village College (20)

Facts industrial
Facts   industrialFacts   industrial
Facts industrial
 
Facts medieval and renaissance
Facts   medieval and renaissanceFacts   medieval and renaissance
Facts medieval and renaissance
 
Facts 20th century
Facts   20th centuryFacts   20th century
Facts 20th century
 
Germany 1933-45 overview
Germany 1933-45 overviewGermany 1933-45 overview
Germany 1933-45 overview
 
Germany 1918 33 overview
Germany 1918 33 overviewGermany 1918 33 overview
Germany 1918 33 overview
 
Public health facts
Public health factsPublic health facts
Public health facts
 
Public health graph
Public health graphPublic health graph
Public health graph
 
Y11 germany revision templates
Y11 germany revision templatesY11 germany revision templates
Y11 germany revision templates
 
Surgery Technique Guide
Surgery Technique GuideSurgery Technique Guide
Surgery Technique Guide
 
Identifying different surgery questions
Identifying different surgery questionsIdentifying different surgery questions
Identifying different surgery questions
 
Identifying different types of Germany Questions
Identifying different types of Germany QuestionsIdentifying different types of Germany Questions
Identifying different types of Germany Questions
 
Germany Technique Guide
Germany Technique GuideGermany Technique Guide
Germany Technique Guide
 
Identifying different types of questions
Identifying different types of questionsIdentifying different types of questions
Identifying different types of questions
 
Medicine Technique Guide
Medicine Technique GuideMedicine Technique Guide
Medicine Technique Guide
 
Extra Germany Questions- Life in Nazi Germany
Extra Germany Questions- Life in Nazi GermanyExtra Germany Questions- Life in Nazi Germany
Extra Germany Questions- Life in Nazi Germany
 
Medicine Role B
Medicine Role BMedicine Role B
Medicine Role B
 
Medicine Role A
Medicine  Role AMedicine  Role A
Medicine Role A
 
Medicine Judgement B
Medicine  Judgement BMedicine  Judgement B
Medicine Judgement B
 
Medicine Judgement A
Medicine  Judgement AMedicine  Judgement A
Medicine Judgement A
 
Medicine Inference A
Medicine  Inference AMedicine  Inference A
Medicine Inference A
 

Kürzlich hochgeladen

Blowin' in the Wind of Caste_ Bob Dylan's Song as a Catalyst for Social Justi...
Blowin' in the Wind of Caste_ Bob Dylan's Song as a Catalyst for Social Justi...Blowin' in the Wind of Caste_ Bob Dylan's Song as a Catalyst for Social Justi...
Blowin' in the Wind of Caste_ Bob Dylan's Song as a Catalyst for Social Justi...DhatriParmar
 
week 1 cookery 8 fourth - quarter .pptx
week 1 cookery 8  fourth  -  quarter .pptxweek 1 cookery 8  fourth  -  quarter .pptx
week 1 cookery 8 fourth - quarter .pptxJonalynLegaspi2
 
Measures of Position DECILES for ungrouped data
Measures of Position DECILES for ungrouped dataMeasures of Position DECILES for ungrouped data
Measures of Position DECILES for ungrouped dataBabyAnnMotar
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptxmary850239
 
ICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfVanessa Camilleri
 
Mythology Quiz-4th April 2024, Quiz Club NITW
Mythology Quiz-4th April 2024, Quiz Club NITWMythology Quiz-4th April 2024, Quiz Club NITW
Mythology Quiz-4th April 2024, Quiz Club NITWQuiz Club NITW
 
Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4JOYLYNSAMANIEGO
 
MS4 level being good citizen -imperative- (1) (1).pdf
MS4 level   being good citizen -imperative- (1) (1).pdfMS4 level   being good citizen -imperative- (1) (1).pdf
MS4 level being good citizen -imperative- (1) (1).pdfMr Bounab Samir
 
Narcotic and Non Narcotic Analgesic..pdf
Narcotic and Non Narcotic Analgesic..pdfNarcotic and Non Narcotic Analgesic..pdf
Narcotic and Non Narcotic Analgesic..pdfPrerana Jadhav
 
Transaction Management in Database Management System
Transaction Management in Database Management SystemTransaction Management in Database Management System
Transaction Management in Database Management SystemChristalin Nelson
 
Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...
Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...
Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...DhatriParmar
 
Textual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHSTextual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHSMae Pangan
 
Decoding the Tweet _ Practical Criticism in the Age of Hashtag.pptx
Decoding the Tweet _ Practical Criticism in the Age of Hashtag.pptxDecoding the Tweet _ Practical Criticism in the Age of Hashtag.pptx
Decoding the Tweet _ Practical Criticism in the Age of Hashtag.pptxDhatriParmar
 
Unraveling Hypertext_ Analyzing Postmodern Elements in Literature.pptx
Unraveling Hypertext_ Analyzing  Postmodern Elements in  Literature.pptxUnraveling Hypertext_ Analyzing  Postmodern Elements in  Literature.pptx
Unraveling Hypertext_ Analyzing Postmodern Elements in Literature.pptxDhatriParmar
 
4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptxmary850239
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxHumphrey A Beña
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)lakshayb543
 
31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...
31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...
31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...Nguyen Thanh Tu Collection
 

Kürzlich hochgeladen (20)

Blowin' in the Wind of Caste_ Bob Dylan's Song as a Catalyst for Social Justi...
Blowin' in the Wind of Caste_ Bob Dylan's Song as a Catalyst for Social Justi...Blowin' in the Wind of Caste_ Bob Dylan's Song as a Catalyst for Social Justi...
Blowin' in the Wind of Caste_ Bob Dylan's Song as a Catalyst for Social Justi...
 
week 1 cookery 8 fourth - quarter .pptx
week 1 cookery 8  fourth  -  quarter .pptxweek 1 cookery 8  fourth  -  quarter .pptx
week 1 cookery 8 fourth - quarter .pptx
 
Measures of Position DECILES for ungrouped data
Measures of Position DECILES for ungrouped dataMeasures of Position DECILES for ungrouped data
Measures of Position DECILES for ungrouped data
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx
 
ICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdfICS2208 Lecture6 Notes for SL spaces.pdf
ICS2208 Lecture6 Notes for SL spaces.pdf
 
Mythology Quiz-4th April 2024, Quiz Club NITW
Mythology Quiz-4th April 2024, Quiz Club NITWMythology Quiz-4th April 2024, Quiz Club NITW
Mythology Quiz-4th April 2024, Quiz Club NITW
 
Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4
 
prashanth updated resume 2024 for Teaching Profession
prashanth updated resume 2024 for Teaching Professionprashanth updated resume 2024 for Teaching Profession
prashanth updated resume 2024 for Teaching Profession
 
MS4 level being good citizen -imperative- (1) (1).pdf
MS4 level   being good citizen -imperative- (1) (1).pdfMS4 level   being good citizen -imperative- (1) (1).pdf
MS4 level being good citizen -imperative- (1) (1).pdf
 
Narcotic and Non Narcotic Analgesic..pdf
Narcotic and Non Narcotic Analgesic..pdfNarcotic and Non Narcotic Analgesic..pdf
Narcotic and Non Narcotic Analgesic..pdf
 
Transaction Management in Database Management System
Transaction Management in Database Management SystemTransaction Management in Database Management System
Transaction Management in Database Management System
 
Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...
Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...
Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...
 
Paradigm shift in nursing research by RS MEHTA
Paradigm shift in nursing research by RS MEHTAParadigm shift in nursing research by RS MEHTA
Paradigm shift in nursing research by RS MEHTA
 
Textual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHSTextual Evidence in Reading and Writing of SHS
Textual Evidence in Reading and Writing of SHS
 
Decoding the Tweet _ Practical Criticism in the Age of Hashtag.pptx
Decoding the Tweet _ Practical Criticism in the Age of Hashtag.pptxDecoding the Tweet _ Practical Criticism in the Age of Hashtag.pptx
Decoding the Tweet _ Practical Criticism in the Age of Hashtag.pptx
 
Unraveling Hypertext_ Analyzing Postmodern Elements in Literature.pptx
Unraveling Hypertext_ Analyzing  Postmodern Elements in  Literature.pptxUnraveling Hypertext_ Analyzing  Postmodern Elements in  Literature.pptx
Unraveling Hypertext_ Analyzing Postmodern Elements in Literature.pptx
 
4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
 
31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...
31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...
31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...
 

Y10 20th Century Surgery Notes

  • 1. Twentieth Century Surgery Developments X-RAYS The Facts Wilhelm Rontgen, A German scientist, discovered X-rays by chance in 1895. Rontgen discovered that X-rays (electro-magnetic radiation) could penetrate solid substances and be recorded onto photographic plates in the same way as light. Rontgen published his findings in December of 1895, and by the next year, X-ray machines were being installed in hospitals. In 1901 he was awarded the Nobel Prize. For the first time, doctors were able to view the insides of the body without having to perform surgery. X-ray machines became immediately popular and were essential tools for surgeons operating on wounded soldiers during the First World War. Portable machines were taken into the battlefield and were used to locate bullets and shrapnel from exploded bombs. Memory time…. • X-rays, or electro-magnetic radiation, were discovered by chance by Wilhelm Rontgen • During the First World War, X-ray machines were important tools for locating bullet and shrapnel wounds • Rontgen was awarded the Nobel Prize in 1901 for the discovery of X-rays. Marie Curie (1867-1934) and Pierre Curie (1859-1906) Karl Wilhelm Rontgen (1845-1923) astounded people with the first X-rays in 1895; this was followed three years later by the discovery of radium by Pierre and Marie Curie. Who were the Curies? In 1894, Marie and Pierre Curie met while studying in Paris. Their marriage on 25 July 1895 marked the start of a partnership, which was to receive worldwide recognition. What brought them to prominence? The Curies discovered radium, a radioactive substance, in uranium oxide ore. They developed techniques for extracting it, but first did not fully understand its properties. Pierre Curie used to carry radium around in his waistcoat pocket and could not understand why he was developing a massive sore on his chest. This would -1-
  • 2. have been fatal, but Pierre’s life was cut short in 1906 when he was knocked down and killed by a horse and cart in the street. From then on, Marie devoted herself to completing the work that they had begun together. Why did they win the Nobel Prize? Marie and Pierre Curie were awarded a joint Nobel Prize for Physics in 1904, for their research into radioactive materials followed up by a second Nobel Prize in Chemistry for Marie in 1911 for her discovery of radium and polonium. Their research was crucial in the development of X-rays in surgery. During World War 1 Marie Curie helped to equip ambulances with X-ray equipment, which she drove to the front lines. The International Red Cross made her head of its Radiological Service and she held training courses of medical orderlies and doctors in the new techniques. What happened to Marie Curie? Despite her success, Marie faced great opposition from male scientists in France and she never received the recognition she deserved. She died in 1934 from leukaemia, due to exposure to high- energy radiation used in her research. Radiation has since been used to treat cancer worldwide. Marie Curie was the first woman to win a Nobel Prize. She is remembered for her huge contribution to the fight against cancer and improving the quality of human life. Marie was renowned for her work with radioactivity, and it was that work that would eventually end her life. Stage One (1867-1891) She was born Maria Skiodowska in Warsaw Poland on November 7, 1867. Her father was a freethinker and her mother was a Catholic. Her family valued education, and so she began her education early. She possessed a remarkable memory. She graduated from Secondary School when she was sixteen receiving a gold medal for her work. Unfortunately, her father made some bad investments and she had to go to work at a young age as a teacher, postponing the continuance of her own education. At the age of 18, she became a governess and put her sister, Bronia, through school with the agreement that Bronia would return the favour and she did. Stage Two (1891-1897) In 1891, at the age of 24, Skiodowska went to Paris to study mathematics, physics and chemistry at the Sorbonne. She studies hard and survived almost entirely on bread, butter and tea. During the years there she changed the spelling of her name to the French version, Marie. She met Pierre Curie in Paris while she studied there, and they soon married in a civil ceremony. Marie and Pierre Curie devoted themselves to the study of radioactivity, and were among the first to work with radium and polonium. Curie’s choice of a thesis topic was influenced by two recent discoveries of other scientists. In December 1895, about six months after the Curies married, German physicist Wilhelm Rontgen discovered a kind of ray that could travel through solid wood or flesh and yield photographs discovered a kind of ray that could travel through solid wood or flesh and yield photographs of living people’s bones. Rontgen dubbed these mysterious rays X-rays with X standing for unknown. Stage Three (1897-1904) -2-
  • 3. The Curies became research workers at the School of Chemistry and Physics in Paris and there they began their pioneering work into invisible rays given off by uranium – a new phenomenon which had recently been discovered by Professor Becquerel. He had shown that the rays were able to pass- through solid matter, fog photographic film and caused air to conduct electricity. Marie worked to isolate radium in its pure state which she and one of Pierre’s students, Mr Debierne, accomplished. Together with her husband, Marie was awarded half of the Nobel Prize for Physics in 1903, for their study into the spontaneous radiation discovered by Becquerel, who was awarded the other half of the Prize. Also in the same year Marie was the first woman to receive a doctorate in France. It was Marie Curies who coined the term radioactivity, and she named Polonium after her country of Poland. Throughout her life, Curie actively promoted the use of radium to alleviate suffering. Stage Four (1903-1905) Despite being awarded her doctorate, France was less forthcoming than other countries when it came to honouring the Curies’ work. In early June 1903 both Curies were invited to London as guests of the prestigious Royal Institution. Custom rules out women lecturers so Pierre alone described their work in his ‘Friday Evening Discourse.’ He was careful to give great attention to describing Marie’s crucial role in their collaboration. The audience included representatives of England’s social elite. Stage Five (1906-1910) In 1906, Pierre Curie, who health had begun to fail due to the work with radioactivity, was hit by a car and killed. Marie did not learn the news that would transform her life until that evening. In shock, she began to attend to the necessary arrangements. Only after Pierre’s older brother, Jacques, arrive the next day from Montpellier did she break down briefly. This was a deep tragedy for the family, but it strengthened Marie’s resolve to continue their work. On May 13, she was appointed to fill Pierre’s position and became the first female professor at the Sorbonne. Few people manage to create an entirely new institution from scratch, single-handed. That is what Marie Curie set out to do – establish a lab worthy of Pierre’s memory. She had her fame, her friends, and her fierce determination. A substantial grant in 1907 from an American philanthropist enabled her to assemble a research staff, but that was only a start. Stage Six (1910-1919) In 1911 Marie Curie won the Nobel Prize for her achievement of isolating radium and examining its chemical properties. She was the first person ever to receive two Nobel Prizes. In 1911 she received a second Nobel Prize, this time in Chemistry, in recognition of her work in radioactivity. In 1914 she co-founded the Radium Institute in Paris and was its first Director. Three German bombs fell on Paris on September 2, 1914, about a month after Germany declared war on France. By that time construction of the Radium Institute was complete. Curie’s researchers had gone to war like all other able-bodied Frenchmen. X-rays could save soldiers’ lives, she realized, by helping doctors see bullets, shrapnel, and broken bones. She convinced the government to allow her to set up France’s first military radiology centres. During the First World War, Curie and her daughter, Irene, taught a team of 150 nurses to use X-rays. Stage Seven (1919-1934) In 1920 Curie and a number of her colleagues created the Curie Foundation, whose mission was to provide both the scientific and the medical divisions of the Radium institute with resources. Over the next two decades the Curie Foundation became a major international force in the treatment of cancer. Under Curie’s direction the Radium Institute in Paris became a world centre for the study of radioactivity (there were only a few others on the same level one being the Cavendish Laboratory in Cambridge, England). Between 1919 and 1934, scientists at her Radium Institute published 483 -3-
  • 4. works, including 31 papers and books by Curie herself. Until the end of her life she continued research to isolate, concentrate, and purify polonium and actinium. Stage Eight (1934) Marie Curie died of leukaemia at the age of 67 on the 4th July 1934. Unknown then, her years of exposure to high levels of radiation were what killed her. Her cremated remains are kept in the Pantheon in Paris. She was the first woman to be honoured in this way for her personal achievements. After her death the Radium Institute was renamed the Curie Institute. -4-
  • 5. THE ACHIEVEMENTS OF MARIE CURIE Childhood Student in Paris Research breakthrough Recognition and Disappointment Tragedy and adjustment Recovery and war duty Radium Institute The Legacy -5-
  • 6. Did the First World War advance medical practice in anatomy and surgery? The First World War interrupted general medical research, but it created other opportunities for surgeons and doctors. New techniques were needed to deal with the terrible carnage of the battlefields. Surgeons had to develop new skills quickly and instead of competing with each other, they now worked together to find answers. Governments devoted industrial resources to provide equipment and medicine. The machine gun, high-explosive shells and poison gas created huge numbers of casualties. One important advance was the creation of portable X-ray machines, which helped surgeons locate bullets lodged inside the body. This dramatically increased their success at removing them. However, surgeons were hindered by the poor sanitary conditions of the trenches, where infections caused gangrene. Another major advance was that it became possible to store blood; saved many lives. Discoveries about the four main blood types had been made in 1900, and army surgeons in the First World War were able to exploit this knowledge to perform successful transfusions. This eventually led to the setting up of ‘blood banks’ in 1938. About ten per cent of war wounds were to the head, so eye, face, ear, nose and throat surgery developed rapidly. Also, because of the degree of shelling in trench warfare many soldiers suffered massive injuries, as a consequence, major advances were made in the development of artificial limbs. Think about this: • The war presented new challenges for doctors: injuries were very severe and likely to need what we now call ‘plastic surgery’ and skin grafts • New types of head injuries would require precise and skilful surgery • Better technology was required to develop artificial limbs. -6-
  • 7. Medical Progress and the First World War This section of work is based on pages 150 – 153 in the SHP textbook and the information in this booklet. Questions 1. Who discovered X-rays and why are they so called? 2. What is the link between X-rays and the work of Marie and Pierre Curie? 3. Why were X-ray machines of great help to surgeons during the First World War? 4. Before blood transfusions could be successfully given to soldiers in the First World War, what further discovery was necessary? 5. What types of surgery made the greatest improvement during the First World War? 6. Despite advances in surgery techniques, why did many soldiers continue to die from their wounds? Essay Task ‘The First World War helped more than it hindered developments in medicine.’ Do you agree with this statement? Was morphine available to medical staff in the First World War? Morphine is derived from the opium poppy. The name opium comes from the Greek word opion or poppy juice. The first recorded use of opium as a painkiller is 6000 years ago by the Sumerians. Babylonian and Egyptian writings also contain many references. In nineteenth century Britain morphine known as laudanum was a popular panacea and was available from grocers and markets. In the 1820s, the chemically produced form of morphine was produced from opium. The introduction of the hypodermic syringe in the 1850s encouraged greater use of the drug. As doctors became aware of its addictive properties, restrictive legislation was introduced and prescription only drugs were gradually introduced. In 1898 the German company Bayer introduced heroin (diacety/morphine) which they said had the ability of morphine to relieve pain, yet is safer! Morphine was widely used by the medical services in the First World War and it did lead to an increase in post war morphine addiction amongst ex-soldiers. Hermann Goering is a famous example of someone who developed a life long addiction to morphine following his treatment for war time flying injuries. -7-
  • 8. Tetanus and the First World War Another success, proved by the First World War, came with tetanus. This extremely dangerous disease (the death-rate is above 40 per cent) is caused by tetanospasmin, a toxin secreted by the bacterium Clostridium tetani which lives in the soil. The bacillus enters the body through agricultural cuts and battlefield wounds, and the toxin travels along nerve fibres towards the spinal cord. Sweating and headaches are followed by increasingly severe muscular spasms in the head and neck (lockjaw). Through known to Hippocrates, nothing could be done until the bacteriological era. The tetanus bacillus was discovered, like so many others, in the 1880s. Arthur Nicolaier (1862-1942) produced it in mice by inoculating them with garden earth; Kitasato grew it in a pure culture in Koch’s laboratory in 1889, leading to the production of antitoxin. (He also found it grew when deprived of oxygen, an early example of the anaerobic bacteria group, discovered in 1861 by Pasteur.) Tetanus became a serious problem at the outset of the 1914-1918 war, when the bacillus entered the body through gaping shell wounds. From 1915 practically every wounded soldier received antitoxin, and tetanus was dramatically reduced. The First World War decisively advanced skin transplants. Shells caused horrific facial injuries. Harold Gillies set up a plastic surgery unit in Aldershot and dealt with 2000 cases of facial damage after the Battle of the Somme. Skin from other parts of the patient’s body was used to cover facial damage and to encourage facial skin to grow back again. Blood transfusions and transplants The facts Blood transfusions were a critical breakthrough at the beginning of the 20th century. In 1900, Karl Landsteiner discovered that blood was divided into four main groups and that certain blood types could not be mixed. Transfusions became possible at last and the loss of blood through operations or injuries could be addressed. During the late 20th century, increasingly complicated organ transplants have been carried out. Transplants are carried out when an organ is so badly damaged that it no longer works properly. Other major transplants followed: the cornea, a part of the eye, in 1905, followed in 1954 by a kidney transplant, a liver in 1963, a heart in 1967, lung in -8-
  • 9. 1982 and brain tissue in 1987. Since the 1980s, one of the most well-known transplants has been bone marrow for leukaemia sufferers. For transplants to be possible there must be organ donors – people who are willing for parts of their bodies to be given to others. For a transplant to be successful the tissues of the donor must be compatible with those of the patient receiving the organ. If not, the patient’s immune system tries to reject the organ by treating it very much like an infection. Sometimes the organs are not human, but come from pigs and apes. Some people object to the use of animal organs on ethical grounds they argue that it is wrong to forfeit an animal’s life. Memory time… • Karl Landsteiner discovered the differences between the main blood groups in 1900. • During the First World War, sodium citrate was used to stop blood clotting during transfusions. • The first major heart transplant was performed in 1967. -9-