SlideShare ist ein Scribd-Unternehmen logo
1 von 74
Mecánica del
Motor 1
Mundo Mecánica Automotriz. Todos los derechos reservados reserved.
Mecánica del Motor 1
Índice
Página
Principio básico de funcionamiento 4
Ciclo de trabajo de 4 tiempos 5
Clasificación de los motores 7
Requerimientos generales de los motores 9
Diámetro x Carrera, desplazamiento, relación de compresión 10
Potencia y torque del motor 11
Componentes del motor 13
Bloque de cilindros 14
Pistón y biela 17
Anillos de pistón 19
Cigüeñal 20
Volante y eje de balanceo 22
Juntas y sellos de aceite 24
Culata 26
Válvulas de admisión y escape 29
Mecanismo de válvulas 31
Alza válvulas, balancines y ajustador de tolerancia 33
Correa, cadena de distribución o engranajes conductores 34
Sincronización de válvulas continuamente variables 35
Lubricación del motor 37
Bomba de aceite y enfriador de aceite 40
Filtro de aceite 42
Ventilación del cárter del motor 43
Sistema de admisión y escape 46
Turbo cargador con compuerta de descarga 49
Turbo cargador de Geometría Variable 51
Sistema de refrigeración del motor 52
Termostato y bomba de agua 54
Radiador 56
Correa conductora 59
Soportes del motor 61
Aceite del motor 63
Revisión del aceite del motor 65
Drenaje del aceite del motor 66
Reemplazo del filtro de aceite 68
Reemplazo del aceite del motor 69
Rev:0 2 Mundo Mecánica
Automotriz
Mecánica del Motor 1
Sistema de refrigeración - Drenaje, relleno y retrolavado 70
Motores gasolina Kia (en línea) 71
Motores gasolina Kia (en V) 73
Motores diesel Kia 74
Rev:0 3 Mundo Mecánica
Automotriz
Mecánica del Motor 1
Principio Básico de Funcionamiento
La finalidad de un motor gasolina para uso automotriz, es convertir la gasolina en movimiento para
que el vehículo pueda desplazarse. Generalmente, la manera más fácil de crear movimiento a
partir de la gasolina es quemar ésta dentro de un motor. Por lo tanto, un motor de automóvil es un
motor de combustión interna, es decir, la combustión se produce al interior del motor. Existen
diferentes tipos de motores de combustión interna. Uno es el motor Diesel y otro el motor
Gasolina. Cada uno de estos tiene ventajas y desventajas.
Un motor a vapor en trenes y botes antiguos es el mejor ejemplo de un motor de combustión
externa. El combustible (carbón, madera, aceite, etc.) en un motor a vapor se quema fuera del
motor para producir vapor y el vapor produce el movimiento del motor.
La combustión interna es mucho más eficiente (consume menos combustible por kilómetro
recorrido) que la combustión externa, además, un motor de combustión interna es mucho más
pequeño que un motor equivalente de combustión externa.
Un buen ejemplo de combustión interna es un viejo cañón de la Guerra de la Revolución. Usted
probablemente ha visto a los soldados cargando el cañón con pólvora y una bala de cañón. Al
encenderla, el calor y los gases producidos generan fuerza sobre la bala y la expulsan fuera del
cañón a muy alta velocidad. El cañón usa el principio básico del motor de combustión interna: si
se pone una pequeña cantidad de combustible que genera alta energía (como la gasolina) en un
espacio pequeño y cerrado y se enciende, la energía se libera en forma de un gas expansivo.
Rev:0 4 Mundo Mecánica
Automotriz
Mecánica del Motor 1
Ciclo de Trabajo de 4 Tiempos
Los motores recíprocos están clasificados en dos tipos, de 2 ciclos y de 4 ciclos. En el motor
recíproco la mezcla de aire y gasolina es inyectada y quemada dentro del cilindro, la fuerza de la
combustión empuja al pistón en un movimiento alterno, y el movimiento alterno es convertido en
un movimiento de rotación por el cigüeñal. Casi todos los vehículos actualmente usan el llamado
motor de 4 tiempos para convertir el combustible en movimiento. El ciclo de trabajo de 4 tiempos
también se conoce como el ciclo Otto, en honor a Nikolaus Otto, quien lo inventó en 1867. El eje
horizontal del gráfico representa la presión dentro de la cámara de combustión y el eje vertical
representa el volumen de la cámara de combustión.
Los cuatro tiempos de funcionamiento del motor son:
1. Carrera de Admisión (A-B):
El pistón inicia su movimiento desde la parte superior del cilindro, la válvula de admisión se abre, y
el pistón se mueve hacia abajo. En los motores gasolina, el cilindro se llena con mezcla de aire y
combustible. En los motores diesel, ingresa solamente aire a la cámara de combustión.
2. Carrera de Compresión (B-C):
El pistón se mueve hacia arriba para comprimir la mezcla de aire/combustible, de manera que
aumentan la temperatura y la presión. El combustible es vaporizado por el calor del aire. La
relación de compresión en un motor gasolina es alrededor de 10:1, y en un motor diesel alrededor
de 25:1.
Rev:0 5 Mundo Mecánica
Automotriz
Mecánica del Motor 1
3. Carrera de Encendido / Combustión (C-D):
El pistón llega al tope de su carrera, también llamado el Punto Muerto Superior (PMS). En un
motor gasolina el encendido se iniciará con una chispa eléctrica generada en la bujía. En los
motores diesel, el combustible es inyectado a la cámara de combustión justo antes que el pistón
alcance el PMS y la mezcla de aire/combustible se enciende por el calor generado en la
compresión. La mezcla no se quema completamente al momento del encendido. Como resultado,
hay un cierto tiempo de retraso desde el inicio del encendido hasta que se produce la presión
máxima dentro de la cámara de combustión. La mezcla de aire/combustible en el cilindro explota,
empujando el pistón hacia abajo.
4. Carrera de Escape (D-E):
Una vez que el pistón alcanza a la parte inferior de su carrera, también llamada el Punto Muerto
Inferior (PMI), la válvula de escape se abre y los gases quemados salen del cilindro para dirigirse
al conducto de escape.
Ahora el motor esta listo para el próximo ciclo, de modo que ingresa una nueva carga de aire y
gasolina frescos al cilindro.
Rev:0 6 Mundo Mecánica
Automotriz
Mecánica del Motor 1
Clasificación de los Motores
Los motores pueden clasificarse de la siguiente forma:
 Por principio de trabajo: Gasolina (motor de encendido por chispa), o Diesel (motor de
encendido por compresión)
 Por el sistema de enfriamiento: Enfriado por Agua o Aire
 Por el número de ciclos: Dos o cuatro carreras
 Por el mecanismo de válvulas: Eje de Levas en la culata (OHC) o Válvulas en la culata
(OHV)
 Por el número de cilindros: los motores pueden tener 4, 6 ú 8 cilindros.
 Por la disposición de los cilindros en el bloque: en un motor multi-ciIindrico, los cilindros
usualmente están dispuestos en una de las tres siguientes formas: en línea, en V u
horizontalmente opuestos.
El motor de cilindros en línea, tiene los cilindros dispuestos en posición secuencial. En este tipo de
motor, la estructura del bloque de cilindros es muy simple y la culata es una sola unidad, de modo
que el motor es liviano y compacto. Estos pueden tener 3, 4, 5 ó 6 cilindros. El motor de cilindros
en V, esta generalmente disponible con 6, 8, 10 ó 12 cilindros. Están instalados usualmente en
vehículos grandes o en automóviles deportivos. El motor de cilindros horizontalmente opuestos
esta disponible con 6, 8, 10 ó 12 cilindros. Debido a su bajo centro de gravedad se aplica
principalmente a los vehículos deportivos.
Rev:0 7 Mundo Mecánica
Automotriz
Mecánica del Motor 1
Disposición en el Vehículo
La aplicación final del motor puede ser longitudinal o transversal y puede estar instalado en el
frente, la mitad o la parte trasera del vehículo. Por ejemplo, el vehículo con motor Frontal y
tracción Trasera, tiene el motor montado en el área delantera (longitudinalmente) y conduce las
ruedas traseras mediante un eje de propulsión acoplado a la transmisión. El motor frontal
(transversal) con tracción delantera es principalmente aplicado a los automóviles pequeños,
debido a que el eje de rotación del motor y el eje propulsor están dispuestos en forma paralela,
reduciendo de esa forma el espacio necesario para la instalación.
Los motores instalados a la mitad del vehículo principalmente se enfocan en el rendimiento, más
que en la comodidad del pasajero, de manera que son utilizados principalmente en los
automóviles deportivos.
Rev:0 8 Mundo Mecánica
Automotriz
Mecánica del Motor 1
Requerimientos Generales de los Motores
Existen varios requerimientos que debe cumplir el motor. Cada desempeño esta ligado a otro de
manera compleja y puede influir en el rendimiento del motor. Los requerimientos son:
 Emisiones Bajas: La combustión eficiente en el motor es la clave principal para reducir las
emisiones de escape. Esto se logra con diferentes diseños de cámara de combustión.
 Compacto y liviano: Considerando que el peso del motor es de alrededor del 10- 15% del
peso total del vehículo, otro método para conseguir una mayor potencia y eficiencia del
combustible, es hacer que el motor sea compacto y liviano. Con la misma salida, la potencia
del vehículo que tiene un motor más liviano será mayor y se reducirá el consumo de
combustible.
 Buena respuesta: El motor debe responder a los requerimientos del conductor, mientras se
mantienen las condiciones de seguridad en la conducción.
 Silencioso: Debido a que el motor genera la fuerza de conducción mediante la combustión de
la gasolina, no se pueden evitar el ruido ni la vibración. Por eso es importante prevenir que
estos ruidos y vibraciones se transmitan al habitáculo de pasajeros.
 Facilidad en el servicio: Como el motor es una parte mecánica del vehículo, es importante
tener acceso a los principales componentes durante el proceso de servicio.
Rev:0 9 Mundo Mecánica
Automotriz
Mecánica del Motor 1
Diámetro x Carrera, Desplazamiento, Relación de Compresión
El tamaño del motor es representado por el volumen de desplazamiento. El desplazamiento del
cilindro es el volumen de un cilindro con el pistón moviéndose desde el Punto Muerto Inferior
(PMI) al Punto Muerto Superior (PMS). El volumen total de desplazamiento es la suma del
volumen de todos los cilindros. El volumen de desplazamiento del cilindro se calcula mediante la
multiplicación del área de la sección transversal por la carrera en el cilindro. El área de la sección
se calcula con el diámetro del cilindro. El diámetro y carrera puede diferir en cada motor aunque
ellos tengan la misma cantidad de cilindros y desplazamiento. Esto se debe a los diferentes
diámetros y carreras. El desplazamiento del motor puede ser representado por la unidad cm³ o
litros. La relación de compresión se calcula dividiendo el volumen del cilindro con el volumen de la
cámara de combustión. El volumen total de la cámara de combustión es el espacio entre la parte
superior del pistón, cuando este se encuentra en el Punto Muerto Superior (PMS), y el volumen de
la cámara en la culata.
 Carrera corta (Motor Súper Cuadrado): Se usa para los motores de alta potencia y alta carga.
La relación diámetro/carrera es inferior a 1, esto significa que la carrera es menor que el
diámetro.
 Carrera larga: La carrera larga se usa para conseguir un alto torque en el motor. La relación
diámetro/carrera es superior a 1, esto significa que la carrera es mayor que el diámetro.
 Carrera cuadrada (Motor Cuadrado): La relación diámetro/carrera es igual a 1, esto significa
que la carrera es igual al diámetro.
Rev:0 10 Mundo Mecánica
Automotriz
Mecánica del Motor 1
Potencia y Torque del Motor
El desempeño básico del motor esta representado por dos factores principales, que son la
potencia y el torque. Generalmente, el elemento más importante en el rendimiento del motor es la
salida (potencia), también referida como caballos de fuerza (HP). Caballo de fuerza es la eficiencia
del trabajo, que indica la cantidad de trabajo en un periodo específico de tiempo. Este concepto
fue sugerido por James Watt, quien inventó el motor a vapor en Inglaterra. Un caballo de fuerza
(HP) es la potencia requerida para levantar un peso de 75kg a 1 metro de altura en 1 segundo.
Una abreviatura comúnmente usada para Caballo de Fuerza (HP) es PS, derivada de la expresión
alemana “Pferde Stärke”. La potencia del motor actualmente se indica en kW.
En el Sistema Internacional (S.I.) la unidad es representada en W (watt). 1 PS es alrededor de
735.4W. Por lo tanto 100PS son 73.5kW ó 100kW son 136PS. En las especificaciones técnicas,
en algunas ocasiones, pueden encontrarse palabras adicionales tales como (Neto) o (Bruto),
escritas entre las unidades de kW/rpm. El valor Bruto es la energía pura del motor, fuera del
vehículo, y el valor Neto es la potencia con el motor instalado en el vehículo. Para el motor
gasolina, el valor Neto es 15% menos que el valor Bruto. Esto se debe a las fuerzas de fricción de
la transmisión, neumáticos, etc. El valor indicado siempre corresponde a la potencia bruta, si no se
especifica lo contrario. La potencia del motor esta en función de tiempo. La potencia del motor
aumentará proporcionalmente con las rpm porque la cantidad de trabajo por tiempo aumenta
cuando las rpm son mayores. Sin embargo, debido a que las partes dinámicas no pueden girar
más allá de cierto valor, las rpm y la potencia están limitadas. Por esta razón la potencia y las rpm
se indican en conjunto, por ejemplo, 100kW a 6000rpm.
Rev:0 11 Mundo Mecánica
Automotriz
Mecánica del Motor 1
El torque es la fuerza de torsión aplicada a un componente rotatorio como un perno, neumático,
cigüeñal, etc. Esta no depende solamente de la fuerza aplicada, sino que también del largo del
brazo de palanca sobre el cual actúa la fuerza. Por definición, torque es igual a fuerza multiplicada
por brazo de palanca, el largo desde el centro giratorio al punto donde se aplica la fuerza. En un
motor, el torque es igual a la fuerza con la que se desplaza el pistón, multiplicada por la distancia
desde el centro del muñón de la biela al eje central del cigüeñal. Por lo tanto, la magnitud del
torque esta decidida por la fuerza con que el pistón presiona a la biela, esto corresponde a la
fuerza de combustión. El gráfico de desempeño del torque representa la fuerza del pistón aplicada
al cigüeñal a ciertas rpm. Como esta fuerza se transmite a las ruedas, si el torque generado por el
motor es bajo, el torque final del vehículo también será bajo. Inversamente, cuando el torque del
motor es alto, el torque final también será alto. La salida de torque esta determinada por varios
factores especialmente por la cantidad de aire aspirado por el cilindro. Considerando la relación
entre el aire aspirado y las rpm del motor, cuando el motor tiene baja velocidad de rotación, el
movimiento del pistón es lento y la cantidad de aire aspirado es reducida. Cuando el motor tiene
una alta velocidad de rotación, el movimiento del pistón es rápido y la cantidad de aire aspirado es
alta. Sin embargo, si el motor esta girando demasiado rápido, la válvula de admisión puede
cerrarse antes que el cilindro aspire la cantidad correcta de aire. En este caso, la cantidad de aire
aspirada por carrera (eficiencia volumétrica) se reduce, lo que resulta en menos torque y potencia
del motor.
Rev:0 12 Mundo Mecánica
Automotriz
Mecánica del Motor 1
Componentes del Motor
El motor esta constituido por los siguientes componentes principales:
 Bloque de cilindro, cigüeñal, cárter, pistón y biela
 Culata, eje de levas, válvulas y mecanismo de sincronización
 Sistema de admisión
 Sistema de escape
 Sistema de lubricación
 Sistema de enfriamiento
 Sistemas auxiliares, tales como el turbo cargador
Rev:0 13 Mundo Mecánica
Automotriz
Mecánica del Motor 1
Bloque de Cilindros
Tipos y Construcción
El bloque de cilindros es el componente básico del motor. Esta construido con hierro fundido
(motor diesel) o aluminio. Este incluye el cilindro, dentro del cual es pistón se mueve
alternadamente, la camisa de agua para enfriar y mantener la temperatura del cilindro en un nivel
aceptable, el túnel del cigüeñal y el cigüeñal instalado en su interior. La finalidad del cilindro es
guiar el movimiento reciproco del pistón y soportar la fuerza y alta temperatura generadas por la
combustión, enfriar apropiadamente el cilindro y soportar el cigüeñal. Para propósitos de
resistencia, el bloque de cilindros en un motor diesel esta generalmente construido con hierro
fundido debido a su alta resistencia al desgaste, corrosión y su capacidad de resistir el alto torque
generado.
Recientemente, para los motores gasolina se utiliza frecuentemente aleación de aluminio. El
aluminio es más liviano y transmite el calor con mayor facilidad que el acero, de forma que es
considerado como un material ideal para los motores a gasolina. Para aumentar la resistencia del
bloque, se usa una estructura del tipo esqueleto del bloque de cilindros.
Número del motor:
El número de identificación del motor esta estampado en la placa del lado trasero derecho del
borde del bloque de cilindros.
Rev:0 14 Mundo Mecánica
Automotriz
Mecánica del Motor 1
Camisa del Cilindro:
La pared del cilindro (referida como la camisa de cilindro) esta en contacto permanente con el
pistón. Se lubrica con aceite del motor. La camisa de cilindro debe satisfacer requerimientos
estrictos de duración, resistencia a altas temperaturas y bajo desgaste. En general, cuando el
bloque de cilindro esta construido de hierro fundido, la camisa del cilindro se fabrica rectificando el
cilindro de hierro fundido. Cuando el bloque de cilindro esta construido con aleación de aluminio,
la pared interior del cilindro y la camisa del cilindro están fabricadas de hierro fundido para
prevenir el desgaste de la pared. También hay cilindros sin camisa en los bloques de aleación de
aluminio. Debido a que el cilindro sin camisa puede ser más liviano y compacto, tiene un alto
costo de fabricación y se aplica principalmente en motores de alto rendimiento. Los motores KIA
no utilizan cilindros del tipo de camisa húmeda.
Camisa de agua:
Una senda de agua refrigerante esta formada alrededor de la camisa del cilindro, conocida como
la camisa de agua. Esta es necesaria para mantener la temperatura del motor a cierto valor
absorbiendo la energía calórica proveniente de la energía remanente de la combustión. Esta
puede ser una camisa del tipo siamesa o completa. En los últimos modelos también se usa una
camisa de agua en el múltiple de admisión, adicional a la del bloque del motor.
Rev:0 15 Mundo Mecánica
Automotriz
Mecánica del Motor 1
Cárter (caja del cigüeñal):
Los dispositivos auxiliares, como el alternador, el compresor del sistema de aire acondicionado,
los soportes de montaje del motor y la bomba de aceite para la dirección asistida están fijos al
cárter del cigüeñal. El cárter del cigueñal es parte del bloque de cilindros y esta disponible como
una unidad o apernada al bloque. El material del cigüeñal debe satisfacer los requisitos de
resistencia al torque y vibración. Debido a la menor longitud del tipo de media camisa, es posible
fabricar un bloque de motor liviano. Sin embargo la resistencia de la unión es débil comparada con
el tipo de camisa profunda, por que el área de unión es pequeña. Adicionalmente el área para la
fijación de los dispositivos auxiliares es menor.
En la parte inferior del bloque de cilindros, también se instala un depósito de aceite para
almacenar el aceite lubricante, el que tiene por finalidad lubricar y enfriar el motor. Esta fabricado
de una hoja de acero estampado y se fija al bloque instalando un sello de goma, como en el caso
de la tapa de válvulas. La placa de vibración de acero esta fabricada insertando una placa de
resina entre dos placas de acero para prevenir la vibración.
Rev:0 16 Mundo Mecánica
Automotriz
Mecánica del Motor 1
Pistón y Biela
El pistón tiene las siguientes funciones:
 Transferir la presión de combustión al cigüeñal a través del pasador de pistón y la biela
 Sellar la cámara de combustión con el cárter
 Transferir el calor a la pared del cilindro
El pistón esta compuesto por: la cabeza del pistón, el área superior del pistón (corona), zona de
los anillos, buje del pistón y falda del pistón. La cabeza del pistón debe soportar altas presiones y
temperaturas, por ejemplo en un motor diesel sobre 200kg por cm², y 2000°C. El diseño del pistón
depende del diseño de la cámara de combustión y tiene influencia en la calidad de la combustión.
El área entre la cabeza del pistón y el primer anillo es conocida como área superior del pistón
(corona). Su función es proteger el primer anillo del pistón del sobre calentamiento. La zona de
anillos y los anillos del pistón sellan la cámara de combustión contra el cárter y viceversa. El buje
del pistón contiene al pasador del pistón.
La falda del pistón tiene las siguientes funciones:
 Guiar el pistón
 Transferir la fuerza lateral
 Distribuir la película de aceite en la pared del cilindro
 Disipar el calor hacia la pared del cilindro y aceite del motor
Rev:0 17 Mundo Mecánica
Automotriz
Mecánica del Motor 1
El pistón debe cumplir con los siguientes requisitos:
 Peso reducido, con la finalidad de reducir la fuerza de inercia del movimiento reciproco del
pistón.
 Capacidad de soportar las altas presiones y temperatura de la combustión.
Estos requerimientos se satisfacen utilizando pistones de aleación liviana fabricados de aluminio y
silicio. Existen pistones forjados o fundidos y también están disponibles los de aleación de
aluminio con tratamiento de temperatura. Debido a la temperatura extremadamente alta de la
combustión, la cabeza del pistón se expande y su diámetro aumenta. El anillo de acero o de
aleación, instalado en el pistón previene una expansión excesiva de la cabeza del pistón. La pared
del pistón en dirección del pasador del pistón tiene más masa que en dirección axial. Por esta
razón la dilatación por calor del pistón es superior en la dirección del pasador. Para compensar
esto, el pistón esta diseñado con un perfil ovalado, con un diámetro menor en dirección del
pasador.
Biela y pasador del pistón
Las bielas están frecuentemente fabricadas en acero. Ellas no están fijas rígidamente en ningún
extremo, debido a que el ángulo entre la biela y el pistón cambia en la medida que el pistón se
mueve hacia arriba y abajo y gira alrededor del cigüeñal. El extremo pequeño se fija al pasador del
pistón, el que se fija a presión en la biela pero que puede girar libre en el pistón. El extremo más
grande conecta con el muñón del cigüeñal a través del cojinete. El giro se produce sobre
cojinetes partidos a los que se puede acceder, para el reemplazo, mediante los pernos de la tapa
de biela en el extremo de mayor diámetro. Generalmente hay un agujero perforado a través del
cojinete y el extremo mayor de la biela de modo que se pueda inyectar aceite presurizado del
motor en el lado axial de la pared de cilindro para lubricar el recorrido del pistón y los anillos.
Rev:0 18 Mundo Mecánica
Automotriz
Mecánica del Motor 1
Anillos de Pistón
Los anillos de pistón tienen las puntas abiertas y se instalan en la ranura del diámetro exterior del
pistón.
Las tres funciones principales de los anillos de pistón en un motor de combustión interna son:
 Sellar la cámara de combustión
 Contribuir a la transferencia de calor desde el pistón a la pared del cilindro.
 Regular el consumo de aceite del motor.
Muchos pistones de automóviles tienen tres anillos: dos para sellar la compresión (anillos de
compresión); uno para sellar el aceite (anillo de aceite en la falda). Los diseños típicos del anillo
de compresión son: rectangulares, de perfil cónico o del tipo trapezoidal. Los diseños típicos de
anillo de aceite sin resorte son de cara cónica o de tipo ahusado.
El diseño de los anillos de control de aceite cargados resorte espiral de 2 piezas o el formado por
3 piezas con resorte de expansor. Los anillos del pistón están sometidos a desgaste debido a que
rozan con la pared del cilindro al subir y bajar. Para minimizar esto, están fabricados de un
material muy duro – generalmente, hierro fundido – y el anillo inferior para el control de aceite esta
diseñado para dejar una película de aceite lubricante de una poca micras de espesor en la camisa
a medida que el pistón desciende. Cuando se instalan anillos de pistón nuevos, la separación
entre las puntas es una medida crucial. Con el fin de que el anillo pueda mantenerse ajustado al
pistón, éste no es continuo sino que esta partido en un punto de su circunferencia. Después de
instalar los anillos, insertar el pistón en el cilindro con la ayuda de un compresor de anillos. El
ancho de la separación de los extremos se mide con un calibre de láminas y debe estar dentro de
la tolerancia requerida. <no debe haber una separación muy pequeña, debido a que bajo
condiciones de funcionamiento en caliente puede llevar al atascamiento del pistón. Una
separación muy grande indica excesivo desgaste en el cilindro y producirá un traspaso
inaceptable de gases de combustión al cárter.
Rev:0 19 Mundo Mecánica
Automotriz
Mecánica del Motor 1
Cigüeñal
Tipos y construcción
El cigüeñal es la parte del motor que convierte el movimiento reciproco lineal del pistón en
movimiento de rotación. Los componentes que intervienen en este proceso son:
 Pistón, anillos y pasador de pistón
 Biela
 Cigüeñal
 Volante
Los pistones se mueven alternamente entre el Punto Muerto Inferior (PMI) y el Punto Muerto
Superior (PMS) cada pistón esta conectado al cigüeñal mediante un pasador de pistón y una biela.
Las bielas por lo tanto se mueven lineal y rotacionalmente. El movimiento giratorio de cigüeñal es
después transferido a los dispositivos tales como el volante, bomba de aceite, bomba de agua,
etc. Adicionalmente, con el fin de reducir o eliminar las vibraciones del motor pueden instalarse
ejes de balanceo.
El diseño del cigüeñal depende de:
 El número de cilindros
 La disposición de los cilindros (en línea, en V, opuestos)
 Sincronización del encendido
 Número de descansos del cigueñal
 Fuerza de la combustión
Rev:0 20 Mundo Mecánica
Automotriz
Mecánica del Motor 1
Los cigüeñales están balanceados dinámicamente. Esto se consigue mediante agujeros en los
descansos del cigüeñal. Adicionalmente, contrapesos compensan la masa de los apoyos del
cigüeñal.
Cojinete del cigüeñal:
El cojinete tiene por finalidad contribuir a la rotación suave del cigüeñal. Generalmente, para el
cigüeñal del motor se usa un cojinete plano. Los cojinetes planos ofrecen una mayor área de
contacto, por lo tanto ellos pueden soportar fuerzas mayores en comparación con los cojinetes de
rodillos. Los motores modernos de 4 cilindros en línea tienen 5 cojinetes de cigüeñal (los antiguos
solamente 3). Los motores en V tienen menos cojinetes de cigüeñal, debido a que son más cortos.
Se suministra aceite para asegurar que los materiales del cojinete plano y el cigüeñal no entren en
contacto directo, y están separados bajo cualquier condición de carga del motor. Esto se logra
mediante pasajes de aceite dentro del cigüeñal y de los cojinetes planos. El espesor de la película
de aceite cambia dependiendo de la carga del motor o la temperatura. Cuando esta es muy
pequeña, puede producirse adherencia por la temperatura de fricción y atascar el motor. Cuando
es muy grande, el motor puede vibrar o se pueden producir ruidos.
Rev:0 21 Mundo Mecánica
Automotriz
Mecánica del Motor 1
Volante y Eje de Balanceo
Volante
Con el fin de mantener una rotación suave y reducir las irregularidades de la fuerza rotacional, se
incorpora un volante que se fija al cigüeñal. Debido a que la combustión ocurre solamente una vez
cada dos revoluciones del cigüeñal, se requiere la inercia del volante para las carreras de
admisión, compresión y escape. Si no hubiera un volante, la fuerza rotacional del cigüeñal se
reduciría en estas carreras y el motor se apagaría a bajas rpm, tales como a velocidad de ralentí.
En las transmisiones manuales, el disco de embrague esta instalado al lado plano del volante con
el fin de transmitir la fuerza de propulsión a la transmisión.
Volante de Doble Masa
El volante de doble masa esta diseñado para absorber las vibraciones del motor antes que sean
transmitidas a la línea de transmisión donde pueden producir ruido de piñones. Esto se logra
dividiendo el volante convencional en dos secciones: una sección primaria (1), que se acopla al
cigüeñal, y una sección secundaria (2) donde se atornilla el embrague y un anillo dentado (5) para
el motor de arranque. La sección primaria del volante contiene resortes (3) para aislar las
vibraciones del motor, y un dispositivo limitador de torque (4) para evitar que el torque del motor
aumente excediendo la resistencia de los componentes del motor y la transmisión. Cuando ocurre
un aumento excesivo de torque, el dispositivo limitador de torque permite a la sección primaria del
volante girar independientemente de la sección secundaria, protegiendo de los daños a la línea de
conducción y transmisión.
Rev:0 22 Mundo Mecánica
Automotriz
Mecánica del Motor 1
Eje de Balanceo
Los pistones, las bielas y el cigüeñal generan una fuerza de inercia producida por el movimiento
reciproco y rotatorio. Uno o dos ejes de balanceo localizados en forma paralela al cigüeñal,
ayudan a reducir o eliminar la ocurrencia de estas fuerzas. El gráfico representa la relación de la
fuerza de inercia (en el eje vertical), que ocurre a diferentes ángulos de rotación del cigüeñal (en el
eje horizontal). Cuando la fuerza de inercia superior del primer y cuarto pistón está en su valor
máximo, la fuerza de inercia del segundo y tercer pistón es baja. A partir de esta relación se
deduce que las fuerzas de inercia (baja y alta) se generan dos veces por revolución del cigüeñal.
Un eje de balanceo que tiene el perfil de medio círculo se usa para reducir las vibraciones del
motor. El eje de balanceo gira en dirección opuesta y dos veces más rápido que el cigüeñal. Esta
fuerza de inercia adicional generada por el eje de balanceo eliminará la vibración.
Rev:0 23 Mundo Mecánica
Automotriz
Mecánica del Motor 1
Juntas y Sellos de Aceite
Las juntas forman un sello al ser comprimidas entre las partes estacionarias donde pudieran pasar
líquidos o gases. Muchas juntas están fabricadas para ser utilizadas una sola vez. Ellas pueden
estar contruidas de materiales suaves como corcho, goma, nitrilo, papel, materiales resistentes al
calor o grafito: o también pueden estar fabricadas de aleaciones suaves y metales como el
bronce, cobre, aluminio o láminas de acero suave. Algunos materiales pueden ser usados
individualmente o en algunos casos combinados para producir el material funcional requerido. La
elección del material y el diseño a usar depende del elemento a sellar, la presión, temperatura y
los materiales y las superficies de unión que serán selladas. Las juntas de culata sellan y
contienen la presión de la combustión dentro del motor, entre la culata y el bloque. Las juntas de
culata modernas se construyen para resistir altas temperaturas y la detonación del motor. Algunas
juntas de culatas modernas para alta temperatura son llamadas, en esencia, “anisotropicas”. Esto
significa que la junta esta diseñado para conducir el calor lateralmente y para transferir el calor
desde el motor al refrigerante en forma más rápida. Están construidas normalmente con un núcleo
de acero. Materiales especiales de contacto se adhieren a ambos lados del núcleo de la junta
para suministrar un sellado total bajo variadas condiciones de torque. Algunos sellos de culata
también incorporan anillos corta fuego de acero inoxidable para ayudar a contener el calor y la
presión dentro del cilindro. Adicionalmente, muchas juntas de culata agregan una base de silicona
en la cubierta exterior en ambos lados del material laminado para suministrar una capacidad de
sellado en frío durante el arranque y el calentamiento. Las juntas de culata también sellan los
pasajes de aceite y controlan el flujo del refrigerante entre el bloque de cilindros y la culata y están
provistas de molduras o anillos para prevenir la filtración y la corrosión.
Rev:0 24 Mundo Mecánica
Automotriz
Mecánica del Motor 1
Algunos materiales están diseñados para dilatarse en la superficie aplicada y aumentar la
capacidad de sellado. Por ejemplo, cuando el aceite dentro de la tapa de válvulas penetra al borde
del material de la junta, esta diseñado para dilatarse aproximadamente 30%. Este efecto de
dilatación aumenta la presión de sellado entre las superficies de la culata y la tapa de válvulas, y
ayuda a sellar potenciales filtraciones. Las juntas alrededor de un elemento rotatorio podrían
rápidamente gastarse y filtrar. Para sellar estas partes, se necesitan los sellos de aceite. El
ampliamente usado es el sello de aceite dinámico del tipo labio. Este tiene un labio de goma de
perfil dinámico que permanece en contacto con el eje a sellar mediante la acción de un resorte
espiral circular. Un principio de sellado similar se utiliza para sellar la guía de válvula, impidiendo
el ingreso de aceite a la cámara de combustión. Los ejes rotatorios o deslizantes también pueden
ser sellados mediante anillos “O”, pero generalmente no son tan durables como los sellos de labio.
Se usan varios materiales en la construcción de los sellos de aceite modernos, algunos son
impregnados con cubiertas de materiales especiales que están diseñados para aumentar su
capacidad de sellado en ejes gastados. Como regla general, los sellos de aceite deben ser
reemplazados cuando un componente es desmontado.
Rev:0 25 Mundo Mecánica
Automotriz
Mecánica del Motor 1
Culata
Tipos y construcción
La culata esta apernada a la parte superior del bloque de cilindros donde forma la parte superior
de la cámara de combustión. Los motores en línea tienen solo una culata para todos los cilindros.
Los motores con cilindros en V u horizontalmente opuestos tienen culatas separadas para cada
banco de cilindros. Tal como el bloque del motor, la culata puede ser fabricada en hierro fundido, o
aleación de aluminio. Una culata hecha de aleación de aluminio es más liviana que la de hierro
fundido. El aluminio además conduce al calor en forma más rápida que el hierro. La culata
contiene muchas partes de la cámara de combustión tales como las válvulas, bujías o inyectores.
Internamente, la culata tiene conductos para que la mezcla de aire combustible ingrese al cilindro
a través de las válvulas de admisión desde el múltiple, y para la salida de los gases quemados a
través de las válvulas de escape hacia el múltiple de escape, y para que el refrigerante enfríe la
culata y el motor. Las culatas están diseñadas para ayudar a mejorar el torbellino o turbulencia de
la mezcla Aire/Combustible, y prevenir la formación de gotas en la superficie de la cámara de
combustión o de las paredes del cilindro. Cuando la mezcla Aire/Combustible es comprimida entre
el pistón y la parte plana de la culata, esto produce lo que se conoce como “chapoteo”. Lo que
significa, comprimir los gases para aumentar su velocidad y turbulencia.
Rev:0 26 Mundo Mecánica
Automotriz
Mecánica del Motor 1
En los motores a gasolina, los diseños de cámara de combustión más comunes son:
 Hemisférica Pent roof.
 Tipo Tina
 Tipo Cuña.
Una cámara de combustión hemisférica o pent-roof tiene la válvula de admisión a un lado de la
cámara y la válvula de escape al otro lado. Esto suministra un flujo cruzado. La mezcla de
Aire/Combustible entra en un lado, y los gases de escape salen por el otro. Al posicionar las
válvulas de esta forma permiten un techo para válvulas y lumbreras relativamente grandes. Con la
bujía en el centro del hemisferio, el frente de llama tiene menos distancia por recorrer que en otros
diseños similares, lo que resulta en una combustión rápida y efectiva. Este diseño es común en
una gran cantidad de vehículos de pasajeros.
La cámara de combustión del tipo tina es de perfil oval, como una tina de baño invertida. Las
válvulas están montadas verticalmente y una al lado de la otra, permitiendo un funcionamiento
muy simple. La bujía esta expuesta en un lado, lo que produce un frente de llama corto.
Las cámaras de combustión de tipo cuña disminuyen desde la bujía que esta en el lado más
ancho del perfil. Las válvulas están en línea e inclinadas desde la vertical. Este diseño usualmente
tiene un área de superficie menor que los otros, con menos área donde puedan condensarse
gotas de combustible. Menos combustible queda sin quemar después de la combustión lo que
reduce las emisiones de escape de hidrocarburos.
Rev:0 27 Mundo Mecánica
Automotriz
Mecánica del Motor 1
Las cámaras de combustión diesel vienen son de 2 tipos principales. Inyección directa e inyección
indirecta. Ambas están diseñadas para producir turbulencia, lo que ayuda al aire comprimido y al
combustible inyectado a mezclarse de la mejor forma. Los motores que usan inyección directa
tienen culatas con una cara plana. La cámara de combustión esta en la cabeza del pistón.
En la inyección indirecta, el pistón es casi plano, o tiene una pequeña cavidad. La cámara de
combustión principal esta entre la culata y la cabeza del pistón, pero una cámara pequeña,
separada se encuentra en la culata. El combustible es inyectado en esta pequeña cámara que
puede tener varios diseños. La cámara de torbellino esférica esta conectada a la cámara principal
mediante un conducto angulado. Durante la compresión, el perfil esférico produce el torbellino de
aire en la cámara. Esto ayuda a mejorar la formación de la mezcla de Aire/Combustible, logrando
una mejor combustión.
Rev:0 28 Mundo Mecánica
Automotriz
Mecánica del Motor 1
Válvulas de Admisión y Escape
Los motores de 4 tiempos de gasolina y diesel usan válvulas que están ubicadas en la culata. Las
válvulas de admisión permiten el paso solamente de aire o de una mezcla de Aire/Combustible, de
manera que ellas funcionan a temperaturas mucho menores que las válvulas de escape. Son
generalmente más grandes que las válvulas de escape debido a que la presión que fuerza la
carga del cilindro es mucho menor que la presión que fuerza los gases de escape fuera del
cilindro. Los distintos tipos de motores usan diferentes combinaciones de válvulas. Tener más de
una válvula de admisión suministra una mejor respiración. Una válvula adicional de admisión
permite conductos de admisión más grandes y un flujo con mayor libertad en el cilindro, de modo
que el motor recibe una mejor carga. De manera similar, dos válvulas de escape significan que el
cilindro puede ser diseñado con lumbreras de escape más grandes, lo que permite un mejor flujo
de gases de escape fuera del cilindro. Las válvulas experimentan una enorme tensión aún en
condiciones normales. Se usan varios tratamientos superficiales para ayudar a la válvula a resistir
el desgaste, el quemado y la corrosión. Las válvulas de admisión están fabricadas de acero
aleado con cromo o silicio para hacerlas más resistentes a la corrosión, y con manganeso y níquel
para mejorar su resistencia. Las válvulas de escapes están fabricadas de aleación en base a
níquel. Una válvula de movimiento vertical tiene dos partes principales, el vástago y la cabeza.
Esta se ajusta a una lumbrera en la culata. Su cara produce un sello hermético de gas contra el
asiento. Durante el funcionamiento, la culata cerca de la cara de la válvula transfiere calor al
asiento. Parte de este calor es conducido al vástago de la válvula. El vástago transfiere el calor a
la guía, de manera que el vástago es la parte más fría de la válvula. El asiento de la válvula y la
guía también son enfriadas mediante el refrigerante en pasajes alrededor de las lumbreras de la
válvula. A medida que la válvula abre y cierra, tiene una tendencia natural a girar, muy
gradualmente, de manera que permanece asentada en una nueva ubicación.
Rev:0 29 Mundo Mecánica
Automotriz
Mecánica del Motor 1
Esto produce una acción ligera de limpieza que ayuda a mantener la cara y el asiento libres de
carbón. Esto también ayuda a prevenir el atascamiento de la guía de la válvula y distribuye el calor
alrededor del asiento de la válvula. La válvula opera en una guía y es exactamente concéntrica
con el asiento de la válvula. La guía de la válvula es un cilindro perforado en el que se mueve el
vástago de la válvula. El área de la guía de válvula puede ser maquinada en el metal de la culata,
o pueden practicarse orificios para insertar las guías. En las culatas de aluminio son necesaria
guías de hierro fundido para suministrar una superficie apropiada de apoyo para el vástago de la
válvula. Muchas culatas usan guías de válvulas reemplazables que tienen la forma de un buje de
metal insertado a presión en los orificios de la culata. Otras culatas tienen guías fundidas como
parte de la culata. Entonces son perforadas en base a la medida del vástago de la válvula durante
la fabricación. La parte superior de la guía de la válvula esta sellada mediante un sello de válvula.
El resorte de la válvula ejerce presión en la dirección de cierre de la válvula. Esta se usa para
mantener el hermetismo del aire y prevenir la filtración de gas. Se usan diferentes tipos de
resortes, como el de paso variable o resorte doble.
Rev:0 30 Mundo Mecánica
Automotriz
Mecánica del Motor 1
Mecanismo de Válvulas
Tipos y construcción
El mecanismo de válvulas es responsable de controlar el inicio y el fin del cambio de gas de
admisión y escape. Los principales componentes del mecanismo de válvulas son el eje de levas,
el ajustador de holgura, los balancines y las válvulas. Existen diferentes tipos de mecanismos de
válvulas, dependiendo de la cantidad de ejes de levas y la ubicación de éstos. Se conocen como:
OHV (Válvulas en la Culata):
En un sistema de válvulas sobre la culata o de varillas de empuje las válvulas están en la culata,
pero el eje de levas esta en el bloque cerca del cigüeñal. Un alza válvulas o un impulsor esta
montado en la leva. A la medida que el lóbulo de la leva alcanza al alza válvulas, este se levanta y
transfiere el movimiento a la varilla de empuje. Este entonces acciona un balancín que a su vez
empuja la válvula para que se abra. Existen diferentes tipos de alza válvulas. Un alza válvulas
sólido es usualmente un cilindro de hierro fundido, perforado, montado en un agujero del cárter del
cigueñal. Esta libre para girar suavemente, lo que distribuye el desgaste desde la leva a la cara
del impulsor.
Actualmente los siguientes tipos son los más comunes: OHC (Eje de Levas sobre la Culata),
DOHC (Doble Eje de Levas sobre la Culata), CIH (Eje de Levas en la Culata)
Rev:0 31 Mundo Mecánica
Automotriz
Mecánica del Motor 1
Eje de Levas:
El eje de levas conduce la apertura y cierre de la lumbrera de admisión para el ingreso de la
mezcla de combustible a la cámara de combustión y la lumbrera de escape para expulsar los
gases quemados. Comparado con el cigüeñal, el eje de levas gira con una relación de 2:1. Por lo
tanto el eje de levas gira con la relación de una vuelta por cada dos vueltas del cigüeñal. La
porción de extracción de la leva se llama la nariz de la leva. La altura se llama el alzamiento de la
leva. El alzamiento significa que la leva levantará la válvula de manera que su estado de apertura
esta determinado por el diseño de la leva. El tiempo de apertura y cierre de las válvulas esta
determinado por el ángulo de operación, el ángulo desde el punto de inicio y el punto de termino
de la nariz. El cruce de válvulas juega un papel importante en las características de
funcionamiento del motor. Un cruce muy pequeño suministra al motor un ralentí suave y un buen
torque a baja velocidad, pero impide el desempeño del motor a altas velocidades. Un cruce de
válvulas muy grande permite una excelente aspiración del motor a altas rpm, pero provoca un
ralentí áspero y un pobre desempeño a bajas rpm. El eje de levas puede usarse además para
impulsar el distribuidor, la bomba de aceite, la bomba de combustible o la bomba de vació (en los
motores diesel). El eje de levas gira sobre cojinetes planos y se lubrica con el aceite del motor. Se
usan dos tipos de diseño de eje de levas, conocido como el de tipo sólido o hueco.
Rev:0 32 Mundo Mecánica
Automotriz
Mecánica del Motor 1
Alza Válvulas, Balancines y Ajustador de Tolerancia
La finalidad del ajustador de tolerancia y el balancín es cambiar el movimiento giratorio del eje de
levas en movimiento reciproco de la válvula. La apertura entre la punta de la válvula y el
mecanismo de válvulas se llama holgura de válvula o juego de válvulas. Este debe mantenerse
cuando la leva no esta aplicando presión para abrir la válvula. Este puede ajustarse con un
tornillo y una contratuerca en el balancín o mediante el uso de láminas. Este ajuste debe
realizarse regularmente. Los balancines transmiten el movimiento a las válvulas. El balancín se
mueve hacia arriba y abajo usando un mecanismo de balanceo. Algunos balancines están hechos
de hierro fundido o de aleación de aluminio. Otros son de acero estampado. Muchos motores
actuales usan alza válvulas hidráulicos. Su finalidad es conseguir un funcionamiento silencioso del
motor y eliminar la necesidad de ajuste de holgura de las válvulas. Cuando el motor esta
funcionando, se suministra aceite a presión desde el sistema de lubricación del motor al impulsor.
El aceite es asistido por la tensión de un resorte para mantener la tolerancia en cero, pero
mediante un sistema de válvulas este es atrapado en el impulsor cuando el eje de levas lo levanta.
Debido a que el aceite no se comprime, el impulsor actúa como un alza válvulas sólido. Cuando la
válvula esta cerrada, parte del aceite se pierde durante el periodo previo al próximo levantamiento,
y de esta forma se mantiene la tolerancia de la válvula en cero. Los impulsores hidráulicos de
válvulas generalmente usan balancines estampados o forjados de lámina metálica o de aluminio
fundido.
Rev:0 33 Mundo Mecánica
Automotriz
Mecánica del Motor 1
Correa, Cadena de Distribución o Engranajes Conductores
En los motores con eje de levas sobre la culata se usa correa de distribución, cadena o
engranajes, debido a que el eje de levas esta alejado del cigüeñal. También es posible una
combinación, por ejemplo, correa de distribución y cadena o correa de distribución y engranajes.
El sistema típico de cadenas usa un tensor hidráulico. La cadena también puede usar guías para
reducir el ruido y la vibración. Nótese que los tensores hidráulicos pueden también encontrarse en
un sistema con correa de distribución. La correa dentada de distribución esta fabricada de fibra de
vidrio o cable reforzado con goma sintética. Sus dientes ajustan con los de las poleas del cigüeñal
y del eje de levas. Las correas de distribución son más silenciosas que las cadenas, pero
generalmente necesitan tensión manual. Tienen una vida útil más corta que las cadenas.
Necesitan reemplazo regular alrededor de 80.000 a 100.000 kilómetros.
Rev:0 34 Mundo Mecánica
Automotriz
Mecánica del Motor 1
Sincronización de Válvulas Continuamente Variable
En algunos motores se instala un Sistema de Sincronización Continuamente Variable de Válvulas
(CVVT), acoplado al eje de levas de admisión o de escape del motor. El mecanismo CVVT puede
cambiar el tiempo de apertura y cierre de las válvulas de admisión en relación con la carga y
velocidad del motor, ajustando de esa manera el valor óptimo de sincronización de válvulas. El
sistema CVVT esta controlado por una Válvula de Control de Aceite (OCV), que a su vez es
controlada por el Modulo de Control del Motor (ECM). El perfil en forma de paletas del conjunto
CVVT forma en total 8 cámaras, donde cuatro cámaras se usan para cambiar la posición de las
paletas en una condición de avance y las otra cuatro cámaras se usan para retardar la posición de
las paletas. El aceite para avanzar o retardar la sincronización de las válvulas se suministra
mediante dos orificios dentro del eje de levas. El sellado de las paletas se realiza con teflón y se
necesita para sellar las cámaras de avance y retardo unas de otras, permitiendo de esa manera
levantar presión dentro de las cámaras. Un pasador de tope mantiene las paletas en su posición
completamente retardada cuando el motor esta detenido, cuando la presión del aceite es muy
baja o cuando ocurre una falla en el circuito de control del CVVT. El pasador de tope se libera tan
pronto como se alcanza una presión de aceite de aproximadamente 0.5 bar. La Válvula de Control
de Aceite (OCV) esta ubicada dentro de la culata. Se suministra aceite presurizado a la OCV a
través de un filtro que también esta ubicado dentro de la culata. El orificio de salida de la OCV
permite el ingreso de aceite presurizado a la cámara de paletas, por lo tanto el otro orificio permite
drenar el aceite de la cámara opuesta de las paletas.
Rev:0 35 Mundo Mecánica
Automotriz
Mecánica del Motor 1
Filtro
El filtro esta instalado entre la bomba de aceite (lado de presión) y Válvula de Control de Aceite,
ubicado al interior de la culata.
Nota:
El filtro es libre de mantención. En caso de sobrecalentamiento del motor este elemento debe
revisarse por posible deformación.
Rev:0 36 Mundo Mecánica
Automotriz
Mecánica del Motor 1
Lubricación del Motor
El sistema de lubricación esta compuesto por los siguientes elementos:
 Deposito del aceite (cárter), Bomba de aceite, Filtro de aceite, Galerías de aceite
El sistema de lubricación distribuye el aceite por todo el motor. El aceite es arrastrado desde el
cárter por una bomba de aceite. Las galerías de aceite son pequeños conductos en el bloque de
cilindros que dirigen el aceite a las partes móviles del motor. Las galerías permiten el suministro
de aceite a los cojinetes del eje de levas, mecanismo de válvulas y los cojinetes del cigüeñal.
Perforaciones practicadas en el cigüeñal permiten suministrar aceite a los cojinetes de bancada.
El aceite que se bombea hacia los cojinetes de bancada del cigüeñal, es conducido a través de
pasajes de aceite a las bielas. El aceite también puede ser salpicado desde las bielas a las
paredes del cilindro. Después de circular a través del motor, el aceite cae nuevamente al cárter
para enfriarse. Este sistema de lubricación es llamado de cárter húmedo debido a que el aceite se
mantiene en el cárter listo para ser usado en una próxima oportunidad. Algunos motores
especiales usan un sistema de lubricación de cárter seco. Este utiliza todas las partes que
componen un sistema de cárter húmedo y lubrica el motor de la misma manera. La diferencia con
el cárter húmedo es la manera en que circula el aceite. En un sistema de cárter seco, el aceite cae
a la parte inferior del motor en un depósito colector. Una bomba lo recoge y lo bombea a un
tanque de aceite donde es almacenado hasta que la bomba de aceite normal lo recoge y bombea
a través del filtro y el motor de forma convencional. Debido a que no hay un depósito de aceite
debajo del motor, el motor puede montarse mucho más bajo que en un sistema de cárter húmedo.
El tanque de aceite puede ubicarse lejos del motor, donde puede ser refrigerado de mejor forma.
La cantidad de aceite en el sistema puede ser mucho más grande que en un sistema de cárter
húmedo.
Rev:0 37 Mundo Mecánica
Automotriz
Mecánica del Motor 1
Los motores diesel son lubricados en gran manera de la misma forma que los motores a gasolina,
pero existen algunas diferencias los motores diesel generalmente operan en el extremo superior
de su rango de potencia de forma que su temperatura de funcionamiento es usualmente mayor
que aquellos motores a gasolina similares, de manera que las partes en los motores diesel están
usualmente sometidas a mayor tensión. Como resultado, los aceites diesel necesitan un rango
diferente de propiedades y son clasificados en forma diferente.
Válvula de alivio de presión de aceite:
Una válvula de alivio de presión de aceite limita el aumento de presión excesiva. Esto es como
una pérdida controlada, recirculando la cantidad justa de aceite al cárter para regular la presión en
el sistema. En condiciones frías, la presión de aceite requerida para impulsarlo a las tolerancias
pequeñas en los cojinetes puede ser excesiva y dañar la bomba. Aquí la válvula se abre por el
exceso de presión y recircula parte del aceite al cárter.
Rev:0 38 Mundo Mecánica
Automotriz
Mecánica del Motor 1
Cárter de aceite:
El cárter esta apernado al motor en la parte baja del bloque. Es un depósito o contenedor de
almacenamiento para el aceite lubricante del motor, y contiene el aceite que retorna desde el
sistema de lubricación del motor. El cárter puede estar formado por una delgada lámina de metal
estampada y diseñado para asegurar que el aceite fluya a la sección más profunda. El tubo de
succión y un filtro de malla están localizados en la sección más profunda para asegurar que
permanezcan sumergidos en el aceite y prevenir que se arrastre aire a la bomba de aceite. El filtro
de malla retiene las partículas grandes de suciedad y carbón que pudiera dañar la bomba. El tubo
de succión conduce hacia la entrada de la bomba de aceite, en el lado de baja presión de la
bomba. Deflectores previenen las olas que alejen el aceite del captador durante el viraje, frenadas
y aceleraciones. La gran superficie externa del cárter ayuda a transferir el calor del aceite al aire
exterior. En algunos diseños, el cárter es de aleación de aluminio con aletas y costillas para
ayudar a la transferencia de calor.
Luz de advertencia de presión de aceite
Si la luz se enciende mientras el motor esta funcionando, esto puede indicar que la presión de
aceite es baja y el sistema de lubricación no esta trabajando apropiadamente; detener el motor,
revisar el nivel de aceite y agregar aceite si es necesario.
Rev:0 39 Mundo Mecánica
Automotriz
Mecánica del Motor 1
Bomba de Aceite y Enfriador de Aceite
La bomba de aceite suministra más aceite del que necesita el motor. Esta es una medida de
seguridad para asegurar que al motor nunca le falte de aceite. Con el aumento de la velocidad del
motor, el volumen de aceite suministrado por la bomba también aumenta. Las tolerancias entre las
partes móviles del motor impiden que el aceite escape de vuelta al cárter y la presión aumenta en
el sistema. Existen diferentes diseños de bomba de aceite y la bomba puede ser conducida por el
eje de levas o por el cigüeñal.
Bomba de rotor (Trocoidal):
En una bomba de aceite del tipo rotor, un rotor interior conduce a uno exterior. Al girar el volumen
entre ellos aumenta. El mayor volumen disminuye la presión en la entrada de la bomba. La
presión atmosférica en ese momento es mayor. Esta fuerza al aceite al interior de la bomba y llena
los espacios entre los lóbulos del rotor. A medida que los lóbulos del rotor interior se mueven en
los espacios del rotor exterior, el aceite es comprimido y expulsado por la salida de la bomba.
Bomba de engranajes:
En una bomba de aceite de engranajes, el piñón conductor engrana con un piñón secundario. Al
girar ambos, sus dientes se separan, creando un área de baja presión. La presión atmosférica del
exterior, fuerza el aceite en la entrada. Los espacios entre los dientes se llenan con aceite. Los
engranajes giran y conducen el aceite alrededor de la cámara, los dientes engranan nuevamente y
el aceite es forzado desde la salida hacia el filtro de aceite.
Rev:0 40 Mundo Mecánica
Automotriz
Mecánica del Motor 1
Bomba decreciente:
La bomba decreciente esta compuesta por dos piñones que giran; un piñón interno con sus
dientes en el exterior, y piñón interno con sus dientes en el interior. El piñón exterior es más
grande y tiene más dientes. Pero los dientes tienen la misma medida. Al separarse los dientes
(lado inferior izquierdo en la imagen), ellos pasan por sobre el orificio de admisión (mostrado
detrás de los piñones en negro a la izquierda). Succionan fluido, luego los piñones se separan por
un sello de media luna (mostrado en color café). Cuando los dientes comienzan a unirse
nuevamente (lado superior derecho) comprimen el aceite a través del orificio de salida (mostrado
en negro en el centro superior de la figura). Generalmente el piñón interior esta acoplado a un eje
conductor y el piñón exterior gira movido por el piñón interior en el punto de contacto (área
superior izquierda de la figura). Las ventajas de la bomba decreciente incluyen un diseño simple y
bajos requerimientos de mantención. La bomba creciente es común en muchas aplicaciones,
incluyendo las transmisiones automáticas.
Enfriador de aceite
Es común que algunos motores usen un enfriador de aceite para refrigerar el aceite en el motor.
En algunos motores el enfriador y el filtro de aceite están montados como un conjunto en el
bloque del motor.
Rev:0 41 Mundo Mecánica
Automotriz
Mecánica del Motor 1
Filtro de Aceite
En muchos motores el aceite entra a la bomba a través de una malla hecha de una pantalla de
gasa que separa las partículas mayores de suciedad. Este después es filtrado por un filtro de
aceite. El tipo común de elemento de filtro es hecho de papel impregnado con resina. Este no
puede limpiarse si no que debe ser renovado periódicamente. El aceite entra al depósito del filtro
en la parte exterior, pasa a través de la cubierta perforada, luego a través del elemento al tubo
central de salida hacia el motor.Un filtro de flujo total a presión esta incorporado afuera del bloque.
Este filtro puede obstruirse con sedimento, esta equipado con una válvula de desvío que abre
cuando la presión al interior del filtro excede un valor fijado. La válvula también abre cuando el
aceite esta frío y muy espeso para pasar a través del filtro. Este filtro esta fabricado de varios
materiales capaces de contener hasta las partículas más pequeñas de suciedad, pero con una
gran superficie, lo que permite el fácil acceso del aceite para fluir a través de él. Muchos filtros de
aceite en los motores diesel son más grandes que los similares en un motor de gasolina. Los
motores diesel producen más partículas de carbón que los motores a gasolina, de modo que el
filtro de aceite puede tener un elemento de flujo completo para atrapar las impurezas mayores, y
un elemento de desvío para almacenar los sedimentos y el hollín de carbón. Los filtros centrifugos
son un tipo de filtro poco común, estos funcionan basados en el principio que el material sólido es
generalmente más pesado que el aceite. Un depósito circular gira a alta velocidad y las partículas
sólidas son lanzadas al exterior y retenidas en el depósito, mientras que el aceite pasa a través de
una ruta central de escape.
Rev:0 42 Mundo Mecánica
Automotriz
Mecánica del Motor 1
Ventilación del Cárter del Motor
Durante la carrera normal de compresión, una pequeña cantidad de gases en la cámara de
combustión escapa al rededor del pistón. Aproximadamente 70% de estos gases “soplados” son
combustible sin quemar (HC) que pueden diluir y contaminar el aceite del motor, causando
corrosión a los componentes criticos y contribuyendo a la producción de sedimento. A alta
velocidad del motor, esta filtración de gases, produce un aumento de presión en el cárter que
puede causar perdida de aceite desde las áreas selladas del motor. La finalidad del sistema de
Ventilación Positiva del Cárter (PCV) es remover estos gases peligrosos desde el cárter antes que
ocurra algún daño, y combinarlos con la mezcla normal de Aire/Combustible que ingresa al motor.
Existen dos tipos disponibles, conocidos como el de tipo orificio fijo y el de flujo variable. A
diferencia de los sistemas del tipo orificio fijo, los sistemas PCV utilizan una válvula PCV de flujo
variable, unen las características del flujo de ventilación con la producción de gases filtrados con
más precisión, como se muestra en el gráfico. Los sistemas PCV de flujo variable son además
muy simples en diseño y están compuestos por los siguientes elementos:
 Válvula PCV
 Manguera de purga PCV
 Manguera de respiración
Rev:0 43 Mundo Mecánica
Automotriz
Mecánica del Motor 1
Generalmente, la producción de gases de recirculación es mayor durante las operaciones con alta
carga y muy menores durante el ralentí y las operaciones con baja carga. Debido a que las
características del vacío del múltiple no reúnen los requerimientos de flujo necesario para una
apropiada ventilación del cárter se usa una válvula PCV para regular el flujo de estos gases en el
múltiple de admisión. Durante el ralentí y la desaceleración, la producción de gases es muy baja,
pero el vacío en el múltiple de admisión es muy alto. Esto hace que la aguja al interior de la
válvula PCV se encuentre completamente retraída contra la tensión del resorte.El posicionamiento
de la aguja suministra un pequeño pasaje de vacío y permite el flujo de los gases a la cámara de
combustión. Durante la conducción a baja carga, la aguja dentro de la válvula PCV esta
posicionada en cierto modo al centro de su recorrido. Esta posición permite el flujo de un volumen
moderado de gases a la cámara de combustión. Durante la aceleración y operación con alta
carga, la producción de gases es muy alta. La aguja se extiende aún más desde la restricción
permitiendo el máximo flujo de gases a la cámara de combustión. Durante el funcionamiento del
motor a cargas extremadamente altas, si el volumen de gases excede la capacidad de la válvula
PCV para arrastra los vapores, el exceso de gases fluye a través de la manguera de respiración al
cuerpo del filtro de aire donde puede entrar a la cámara de combustión. Cuando el motor esta
apagado o en condiciones de detonación del motor, la tensión del resorte cierra completamente la
válvula impidiendo la liberación de gases al múltiple de admisión. La válvula se cierra durante una
detonación para prevenir el ingreso de la llama al cárter donde podría encender los vapores de
combustible encerrados. El sistema PCV afecta las emisiones y la capacidad de conducción.
Rev:0 44 Mundo Mecánica
Automotriz
Mecánica del Motor 1
Debido a que la operación de la PCV es un factor del funcionamiento apropiado de la
retroalimentación del sistema de control, los problemas con el sistema PCV pueden alterar el
balance normal de la relación Aire/Combustible. Una válvula PCV bloqueada impedirá el flujo
normal de vapores del cárter al motor y pueden resultar en una mezcla de Aire/Combustible más
rica que lo normal. Una manguera de respiración del cárter obstruida puede causar que el motor
consuma aceite debido al aumento en el nivel de vacío del cárter.
Adicionalmente, dependiendo de la ubicación de la manguera de respiración de aire fresco, una
válvula con mal funcionamiento o una manguera de vacío restringida, pueden causar
contaminación por aceite en el cuerpo del filtro de aire o formación de carbón en el cuerpo de
aceleración. Siempre debe sospecharse y revisar el sistema PCV si se encuentran rastros de
aceite en el sistema de admisión de aire.
Rev:0 45 Mundo Mecánica
Automotriz
Mecánica del Motor 1
Sistema de Admisión y Escape
El Sistema de Admisión de Aire del Motor generalmente comprende los siguientes componentes:
1. Entrada de aire
2. Cuerpo del filtro de aire
3. Elemento del filtro
4. Sensor de Flujo de Masa de Aire (dependiendo del sistema de control del motor)
5. Tuberías de conexión
6. Conexión al Turbo cargador (dependiendo del motor)
7. Conexión desde el Turbo cargador (dependiendo del motor)
8. Conexión a la carga del enfriador de aire (dependiendo del motor)
9. Conexión desde la carga del enfriador de aire (dependiendo del motor)
10. Conexión al múltiple de admisión
Elemento del filtro de aire.
El filtro de aire típico es un elemento de papel plegado, desechable con una junta de sellado
fabricada en material sintético. Los filtros están disponibles en dos tipos principales: el tipo panel
como el que se usa en la mayoría de los vehículos de inyección de combustible, y el tipo radial,
que se usa generalmente en los vehículos con carburador. El filtro de aire atrapa las partículas de
polvo que pueden causar daño a los cilindros del motor, paredes, pistón y anillos. El filtro de aire
también juega un papel importante al mantener libre de contaminantes el sensor de flujo de aire y
en algunos casos el limpiar el aire que entra al cárter por la ventilación del cárter. El filtro de aire
también sirve como un silenciador del sistema de admisión.
Rev:0 46 Mundo Mecánica
Automotriz
Mecánica del Motor 1
Turbo cargador / Intercooler (Inter enfriador)
El Turbo cargador sirve para incrementar la potencia de un motor. Como la temperatura del aire de
admisión aumenta en los motores con turbo cargador, hay un aumento en la temperatura de
combustión y por lo tanto en las emisiones. En los motores equipados con turbo cargador, una
forma efectiva para reducir las emisiones es enfriar el aire comprimido.
Enfriamiento del Turbo cargador
El turbo cargador es refrigerado por agua, lo que reduce la temperatura en el cuerpo de cojinetes
considerablemente. La reducción de temperatura disminuye el riesgo de ebullición del aceite y el
daño que pudiera aparecer como resultado. El refrigerante es conducido mediante una tubería
desde la culata del motor. Después de pasar por el cuerpo de cojinetes, el refrigerante es
conducido a través de tuberías al cuerpo del termostato.
Lubricación del Turbo cargador
El eje del turbo cargador, que gira a muy alta velocidad, es balanceado con precisión y esta
soportado por bujes y cojinetes fijos y deslizantes. Esta disposición de cojinetes demanda un alto
flujo de aceite, por lo que el eje gira sobre una película de aceite. Este aceite proviene del sistema
de lubricación del motor a través de un pasaje especial adaptado en el cuerpo del filtro de aceite.
El retorno de aceite pasa al cárter de aceite del motor. El sello entre el eje y el cuerpo de cojinetes
contiene anillos (semejantes a los anillos de pistón) localizados en ranuras del eje. El eje del turbo,
que gira a muy altas velocidades es balanceado cuidadosamente y descansa en los llamados
bujes de cojinetes planos flotantes.
Rev:0 47 Mundo Mecánica
Automotriz
Mecánica del Motor 1
Sistema de escape
El sistema de escape esta diseñado para descargar los gases de escape del motor con una baja
resistencia al flujo, bajo nivel de ruido y larga duración. El sistema de escape esta compuesto por
el múltiple de escape, una sección frontal con el convertidor catalítico y una sección trasera con
silenciadores. El silenciador generalmente es una combinación de un resonador y silenciadores de
absorción. Las secciones están generalmente conectadas unas a otras mediante uniones y gomas
montadas en diferentes puntos, escudos de calor están ubicados sobre las zonas más calientes
del sistema de escape para proteger los puntos expuestos donde la radiación del calor pudiera
producir algún problema.
Silenciador semi activo
Algunos modelos incorporan un silenciador semi activo. Bajo las 3000 rpm, el desvío interno se
cierra para disminuir los ruidos. Sobre eso la presión inversa abre el desvío para mejorar el
desempeño.
Rev:0 48 Mundo Mecánica
Automotriz
Mecánica del Motor 1
Turbo Cargador con Compuerta de Descarga
La carga aire a presión se debe principalmente a la velocidad y carga del motor. A baja carga del
motor, el volumen del gas de escape que conduce la turbina es relativamente pequeño y todo el
gas de escape necesita pasar por la turbina a fin de mover la turbina y el compresor. Cuando la
carga del motor es más alta, el volumen de gas de escape también es mayor, esto significa que la
energía que conduce el turbo es mayor y el compresor entonces fuerza más aire al interior del
motor. Si la carga del motor aumenta aún más, el volumen de gas de escape producido por el
motor será superior al necesario para conducir el compresor en forma proporcional a la masa da
aire correcta para la combustión. A altas cargas, el volumen de gases que acciona la turbina debe
entonces limitarse para que el motor produzca el flujo correcto de aire. Esto se consigue con una
válvula, llamada compuerta de descarga, que abre un pasaje de desvío paralelo a la turbina. El
exceso de aire que no es necesario para accionar la turbina pasa a través de este conducto. La
válvula de descarga es una válvula de compuerta que abre y cierra el pasaje de desvío al lado de
la rueda de turbina. Esta válvula es controlada por un diafragma en el cuerpo del compresor y es
accionada por una varilla desde el diafragma localizado en el cuerpo del compresor. Un resorte de
espiral en la caja del diafragma actúa en la dirección de cierre mientras que la presión del
diafragma actúa en la dirección de apertura. La caja del diafragma es controlada mediante una
manguera desde el turbo cargador a través de una válvula solenoide, el que a su vez es
controlado por el Modulo de Control del Motor (ECM).
Rev:0 49 Mundo Mecánica
Automotriz
Mecánica del Motor 1
Control del turbo a baja carga:
A baja carga, la válvula de descarga esta cerrada. Entonces todo el gas de escape pasa a través
de la turbina.
Control del turbo a alta carga:
Con alta carga, el volumen del gas de escape es mayor, lo que hace que la rueda de la turbina
gire más rápido. Esto suministra un mayor desplazamiento de aire hacia el motor. Cuando el
desplazamiento de aire es mayor que la masa de aire ideal para la combustión, no puede ser
controlado solo por el acelerador, por lo que el turbo debe regularse. Esto se hace abriendo la
válvula de descarga de modo que una parte del gas de escape pasa a través de la compuerta.
Consecuentemente este gas no contribuye a accionar la turbina y la velocidad de ésta se controla
de manera que el desplazamiento de aire producido por el turbo será el correcto.
Rev:0 50 Mundo Mecánica
Automotriz
Mecánica del Motor 1
Turbo Cargador de Geometría Variable
El Turbo Cargador de Geometría Variable (VGT) posee las siguientes ventajas:
 El motor produce mayor torque a bajas velocidades.
 Como la temperatura de trabajo del turbo cargador puede mantenerse baja, mejora la
compresión y aumenta la potencia.
 El turbo cargador responde más rápidamente a los requerimientos de torque, mejorando la
manejabilidad.
 Reduce el consumo de combustible y las emisiones de escape son más limpias.
El VGT no tiene válvula de descarga, pero en su lugar tiene un juego de aspas en el lado del
escape del turbo cargador. Estas aspas controlan el turbo cargador. Con bajo flujo de gas de
escape, las aspas se posicionan para aumentar la velocidad del turbo y como consecuencia
aumentar la presión. Esto significa más torque del motor a bajas velocidades. Con alto flujo de gas
de escape, la velocidad del turbo cargador se reduce para evitar las sobre revoluciones del turbo
cargador mientras continua suministrando la presión de refuerzo requerida.
La caja de vacío, que regula la posición de las aspas, es más grande que en los turbo cargadores
anteriores, para asegurar que reciba el vacío necesario. La caja de vacío esta controlada por un
solenoide, el que a su vez es controlado por el Modulo de Control del Motor (ECM).
Rev:0 51 Mundo Mecánica
Automotriz
Mecánica del Motor 1
Sistema de Refrigeración del Motor
De la energía calórica total generada por la combustión de la mezcla de combustible en el motor
gasolina, alrededor de 24 ~ 32% es convertida en energía cinética y se usa como potencia de
conducción. Alrededor de 29 ~ 36% es eliminada con los gases de escape, 7% se pierde por
radiación y otro 32 ~ 33% se disipa por el sistema de enfriamiento. Si el calor transmitido a la
pared de la cámara de combustión no es eliminado rápidamente, el pistón o el cilindro se
deformaran por este calor o se rompe la película de aceite lubricante. Si este calor es enfriado
excesivamente, energía calórica en exceso se transfiere al refrigerante de forma que la eficiencia
de temperatura se degradara. Por lo tanto, el sistema de enfriamiento debe estar controlado para
mantener la temperatura apropiada de acuerdo con la condición de conducción. Un sistema de
enfriamiento por líquido usa refrigerante, este fluido contiene químicos especiales mezclados con
agua. El refrigerante fluye a través de conductos en el motor, y a través de radiador. El refrigerante
es circulado por la bomba de agua y el termostato controla la temperatura. El termostato esta
cerrado cuando el motor esta frío permitiendo la circulación del refrigerante solamente en el
bloque del motor, desviando el termostato y el radiador. Esto permite que el motor se caliente
rápidamente y uniformemente de manera que se eliminan los puntos calientes. Cuando el
refrigerante caliente alcanza el termostato, este comenzara a abrirse, permitiendo el paso del
refrigerante hacia el radiador. Mientras más caliente este el refrigerante, más abrirá el termostato,
permitiendo que un mayor volumen de agua pase al radiador. El termostato también controla el
tiempo en que el refrigerante permanece en el radiador de forma que el calor se disipe
efectivamente.
Rev:0 52 Mundo Mecánica
Automotriz
Mecánica del Motor 1
El radiador recibe el refrigerante caliente desde el motor, y baja su temperatura, el aire que fluye
alrededor y a través del radiador toma el calor del refrigerante. Un ventilador acoplado al radiador
asegura que la temperatura del agua se reduzca cuando se conduce a bajas velocidades o con el
vehículo detenido.
Sistema de enfriamiento presurizado
Un sistema bajo presión puede manejar mayores temperaturas y ofrece un punto de ebullición
más alto. La presurización del sistema se consigue mediante un cuello de llenado del radiador
especial y una tapa del radiador a presión. En los sistemas presurizados, el refrigerante se agrega
sólo cuando se requiere y es agregado al depósito de reserva, no al radiador.
Liquido refrigerante (Anticongelante)
El agua absorbe más calor por su volumen que cualquier otro líquido, por lo que se utiliza agua.
Pero por si misma, el agua produce problemas. Las impurezas normales en el agua de la llave
son dañinas para el motor y reaccionan con los metales causando corrosión y oxido. El agua
también permite la electrolisis, un proceso eléctrico y químico que corroe los metales. En los
sistemas modernos de enfriamiento, se agregan químicos llamados inhibidores al agua para
limitar o impedir la corrosión. Se utilizan además otros aditivos para hacer más difícil que el agua
hierva en el refrigerante. Otra propiedad dañina del agua es que esta se expande cuando se
congela. Este es un problema para los motores enfriados por agua cuando las temperaturas caen
bajo el punto de congelamiento. El agua en el sistema de enfriamiento puede congelarse en un
motor frío que esta detenido - y expandirse - con fuerza suficiente para romper el bloque del motor
y el radiador. Un aditivo llamado anticongelante baja el punto de congelamiento del agua para
mantenerla por debajo de la temperatura exterior. Esto previene su congelamiento.
Rev:0 53 Mundo Mecánica
Automotriz
Mecánica del Motor 1
Termostato y Bomba de Agua
Termostato
El termostato monitorea constantemente la temperatura del refrigerante y regula su flujo a través
del radiador. Los termostatos están potenciados por un dispositivo sensible a la temperatura,
presión positiva y temperatura del motor. Esta diseñado para utilizar una cera especialmente
formulada y un pelet de polvo de metal contenido en forma compacta en un depósito de cobre
conductor de calor, el que esta equipada con un pistón dentro de una envoltura de goma. El calor
hace que el pelet de goma se dilate, lo que fuerza al pistón hacia fuera y entonces abre la válvula.
Este dispositivo sensor detecta los cambios de temperatura del motor y mueve la posición de la
válvula para controlar el flujo del refrigerante y de esta forma controlar la temperatura del
refrigerante. El termostato esta generalmente instalado al frente del motor en la parte superior del
bloque. El termostato se ajusta en una cavidad en el motor donde estará expuesto al refrigerante
caliente. La parte superior del termostato esta cubierta por el cuerpo de salida del agua que se
usa para conectar la manguera del radiador al motor. Existen dos tipos básicos de termostato: El
termostato de manguito balanceado y el termostato de cabeza invertida. Ambos tipos funcionan de
la misma forma pero tienen algunas diferencias. El termostato de cabeza invertida abre contra el
flujo de refrigerante desde la bomba de agua. El refrigerante, sometido a la presión de la bomba,
se utiliza para ayudar al termostato de cabeza invertida a mantenerse cerrado cuando el
refrigerante esta frío, y de esa forma impide la filtración. La válvula del termostato de cabeza
invertida es de auto alineamiento y auto limpieza. El termostato de manguito balanceado permite
refrigerante presurizado circular alrededor de todas sus partes móviles.
Rev:0 54 Mundo Mecánica
Automotriz
Mecánica del Motor 1
Bomba de agua
La bomba de agua esta montada generalmente al frente del bloque de cilindros y usualmente es
conducida por la correa del ventilador o de distribución. En algunos casos es conducida por el eje
de levas o por un conjunto de piñones. Su función es suministrar el refrigerante desde la parte
inferior del radiador a las camisas de agua del motor de manera eficiente. El agua, después de
absorber el calor del motor, circula de vuelta a la parte superior del radiador. El impulsor de la
bomba es un disco giratorio con aletas, que empuja agua hacia delante contra el cuerpo de la
bomba mediante la fuerza centrífuga y la impele hacia las camisas de agua. El eje esta montado
en el cuerpo de la bomba y gira sobre cojinetes. Un sello impide el escape del refrigerante a través
del eje del impulsor. En el extremo de conducción, esta montada una polea accionada por el eje
de levas, para conectar la correa del ventilador. Cuando el motor esta frío el termostato esta
cerrado y el refrigerante no accede a la parte superior del radiador. Con el fin de circular el
refrigerante por el motor durante el calentamiento, una tubería de desvío esta ubicada debajo del
termostato que conduce el agua de vuelta a la bomba. La tubería también permite al refrigerante
caliente pasar a través de la válvula, la que abrirá el termostato cuando este alcance la
temperatura requerida. Un pequeño orificio en la parte inferior del cuerpo de la bomba permite
drenar el refrigerante si se produce filtración por el sello.
Rev:0 55 Mundo Mecánica
Automotriz
Mecánica del Motor 1
Radiador
La función del radiador es bajar la temperatura del refrigerante del motor transfiriendo el calor a la
atmósfera. El radiador esta fabricado de pequeñas tuberías ubicadas en filas, esto recibe el
nombre de núcleo, el que puede tener un diseño de posición vertical u horizontal (llamado de flujo
cruzado). En cada extremo del núcleo hay un tanque, uno es el tanque de entrada y el otro el
tanque de salida. Los factores que influyen en la eficiencia del radiador incluyen: el diseño básico
del radiador (el espesor del núcleo, número de filas, capacidad del tanque), el área y espesor del
núcleo del radiador que esta expuesto al flujo de aire refrigerante, la cantidad de aire refrigerante,
y la diferencia entre la temperatura del refrigerante y la temperatura del aire.
Tapa presurizada del radiador
La tapa presurizada esta compuesta por una cápsula superior con dos camones para sujeción con
las levas del cuello de llenado, un diafragma de disco con resorte (y junta de sello superior) para
sellar contra la parte superior del cuello de llenado y para suministrar la fricción que retiene la tapa
al cuello, una válvula de presión con resorte de acero inoxidable y una válvula de presión para
sellar contra el asiento inferior de sellado del cuello de llenado, centrada en la válvula de presión
se encuentra una válvula de alivio de vacío (algunas son normalmente cerradas, mientras que
otras están en posición abiertas por un peso). El asiento de la parte superior del cuello de llenado
del radiador, permite al resorte del diafragma de la tapa ejercer la suficiente presión para sujetar la
tapa al cuello. La presión atmosférica se sella con la junta superior de la tapa en este punto. En el
asiento inferior de sellado es donde descansa la válvula de presión, permitiendo la producción de
presión cuando se calienta el refrigerante.
Rev:0 56 Mundo Mecánica
Automotriz
Mecánica del Motor 1
Las levas del cuello de llenado tienen el propósito de sujetar la tapa en su lugar, pero también
mantienen la presión de la válvula en el cuello de llenado con la precarga correcta y de forma
exacta. Las levas del cuello también tienen una función de seguridad al prevenir que la vibración
suelte la tapa o cause una perdida de presión en el sistema. También opera como un limitador de
seguridad contra quemaduras serias al remover la tapa en un motor caliente. Por esta razón debe
empujarse y girar la tapa para removerla de su posición completamente cerrada. Existen dos tipos
de válvulas de alivio de vacío para las tapas presurizadas del radiador. El tipo Normalmente
Cerrada (presionada por resorte), y el tipo Normalmente Abierta (con un peso). El diseño de la
tapa normalmente cerrada es el que se conoce como tapa del tipo de presión constante. El vacío
es asistido en la posición cerrada por un resorte de bronce muy liviano. Cuando el motor arranca y
empieza a calentarse, comienza a producirse presión en el sistema, inmediatamente debido a la
expansión del refrigerante en el sistema. Cuando el motor se detiene y comienza a enfriarse,
tiende a formarse un vacío parcial en el sistema, este abre la válvula de vacío para prevenir la
formación de vacío excesivo en el sistema. La tapa de tipo normalmente abierta es la que se llama
la tapa de ventilación de presión. Esta válvula de vacío cuelga libremente en la válvula de presión
y esta equipada con un pequeño peso calibrado. Bajo condiciones de operación liviana, el sistema
de refrigeración opera sin presión (atmosférica). El calentamiento rápido o sobrecalentamiento
produce una rápida expansión o ebullición del refrigerante, la presión del escape o el vapor activa
la válvula de vacío, produciendo el cierre de ésta. La tapa entonces funciona de la misma forma
que una tapa de presión constante. Cuando el motor se apaga y se enfría, la válvula de vacío
vuelve nuevamente a su posición abierta.
Rev:0 57 Mundo Mecánica
Automotriz
Mecánica del Motor 1
Ventilador del Radiador
El ventilador del radiador del tipo mecánico es conducido por una correa. En muchos casos el
ventilador mecánico esta montado en la bomba de agua y esta conducido por la misma polea que
la bomba de agua. Se puede conseguir un mejor desempeño mediante el uso de un ventilador
mecánico con un embrague en el ventilador. El embrague del ventilador esta diseñado para
conducir el ventilador cuando se necesita aire en movimiento para enfriar el motor. Un embrague
de ventilador controlado por termostato emplea un resorte bimetalico para ajustar la velocidad del
ventilador en respuesta a la temperatura de operación. A medida que aumenta la temperatura y el
radiador se calienta, el aire que pasa por el radiador hacia el ventilador calienta el resorte espiral y
un fluido de silicona en el embrague entra en la cámara aumentando la tensión en el embrague y
provocando el movimiento del ventilador. Al disminuir la temperatura del refrigerante, el embrague
del ventilador resbala. En el embrague del ventilador “no térmico”, un fluido de silicona con una
muy alta capacidad de resistencia al corte se usa para conducir el ventilador y enfriar el motor a
baja velocidad. Al aumentar las rpm, el fluido permite al embrague del ventilador resbalar,
aumentando la eficiencia del motor cuando se necesita menos movimiento de aire asistido por el
ventilador, debido a la alta velocidad del vehículo. Muchos vehículos nuevos tienen la ventaja de
utilizar ventiladores eléctricos de refrigeración debido al compartimiento de motor más pequeño y
a la mayor demanda de flujo de aire. El Ventilador Eléctrico del Radiador es controlado por el
Modulo de Control del Motor o por un interruptor de temperatura localizado en el radiador.
Correa Conductora
Rev:0 58 Mundo Mecánica
Automotriz
Mecánica del Motor 1
La finalidad de la correa de conducción es mantener los dispositivos auxiliares girando. Las
correas conductoras están diseñadas específicamente para cada modelo individual, asegurando
una tensión perfecta entre los diferentes componentes que debe accionar. Esto incluye el
ventilador, la bomba de agua, la bomba de dirección hidráulica, el alternador, y el compresor de
aire acondicionado. Las correas conductoras son del tipo multicapas para máxima vida útil y
desempeño.
Hay disponibles varios tipos diferentes de correa conductora:
Correas de borde áspero; simplemente, configuradas en multicapas y dentadas para vehículos de
pasajeros, camiones y buses, incluyendo motores diesel.
Correas acanaladas en V; estas son más delgadas y más eficientes en la transferencia de
potencia y se usan en los motores pequeños y de alto rendimiento.
Polea de giro libre
Debido a las variaciones en rotación que ocurren entre los ciclos del motor, una función de giro
libre se introduce en la polea de algunos alternadores. Esto suministra una mejor rotación para el
ciclo de la correa y alarga la vida útil de ésta.
Rev:0 59 Mundo Mecánica
Automotriz
Mecánica del Motor 1
Tensor Automático
La finalidad del tensor automático es asegurar que la correa conductora este tensada en forma
correcta. Existen dos tipos diferentes de tensor de correa. Uno es el tensor cargado por resorte, el
otro es un tensor operado hidráulicamente. Para desmontar el tensor automático, debe reducirse
la tensión cuidadosamente usando la tuerca en el lado del tensor automático. No debe aplicarse
torque excesivo porque podría dañar al tensor. En los tensores operados hidráulicamente, el
empaque de goma en el lado de la cámara de aceite debe estar asegurado. Si se daña, se
producirá perdida de aceite, resultando en una operación incorrecta del tensor.
Rev:0 60 Mundo Mecánica
Automotriz
Mecánica del Motor 1
Soportes del Motor
Los soportes de motor se usan para reducir las vibraciones y el ruido del motor. Los soportes del
motor usados actualmente son diseñados con precisión con perfiles específicos, dureza de la
goma (medidos por durómetros) y espacios de aire llamado vacíos que armonizan el montaje del
motor. Algunos soportes de motor son hidráulicos y tienen cámaras llenas con fluido de silicona.
Hay algunos soportes de motor que son controlados electrónicamente. La finalidad de los
Soportes de Motor Controlados Electrónicamente es amortiguar las vibraciones del motor y el
ruido bajo ciertas condiciones de ralentí, aceleración y conducción. Agregar un Soporte de Motor
Controlado Electrónicamente, reduce la vibración y el ruido bajo condiciones de ralentí entre
5~10dB, la aceleración en 3dB y la conducción y sacudida de los cambios entre 8~13dB. Los
principales componentes Soporte de Motor Controlado Electrónicamente son el Modulo de Control
y el soporte de motor con válvula solenoide. La válvula solenoide esta conectada al vacío del
múltiple de admisión mediante una manguera. El Modulo de Control procesa la señal de velocidad
del motor desde el Modulo de Control del Motor (ECM) y controla válvula solenoide.
El soporte de motor contiene un perno conectado al motor. El lado opuesto del perno de montaje
esta conectado a un elemento de goma y a una placa de amortiguación. La placa de
amortiguación se mueve libremente en el aceite de la cámara superior. El orificio de aceite permite
el flujo de aceite entre la cámara superior e inferior cuando la válvula esta en posición cerrada. El
orificio de ralentí tiene un diámetro mayor que el orificio de aceite y es abierto por una válvula,
conectado al diafragma de la cámara de vacío. La válvula abre tan pronto como se aplica vacío a
la cámara de vacío.
Rev:0 61 Mundo Mecánica
Automotriz
Mecánica del Motor 1
Excepto la condición de ralentí
Bajo estas condiciones la válvula solenoide esta sin energía. Las cámaras superior e inferior están
conectadas una a otra mediante un pasaje de aceite. Debido a que el pasaje de aceite tiene un
diámetro pequeño, el flujo de aceite entre ambas cámaras esta restringido. Por esto, el
movimiento de la placa de amortiguación es limitado y el soporte del motor se endurece.
Condición de ralentí
En condición de ralentí, la válvula solenoide esta conectada a tierra a través del Modulo de
Control. Ahora el vacío actúa en el diafragma dentro de la cámara de vacío. La válvula, conectada
al diafragma se mueve hacia abajo abriendo el orificio de ralentí. Como las cámaras superior e
inferior están ahora conectadas mediante el orificio de ralentí que tiene un diámetro mayor, el flujo
del aceite esta suavemente restringido. Debido a eso la placa de amortiguación puede moverse
más hacia la cámara de vacío y el soporte de motor se suaviza.
Rev:0 62 Mundo Mecánica
Automotriz
Mecánica del Motor 1
Aceite de Motor
La función un sistema de lubricación es reducir la fricción. La fricción se produce entre todas las
superficies en contacto. Cuando las superficies en movimiento se ponen en contacto, la fricción
tiende a frenarlas. Esto puede hacer que las partes metálicas se calienten, se fundan y fusionen.
Cuando esto ocurre, se dice que el motor se ha atascado. La lubricación reduce la fricción
indeseable, reduciendo de esa forma el desgaste de las partes móviles. Las holguras se llenan
con aceite y hacen que las partes del motor se muevan o floten en capas de aceite en lugar de
unas sobre otras directamente. La lubricación ayuda a enfriar el motor, el lubricante recoge el calor
del motor, luego vuelve al cárter donde se enfría nuevamente. Esto ayuda a absorber las cargas
de impacto. Una carrera de potencia puede poner repentinamente una fuerza de 2.000kg en los
cojinetes principales. Las capas de aceite amortiguan esta carga. El aceite también es un agente
de limpieza, toma las partículas de metal y carbón y las transporta al cárter, las partículas más
grandes caen al fondo. Para que el aceite haga todo el trabajo que se espera de él, debe tener
propiedades especiales. La viscosidad es crucial. La viscosidad es una medición de cuan fácil
fluye un liquido. Un líquido de baja viscosidad es delgado y fluye fácilmente. El líquido de alta
viscosidad es espeso y fluye lentamente. Al aceite lubricante debe ser lo suficientemente delgado
para fluir fácilmente entre las partes móviles, pero no tan delgado como para que se escurra de
entre ellas. Si este escurre, las partes quedaran en contacto directo entre ellas y se dañaran. Si es
muy viscoso, se moverá muy lentamente para proteger los componentes, especialmente en un
motor frío. Los aceites modernos sin embargo tienen mezclas de aceites que combinan estas
propiedades. Los aceites están mezclados con aditivos. Están graduados o clasificados por la
Sociedad de Ingenieros Automotrices (SAE), el Instituto Americano de Petróleo (API), o la
Asociación de Constructores Europeos de Automóviles (ACEA).
Rev:0 63 Mundo Mecánica
Automotriz
Mecánica del Motor 1
SAE:
Un aceite de motor con un número SAE 50 tiene una alta viscosidad, o es más espeso que un
aceite SAE 20.
API:
Las clasificaciones API son diferentes para los motores gasolina y diesel. Para motores gasolina
los listados comienzan con “S”, (que significa Spark-plug ignition, encendido por chispa), seguido
por otro código que denota la norma, por ejemplo “SM “, “SH”. Para los aceites diesel, la primera
letra es “C” (que significa encendido por Compresión), seguido de otra letra que denota la norma,
como por ejemplo CH.
ACEA:
Las normas ACEA tienen el prefijo “G” para motores a gasolina y “D” o “PD” para los motores
diesel. Junto con estas hay numerosas aprobaciones por los fabricantes de automóviles. Las
normas ACEA pueden resumirse como A para gasolina, B para vehículos de pasajeros con motor
diesel y E para vehículos de trabajo pesado diesel.
Rev:0 64 Mundo Mecánica
Automotriz
Mecánica del Motor 1
Revisión del Aceite del Motor
1. Ubicar la varilla indicadora de nivel de aceite: La varilla indicadora esta localizada al costado
del bloque de cilindros y es generalmente muy fácil de encontrar, con una forma distintiva o
una manilla de color llamativo.
2. Extraer y limpiar la varilla: Retirar la varilla, recoger cualquier gota de aceite con un paño y
limpiar cuidadosamente. Hay marcas en el extremo inferior de la varilla que indican si es
necesario rellenar aceite.
3. Tomar la lectura del aceite: Reinstalar la varilla y empujarla hacia abajo al cárter tan lejos
como pueda llegar. Removerla nuevamente y el nivel de aceite será claramente visible en la
varilla. Si el nivel esta bajo la marca superior “full”, entonces debe rellenarse el motor hasta su
nivel con aceite nuevo.
4. Comprobar la condición del aceite: Si el aceite aparece muy negro y sucio, este puede haber
perdido algunas de sus cualidades de protección y lubricación y puede ser necesario realizar
el cambio total, revisar el registro de servicio o consultar al cliente cuando se efectuó el último
cambio de aceite.
5. Ajustar el nivel si es necesario: Si se necesita aceite adicional, estimar la cantidad revisando
la guía del Manual de Servicio para las marcas de la varilla. Soltar la tapa de llenado en la
parte superior del motor y usando un embudo para evitar derrames vaciar lentamente el
aceite en el motor.
Rev:0 65 Mundo Mecánica
Automotriz
Mecánica del Motor 1
Drenaje del Aceite del Motor
1. Preparar el área de trabajo: Antes de comenzar, es necesario limpiar cualquier derrame de
aceite, debe tenerse a mano un contenedor lo suficientemente grande para contener todo
el aceite del motor y tener el aceite nuevo suficiente del tipo correcto para rellenar
posteriormente el motor. En algunos vehículos, el motor drenara más fácil si la tapa de
llenado es removida, de modo que se recomienda removerla antes de elevar el vehículo.
2. Identificar el tapón de drenaje y la herramienta para removerlo: Siempre debe usarse el
Manual de Servicio para conseguir ayuda para localizar e identificar los componentes sino
se esta completamente seguro de su ubicación. El tapón de drenaje de aceite se encuentra
debajo el cárter de aceite, que contiene todo el aceite del motor. Algunos motores tienen
dos tapones de drenaje, para vaciar el cárter en áreas separadas. Para minimizar la
posibilidad de daño a la cabeza del perno, se necesitara una llave de boca o una llave de
cubo para remover y reubicar el tapón de drenaje. Debe tenerse mucho cuidado de no
remover el tapón de drenaje de la transmisión por equivocación.
3. Remover el tapón de drenaje e inspeccionar: Cuando se ha removido el tapón de drenaje,
separar la junta del tapón y limpiar los hilos. Si los hilos están dañados puede ser
necesario reemplazar el tapón. Observar si hay partículas sólidas de metal adheridas al
tapón y advertir al supervisor. Estas pueden ser indicio de un problema no diagnosticado
en el motor.
4. Drenar el aceite: El aceite se drenará más fácil si el motor esta caliente, de modo que es
recomendable hacer funcionar el motor por unos pocos minutos antes de drenar. Pero si el
aceite esta caliente, puede producir quemaduras, de modo que debe tenerse mucho
cuidado cuando se remueve el tapón de manera que el aceite no se derrame en las
manos. Si el aceite del motor esta frío se necesitara más tiempo para el drenaje, o el
aceite nuevo se contaminará con los residuos de aceite que permanezcan adheridos a las
paredes interiores del motor.
Rev:0 66 Mundo Mecánica
Automotriz
Mecánica del Motor 1
5. Disponer de un lugar y contenedor de seguridad para el aceite drenado
Si el aceite esta caliente, debe tenerse cuidado extra de no derramarlo, especialmente en
uno mismo. Cuando se vacía el aceite desde el contenedor de drenaje al contenedor de
reciclado, nuevamente observar si hay partículas de metal que hayan podido quedar al
fondo del contenedor.
Rev:0 67 Mundo Mecánica
Automotriz
Mecánica del Motor 1
Reemplazo del Filtro de Aceite
1. Comprobar la disponibilidad de un filtro nuevo: Antes de remover un filtro de aceite,
consultar primero el Manual de Servicio del vehículo para identificar el tipo de filtro
requerido. Asegurarse que el filtro correspondiente esta disponible para su reemplazo.
2. Localizar el filtro y la herramienta correcta: El filtro estará generalmente ubicado en el
costado, debajo o sobre el bloque del motor (motor diesel). Algunos filtros tienen una
tuerca de retención que requerirá el uso de una llave de boca para removerla, pero la
mayoría de los vehículos tienen filtros que son cartuchos con hilo. Estos se remueven con
una llave ajustable para filtros.
3. Remover el filtro y revisarlo: Remover el filtro y limpiar el área de asentamiento en el motor
de modo que su superficie y la superficie del filtro nuevo puedan sellar apropiadamente.
Asegurarse que el sello del filtro que se extrae no esta pegado al motor.
4. Obtener el filtro de reemplazo: Confirmar el correcto número de parte y obtener el filtro de
reemplazo desde el suministro de partes de reparación. Es una buena práctica cambiar el
filtro de aceite cada vez que se drena el aceite del cárter.
5. Instalar correctamente el filtro de reemplazo: Esparcir un poquito de aceite en la superficie
del nuevo anillo de sellado. Esto ayudara a conseguir un sellado correcto y evitará la
distorsión o pliegue de la junta mientras esta siendo apretado el filtro. Atornillar el filtro
hasta que las dos superficies están en contacto. Como ayuda para juzgar el grado correcto
de giro, se recomienda hacer una marca en el lado exterior del filtro con un lápiz o hasta
con una gota de aceite, sin olvidar limpiarla cuando se haya finalizado. No apretar el filtro
excesivamente. Típicamente, tres cuarto de vuelta es el apriete adecuado para un sellado
correcto y sin filtraciones.
Rev:0 68 Mundo Mecánica
Automotriz
Mecánica del motor 1
Mecánica del motor 1
Mecánica del motor 1
Mecánica del motor 1
Mecánica del motor 1
Mecánica del motor 1

Weitere ähnliche Inhalte

Was ist angesagt? (20)

Frenos de aire
Frenos de aireFrenos de aire
Frenos de aire
 
Programa Autodidáctico 233
Programa Autodidáctico 233Programa Autodidáctico 233
Programa Autodidáctico 233
 
Presentacion turbo compresor
Presentacion turbo compresorPresentacion turbo compresor
Presentacion turbo compresor
 
Sistema de distribución automotriz
Sistema de distribución  automotrizSistema de distribución  automotriz
Sistema de distribución automotriz
 
Verificación de culatas
Verificación de culatasVerificación de culatas
Verificación de culatas
 
Inyeccion+directa+de+gasolina
Inyeccion+directa+de+gasolinaInyeccion+directa+de+gasolina
Inyeccion+directa+de+gasolina
 
Diapositiva partes del motor
Diapositiva partes del motorDiapositiva partes del motor
Diapositiva partes del motor
 
Ciclo de motores de 4 tiempos
Ciclo de motores de 4 tiemposCiclo de motores de 4 tiempos
Ciclo de motores de 4 tiempos
 
Motor Diesel
Motor DieselMotor Diesel
Motor Diesel
 
Guia de trabajo del sistema de combustible en los motores diesel
Guia de trabajo del sistema de combustible en los motores dieselGuia de trabajo del sistema de combustible en los motores diesel
Guia de trabajo del sistema de combustible en los motores diesel
 
E.stf. diapositivas 01. la transmisión en los vehiculos.reducido
E.stf. diapositivas 01. la transmisión en los vehiculos.reducidoE.stf. diapositivas 01. la transmisión en los vehiculos.reducido
E.stf. diapositivas 01. la transmisión en los vehiculos.reducido
 
Distribucion1
Distribucion1Distribucion1
Distribucion1
 
PPT Motor Diesel 2017
PPT Motor Diesel 2017 PPT Motor Diesel 2017
PPT Motor Diesel 2017
 
Ssp209 inyector bomba 1.9 lts.
Ssp209 inyector bomba 1.9 lts.Ssp209 inyector bomba 1.9 lts.
Ssp209 inyector bomba 1.9 lts.
 
El motor de combustion interna
El motor de combustion internaEl motor de combustion interna
El motor de combustion interna
 
El Carburador
El CarburadorEl Carburador
El Carburador
 
Frenos abs
Frenos absFrenos abs
Frenos abs
 
Sistemas Del Motor
Sistemas Del MotorSistemas Del Motor
Sistemas Del Motor
 
06la culata
06la culata06la culata
06la culata
 
2nz-fe 1.3L pinout.pdf
2nz-fe 1.3L pinout.pdf2nz-fe 1.3L pinout.pdf
2nz-fe 1.3L pinout.pdf
 

Andere mochten auch

Cómo funciona un cilindro hidráulico
Cómo funciona un cilindro hidráulicoCómo funciona un cilindro hidráulico
Cómo funciona un cilindro hidráulicoMaquinaria Barriuso
 
Diagnostico Y Mantenimiento Programado En Los Motores Diesel
Diagnostico Y Mantenimiento Programado En Los Motores DieselDiagnostico Y Mantenimiento Programado En Los Motores Diesel
Diagnostico Y Mantenimiento Programado En Los Motores DieselIng. Electromecanica
 
Sistema hidraulicos
Sistema hidraulicosSistema hidraulicos
Sistema hidraulicosXIXO1209
 
Manual Mantenimiento Basico De Vehiculos
Manual Mantenimiento Basico De VehiculosManual Mantenimiento Basico De Vehiculos
Manual Mantenimiento Basico De Vehiculosguestb77249
 
Mantenimiento preventivo y correctivo en motores diesel
Mantenimiento preventivo y correctivo en motores dieselMantenimiento preventivo y correctivo en motores diesel
Mantenimiento preventivo y correctivo en motores dieselanlopa
 

Andere mochten auch (8)

DVILA agencia de publicidad Valencia Sport www.dvila.com
DVILA agencia de publicidad Valencia Sport www.dvila.comDVILA agencia de publicidad Valencia Sport www.dvila.com
DVILA agencia de publicidad Valencia Sport www.dvila.com
 
Cómo funciona un cilindro hidráulico
Cómo funciona un cilindro hidráulicoCómo funciona un cilindro hidráulico
Cómo funciona un cilindro hidráulico
 
Presentacion actuadores hidraulicos.
Presentacion actuadores hidraulicos.Presentacion actuadores hidraulicos.
Presentacion actuadores hidraulicos.
 
Camiseta de un motor
Camiseta de un motorCamiseta de un motor
Camiseta de un motor
 
Diagnostico Y Mantenimiento Programado En Los Motores Diesel
Diagnostico Y Mantenimiento Programado En Los Motores DieselDiagnostico Y Mantenimiento Programado En Los Motores Diesel
Diagnostico Y Mantenimiento Programado En Los Motores Diesel
 
Sistema hidraulicos
Sistema hidraulicosSistema hidraulicos
Sistema hidraulicos
 
Manual Mantenimiento Basico De Vehiculos
Manual Mantenimiento Basico De VehiculosManual Mantenimiento Basico De Vehiculos
Manual Mantenimiento Basico De Vehiculos
 
Mantenimiento preventivo y correctivo en motores diesel
Mantenimiento preventivo y correctivo en motores dieselMantenimiento preventivo y correctivo en motores diesel
Mantenimiento preventivo y correctivo en motores diesel
 

Ähnlich wie Mecánica del motor 1

Motor 4 tiempos
Motor 4 tiemposMotor 4 tiempos
Motor 4 tiemposbatran
 
Lab final termodinamica
Lab final termodinamicaLab final termodinamica
Lab final termodinamicaFELIPE
 
Lab final termodinamica
Lab final termodinamicaLab final termodinamica
Lab final termodinamicaFELIPE
 
Mecanica automotriz motores y organos auxiliares
Mecanica automotriz   motores y organos auxiliaresMecanica automotriz   motores y organos auxiliares
Mecanica automotriz motores y organos auxiliarespavlchenko
 
Motores
MotoresMotores
MotoresELHIGI
 
Elementos tren motriz
Elementos tren motrizElementos tren motriz
Elementos tren motrizMaxii Gauna
 
Que es el motor juan zuluaga orozco
Que es el motor juan zuluaga orozcoQue es el motor juan zuluaga orozco
Que es el motor juan zuluaga orozcojuanzuluagaorozco1
 
Tipos de Motores
Tipos de  MotoresTipos de  Motores
Tipos de MotoresMrr16
 
Partes del Vehículo y Motor diésel y gasolina 1-2.pdf
Partes del Vehículo y Motor diésel y gasolina 1-2.pdfPartes del Vehículo y Motor diésel y gasolina 1-2.pdf
Partes del Vehículo y Motor diésel y gasolina 1-2.pdfIgnacioLopez546397
 
Lab final termodinamica
Lab final termodinamicaLab final termodinamica
Lab final termodinamicaFELIPE
 
Lab final termodinamica
Lab final termodinamicaLab final termodinamica
Lab final termodinamicaFELIPE
 
Motores De Ciclo Otto
Motores De Ciclo OttoMotores De Ciclo Otto
Motores De Ciclo OttoAdriZamora
 
Motores 1223070520057504-9 (1)
Motores 1223070520057504-9 (1)Motores 1223070520057504-9 (1)
Motores 1223070520057504-9 (1)Juan Carlos Rueda
 
COMPONENTES DE UN AUTOMOVIL
COMPONENTES DE UN AUTOMOVIL COMPONENTES DE UN AUTOMOVIL
COMPONENTES DE UN AUTOMOVIL jeffersonlema
 

Ähnlich wie Mecánica del motor 1 (20)

Motor 4 tiempos
Motor 4 tiemposMotor 4 tiempos
Motor 4 tiempos
 
Lab final termodinamica
Lab final termodinamicaLab final termodinamica
Lab final termodinamica
 
Lab final termodinamica
Lab final termodinamicaLab final termodinamica
Lab final termodinamica
 
Mecanica automotriz motores y organos auxiliares
Mecanica automotriz   motores y organos auxiliaresMecanica automotriz   motores y organos auxiliares
Mecanica automotriz motores y organos auxiliares
 
Motores
MotoresMotores
Motores
 
Motores
MotoresMotores
Motores
 
Elementos tren motriz
Elementos tren motrizElementos tren motriz
Elementos tren motriz
 
QUE ES EL MOTOR
QUE ES EL MOTOR QUE ES EL MOTOR
QUE ES EL MOTOR
 
Que es el motor juan zuluaga orozco
Que es el motor juan zuluaga orozcoQue es el motor juan zuluaga orozco
Que es el motor juan zuluaga orozco
 
Que es el motor
Que es el motorQue es el motor
Que es el motor
 
Que es el motor
Que es el motorQue es el motor
Que es el motor
 
Motor diesel clase
Motor diesel claseMotor diesel clase
Motor diesel clase
 
Tipos de Motores
Tipos de  MotoresTipos de  Motores
Tipos de Motores
 
Motor de combustion interna
Motor de combustion internaMotor de combustion interna
Motor de combustion interna
 
Partes del Vehículo y Motor diésel y gasolina 1-2.pdf
Partes del Vehículo y Motor diésel y gasolina 1-2.pdfPartes del Vehículo y Motor diésel y gasolina 1-2.pdf
Partes del Vehículo y Motor diésel y gasolina 1-2.pdf
 
Lab final termodinamica
Lab final termodinamicaLab final termodinamica
Lab final termodinamica
 
Lab final termodinamica
Lab final termodinamicaLab final termodinamica
Lab final termodinamica
 
Motores De Ciclo Otto
Motores De Ciclo OttoMotores De Ciclo Otto
Motores De Ciclo Otto
 
Motores 1223070520057504-9 (1)
Motores 1223070520057504-9 (1)Motores 1223070520057504-9 (1)
Motores 1223070520057504-9 (1)
 
COMPONENTES DE UN AUTOMOVIL
COMPONENTES DE UN AUTOMOVIL COMPONENTES DE UN AUTOMOVIL
COMPONENTES DE UN AUTOMOVIL
 

Mehr von Victor Ruiz Ortiz

Mehr von Victor Ruiz Ortiz (20)

Electrónica
ElectrónicaElectrónica
Electrónica
 
Mecánica del motor 2
Mecánica del motor 2Mecánica del motor 2
Mecánica del motor 2
 
Transmisión automática 2
Transmisión automática 2Transmisión automática 2
Transmisión automática 2
 
Sistema de aire acondicionado
Sistema de aire acondicionadoSistema de aire acondicionado
Sistema de aire acondicionado
 
Sistema 4 wd
Sistema 4 wdSistema 4 wd
Sistema 4 wd
 
Funcionamiento del vehículo, servicio y mantenimiento
Funcionamiento del vehículo, servicio y mantenimientoFuncionamiento del vehículo, servicio y mantenimiento
Funcionamiento del vehículo, servicio y mantenimiento
 
Srs o airbag
Srs o airbagSrs o airbag
Srs o airbag
 
Sistema de suspensión 1
Sistema de suspensión 1Sistema de suspensión 1
Sistema de suspensión 1
 
Sistema de direccion 1
Sistema de direccion 1Sistema de direccion 1
Sistema de direccion 1
 
Transmisión manual 1
Transmisión manual 1Transmisión manual 1
Transmisión manual 1
 
Electricidad del motor 1
Electricidad del motor 1Electricidad del motor 1
Electricidad del motor 1
 
Conceptos eléctricos
Conceptos eléctricosConceptos eléctricos
Conceptos eléctricos
 
Sistema de frenos 1
Sistema de frenos 1Sistema de frenos 1
Sistema de frenos 1
 
Transmisión automática 1
Transmisión automática 1Transmisión automática 1
Transmisión automática 1
 
Nvh ruido v ibración y aspereza
Nvh   ruido v ibración y asperezaNvh   ruido v ibración y aspereza
Nvh ruido v ibración y aspereza
 
Communication textbook spanish
Communication textbook spanishCommunication textbook spanish
Communication textbook spanish
 
Ems 3 textbook spanish
Ems 3 textbook spanishEms 3 textbook spanish
Ems 3 textbook spanish
 
Ems diesel 2 textbook spanish
Ems diesel 2 textbook spanishEms diesel 2 textbook spanish
Ems diesel 2 textbook spanish
 
Ems diesel 1 textbook spanish
Ems diesel 1 textbook spanishEms diesel 1 textbook spanish
Ems diesel 1 textbook spanish
 
Ems gasoline 2 textbook spanish
Ems gasoline 2 textbook spanishEms gasoline 2 textbook spanish
Ems gasoline 2 textbook spanish
 

Mecánica del motor 1

  • 1. Mecánica del Motor 1 Mundo Mecánica Automotriz. Todos los derechos reservados reserved.
  • 2. Mecánica del Motor 1 Índice Página Principio básico de funcionamiento 4 Ciclo de trabajo de 4 tiempos 5 Clasificación de los motores 7 Requerimientos generales de los motores 9 Diámetro x Carrera, desplazamiento, relación de compresión 10 Potencia y torque del motor 11 Componentes del motor 13 Bloque de cilindros 14 Pistón y biela 17 Anillos de pistón 19 Cigüeñal 20 Volante y eje de balanceo 22 Juntas y sellos de aceite 24 Culata 26 Válvulas de admisión y escape 29 Mecanismo de válvulas 31 Alza válvulas, balancines y ajustador de tolerancia 33 Correa, cadena de distribución o engranajes conductores 34 Sincronización de válvulas continuamente variables 35 Lubricación del motor 37 Bomba de aceite y enfriador de aceite 40 Filtro de aceite 42 Ventilación del cárter del motor 43 Sistema de admisión y escape 46 Turbo cargador con compuerta de descarga 49 Turbo cargador de Geometría Variable 51 Sistema de refrigeración del motor 52 Termostato y bomba de agua 54 Radiador 56 Correa conductora 59 Soportes del motor 61 Aceite del motor 63 Revisión del aceite del motor 65 Drenaje del aceite del motor 66 Reemplazo del filtro de aceite 68 Reemplazo del aceite del motor 69 Rev:0 2 Mundo Mecánica Automotriz
  • 3. Mecánica del Motor 1 Sistema de refrigeración - Drenaje, relleno y retrolavado 70 Motores gasolina Kia (en línea) 71 Motores gasolina Kia (en V) 73 Motores diesel Kia 74 Rev:0 3 Mundo Mecánica Automotriz
  • 4. Mecánica del Motor 1 Principio Básico de Funcionamiento La finalidad de un motor gasolina para uso automotriz, es convertir la gasolina en movimiento para que el vehículo pueda desplazarse. Generalmente, la manera más fácil de crear movimiento a partir de la gasolina es quemar ésta dentro de un motor. Por lo tanto, un motor de automóvil es un motor de combustión interna, es decir, la combustión se produce al interior del motor. Existen diferentes tipos de motores de combustión interna. Uno es el motor Diesel y otro el motor Gasolina. Cada uno de estos tiene ventajas y desventajas. Un motor a vapor en trenes y botes antiguos es el mejor ejemplo de un motor de combustión externa. El combustible (carbón, madera, aceite, etc.) en un motor a vapor se quema fuera del motor para producir vapor y el vapor produce el movimiento del motor. La combustión interna es mucho más eficiente (consume menos combustible por kilómetro recorrido) que la combustión externa, además, un motor de combustión interna es mucho más pequeño que un motor equivalente de combustión externa. Un buen ejemplo de combustión interna es un viejo cañón de la Guerra de la Revolución. Usted probablemente ha visto a los soldados cargando el cañón con pólvora y una bala de cañón. Al encenderla, el calor y los gases producidos generan fuerza sobre la bala y la expulsan fuera del cañón a muy alta velocidad. El cañón usa el principio básico del motor de combustión interna: si se pone una pequeña cantidad de combustible que genera alta energía (como la gasolina) en un espacio pequeño y cerrado y se enciende, la energía se libera en forma de un gas expansivo. Rev:0 4 Mundo Mecánica Automotriz
  • 5. Mecánica del Motor 1 Ciclo de Trabajo de 4 Tiempos Los motores recíprocos están clasificados en dos tipos, de 2 ciclos y de 4 ciclos. En el motor recíproco la mezcla de aire y gasolina es inyectada y quemada dentro del cilindro, la fuerza de la combustión empuja al pistón en un movimiento alterno, y el movimiento alterno es convertido en un movimiento de rotación por el cigüeñal. Casi todos los vehículos actualmente usan el llamado motor de 4 tiempos para convertir el combustible en movimiento. El ciclo de trabajo de 4 tiempos también se conoce como el ciclo Otto, en honor a Nikolaus Otto, quien lo inventó en 1867. El eje horizontal del gráfico representa la presión dentro de la cámara de combustión y el eje vertical representa el volumen de la cámara de combustión. Los cuatro tiempos de funcionamiento del motor son: 1. Carrera de Admisión (A-B): El pistón inicia su movimiento desde la parte superior del cilindro, la válvula de admisión se abre, y el pistón se mueve hacia abajo. En los motores gasolina, el cilindro se llena con mezcla de aire y combustible. En los motores diesel, ingresa solamente aire a la cámara de combustión. 2. Carrera de Compresión (B-C): El pistón se mueve hacia arriba para comprimir la mezcla de aire/combustible, de manera que aumentan la temperatura y la presión. El combustible es vaporizado por el calor del aire. La relación de compresión en un motor gasolina es alrededor de 10:1, y en un motor diesel alrededor de 25:1. Rev:0 5 Mundo Mecánica Automotriz
  • 6. Mecánica del Motor 1 3. Carrera de Encendido / Combustión (C-D): El pistón llega al tope de su carrera, también llamado el Punto Muerto Superior (PMS). En un motor gasolina el encendido se iniciará con una chispa eléctrica generada en la bujía. En los motores diesel, el combustible es inyectado a la cámara de combustión justo antes que el pistón alcance el PMS y la mezcla de aire/combustible se enciende por el calor generado en la compresión. La mezcla no se quema completamente al momento del encendido. Como resultado, hay un cierto tiempo de retraso desde el inicio del encendido hasta que se produce la presión máxima dentro de la cámara de combustión. La mezcla de aire/combustible en el cilindro explota, empujando el pistón hacia abajo. 4. Carrera de Escape (D-E): Una vez que el pistón alcanza a la parte inferior de su carrera, también llamada el Punto Muerto Inferior (PMI), la válvula de escape se abre y los gases quemados salen del cilindro para dirigirse al conducto de escape. Ahora el motor esta listo para el próximo ciclo, de modo que ingresa una nueva carga de aire y gasolina frescos al cilindro. Rev:0 6 Mundo Mecánica Automotriz
  • 7. Mecánica del Motor 1 Clasificación de los Motores Los motores pueden clasificarse de la siguiente forma:  Por principio de trabajo: Gasolina (motor de encendido por chispa), o Diesel (motor de encendido por compresión)  Por el sistema de enfriamiento: Enfriado por Agua o Aire  Por el número de ciclos: Dos o cuatro carreras  Por el mecanismo de válvulas: Eje de Levas en la culata (OHC) o Válvulas en la culata (OHV)  Por el número de cilindros: los motores pueden tener 4, 6 ú 8 cilindros.  Por la disposición de los cilindros en el bloque: en un motor multi-ciIindrico, los cilindros usualmente están dispuestos en una de las tres siguientes formas: en línea, en V u horizontalmente opuestos. El motor de cilindros en línea, tiene los cilindros dispuestos en posición secuencial. En este tipo de motor, la estructura del bloque de cilindros es muy simple y la culata es una sola unidad, de modo que el motor es liviano y compacto. Estos pueden tener 3, 4, 5 ó 6 cilindros. El motor de cilindros en V, esta generalmente disponible con 6, 8, 10 ó 12 cilindros. Están instalados usualmente en vehículos grandes o en automóviles deportivos. El motor de cilindros horizontalmente opuestos esta disponible con 6, 8, 10 ó 12 cilindros. Debido a su bajo centro de gravedad se aplica principalmente a los vehículos deportivos. Rev:0 7 Mundo Mecánica Automotriz
  • 8. Mecánica del Motor 1 Disposición en el Vehículo La aplicación final del motor puede ser longitudinal o transversal y puede estar instalado en el frente, la mitad o la parte trasera del vehículo. Por ejemplo, el vehículo con motor Frontal y tracción Trasera, tiene el motor montado en el área delantera (longitudinalmente) y conduce las ruedas traseras mediante un eje de propulsión acoplado a la transmisión. El motor frontal (transversal) con tracción delantera es principalmente aplicado a los automóviles pequeños, debido a que el eje de rotación del motor y el eje propulsor están dispuestos en forma paralela, reduciendo de esa forma el espacio necesario para la instalación. Los motores instalados a la mitad del vehículo principalmente se enfocan en el rendimiento, más que en la comodidad del pasajero, de manera que son utilizados principalmente en los automóviles deportivos. Rev:0 8 Mundo Mecánica Automotriz
  • 9. Mecánica del Motor 1 Requerimientos Generales de los Motores Existen varios requerimientos que debe cumplir el motor. Cada desempeño esta ligado a otro de manera compleja y puede influir en el rendimiento del motor. Los requerimientos son:  Emisiones Bajas: La combustión eficiente en el motor es la clave principal para reducir las emisiones de escape. Esto se logra con diferentes diseños de cámara de combustión.  Compacto y liviano: Considerando que el peso del motor es de alrededor del 10- 15% del peso total del vehículo, otro método para conseguir una mayor potencia y eficiencia del combustible, es hacer que el motor sea compacto y liviano. Con la misma salida, la potencia del vehículo que tiene un motor más liviano será mayor y se reducirá el consumo de combustible.  Buena respuesta: El motor debe responder a los requerimientos del conductor, mientras se mantienen las condiciones de seguridad en la conducción.  Silencioso: Debido a que el motor genera la fuerza de conducción mediante la combustión de la gasolina, no se pueden evitar el ruido ni la vibración. Por eso es importante prevenir que estos ruidos y vibraciones se transmitan al habitáculo de pasajeros.  Facilidad en el servicio: Como el motor es una parte mecánica del vehículo, es importante tener acceso a los principales componentes durante el proceso de servicio. Rev:0 9 Mundo Mecánica Automotriz
  • 10. Mecánica del Motor 1 Diámetro x Carrera, Desplazamiento, Relación de Compresión El tamaño del motor es representado por el volumen de desplazamiento. El desplazamiento del cilindro es el volumen de un cilindro con el pistón moviéndose desde el Punto Muerto Inferior (PMI) al Punto Muerto Superior (PMS). El volumen total de desplazamiento es la suma del volumen de todos los cilindros. El volumen de desplazamiento del cilindro se calcula mediante la multiplicación del área de la sección transversal por la carrera en el cilindro. El área de la sección se calcula con el diámetro del cilindro. El diámetro y carrera puede diferir en cada motor aunque ellos tengan la misma cantidad de cilindros y desplazamiento. Esto se debe a los diferentes diámetros y carreras. El desplazamiento del motor puede ser representado por la unidad cm³ o litros. La relación de compresión se calcula dividiendo el volumen del cilindro con el volumen de la cámara de combustión. El volumen total de la cámara de combustión es el espacio entre la parte superior del pistón, cuando este se encuentra en el Punto Muerto Superior (PMS), y el volumen de la cámara en la culata.  Carrera corta (Motor Súper Cuadrado): Se usa para los motores de alta potencia y alta carga. La relación diámetro/carrera es inferior a 1, esto significa que la carrera es menor que el diámetro.  Carrera larga: La carrera larga se usa para conseguir un alto torque en el motor. La relación diámetro/carrera es superior a 1, esto significa que la carrera es mayor que el diámetro.  Carrera cuadrada (Motor Cuadrado): La relación diámetro/carrera es igual a 1, esto significa que la carrera es igual al diámetro. Rev:0 10 Mundo Mecánica Automotriz
  • 11. Mecánica del Motor 1 Potencia y Torque del Motor El desempeño básico del motor esta representado por dos factores principales, que son la potencia y el torque. Generalmente, el elemento más importante en el rendimiento del motor es la salida (potencia), también referida como caballos de fuerza (HP). Caballo de fuerza es la eficiencia del trabajo, que indica la cantidad de trabajo en un periodo específico de tiempo. Este concepto fue sugerido por James Watt, quien inventó el motor a vapor en Inglaterra. Un caballo de fuerza (HP) es la potencia requerida para levantar un peso de 75kg a 1 metro de altura en 1 segundo. Una abreviatura comúnmente usada para Caballo de Fuerza (HP) es PS, derivada de la expresión alemana “Pferde Stärke”. La potencia del motor actualmente se indica en kW. En el Sistema Internacional (S.I.) la unidad es representada en W (watt). 1 PS es alrededor de 735.4W. Por lo tanto 100PS son 73.5kW ó 100kW son 136PS. En las especificaciones técnicas, en algunas ocasiones, pueden encontrarse palabras adicionales tales como (Neto) o (Bruto), escritas entre las unidades de kW/rpm. El valor Bruto es la energía pura del motor, fuera del vehículo, y el valor Neto es la potencia con el motor instalado en el vehículo. Para el motor gasolina, el valor Neto es 15% menos que el valor Bruto. Esto se debe a las fuerzas de fricción de la transmisión, neumáticos, etc. El valor indicado siempre corresponde a la potencia bruta, si no se especifica lo contrario. La potencia del motor esta en función de tiempo. La potencia del motor aumentará proporcionalmente con las rpm porque la cantidad de trabajo por tiempo aumenta cuando las rpm son mayores. Sin embargo, debido a que las partes dinámicas no pueden girar más allá de cierto valor, las rpm y la potencia están limitadas. Por esta razón la potencia y las rpm se indican en conjunto, por ejemplo, 100kW a 6000rpm. Rev:0 11 Mundo Mecánica Automotriz
  • 12. Mecánica del Motor 1 El torque es la fuerza de torsión aplicada a un componente rotatorio como un perno, neumático, cigüeñal, etc. Esta no depende solamente de la fuerza aplicada, sino que también del largo del brazo de palanca sobre el cual actúa la fuerza. Por definición, torque es igual a fuerza multiplicada por brazo de palanca, el largo desde el centro giratorio al punto donde se aplica la fuerza. En un motor, el torque es igual a la fuerza con la que se desplaza el pistón, multiplicada por la distancia desde el centro del muñón de la biela al eje central del cigüeñal. Por lo tanto, la magnitud del torque esta decidida por la fuerza con que el pistón presiona a la biela, esto corresponde a la fuerza de combustión. El gráfico de desempeño del torque representa la fuerza del pistón aplicada al cigüeñal a ciertas rpm. Como esta fuerza se transmite a las ruedas, si el torque generado por el motor es bajo, el torque final del vehículo también será bajo. Inversamente, cuando el torque del motor es alto, el torque final también será alto. La salida de torque esta determinada por varios factores especialmente por la cantidad de aire aspirado por el cilindro. Considerando la relación entre el aire aspirado y las rpm del motor, cuando el motor tiene baja velocidad de rotación, el movimiento del pistón es lento y la cantidad de aire aspirado es reducida. Cuando el motor tiene una alta velocidad de rotación, el movimiento del pistón es rápido y la cantidad de aire aspirado es alta. Sin embargo, si el motor esta girando demasiado rápido, la válvula de admisión puede cerrarse antes que el cilindro aspire la cantidad correcta de aire. En este caso, la cantidad de aire aspirada por carrera (eficiencia volumétrica) se reduce, lo que resulta en menos torque y potencia del motor. Rev:0 12 Mundo Mecánica Automotriz
  • 13. Mecánica del Motor 1 Componentes del Motor El motor esta constituido por los siguientes componentes principales:  Bloque de cilindro, cigüeñal, cárter, pistón y biela  Culata, eje de levas, válvulas y mecanismo de sincronización  Sistema de admisión  Sistema de escape  Sistema de lubricación  Sistema de enfriamiento  Sistemas auxiliares, tales como el turbo cargador Rev:0 13 Mundo Mecánica Automotriz
  • 14. Mecánica del Motor 1 Bloque de Cilindros Tipos y Construcción El bloque de cilindros es el componente básico del motor. Esta construido con hierro fundido (motor diesel) o aluminio. Este incluye el cilindro, dentro del cual es pistón se mueve alternadamente, la camisa de agua para enfriar y mantener la temperatura del cilindro en un nivel aceptable, el túnel del cigüeñal y el cigüeñal instalado en su interior. La finalidad del cilindro es guiar el movimiento reciproco del pistón y soportar la fuerza y alta temperatura generadas por la combustión, enfriar apropiadamente el cilindro y soportar el cigüeñal. Para propósitos de resistencia, el bloque de cilindros en un motor diesel esta generalmente construido con hierro fundido debido a su alta resistencia al desgaste, corrosión y su capacidad de resistir el alto torque generado. Recientemente, para los motores gasolina se utiliza frecuentemente aleación de aluminio. El aluminio es más liviano y transmite el calor con mayor facilidad que el acero, de forma que es considerado como un material ideal para los motores a gasolina. Para aumentar la resistencia del bloque, se usa una estructura del tipo esqueleto del bloque de cilindros. Número del motor: El número de identificación del motor esta estampado en la placa del lado trasero derecho del borde del bloque de cilindros. Rev:0 14 Mundo Mecánica Automotriz
  • 15. Mecánica del Motor 1 Camisa del Cilindro: La pared del cilindro (referida como la camisa de cilindro) esta en contacto permanente con el pistón. Se lubrica con aceite del motor. La camisa de cilindro debe satisfacer requerimientos estrictos de duración, resistencia a altas temperaturas y bajo desgaste. En general, cuando el bloque de cilindro esta construido de hierro fundido, la camisa del cilindro se fabrica rectificando el cilindro de hierro fundido. Cuando el bloque de cilindro esta construido con aleación de aluminio, la pared interior del cilindro y la camisa del cilindro están fabricadas de hierro fundido para prevenir el desgaste de la pared. También hay cilindros sin camisa en los bloques de aleación de aluminio. Debido a que el cilindro sin camisa puede ser más liviano y compacto, tiene un alto costo de fabricación y se aplica principalmente en motores de alto rendimiento. Los motores KIA no utilizan cilindros del tipo de camisa húmeda. Camisa de agua: Una senda de agua refrigerante esta formada alrededor de la camisa del cilindro, conocida como la camisa de agua. Esta es necesaria para mantener la temperatura del motor a cierto valor absorbiendo la energía calórica proveniente de la energía remanente de la combustión. Esta puede ser una camisa del tipo siamesa o completa. En los últimos modelos también se usa una camisa de agua en el múltiple de admisión, adicional a la del bloque del motor. Rev:0 15 Mundo Mecánica Automotriz
  • 16. Mecánica del Motor 1 Cárter (caja del cigüeñal): Los dispositivos auxiliares, como el alternador, el compresor del sistema de aire acondicionado, los soportes de montaje del motor y la bomba de aceite para la dirección asistida están fijos al cárter del cigüeñal. El cárter del cigueñal es parte del bloque de cilindros y esta disponible como una unidad o apernada al bloque. El material del cigüeñal debe satisfacer los requisitos de resistencia al torque y vibración. Debido a la menor longitud del tipo de media camisa, es posible fabricar un bloque de motor liviano. Sin embargo la resistencia de la unión es débil comparada con el tipo de camisa profunda, por que el área de unión es pequeña. Adicionalmente el área para la fijación de los dispositivos auxiliares es menor. En la parte inferior del bloque de cilindros, también se instala un depósito de aceite para almacenar el aceite lubricante, el que tiene por finalidad lubricar y enfriar el motor. Esta fabricado de una hoja de acero estampado y se fija al bloque instalando un sello de goma, como en el caso de la tapa de válvulas. La placa de vibración de acero esta fabricada insertando una placa de resina entre dos placas de acero para prevenir la vibración. Rev:0 16 Mundo Mecánica Automotriz
  • 17. Mecánica del Motor 1 Pistón y Biela El pistón tiene las siguientes funciones:  Transferir la presión de combustión al cigüeñal a través del pasador de pistón y la biela  Sellar la cámara de combustión con el cárter  Transferir el calor a la pared del cilindro El pistón esta compuesto por: la cabeza del pistón, el área superior del pistón (corona), zona de los anillos, buje del pistón y falda del pistón. La cabeza del pistón debe soportar altas presiones y temperaturas, por ejemplo en un motor diesel sobre 200kg por cm², y 2000°C. El diseño del pistón depende del diseño de la cámara de combustión y tiene influencia en la calidad de la combustión. El área entre la cabeza del pistón y el primer anillo es conocida como área superior del pistón (corona). Su función es proteger el primer anillo del pistón del sobre calentamiento. La zona de anillos y los anillos del pistón sellan la cámara de combustión contra el cárter y viceversa. El buje del pistón contiene al pasador del pistón. La falda del pistón tiene las siguientes funciones:  Guiar el pistón  Transferir la fuerza lateral  Distribuir la película de aceite en la pared del cilindro  Disipar el calor hacia la pared del cilindro y aceite del motor Rev:0 17 Mundo Mecánica Automotriz
  • 18. Mecánica del Motor 1 El pistón debe cumplir con los siguientes requisitos:  Peso reducido, con la finalidad de reducir la fuerza de inercia del movimiento reciproco del pistón.  Capacidad de soportar las altas presiones y temperatura de la combustión. Estos requerimientos se satisfacen utilizando pistones de aleación liviana fabricados de aluminio y silicio. Existen pistones forjados o fundidos y también están disponibles los de aleación de aluminio con tratamiento de temperatura. Debido a la temperatura extremadamente alta de la combustión, la cabeza del pistón se expande y su diámetro aumenta. El anillo de acero o de aleación, instalado en el pistón previene una expansión excesiva de la cabeza del pistón. La pared del pistón en dirección del pasador del pistón tiene más masa que en dirección axial. Por esta razón la dilatación por calor del pistón es superior en la dirección del pasador. Para compensar esto, el pistón esta diseñado con un perfil ovalado, con un diámetro menor en dirección del pasador. Biela y pasador del pistón Las bielas están frecuentemente fabricadas en acero. Ellas no están fijas rígidamente en ningún extremo, debido a que el ángulo entre la biela y el pistón cambia en la medida que el pistón se mueve hacia arriba y abajo y gira alrededor del cigüeñal. El extremo pequeño se fija al pasador del pistón, el que se fija a presión en la biela pero que puede girar libre en el pistón. El extremo más grande conecta con el muñón del cigüeñal a través del cojinete. El giro se produce sobre cojinetes partidos a los que se puede acceder, para el reemplazo, mediante los pernos de la tapa de biela en el extremo de mayor diámetro. Generalmente hay un agujero perforado a través del cojinete y el extremo mayor de la biela de modo que se pueda inyectar aceite presurizado del motor en el lado axial de la pared de cilindro para lubricar el recorrido del pistón y los anillos. Rev:0 18 Mundo Mecánica Automotriz
  • 19. Mecánica del Motor 1 Anillos de Pistón Los anillos de pistón tienen las puntas abiertas y se instalan en la ranura del diámetro exterior del pistón. Las tres funciones principales de los anillos de pistón en un motor de combustión interna son:  Sellar la cámara de combustión  Contribuir a la transferencia de calor desde el pistón a la pared del cilindro.  Regular el consumo de aceite del motor. Muchos pistones de automóviles tienen tres anillos: dos para sellar la compresión (anillos de compresión); uno para sellar el aceite (anillo de aceite en la falda). Los diseños típicos del anillo de compresión son: rectangulares, de perfil cónico o del tipo trapezoidal. Los diseños típicos de anillo de aceite sin resorte son de cara cónica o de tipo ahusado. El diseño de los anillos de control de aceite cargados resorte espiral de 2 piezas o el formado por 3 piezas con resorte de expansor. Los anillos del pistón están sometidos a desgaste debido a que rozan con la pared del cilindro al subir y bajar. Para minimizar esto, están fabricados de un material muy duro – generalmente, hierro fundido – y el anillo inferior para el control de aceite esta diseñado para dejar una película de aceite lubricante de una poca micras de espesor en la camisa a medida que el pistón desciende. Cuando se instalan anillos de pistón nuevos, la separación entre las puntas es una medida crucial. Con el fin de que el anillo pueda mantenerse ajustado al pistón, éste no es continuo sino que esta partido en un punto de su circunferencia. Después de instalar los anillos, insertar el pistón en el cilindro con la ayuda de un compresor de anillos. El ancho de la separación de los extremos se mide con un calibre de láminas y debe estar dentro de la tolerancia requerida. <no debe haber una separación muy pequeña, debido a que bajo condiciones de funcionamiento en caliente puede llevar al atascamiento del pistón. Una separación muy grande indica excesivo desgaste en el cilindro y producirá un traspaso inaceptable de gases de combustión al cárter. Rev:0 19 Mundo Mecánica Automotriz
  • 20. Mecánica del Motor 1 Cigüeñal Tipos y construcción El cigüeñal es la parte del motor que convierte el movimiento reciproco lineal del pistón en movimiento de rotación. Los componentes que intervienen en este proceso son:  Pistón, anillos y pasador de pistón  Biela  Cigüeñal  Volante Los pistones se mueven alternamente entre el Punto Muerto Inferior (PMI) y el Punto Muerto Superior (PMS) cada pistón esta conectado al cigüeñal mediante un pasador de pistón y una biela. Las bielas por lo tanto se mueven lineal y rotacionalmente. El movimiento giratorio de cigüeñal es después transferido a los dispositivos tales como el volante, bomba de aceite, bomba de agua, etc. Adicionalmente, con el fin de reducir o eliminar las vibraciones del motor pueden instalarse ejes de balanceo. El diseño del cigüeñal depende de:  El número de cilindros  La disposición de los cilindros (en línea, en V, opuestos)  Sincronización del encendido  Número de descansos del cigueñal  Fuerza de la combustión Rev:0 20 Mundo Mecánica Automotriz
  • 21. Mecánica del Motor 1 Los cigüeñales están balanceados dinámicamente. Esto se consigue mediante agujeros en los descansos del cigüeñal. Adicionalmente, contrapesos compensan la masa de los apoyos del cigüeñal. Cojinete del cigüeñal: El cojinete tiene por finalidad contribuir a la rotación suave del cigüeñal. Generalmente, para el cigüeñal del motor se usa un cojinete plano. Los cojinetes planos ofrecen una mayor área de contacto, por lo tanto ellos pueden soportar fuerzas mayores en comparación con los cojinetes de rodillos. Los motores modernos de 4 cilindros en línea tienen 5 cojinetes de cigüeñal (los antiguos solamente 3). Los motores en V tienen menos cojinetes de cigüeñal, debido a que son más cortos. Se suministra aceite para asegurar que los materiales del cojinete plano y el cigüeñal no entren en contacto directo, y están separados bajo cualquier condición de carga del motor. Esto se logra mediante pasajes de aceite dentro del cigüeñal y de los cojinetes planos. El espesor de la película de aceite cambia dependiendo de la carga del motor o la temperatura. Cuando esta es muy pequeña, puede producirse adherencia por la temperatura de fricción y atascar el motor. Cuando es muy grande, el motor puede vibrar o se pueden producir ruidos. Rev:0 21 Mundo Mecánica Automotriz
  • 22. Mecánica del Motor 1 Volante y Eje de Balanceo Volante Con el fin de mantener una rotación suave y reducir las irregularidades de la fuerza rotacional, se incorpora un volante que se fija al cigüeñal. Debido a que la combustión ocurre solamente una vez cada dos revoluciones del cigüeñal, se requiere la inercia del volante para las carreras de admisión, compresión y escape. Si no hubiera un volante, la fuerza rotacional del cigüeñal se reduciría en estas carreras y el motor se apagaría a bajas rpm, tales como a velocidad de ralentí. En las transmisiones manuales, el disco de embrague esta instalado al lado plano del volante con el fin de transmitir la fuerza de propulsión a la transmisión. Volante de Doble Masa El volante de doble masa esta diseñado para absorber las vibraciones del motor antes que sean transmitidas a la línea de transmisión donde pueden producir ruido de piñones. Esto se logra dividiendo el volante convencional en dos secciones: una sección primaria (1), que se acopla al cigüeñal, y una sección secundaria (2) donde se atornilla el embrague y un anillo dentado (5) para el motor de arranque. La sección primaria del volante contiene resortes (3) para aislar las vibraciones del motor, y un dispositivo limitador de torque (4) para evitar que el torque del motor aumente excediendo la resistencia de los componentes del motor y la transmisión. Cuando ocurre un aumento excesivo de torque, el dispositivo limitador de torque permite a la sección primaria del volante girar independientemente de la sección secundaria, protegiendo de los daños a la línea de conducción y transmisión. Rev:0 22 Mundo Mecánica Automotriz
  • 23. Mecánica del Motor 1 Eje de Balanceo Los pistones, las bielas y el cigüeñal generan una fuerza de inercia producida por el movimiento reciproco y rotatorio. Uno o dos ejes de balanceo localizados en forma paralela al cigüeñal, ayudan a reducir o eliminar la ocurrencia de estas fuerzas. El gráfico representa la relación de la fuerza de inercia (en el eje vertical), que ocurre a diferentes ángulos de rotación del cigüeñal (en el eje horizontal). Cuando la fuerza de inercia superior del primer y cuarto pistón está en su valor máximo, la fuerza de inercia del segundo y tercer pistón es baja. A partir de esta relación se deduce que las fuerzas de inercia (baja y alta) se generan dos veces por revolución del cigüeñal. Un eje de balanceo que tiene el perfil de medio círculo se usa para reducir las vibraciones del motor. El eje de balanceo gira en dirección opuesta y dos veces más rápido que el cigüeñal. Esta fuerza de inercia adicional generada por el eje de balanceo eliminará la vibración. Rev:0 23 Mundo Mecánica Automotriz
  • 24. Mecánica del Motor 1 Juntas y Sellos de Aceite Las juntas forman un sello al ser comprimidas entre las partes estacionarias donde pudieran pasar líquidos o gases. Muchas juntas están fabricadas para ser utilizadas una sola vez. Ellas pueden estar contruidas de materiales suaves como corcho, goma, nitrilo, papel, materiales resistentes al calor o grafito: o también pueden estar fabricadas de aleaciones suaves y metales como el bronce, cobre, aluminio o láminas de acero suave. Algunos materiales pueden ser usados individualmente o en algunos casos combinados para producir el material funcional requerido. La elección del material y el diseño a usar depende del elemento a sellar, la presión, temperatura y los materiales y las superficies de unión que serán selladas. Las juntas de culata sellan y contienen la presión de la combustión dentro del motor, entre la culata y el bloque. Las juntas de culata modernas se construyen para resistir altas temperaturas y la detonación del motor. Algunas juntas de culatas modernas para alta temperatura son llamadas, en esencia, “anisotropicas”. Esto significa que la junta esta diseñado para conducir el calor lateralmente y para transferir el calor desde el motor al refrigerante en forma más rápida. Están construidas normalmente con un núcleo de acero. Materiales especiales de contacto se adhieren a ambos lados del núcleo de la junta para suministrar un sellado total bajo variadas condiciones de torque. Algunos sellos de culata también incorporan anillos corta fuego de acero inoxidable para ayudar a contener el calor y la presión dentro del cilindro. Adicionalmente, muchas juntas de culata agregan una base de silicona en la cubierta exterior en ambos lados del material laminado para suministrar una capacidad de sellado en frío durante el arranque y el calentamiento. Las juntas de culata también sellan los pasajes de aceite y controlan el flujo del refrigerante entre el bloque de cilindros y la culata y están provistas de molduras o anillos para prevenir la filtración y la corrosión. Rev:0 24 Mundo Mecánica Automotriz
  • 25. Mecánica del Motor 1 Algunos materiales están diseñados para dilatarse en la superficie aplicada y aumentar la capacidad de sellado. Por ejemplo, cuando el aceite dentro de la tapa de válvulas penetra al borde del material de la junta, esta diseñado para dilatarse aproximadamente 30%. Este efecto de dilatación aumenta la presión de sellado entre las superficies de la culata y la tapa de válvulas, y ayuda a sellar potenciales filtraciones. Las juntas alrededor de un elemento rotatorio podrían rápidamente gastarse y filtrar. Para sellar estas partes, se necesitan los sellos de aceite. El ampliamente usado es el sello de aceite dinámico del tipo labio. Este tiene un labio de goma de perfil dinámico que permanece en contacto con el eje a sellar mediante la acción de un resorte espiral circular. Un principio de sellado similar se utiliza para sellar la guía de válvula, impidiendo el ingreso de aceite a la cámara de combustión. Los ejes rotatorios o deslizantes también pueden ser sellados mediante anillos “O”, pero generalmente no son tan durables como los sellos de labio. Se usan varios materiales en la construcción de los sellos de aceite modernos, algunos son impregnados con cubiertas de materiales especiales que están diseñados para aumentar su capacidad de sellado en ejes gastados. Como regla general, los sellos de aceite deben ser reemplazados cuando un componente es desmontado. Rev:0 25 Mundo Mecánica Automotriz
  • 26. Mecánica del Motor 1 Culata Tipos y construcción La culata esta apernada a la parte superior del bloque de cilindros donde forma la parte superior de la cámara de combustión. Los motores en línea tienen solo una culata para todos los cilindros. Los motores con cilindros en V u horizontalmente opuestos tienen culatas separadas para cada banco de cilindros. Tal como el bloque del motor, la culata puede ser fabricada en hierro fundido, o aleación de aluminio. Una culata hecha de aleación de aluminio es más liviana que la de hierro fundido. El aluminio además conduce al calor en forma más rápida que el hierro. La culata contiene muchas partes de la cámara de combustión tales como las válvulas, bujías o inyectores. Internamente, la culata tiene conductos para que la mezcla de aire combustible ingrese al cilindro a través de las válvulas de admisión desde el múltiple, y para la salida de los gases quemados a través de las válvulas de escape hacia el múltiple de escape, y para que el refrigerante enfríe la culata y el motor. Las culatas están diseñadas para ayudar a mejorar el torbellino o turbulencia de la mezcla Aire/Combustible, y prevenir la formación de gotas en la superficie de la cámara de combustión o de las paredes del cilindro. Cuando la mezcla Aire/Combustible es comprimida entre el pistón y la parte plana de la culata, esto produce lo que se conoce como “chapoteo”. Lo que significa, comprimir los gases para aumentar su velocidad y turbulencia. Rev:0 26 Mundo Mecánica Automotriz
  • 27. Mecánica del Motor 1 En los motores a gasolina, los diseños de cámara de combustión más comunes son:  Hemisférica Pent roof.  Tipo Tina  Tipo Cuña. Una cámara de combustión hemisférica o pent-roof tiene la válvula de admisión a un lado de la cámara y la válvula de escape al otro lado. Esto suministra un flujo cruzado. La mezcla de Aire/Combustible entra en un lado, y los gases de escape salen por el otro. Al posicionar las válvulas de esta forma permiten un techo para válvulas y lumbreras relativamente grandes. Con la bujía en el centro del hemisferio, el frente de llama tiene menos distancia por recorrer que en otros diseños similares, lo que resulta en una combustión rápida y efectiva. Este diseño es común en una gran cantidad de vehículos de pasajeros. La cámara de combustión del tipo tina es de perfil oval, como una tina de baño invertida. Las válvulas están montadas verticalmente y una al lado de la otra, permitiendo un funcionamiento muy simple. La bujía esta expuesta en un lado, lo que produce un frente de llama corto. Las cámaras de combustión de tipo cuña disminuyen desde la bujía que esta en el lado más ancho del perfil. Las válvulas están en línea e inclinadas desde la vertical. Este diseño usualmente tiene un área de superficie menor que los otros, con menos área donde puedan condensarse gotas de combustible. Menos combustible queda sin quemar después de la combustión lo que reduce las emisiones de escape de hidrocarburos. Rev:0 27 Mundo Mecánica Automotriz
  • 28. Mecánica del Motor 1 Las cámaras de combustión diesel vienen son de 2 tipos principales. Inyección directa e inyección indirecta. Ambas están diseñadas para producir turbulencia, lo que ayuda al aire comprimido y al combustible inyectado a mezclarse de la mejor forma. Los motores que usan inyección directa tienen culatas con una cara plana. La cámara de combustión esta en la cabeza del pistón. En la inyección indirecta, el pistón es casi plano, o tiene una pequeña cavidad. La cámara de combustión principal esta entre la culata y la cabeza del pistón, pero una cámara pequeña, separada se encuentra en la culata. El combustible es inyectado en esta pequeña cámara que puede tener varios diseños. La cámara de torbellino esférica esta conectada a la cámara principal mediante un conducto angulado. Durante la compresión, el perfil esférico produce el torbellino de aire en la cámara. Esto ayuda a mejorar la formación de la mezcla de Aire/Combustible, logrando una mejor combustión. Rev:0 28 Mundo Mecánica Automotriz
  • 29. Mecánica del Motor 1 Válvulas de Admisión y Escape Los motores de 4 tiempos de gasolina y diesel usan válvulas que están ubicadas en la culata. Las válvulas de admisión permiten el paso solamente de aire o de una mezcla de Aire/Combustible, de manera que ellas funcionan a temperaturas mucho menores que las válvulas de escape. Son generalmente más grandes que las válvulas de escape debido a que la presión que fuerza la carga del cilindro es mucho menor que la presión que fuerza los gases de escape fuera del cilindro. Los distintos tipos de motores usan diferentes combinaciones de válvulas. Tener más de una válvula de admisión suministra una mejor respiración. Una válvula adicional de admisión permite conductos de admisión más grandes y un flujo con mayor libertad en el cilindro, de modo que el motor recibe una mejor carga. De manera similar, dos válvulas de escape significan que el cilindro puede ser diseñado con lumbreras de escape más grandes, lo que permite un mejor flujo de gases de escape fuera del cilindro. Las válvulas experimentan una enorme tensión aún en condiciones normales. Se usan varios tratamientos superficiales para ayudar a la válvula a resistir el desgaste, el quemado y la corrosión. Las válvulas de admisión están fabricadas de acero aleado con cromo o silicio para hacerlas más resistentes a la corrosión, y con manganeso y níquel para mejorar su resistencia. Las válvulas de escapes están fabricadas de aleación en base a níquel. Una válvula de movimiento vertical tiene dos partes principales, el vástago y la cabeza. Esta se ajusta a una lumbrera en la culata. Su cara produce un sello hermético de gas contra el asiento. Durante el funcionamiento, la culata cerca de la cara de la válvula transfiere calor al asiento. Parte de este calor es conducido al vástago de la válvula. El vástago transfiere el calor a la guía, de manera que el vástago es la parte más fría de la válvula. El asiento de la válvula y la guía también son enfriadas mediante el refrigerante en pasajes alrededor de las lumbreras de la válvula. A medida que la válvula abre y cierra, tiene una tendencia natural a girar, muy gradualmente, de manera que permanece asentada en una nueva ubicación. Rev:0 29 Mundo Mecánica Automotriz
  • 30. Mecánica del Motor 1 Esto produce una acción ligera de limpieza que ayuda a mantener la cara y el asiento libres de carbón. Esto también ayuda a prevenir el atascamiento de la guía de la válvula y distribuye el calor alrededor del asiento de la válvula. La válvula opera en una guía y es exactamente concéntrica con el asiento de la válvula. La guía de la válvula es un cilindro perforado en el que se mueve el vástago de la válvula. El área de la guía de válvula puede ser maquinada en el metal de la culata, o pueden practicarse orificios para insertar las guías. En las culatas de aluminio son necesaria guías de hierro fundido para suministrar una superficie apropiada de apoyo para el vástago de la válvula. Muchas culatas usan guías de válvulas reemplazables que tienen la forma de un buje de metal insertado a presión en los orificios de la culata. Otras culatas tienen guías fundidas como parte de la culata. Entonces son perforadas en base a la medida del vástago de la válvula durante la fabricación. La parte superior de la guía de la válvula esta sellada mediante un sello de válvula. El resorte de la válvula ejerce presión en la dirección de cierre de la válvula. Esta se usa para mantener el hermetismo del aire y prevenir la filtración de gas. Se usan diferentes tipos de resortes, como el de paso variable o resorte doble. Rev:0 30 Mundo Mecánica Automotriz
  • 31. Mecánica del Motor 1 Mecanismo de Válvulas Tipos y construcción El mecanismo de válvulas es responsable de controlar el inicio y el fin del cambio de gas de admisión y escape. Los principales componentes del mecanismo de válvulas son el eje de levas, el ajustador de holgura, los balancines y las válvulas. Existen diferentes tipos de mecanismos de válvulas, dependiendo de la cantidad de ejes de levas y la ubicación de éstos. Se conocen como: OHV (Válvulas en la Culata): En un sistema de válvulas sobre la culata o de varillas de empuje las válvulas están en la culata, pero el eje de levas esta en el bloque cerca del cigüeñal. Un alza válvulas o un impulsor esta montado en la leva. A la medida que el lóbulo de la leva alcanza al alza válvulas, este se levanta y transfiere el movimiento a la varilla de empuje. Este entonces acciona un balancín que a su vez empuja la válvula para que se abra. Existen diferentes tipos de alza válvulas. Un alza válvulas sólido es usualmente un cilindro de hierro fundido, perforado, montado en un agujero del cárter del cigueñal. Esta libre para girar suavemente, lo que distribuye el desgaste desde la leva a la cara del impulsor. Actualmente los siguientes tipos son los más comunes: OHC (Eje de Levas sobre la Culata), DOHC (Doble Eje de Levas sobre la Culata), CIH (Eje de Levas en la Culata) Rev:0 31 Mundo Mecánica Automotriz
  • 32. Mecánica del Motor 1 Eje de Levas: El eje de levas conduce la apertura y cierre de la lumbrera de admisión para el ingreso de la mezcla de combustible a la cámara de combustión y la lumbrera de escape para expulsar los gases quemados. Comparado con el cigüeñal, el eje de levas gira con una relación de 2:1. Por lo tanto el eje de levas gira con la relación de una vuelta por cada dos vueltas del cigüeñal. La porción de extracción de la leva se llama la nariz de la leva. La altura se llama el alzamiento de la leva. El alzamiento significa que la leva levantará la válvula de manera que su estado de apertura esta determinado por el diseño de la leva. El tiempo de apertura y cierre de las válvulas esta determinado por el ángulo de operación, el ángulo desde el punto de inicio y el punto de termino de la nariz. El cruce de válvulas juega un papel importante en las características de funcionamiento del motor. Un cruce muy pequeño suministra al motor un ralentí suave y un buen torque a baja velocidad, pero impide el desempeño del motor a altas velocidades. Un cruce de válvulas muy grande permite una excelente aspiración del motor a altas rpm, pero provoca un ralentí áspero y un pobre desempeño a bajas rpm. El eje de levas puede usarse además para impulsar el distribuidor, la bomba de aceite, la bomba de combustible o la bomba de vació (en los motores diesel). El eje de levas gira sobre cojinetes planos y se lubrica con el aceite del motor. Se usan dos tipos de diseño de eje de levas, conocido como el de tipo sólido o hueco. Rev:0 32 Mundo Mecánica Automotriz
  • 33. Mecánica del Motor 1 Alza Válvulas, Balancines y Ajustador de Tolerancia La finalidad del ajustador de tolerancia y el balancín es cambiar el movimiento giratorio del eje de levas en movimiento reciproco de la válvula. La apertura entre la punta de la válvula y el mecanismo de válvulas se llama holgura de válvula o juego de válvulas. Este debe mantenerse cuando la leva no esta aplicando presión para abrir la válvula. Este puede ajustarse con un tornillo y una contratuerca en el balancín o mediante el uso de láminas. Este ajuste debe realizarse regularmente. Los balancines transmiten el movimiento a las válvulas. El balancín se mueve hacia arriba y abajo usando un mecanismo de balanceo. Algunos balancines están hechos de hierro fundido o de aleación de aluminio. Otros son de acero estampado. Muchos motores actuales usan alza válvulas hidráulicos. Su finalidad es conseguir un funcionamiento silencioso del motor y eliminar la necesidad de ajuste de holgura de las válvulas. Cuando el motor esta funcionando, se suministra aceite a presión desde el sistema de lubricación del motor al impulsor. El aceite es asistido por la tensión de un resorte para mantener la tolerancia en cero, pero mediante un sistema de válvulas este es atrapado en el impulsor cuando el eje de levas lo levanta. Debido a que el aceite no se comprime, el impulsor actúa como un alza válvulas sólido. Cuando la válvula esta cerrada, parte del aceite se pierde durante el periodo previo al próximo levantamiento, y de esta forma se mantiene la tolerancia de la válvula en cero. Los impulsores hidráulicos de válvulas generalmente usan balancines estampados o forjados de lámina metálica o de aluminio fundido. Rev:0 33 Mundo Mecánica Automotriz
  • 34. Mecánica del Motor 1 Correa, Cadena de Distribución o Engranajes Conductores En los motores con eje de levas sobre la culata se usa correa de distribución, cadena o engranajes, debido a que el eje de levas esta alejado del cigüeñal. También es posible una combinación, por ejemplo, correa de distribución y cadena o correa de distribución y engranajes. El sistema típico de cadenas usa un tensor hidráulico. La cadena también puede usar guías para reducir el ruido y la vibración. Nótese que los tensores hidráulicos pueden también encontrarse en un sistema con correa de distribución. La correa dentada de distribución esta fabricada de fibra de vidrio o cable reforzado con goma sintética. Sus dientes ajustan con los de las poleas del cigüeñal y del eje de levas. Las correas de distribución son más silenciosas que las cadenas, pero generalmente necesitan tensión manual. Tienen una vida útil más corta que las cadenas. Necesitan reemplazo regular alrededor de 80.000 a 100.000 kilómetros. Rev:0 34 Mundo Mecánica Automotriz
  • 35. Mecánica del Motor 1 Sincronización de Válvulas Continuamente Variable En algunos motores se instala un Sistema de Sincronización Continuamente Variable de Válvulas (CVVT), acoplado al eje de levas de admisión o de escape del motor. El mecanismo CVVT puede cambiar el tiempo de apertura y cierre de las válvulas de admisión en relación con la carga y velocidad del motor, ajustando de esa manera el valor óptimo de sincronización de válvulas. El sistema CVVT esta controlado por una Válvula de Control de Aceite (OCV), que a su vez es controlada por el Modulo de Control del Motor (ECM). El perfil en forma de paletas del conjunto CVVT forma en total 8 cámaras, donde cuatro cámaras se usan para cambiar la posición de las paletas en una condición de avance y las otra cuatro cámaras se usan para retardar la posición de las paletas. El aceite para avanzar o retardar la sincronización de las válvulas se suministra mediante dos orificios dentro del eje de levas. El sellado de las paletas se realiza con teflón y se necesita para sellar las cámaras de avance y retardo unas de otras, permitiendo de esa manera levantar presión dentro de las cámaras. Un pasador de tope mantiene las paletas en su posición completamente retardada cuando el motor esta detenido, cuando la presión del aceite es muy baja o cuando ocurre una falla en el circuito de control del CVVT. El pasador de tope se libera tan pronto como se alcanza una presión de aceite de aproximadamente 0.5 bar. La Válvula de Control de Aceite (OCV) esta ubicada dentro de la culata. Se suministra aceite presurizado a la OCV a través de un filtro que también esta ubicado dentro de la culata. El orificio de salida de la OCV permite el ingreso de aceite presurizado a la cámara de paletas, por lo tanto el otro orificio permite drenar el aceite de la cámara opuesta de las paletas. Rev:0 35 Mundo Mecánica Automotriz
  • 36. Mecánica del Motor 1 Filtro El filtro esta instalado entre la bomba de aceite (lado de presión) y Válvula de Control de Aceite, ubicado al interior de la culata. Nota: El filtro es libre de mantención. En caso de sobrecalentamiento del motor este elemento debe revisarse por posible deformación. Rev:0 36 Mundo Mecánica Automotriz
  • 37. Mecánica del Motor 1 Lubricación del Motor El sistema de lubricación esta compuesto por los siguientes elementos:  Deposito del aceite (cárter), Bomba de aceite, Filtro de aceite, Galerías de aceite El sistema de lubricación distribuye el aceite por todo el motor. El aceite es arrastrado desde el cárter por una bomba de aceite. Las galerías de aceite son pequeños conductos en el bloque de cilindros que dirigen el aceite a las partes móviles del motor. Las galerías permiten el suministro de aceite a los cojinetes del eje de levas, mecanismo de válvulas y los cojinetes del cigüeñal. Perforaciones practicadas en el cigüeñal permiten suministrar aceite a los cojinetes de bancada. El aceite que se bombea hacia los cojinetes de bancada del cigüeñal, es conducido a través de pasajes de aceite a las bielas. El aceite también puede ser salpicado desde las bielas a las paredes del cilindro. Después de circular a través del motor, el aceite cae nuevamente al cárter para enfriarse. Este sistema de lubricación es llamado de cárter húmedo debido a que el aceite se mantiene en el cárter listo para ser usado en una próxima oportunidad. Algunos motores especiales usan un sistema de lubricación de cárter seco. Este utiliza todas las partes que componen un sistema de cárter húmedo y lubrica el motor de la misma manera. La diferencia con el cárter húmedo es la manera en que circula el aceite. En un sistema de cárter seco, el aceite cae a la parte inferior del motor en un depósito colector. Una bomba lo recoge y lo bombea a un tanque de aceite donde es almacenado hasta que la bomba de aceite normal lo recoge y bombea a través del filtro y el motor de forma convencional. Debido a que no hay un depósito de aceite debajo del motor, el motor puede montarse mucho más bajo que en un sistema de cárter húmedo. El tanque de aceite puede ubicarse lejos del motor, donde puede ser refrigerado de mejor forma. La cantidad de aceite en el sistema puede ser mucho más grande que en un sistema de cárter húmedo. Rev:0 37 Mundo Mecánica Automotriz
  • 38. Mecánica del Motor 1 Los motores diesel son lubricados en gran manera de la misma forma que los motores a gasolina, pero existen algunas diferencias los motores diesel generalmente operan en el extremo superior de su rango de potencia de forma que su temperatura de funcionamiento es usualmente mayor que aquellos motores a gasolina similares, de manera que las partes en los motores diesel están usualmente sometidas a mayor tensión. Como resultado, los aceites diesel necesitan un rango diferente de propiedades y son clasificados en forma diferente. Válvula de alivio de presión de aceite: Una válvula de alivio de presión de aceite limita el aumento de presión excesiva. Esto es como una pérdida controlada, recirculando la cantidad justa de aceite al cárter para regular la presión en el sistema. En condiciones frías, la presión de aceite requerida para impulsarlo a las tolerancias pequeñas en los cojinetes puede ser excesiva y dañar la bomba. Aquí la válvula se abre por el exceso de presión y recircula parte del aceite al cárter. Rev:0 38 Mundo Mecánica Automotriz
  • 39. Mecánica del Motor 1 Cárter de aceite: El cárter esta apernado al motor en la parte baja del bloque. Es un depósito o contenedor de almacenamiento para el aceite lubricante del motor, y contiene el aceite que retorna desde el sistema de lubricación del motor. El cárter puede estar formado por una delgada lámina de metal estampada y diseñado para asegurar que el aceite fluya a la sección más profunda. El tubo de succión y un filtro de malla están localizados en la sección más profunda para asegurar que permanezcan sumergidos en el aceite y prevenir que se arrastre aire a la bomba de aceite. El filtro de malla retiene las partículas grandes de suciedad y carbón que pudiera dañar la bomba. El tubo de succión conduce hacia la entrada de la bomba de aceite, en el lado de baja presión de la bomba. Deflectores previenen las olas que alejen el aceite del captador durante el viraje, frenadas y aceleraciones. La gran superficie externa del cárter ayuda a transferir el calor del aceite al aire exterior. En algunos diseños, el cárter es de aleación de aluminio con aletas y costillas para ayudar a la transferencia de calor. Luz de advertencia de presión de aceite Si la luz se enciende mientras el motor esta funcionando, esto puede indicar que la presión de aceite es baja y el sistema de lubricación no esta trabajando apropiadamente; detener el motor, revisar el nivel de aceite y agregar aceite si es necesario. Rev:0 39 Mundo Mecánica Automotriz
  • 40. Mecánica del Motor 1 Bomba de Aceite y Enfriador de Aceite La bomba de aceite suministra más aceite del que necesita el motor. Esta es una medida de seguridad para asegurar que al motor nunca le falte de aceite. Con el aumento de la velocidad del motor, el volumen de aceite suministrado por la bomba también aumenta. Las tolerancias entre las partes móviles del motor impiden que el aceite escape de vuelta al cárter y la presión aumenta en el sistema. Existen diferentes diseños de bomba de aceite y la bomba puede ser conducida por el eje de levas o por el cigüeñal. Bomba de rotor (Trocoidal): En una bomba de aceite del tipo rotor, un rotor interior conduce a uno exterior. Al girar el volumen entre ellos aumenta. El mayor volumen disminuye la presión en la entrada de la bomba. La presión atmosférica en ese momento es mayor. Esta fuerza al aceite al interior de la bomba y llena los espacios entre los lóbulos del rotor. A medida que los lóbulos del rotor interior se mueven en los espacios del rotor exterior, el aceite es comprimido y expulsado por la salida de la bomba. Bomba de engranajes: En una bomba de aceite de engranajes, el piñón conductor engrana con un piñón secundario. Al girar ambos, sus dientes se separan, creando un área de baja presión. La presión atmosférica del exterior, fuerza el aceite en la entrada. Los espacios entre los dientes se llenan con aceite. Los engranajes giran y conducen el aceite alrededor de la cámara, los dientes engranan nuevamente y el aceite es forzado desde la salida hacia el filtro de aceite. Rev:0 40 Mundo Mecánica Automotriz
  • 41. Mecánica del Motor 1 Bomba decreciente: La bomba decreciente esta compuesta por dos piñones que giran; un piñón interno con sus dientes en el exterior, y piñón interno con sus dientes en el interior. El piñón exterior es más grande y tiene más dientes. Pero los dientes tienen la misma medida. Al separarse los dientes (lado inferior izquierdo en la imagen), ellos pasan por sobre el orificio de admisión (mostrado detrás de los piñones en negro a la izquierda). Succionan fluido, luego los piñones se separan por un sello de media luna (mostrado en color café). Cuando los dientes comienzan a unirse nuevamente (lado superior derecho) comprimen el aceite a través del orificio de salida (mostrado en negro en el centro superior de la figura). Generalmente el piñón interior esta acoplado a un eje conductor y el piñón exterior gira movido por el piñón interior en el punto de contacto (área superior izquierda de la figura). Las ventajas de la bomba decreciente incluyen un diseño simple y bajos requerimientos de mantención. La bomba creciente es común en muchas aplicaciones, incluyendo las transmisiones automáticas. Enfriador de aceite Es común que algunos motores usen un enfriador de aceite para refrigerar el aceite en el motor. En algunos motores el enfriador y el filtro de aceite están montados como un conjunto en el bloque del motor. Rev:0 41 Mundo Mecánica Automotriz
  • 42. Mecánica del Motor 1 Filtro de Aceite En muchos motores el aceite entra a la bomba a través de una malla hecha de una pantalla de gasa que separa las partículas mayores de suciedad. Este después es filtrado por un filtro de aceite. El tipo común de elemento de filtro es hecho de papel impregnado con resina. Este no puede limpiarse si no que debe ser renovado periódicamente. El aceite entra al depósito del filtro en la parte exterior, pasa a través de la cubierta perforada, luego a través del elemento al tubo central de salida hacia el motor.Un filtro de flujo total a presión esta incorporado afuera del bloque. Este filtro puede obstruirse con sedimento, esta equipado con una válvula de desvío que abre cuando la presión al interior del filtro excede un valor fijado. La válvula también abre cuando el aceite esta frío y muy espeso para pasar a través del filtro. Este filtro esta fabricado de varios materiales capaces de contener hasta las partículas más pequeñas de suciedad, pero con una gran superficie, lo que permite el fácil acceso del aceite para fluir a través de él. Muchos filtros de aceite en los motores diesel son más grandes que los similares en un motor de gasolina. Los motores diesel producen más partículas de carbón que los motores a gasolina, de modo que el filtro de aceite puede tener un elemento de flujo completo para atrapar las impurezas mayores, y un elemento de desvío para almacenar los sedimentos y el hollín de carbón. Los filtros centrifugos son un tipo de filtro poco común, estos funcionan basados en el principio que el material sólido es generalmente más pesado que el aceite. Un depósito circular gira a alta velocidad y las partículas sólidas son lanzadas al exterior y retenidas en el depósito, mientras que el aceite pasa a través de una ruta central de escape. Rev:0 42 Mundo Mecánica Automotriz
  • 43. Mecánica del Motor 1 Ventilación del Cárter del Motor Durante la carrera normal de compresión, una pequeña cantidad de gases en la cámara de combustión escapa al rededor del pistón. Aproximadamente 70% de estos gases “soplados” son combustible sin quemar (HC) que pueden diluir y contaminar el aceite del motor, causando corrosión a los componentes criticos y contribuyendo a la producción de sedimento. A alta velocidad del motor, esta filtración de gases, produce un aumento de presión en el cárter que puede causar perdida de aceite desde las áreas selladas del motor. La finalidad del sistema de Ventilación Positiva del Cárter (PCV) es remover estos gases peligrosos desde el cárter antes que ocurra algún daño, y combinarlos con la mezcla normal de Aire/Combustible que ingresa al motor. Existen dos tipos disponibles, conocidos como el de tipo orificio fijo y el de flujo variable. A diferencia de los sistemas del tipo orificio fijo, los sistemas PCV utilizan una válvula PCV de flujo variable, unen las características del flujo de ventilación con la producción de gases filtrados con más precisión, como se muestra en el gráfico. Los sistemas PCV de flujo variable son además muy simples en diseño y están compuestos por los siguientes elementos:  Válvula PCV  Manguera de purga PCV  Manguera de respiración Rev:0 43 Mundo Mecánica Automotriz
  • 44. Mecánica del Motor 1 Generalmente, la producción de gases de recirculación es mayor durante las operaciones con alta carga y muy menores durante el ralentí y las operaciones con baja carga. Debido a que las características del vacío del múltiple no reúnen los requerimientos de flujo necesario para una apropiada ventilación del cárter se usa una válvula PCV para regular el flujo de estos gases en el múltiple de admisión. Durante el ralentí y la desaceleración, la producción de gases es muy baja, pero el vacío en el múltiple de admisión es muy alto. Esto hace que la aguja al interior de la válvula PCV se encuentre completamente retraída contra la tensión del resorte.El posicionamiento de la aguja suministra un pequeño pasaje de vacío y permite el flujo de los gases a la cámara de combustión. Durante la conducción a baja carga, la aguja dentro de la válvula PCV esta posicionada en cierto modo al centro de su recorrido. Esta posición permite el flujo de un volumen moderado de gases a la cámara de combustión. Durante la aceleración y operación con alta carga, la producción de gases es muy alta. La aguja se extiende aún más desde la restricción permitiendo el máximo flujo de gases a la cámara de combustión. Durante el funcionamiento del motor a cargas extremadamente altas, si el volumen de gases excede la capacidad de la válvula PCV para arrastra los vapores, el exceso de gases fluye a través de la manguera de respiración al cuerpo del filtro de aire donde puede entrar a la cámara de combustión. Cuando el motor esta apagado o en condiciones de detonación del motor, la tensión del resorte cierra completamente la válvula impidiendo la liberación de gases al múltiple de admisión. La válvula se cierra durante una detonación para prevenir el ingreso de la llama al cárter donde podría encender los vapores de combustible encerrados. El sistema PCV afecta las emisiones y la capacidad de conducción. Rev:0 44 Mundo Mecánica Automotriz
  • 45. Mecánica del Motor 1 Debido a que la operación de la PCV es un factor del funcionamiento apropiado de la retroalimentación del sistema de control, los problemas con el sistema PCV pueden alterar el balance normal de la relación Aire/Combustible. Una válvula PCV bloqueada impedirá el flujo normal de vapores del cárter al motor y pueden resultar en una mezcla de Aire/Combustible más rica que lo normal. Una manguera de respiración del cárter obstruida puede causar que el motor consuma aceite debido al aumento en el nivel de vacío del cárter. Adicionalmente, dependiendo de la ubicación de la manguera de respiración de aire fresco, una válvula con mal funcionamiento o una manguera de vacío restringida, pueden causar contaminación por aceite en el cuerpo del filtro de aire o formación de carbón en el cuerpo de aceleración. Siempre debe sospecharse y revisar el sistema PCV si se encuentran rastros de aceite en el sistema de admisión de aire. Rev:0 45 Mundo Mecánica Automotriz
  • 46. Mecánica del Motor 1 Sistema de Admisión y Escape El Sistema de Admisión de Aire del Motor generalmente comprende los siguientes componentes: 1. Entrada de aire 2. Cuerpo del filtro de aire 3. Elemento del filtro 4. Sensor de Flujo de Masa de Aire (dependiendo del sistema de control del motor) 5. Tuberías de conexión 6. Conexión al Turbo cargador (dependiendo del motor) 7. Conexión desde el Turbo cargador (dependiendo del motor) 8. Conexión a la carga del enfriador de aire (dependiendo del motor) 9. Conexión desde la carga del enfriador de aire (dependiendo del motor) 10. Conexión al múltiple de admisión Elemento del filtro de aire. El filtro de aire típico es un elemento de papel plegado, desechable con una junta de sellado fabricada en material sintético. Los filtros están disponibles en dos tipos principales: el tipo panel como el que se usa en la mayoría de los vehículos de inyección de combustible, y el tipo radial, que se usa generalmente en los vehículos con carburador. El filtro de aire atrapa las partículas de polvo que pueden causar daño a los cilindros del motor, paredes, pistón y anillos. El filtro de aire también juega un papel importante al mantener libre de contaminantes el sensor de flujo de aire y en algunos casos el limpiar el aire que entra al cárter por la ventilación del cárter. El filtro de aire también sirve como un silenciador del sistema de admisión. Rev:0 46 Mundo Mecánica Automotriz
  • 47. Mecánica del Motor 1 Turbo cargador / Intercooler (Inter enfriador) El Turbo cargador sirve para incrementar la potencia de un motor. Como la temperatura del aire de admisión aumenta en los motores con turbo cargador, hay un aumento en la temperatura de combustión y por lo tanto en las emisiones. En los motores equipados con turbo cargador, una forma efectiva para reducir las emisiones es enfriar el aire comprimido. Enfriamiento del Turbo cargador El turbo cargador es refrigerado por agua, lo que reduce la temperatura en el cuerpo de cojinetes considerablemente. La reducción de temperatura disminuye el riesgo de ebullición del aceite y el daño que pudiera aparecer como resultado. El refrigerante es conducido mediante una tubería desde la culata del motor. Después de pasar por el cuerpo de cojinetes, el refrigerante es conducido a través de tuberías al cuerpo del termostato. Lubricación del Turbo cargador El eje del turbo cargador, que gira a muy alta velocidad, es balanceado con precisión y esta soportado por bujes y cojinetes fijos y deslizantes. Esta disposición de cojinetes demanda un alto flujo de aceite, por lo que el eje gira sobre una película de aceite. Este aceite proviene del sistema de lubricación del motor a través de un pasaje especial adaptado en el cuerpo del filtro de aceite. El retorno de aceite pasa al cárter de aceite del motor. El sello entre el eje y el cuerpo de cojinetes contiene anillos (semejantes a los anillos de pistón) localizados en ranuras del eje. El eje del turbo, que gira a muy altas velocidades es balanceado cuidadosamente y descansa en los llamados bujes de cojinetes planos flotantes. Rev:0 47 Mundo Mecánica Automotriz
  • 48. Mecánica del Motor 1 Sistema de escape El sistema de escape esta diseñado para descargar los gases de escape del motor con una baja resistencia al flujo, bajo nivel de ruido y larga duración. El sistema de escape esta compuesto por el múltiple de escape, una sección frontal con el convertidor catalítico y una sección trasera con silenciadores. El silenciador generalmente es una combinación de un resonador y silenciadores de absorción. Las secciones están generalmente conectadas unas a otras mediante uniones y gomas montadas en diferentes puntos, escudos de calor están ubicados sobre las zonas más calientes del sistema de escape para proteger los puntos expuestos donde la radiación del calor pudiera producir algún problema. Silenciador semi activo Algunos modelos incorporan un silenciador semi activo. Bajo las 3000 rpm, el desvío interno se cierra para disminuir los ruidos. Sobre eso la presión inversa abre el desvío para mejorar el desempeño. Rev:0 48 Mundo Mecánica Automotriz
  • 49. Mecánica del Motor 1 Turbo Cargador con Compuerta de Descarga La carga aire a presión se debe principalmente a la velocidad y carga del motor. A baja carga del motor, el volumen del gas de escape que conduce la turbina es relativamente pequeño y todo el gas de escape necesita pasar por la turbina a fin de mover la turbina y el compresor. Cuando la carga del motor es más alta, el volumen de gas de escape también es mayor, esto significa que la energía que conduce el turbo es mayor y el compresor entonces fuerza más aire al interior del motor. Si la carga del motor aumenta aún más, el volumen de gas de escape producido por el motor será superior al necesario para conducir el compresor en forma proporcional a la masa da aire correcta para la combustión. A altas cargas, el volumen de gases que acciona la turbina debe entonces limitarse para que el motor produzca el flujo correcto de aire. Esto se consigue con una válvula, llamada compuerta de descarga, que abre un pasaje de desvío paralelo a la turbina. El exceso de aire que no es necesario para accionar la turbina pasa a través de este conducto. La válvula de descarga es una válvula de compuerta que abre y cierra el pasaje de desvío al lado de la rueda de turbina. Esta válvula es controlada por un diafragma en el cuerpo del compresor y es accionada por una varilla desde el diafragma localizado en el cuerpo del compresor. Un resorte de espiral en la caja del diafragma actúa en la dirección de cierre mientras que la presión del diafragma actúa en la dirección de apertura. La caja del diafragma es controlada mediante una manguera desde el turbo cargador a través de una válvula solenoide, el que a su vez es controlado por el Modulo de Control del Motor (ECM). Rev:0 49 Mundo Mecánica Automotriz
  • 50. Mecánica del Motor 1 Control del turbo a baja carga: A baja carga, la válvula de descarga esta cerrada. Entonces todo el gas de escape pasa a través de la turbina. Control del turbo a alta carga: Con alta carga, el volumen del gas de escape es mayor, lo que hace que la rueda de la turbina gire más rápido. Esto suministra un mayor desplazamiento de aire hacia el motor. Cuando el desplazamiento de aire es mayor que la masa de aire ideal para la combustión, no puede ser controlado solo por el acelerador, por lo que el turbo debe regularse. Esto se hace abriendo la válvula de descarga de modo que una parte del gas de escape pasa a través de la compuerta. Consecuentemente este gas no contribuye a accionar la turbina y la velocidad de ésta se controla de manera que el desplazamiento de aire producido por el turbo será el correcto. Rev:0 50 Mundo Mecánica Automotriz
  • 51. Mecánica del Motor 1 Turbo Cargador de Geometría Variable El Turbo Cargador de Geometría Variable (VGT) posee las siguientes ventajas:  El motor produce mayor torque a bajas velocidades.  Como la temperatura de trabajo del turbo cargador puede mantenerse baja, mejora la compresión y aumenta la potencia.  El turbo cargador responde más rápidamente a los requerimientos de torque, mejorando la manejabilidad.  Reduce el consumo de combustible y las emisiones de escape son más limpias. El VGT no tiene válvula de descarga, pero en su lugar tiene un juego de aspas en el lado del escape del turbo cargador. Estas aspas controlan el turbo cargador. Con bajo flujo de gas de escape, las aspas se posicionan para aumentar la velocidad del turbo y como consecuencia aumentar la presión. Esto significa más torque del motor a bajas velocidades. Con alto flujo de gas de escape, la velocidad del turbo cargador se reduce para evitar las sobre revoluciones del turbo cargador mientras continua suministrando la presión de refuerzo requerida. La caja de vacío, que regula la posición de las aspas, es más grande que en los turbo cargadores anteriores, para asegurar que reciba el vacío necesario. La caja de vacío esta controlada por un solenoide, el que a su vez es controlado por el Modulo de Control del Motor (ECM). Rev:0 51 Mundo Mecánica Automotriz
  • 52. Mecánica del Motor 1 Sistema de Refrigeración del Motor De la energía calórica total generada por la combustión de la mezcla de combustible en el motor gasolina, alrededor de 24 ~ 32% es convertida en energía cinética y se usa como potencia de conducción. Alrededor de 29 ~ 36% es eliminada con los gases de escape, 7% se pierde por radiación y otro 32 ~ 33% se disipa por el sistema de enfriamiento. Si el calor transmitido a la pared de la cámara de combustión no es eliminado rápidamente, el pistón o el cilindro se deformaran por este calor o se rompe la película de aceite lubricante. Si este calor es enfriado excesivamente, energía calórica en exceso se transfiere al refrigerante de forma que la eficiencia de temperatura se degradara. Por lo tanto, el sistema de enfriamiento debe estar controlado para mantener la temperatura apropiada de acuerdo con la condición de conducción. Un sistema de enfriamiento por líquido usa refrigerante, este fluido contiene químicos especiales mezclados con agua. El refrigerante fluye a través de conductos en el motor, y a través de radiador. El refrigerante es circulado por la bomba de agua y el termostato controla la temperatura. El termostato esta cerrado cuando el motor esta frío permitiendo la circulación del refrigerante solamente en el bloque del motor, desviando el termostato y el radiador. Esto permite que el motor se caliente rápidamente y uniformemente de manera que se eliminan los puntos calientes. Cuando el refrigerante caliente alcanza el termostato, este comenzara a abrirse, permitiendo el paso del refrigerante hacia el radiador. Mientras más caliente este el refrigerante, más abrirá el termostato, permitiendo que un mayor volumen de agua pase al radiador. El termostato también controla el tiempo en que el refrigerante permanece en el radiador de forma que el calor se disipe efectivamente. Rev:0 52 Mundo Mecánica Automotriz
  • 53. Mecánica del Motor 1 El radiador recibe el refrigerante caliente desde el motor, y baja su temperatura, el aire que fluye alrededor y a través del radiador toma el calor del refrigerante. Un ventilador acoplado al radiador asegura que la temperatura del agua se reduzca cuando se conduce a bajas velocidades o con el vehículo detenido. Sistema de enfriamiento presurizado Un sistema bajo presión puede manejar mayores temperaturas y ofrece un punto de ebullición más alto. La presurización del sistema se consigue mediante un cuello de llenado del radiador especial y una tapa del radiador a presión. En los sistemas presurizados, el refrigerante se agrega sólo cuando se requiere y es agregado al depósito de reserva, no al radiador. Liquido refrigerante (Anticongelante) El agua absorbe más calor por su volumen que cualquier otro líquido, por lo que se utiliza agua. Pero por si misma, el agua produce problemas. Las impurezas normales en el agua de la llave son dañinas para el motor y reaccionan con los metales causando corrosión y oxido. El agua también permite la electrolisis, un proceso eléctrico y químico que corroe los metales. En los sistemas modernos de enfriamiento, se agregan químicos llamados inhibidores al agua para limitar o impedir la corrosión. Se utilizan además otros aditivos para hacer más difícil que el agua hierva en el refrigerante. Otra propiedad dañina del agua es que esta se expande cuando se congela. Este es un problema para los motores enfriados por agua cuando las temperaturas caen bajo el punto de congelamiento. El agua en el sistema de enfriamiento puede congelarse en un motor frío que esta detenido - y expandirse - con fuerza suficiente para romper el bloque del motor y el radiador. Un aditivo llamado anticongelante baja el punto de congelamiento del agua para mantenerla por debajo de la temperatura exterior. Esto previene su congelamiento. Rev:0 53 Mundo Mecánica Automotriz
  • 54. Mecánica del Motor 1 Termostato y Bomba de Agua Termostato El termostato monitorea constantemente la temperatura del refrigerante y regula su flujo a través del radiador. Los termostatos están potenciados por un dispositivo sensible a la temperatura, presión positiva y temperatura del motor. Esta diseñado para utilizar una cera especialmente formulada y un pelet de polvo de metal contenido en forma compacta en un depósito de cobre conductor de calor, el que esta equipada con un pistón dentro de una envoltura de goma. El calor hace que el pelet de goma se dilate, lo que fuerza al pistón hacia fuera y entonces abre la válvula. Este dispositivo sensor detecta los cambios de temperatura del motor y mueve la posición de la válvula para controlar el flujo del refrigerante y de esta forma controlar la temperatura del refrigerante. El termostato esta generalmente instalado al frente del motor en la parte superior del bloque. El termostato se ajusta en una cavidad en el motor donde estará expuesto al refrigerante caliente. La parte superior del termostato esta cubierta por el cuerpo de salida del agua que se usa para conectar la manguera del radiador al motor. Existen dos tipos básicos de termostato: El termostato de manguito balanceado y el termostato de cabeza invertida. Ambos tipos funcionan de la misma forma pero tienen algunas diferencias. El termostato de cabeza invertida abre contra el flujo de refrigerante desde la bomba de agua. El refrigerante, sometido a la presión de la bomba, se utiliza para ayudar al termostato de cabeza invertida a mantenerse cerrado cuando el refrigerante esta frío, y de esa forma impide la filtración. La válvula del termostato de cabeza invertida es de auto alineamiento y auto limpieza. El termostato de manguito balanceado permite refrigerante presurizado circular alrededor de todas sus partes móviles. Rev:0 54 Mundo Mecánica Automotriz
  • 55. Mecánica del Motor 1 Bomba de agua La bomba de agua esta montada generalmente al frente del bloque de cilindros y usualmente es conducida por la correa del ventilador o de distribución. En algunos casos es conducida por el eje de levas o por un conjunto de piñones. Su función es suministrar el refrigerante desde la parte inferior del radiador a las camisas de agua del motor de manera eficiente. El agua, después de absorber el calor del motor, circula de vuelta a la parte superior del radiador. El impulsor de la bomba es un disco giratorio con aletas, que empuja agua hacia delante contra el cuerpo de la bomba mediante la fuerza centrífuga y la impele hacia las camisas de agua. El eje esta montado en el cuerpo de la bomba y gira sobre cojinetes. Un sello impide el escape del refrigerante a través del eje del impulsor. En el extremo de conducción, esta montada una polea accionada por el eje de levas, para conectar la correa del ventilador. Cuando el motor esta frío el termostato esta cerrado y el refrigerante no accede a la parte superior del radiador. Con el fin de circular el refrigerante por el motor durante el calentamiento, una tubería de desvío esta ubicada debajo del termostato que conduce el agua de vuelta a la bomba. La tubería también permite al refrigerante caliente pasar a través de la válvula, la que abrirá el termostato cuando este alcance la temperatura requerida. Un pequeño orificio en la parte inferior del cuerpo de la bomba permite drenar el refrigerante si se produce filtración por el sello. Rev:0 55 Mundo Mecánica Automotriz
  • 56. Mecánica del Motor 1 Radiador La función del radiador es bajar la temperatura del refrigerante del motor transfiriendo el calor a la atmósfera. El radiador esta fabricado de pequeñas tuberías ubicadas en filas, esto recibe el nombre de núcleo, el que puede tener un diseño de posición vertical u horizontal (llamado de flujo cruzado). En cada extremo del núcleo hay un tanque, uno es el tanque de entrada y el otro el tanque de salida. Los factores que influyen en la eficiencia del radiador incluyen: el diseño básico del radiador (el espesor del núcleo, número de filas, capacidad del tanque), el área y espesor del núcleo del radiador que esta expuesto al flujo de aire refrigerante, la cantidad de aire refrigerante, y la diferencia entre la temperatura del refrigerante y la temperatura del aire. Tapa presurizada del radiador La tapa presurizada esta compuesta por una cápsula superior con dos camones para sujeción con las levas del cuello de llenado, un diafragma de disco con resorte (y junta de sello superior) para sellar contra la parte superior del cuello de llenado y para suministrar la fricción que retiene la tapa al cuello, una válvula de presión con resorte de acero inoxidable y una válvula de presión para sellar contra el asiento inferior de sellado del cuello de llenado, centrada en la válvula de presión se encuentra una válvula de alivio de vacío (algunas son normalmente cerradas, mientras que otras están en posición abiertas por un peso). El asiento de la parte superior del cuello de llenado del radiador, permite al resorte del diafragma de la tapa ejercer la suficiente presión para sujetar la tapa al cuello. La presión atmosférica se sella con la junta superior de la tapa en este punto. En el asiento inferior de sellado es donde descansa la válvula de presión, permitiendo la producción de presión cuando se calienta el refrigerante. Rev:0 56 Mundo Mecánica Automotriz
  • 57. Mecánica del Motor 1 Las levas del cuello de llenado tienen el propósito de sujetar la tapa en su lugar, pero también mantienen la presión de la válvula en el cuello de llenado con la precarga correcta y de forma exacta. Las levas del cuello también tienen una función de seguridad al prevenir que la vibración suelte la tapa o cause una perdida de presión en el sistema. También opera como un limitador de seguridad contra quemaduras serias al remover la tapa en un motor caliente. Por esta razón debe empujarse y girar la tapa para removerla de su posición completamente cerrada. Existen dos tipos de válvulas de alivio de vacío para las tapas presurizadas del radiador. El tipo Normalmente Cerrada (presionada por resorte), y el tipo Normalmente Abierta (con un peso). El diseño de la tapa normalmente cerrada es el que se conoce como tapa del tipo de presión constante. El vacío es asistido en la posición cerrada por un resorte de bronce muy liviano. Cuando el motor arranca y empieza a calentarse, comienza a producirse presión en el sistema, inmediatamente debido a la expansión del refrigerante en el sistema. Cuando el motor se detiene y comienza a enfriarse, tiende a formarse un vacío parcial en el sistema, este abre la válvula de vacío para prevenir la formación de vacío excesivo en el sistema. La tapa de tipo normalmente abierta es la que se llama la tapa de ventilación de presión. Esta válvula de vacío cuelga libremente en la válvula de presión y esta equipada con un pequeño peso calibrado. Bajo condiciones de operación liviana, el sistema de refrigeración opera sin presión (atmosférica). El calentamiento rápido o sobrecalentamiento produce una rápida expansión o ebullición del refrigerante, la presión del escape o el vapor activa la válvula de vacío, produciendo el cierre de ésta. La tapa entonces funciona de la misma forma que una tapa de presión constante. Cuando el motor se apaga y se enfría, la válvula de vacío vuelve nuevamente a su posición abierta. Rev:0 57 Mundo Mecánica Automotriz
  • 58. Mecánica del Motor 1 Ventilador del Radiador El ventilador del radiador del tipo mecánico es conducido por una correa. En muchos casos el ventilador mecánico esta montado en la bomba de agua y esta conducido por la misma polea que la bomba de agua. Se puede conseguir un mejor desempeño mediante el uso de un ventilador mecánico con un embrague en el ventilador. El embrague del ventilador esta diseñado para conducir el ventilador cuando se necesita aire en movimiento para enfriar el motor. Un embrague de ventilador controlado por termostato emplea un resorte bimetalico para ajustar la velocidad del ventilador en respuesta a la temperatura de operación. A medida que aumenta la temperatura y el radiador se calienta, el aire que pasa por el radiador hacia el ventilador calienta el resorte espiral y un fluido de silicona en el embrague entra en la cámara aumentando la tensión en el embrague y provocando el movimiento del ventilador. Al disminuir la temperatura del refrigerante, el embrague del ventilador resbala. En el embrague del ventilador “no térmico”, un fluido de silicona con una muy alta capacidad de resistencia al corte se usa para conducir el ventilador y enfriar el motor a baja velocidad. Al aumentar las rpm, el fluido permite al embrague del ventilador resbalar, aumentando la eficiencia del motor cuando se necesita menos movimiento de aire asistido por el ventilador, debido a la alta velocidad del vehículo. Muchos vehículos nuevos tienen la ventaja de utilizar ventiladores eléctricos de refrigeración debido al compartimiento de motor más pequeño y a la mayor demanda de flujo de aire. El Ventilador Eléctrico del Radiador es controlado por el Modulo de Control del Motor o por un interruptor de temperatura localizado en el radiador. Correa Conductora Rev:0 58 Mundo Mecánica Automotriz
  • 59. Mecánica del Motor 1 La finalidad de la correa de conducción es mantener los dispositivos auxiliares girando. Las correas conductoras están diseñadas específicamente para cada modelo individual, asegurando una tensión perfecta entre los diferentes componentes que debe accionar. Esto incluye el ventilador, la bomba de agua, la bomba de dirección hidráulica, el alternador, y el compresor de aire acondicionado. Las correas conductoras son del tipo multicapas para máxima vida útil y desempeño. Hay disponibles varios tipos diferentes de correa conductora: Correas de borde áspero; simplemente, configuradas en multicapas y dentadas para vehículos de pasajeros, camiones y buses, incluyendo motores diesel. Correas acanaladas en V; estas son más delgadas y más eficientes en la transferencia de potencia y se usan en los motores pequeños y de alto rendimiento. Polea de giro libre Debido a las variaciones en rotación que ocurren entre los ciclos del motor, una función de giro libre se introduce en la polea de algunos alternadores. Esto suministra una mejor rotación para el ciclo de la correa y alarga la vida útil de ésta. Rev:0 59 Mundo Mecánica Automotriz
  • 60. Mecánica del Motor 1 Tensor Automático La finalidad del tensor automático es asegurar que la correa conductora este tensada en forma correcta. Existen dos tipos diferentes de tensor de correa. Uno es el tensor cargado por resorte, el otro es un tensor operado hidráulicamente. Para desmontar el tensor automático, debe reducirse la tensión cuidadosamente usando la tuerca en el lado del tensor automático. No debe aplicarse torque excesivo porque podría dañar al tensor. En los tensores operados hidráulicamente, el empaque de goma en el lado de la cámara de aceite debe estar asegurado. Si se daña, se producirá perdida de aceite, resultando en una operación incorrecta del tensor. Rev:0 60 Mundo Mecánica Automotriz
  • 61. Mecánica del Motor 1 Soportes del Motor Los soportes de motor se usan para reducir las vibraciones y el ruido del motor. Los soportes del motor usados actualmente son diseñados con precisión con perfiles específicos, dureza de la goma (medidos por durómetros) y espacios de aire llamado vacíos que armonizan el montaje del motor. Algunos soportes de motor son hidráulicos y tienen cámaras llenas con fluido de silicona. Hay algunos soportes de motor que son controlados electrónicamente. La finalidad de los Soportes de Motor Controlados Electrónicamente es amortiguar las vibraciones del motor y el ruido bajo ciertas condiciones de ralentí, aceleración y conducción. Agregar un Soporte de Motor Controlado Electrónicamente, reduce la vibración y el ruido bajo condiciones de ralentí entre 5~10dB, la aceleración en 3dB y la conducción y sacudida de los cambios entre 8~13dB. Los principales componentes Soporte de Motor Controlado Electrónicamente son el Modulo de Control y el soporte de motor con válvula solenoide. La válvula solenoide esta conectada al vacío del múltiple de admisión mediante una manguera. El Modulo de Control procesa la señal de velocidad del motor desde el Modulo de Control del Motor (ECM) y controla válvula solenoide. El soporte de motor contiene un perno conectado al motor. El lado opuesto del perno de montaje esta conectado a un elemento de goma y a una placa de amortiguación. La placa de amortiguación se mueve libremente en el aceite de la cámara superior. El orificio de aceite permite el flujo de aceite entre la cámara superior e inferior cuando la válvula esta en posición cerrada. El orificio de ralentí tiene un diámetro mayor que el orificio de aceite y es abierto por una válvula, conectado al diafragma de la cámara de vacío. La válvula abre tan pronto como se aplica vacío a la cámara de vacío. Rev:0 61 Mundo Mecánica Automotriz
  • 62. Mecánica del Motor 1 Excepto la condición de ralentí Bajo estas condiciones la válvula solenoide esta sin energía. Las cámaras superior e inferior están conectadas una a otra mediante un pasaje de aceite. Debido a que el pasaje de aceite tiene un diámetro pequeño, el flujo de aceite entre ambas cámaras esta restringido. Por esto, el movimiento de la placa de amortiguación es limitado y el soporte del motor se endurece. Condición de ralentí En condición de ralentí, la válvula solenoide esta conectada a tierra a través del Modulo de Control. Ahora el vacío actúa en el diafragma dentro de la cámara de vacío. La válvula, conectada al diafragma se mueve hacia abajo abriendo el orificio de ralentí. Como las cámaras superior e inferior están ahora conectadas mediante el orificio de ralentí que tiene un diámetro mayor, el flujo del aceite esta suavemente restringido. Debido a eso la placa de amortiguación puede moverse más hacia la cámara de vacío y el soporte de motor se suaviza. Rev:0 62 Mundo Mecánica Automotriz
  • 63. Mecánica del Motor 1 Aceite de Motor La función un sistema de lubricación es reducir la fricción. La fricción se produce entre todas las superficies en contacto. Cuando las superficies en movimiento se ponen en contacto, la fricción tiende a frenarlas. Esto puede hacer que las partes metálicas se calienten, se fundan y fusionen. Cuando esto ocurre, se dice que el motor se ha atascado. La lubricación reduce la fricción indeseable, reduciendo de esa forma el desgaste de las partes móviles. Las holguras se llenan con aceite y hacen que las partes del motor se muevan o floten en capas de aceite en lugar de unas sobre otras directamente. La lubricación ayuda a enfriar el motor, el lubricante recoge el calor del motor, luego vuelve al cárter donde se enfría nuevamente. Esto ayuda a absorber las cargas de impacto. Una carrera de potencia puede poner repentinamente una fuerza de 2.000kg en los cojinetes principales. Las capas de aceite amortiguan esta carga. El aceite también es un agente de limpieza, toma las partículas de metal y carbón y las transporta al cárter, las partículas más grandes caen al fondo. Para que el aceite haga todo el trabajo que se espera de él, debe tener propiedades especiales. La viscosidad es crucial. La viscosidad es una medición de cuan fácil fluye un liquido. Un líquido de baja viscosidad es delgado y fluye fácilmente. El líquido de alta viscosidad es espeso y fluye lentamente. Al aceite lubricante debe ser lo suficientemente delgado para fluir fácilmente entre las partes móviles, pero no tan delgado como para que se escurra de entre ellas. Si este escurre, las partes quedaran en contacto directo entre ellas y se dañaran. Si es muy viscoso, se moverá muy lentamente para proteger los componentes, especialmente en un motor frío. Los aceites modernos sin embargo tienen mezclas de aceites que combinan estas propiedades. Los aceites están mezclados con aditivos. Están graduados o clasificados por la Sociedad de Ingenieros Automotrices (SAE), el Instituto Americano de Petróleo (API), o la Asociación de Constructores Europeos de Automóviles (ACEA). Rev:0 63 Mundo Mecánica Automotriz
  • 64. Mecánica del Motor 1 SAE: Un aceite de motor con un número SAE 50 tiene una alta viscosidad, o es más espeso que un aceite SAE 20. API: Las clasificaciones API son diferentes para los motores gasolina y diesel. Para motores gasolina los listados comienzan con “S”, (que significa Spark-plug ignition, encendido por chispa), seguido por otro código que denota la norma, por ejemplo “SM “, “SH”. Para los aceites diesel, la primera letra es “C” (que significa encendido por Compresión), seguido de otra letra que denota la norma, como por ejemplo CH. ACEA: Las normas ACEA tienen el prefijo “G” para motores a gasolina y “D” o “PD” para los motores diesel. Junto con estas hay numerosas aprobaciones por los fabricantes de automóviles. Las normas ACEA pueden resumirse como A para gasolina, B para vehículos de pasajeros con motor diesel y E para vehículos de trabajo pesado diesel. Rev:0 64 Mundo Mecánica Automotriz
  • 65. Mecánica del Motor 1 Revisión del Aceite del Motor 1. Ubicar la varilla indicadora de nivel de aceite: La varilla indicadora esta localizada al costado del bloque de cilindros y es generalmente muy fácil de encontrar, con una forma distintiva o una manilla de color llamativo. 2. Extraer y limpiar la varilla: Retirar la varilla, recoger cualquier gota de aceite con un paño y limpiar cuidadosamente. Hay marcas en el extremo inferior de la varilla que indican si es necesario rellenar aceite. 3. Tomar la lectura del aceite: Reinstalar la varilla y empujarla hacia abajo al cárter tan lejos como pueda llegar. Removerla nuevamente y el nivel de aceite será claramente visible en la varilla. Si el nivel esta bajo la marca superior “full”, entonces debe rellenarse el motor hasta su nivel con aceite nuevo. 4. Comprobar la condición del aceite: Si el aceite aparece muy negro y sucio, este puede haber perdido algunas de sus cualidades de protección y lubricación y puede ser necesario realizar el cambio total, revisar el registro de servicio o consultar al cliente cuando se efectuó el último cambio de aceite. 5. Ajustar el nivel si es necesario: Si se necesita aceite adicional, estimar la cantidad revisando la guía del Manual de Servicio para las marcas de la varilla. Soltar la tapa de llenado en la parte superior del motor y usando un embudo para evitar derrames vaciar lentamente el aceite en el motor. Rev:0 65 Mundo Mecánica Automotriz
  • 66. Mecánica del Motor 1 Drenaje del Aceite del Motor 1. Preparar el área de trabajo: Antes de comenzar, es necesario limpiar cualquier derrame de aceite, debe tenerse a mano un contenedor lo suficientemente grande para contener todo el aceite del motor y tener el aceite nuevo suficiente del tipo correcto para rellenar posteriormente el motor. En algunos vehículos, el motor drenara más fácil si la tapa de llenado es removida, de modo que se recomienda removerla antes de elevar el vehículo. 2. Identificar el tapón de drenaje y la herramienta para removerlo: Siempre debe usarse el Manual de Servicio para conseguir ayuda para localizar e identificar los componentes sino se esta completamente seguro de su ubicación. El tapón de drenaje de aceite se encuentra debajo el cárter de aceite, que contiene todo el aceite del motor. Algunos motores tienen dos tapones de drenaje, para vaciar el cárter en áreas separadas. Para minimizar la posibilidad de daño a la cabeza del perno, se necesitara una llave de boca o una llave de cubo para remover y reubicar el tapón de drenaje. Debe tenerse mucho cuidado de no remover el tapón de drenaje de la transmisión por equivocación. 3. Remover el tapón de drenaje e inspeccionar: Cuando se ha removido el tapón de drenaje, separar la junta del tapón y limpiar los hilos. Si los hilos están dañados puede ser necesario reemplazar el tapón. Observar si hay partículas sólidas de metal adheridas al tapón y advertir al supervisor. Estas pueden ser indicio de un problema no diagnosticado en el motor. 4. Drenar el aceite: El aceite se drenará más fácil si el motor esta caliente, de modo que es recomendable hacer funcionar el motor por unos pocos minutos antes de drenar. Pero si el aceite esta caliente, puede producir quemaduras, de modo que debe tenerse mucho cuidado cuando se remueve el tapón de manera que el aceite no se derrame en las manos. Si el aceite del motor esta frío se necesitara más tiempo para el drenaje, o el aceite nuevo se contaminará con los residuos de aceite que permanezcan adheridos a las paredes interiores del motor. Rev:0 66 Mundo Mecánica Automotriz
  • 67. Mecánica del Motor 1 5. Disponer de un lugar y contenedor de seguridad para el aceite drenado Si el aceite esta caliente, debe tenerse cuidado extra de no derramarlo, especialmente en uno mismo. Cuando se vacía el aceite desde el contenedor de drenaje al contenedor de reciclado, nuevamente observar si hay partículas de metal que hayan podido quedar al fondo del contenedor. Rev:0 67 Mundo Mecánica Automotriz
  • 68. Mecánica del Motor 1 Reemplazo del Filtro de Aceite 1. Comprobar la disponibilidad de un filtro nuevo: Antes de remover un filtro de aceite, consultar primero el Manual de Servicio del vehículo para identificar el tipo de filtro requerido. Asegurarse que el filtro correspondiente esta disponible para su reemplazo. 2. Localizar el filtro y la herramienta correcta: El filtro estará generalmente ubicado en el costado, debajo o sobre el bloque del motor (motor diesel). Algunos filtros tienen una tuerca de retención que requerirá el uso de una llave de boca para removerla, pero la mayoría de los vehículos tienen filtros que son cartuchos con hilo. Estos se remueven con una llave ajustable para filtros. 3. Remover el filtro y revisarlo: Remover el filtro y limpiar el área de asentamiento en el motor de modo que su superficie y la superficie del filtro nuevo puedan sellar apropiadamente. Asegurarse que el sello del filtro que se extrae no esta pegado al motor. 4. Obtener el filtro de reemplazo: Confirmar el correcto número de parte y obtener el filtro de reemplazo desde el suministro de partes de reparación. Es una buena práctica cambiar el filtro de aceite cada vez que se drena el aceite del cárter. 5. Instalar correctamente el filtro de reemplazo: Esparcir un poquito de aceite en la superficie del nuevo anillo de sellado. Esto ayudara a conseguir un sellado correcto y evitará la distorsión o pliegue de la junta mientras esta siendo apretado el filtro. Atornillar el filtro hasta que las dos superficies están en contacto. Como ayuda para juzgar el grado correcto de giro, se recomienda hacer una marca en el lado exterior del filtro con un lápiz o hasta con una gota de aceite, sin olvidar limpiarla cuando se haya finalizado. No apretar el filtro excesivamente. Típicamente, tres cuarto de vuelta es el apriete adecuado para un sellado correcto y sin filtraciones. Rev:0 68 Mundo Mecánica Automotriz