SlideShare a Scribd company logo
1 of 6
Download to read offline
The International Journal Of Engineering And Science (IJES)
|| Volume || 3 ||Issue|| 4 || Pages || 12-17 || 2014 ||
ISSN (e): 2319 – 1813 ISSN (p): 2319 – 1805
www.theijes.com The IJES Page 12
Improved Efficiency of Large Capacity Renewable Energy -
Integration with Grid
Chandragupta Mauryan.K.S1
M.Abuvatamizhan2
V.Balaji3
R.Mani4
1
Assistant Professor, Department of Electrical and electronics engineering, Sri Krishna College of Technology
2, 3, 4
PG Scholar, Department of Electrical and electronics engineering, Sri Krishna College of Technology
----------------------------------------------------------ABSTRACT------------------------------------------------
Renewable energy is predicted to be the future of energy around the globe. The Renewable energy sources
include energy from wind, sun, hydro, tidal, geothermal and energy from renewable bio mass, but wind and
solar power takes an important place in the production of energy from the Renewable energy sources. These
sources are subjected to natural variability and it creates distinct challenges for their integration into the large
power system. De-carbonization, energy security and expanding energy access are the major driving forces
towards Renewable energy sources. But there are certain difficulties that are faced when a large capacity of
Renewable energy is being integrated to the grid, Non-controllable variability, Partial unpredictability, Location
dependency, transmission technology seems to be major concerns when they are being integrated with the grid.
We are providing solution for these above listed problems to obtain maximum efficiency from the Renewable
energy sources.
---------------------------------------------------------------------------------------------------------------------------------------
Date of Submission: 02 April 2014 Date of Publication: 15 April 2014
---------------------------------------------------------------------------------------------------------------------------------------
I. INTRODUCTION
The non-renewable energy sources are in the verge of their extinction and its damage to the
environment has increased the awareness on Renewable energy sources. Almost in a decade Renewable energy
has grown considerably and proving to play a major role in the production of energy in the coming years. There
are certain difficulties that are faced in the present environment which is making the integration of large
capacity Renewable energy in the grid. Solution for some of the problems faced being offered in this paper that
might improve the integration of large capacity Renewable energy into the grid. This eco-friendly energy source
is not predictable as it entirely depends on nature but minor adjustments made in the power plant of Renewable
energy sources can play a vital role in the integration process and will surely lead to a system that can satisfy the
required demand. Thus maximum energy and efficiency can be Renewable energy sources around the globe.
Climatic conditions will be varying around the place and the efficiency cannot be maximum with the present
technology be followed but our paper deals with these drawbacks and most certainly will improve the efficiency
of the Renewable energy sources.
II. DRIVING FORCES OF RENEWABLE ENERGY SOURCES
Renewable energy is a growing component of electricity grid due to its contribution in (i) Energy system de-
carbonization (ii) Expansion of energy access to the new consumers in the developing world (iii) Energy security in a long
term. These factors have been so important in the increased usage of renewable energy.
2.1. De-carbonization
The importance of addressing global climatic change, a worldwide environmental phenomenon which will affect
all the people on the planet earth. UN recently said that “warming of the climate system is unequivocal, as is now evident
from observations of increases in global average air and ocean temperatures, widespread melting of snow and ice and rising
global average sea level and most of the global average warming over the past 50 years is very likely due to anthropogenic
greenhouse gas increases and it is likely that there is a discernible human-induced warming averaged over each continent
excluding Antarctica. The emission of carbon dioxide related to 70% of the total greenhouse gas emitted and production of
electricity will cause half of the total carbon dioxide emitted in the greenhouse gases emitted. The RE will result in the
reduction carbon dioxide emitted in the electricity production and it will have a greater influence in the environment
protection. One of the fast developing countries, China is planning to reach 180MW by wind power plants and 20GW in
solar energy by the year of 2020.
Improved Efficiency of Large Capacity Renewable Energy - Integration with Grid
www.theijes.com The IJES Page 13
2.2. Energysecurity
Driven by the natural forces, RE has no fuel costs. The zero-fuel-cost of RE manifests itself in having
three great benefits. (i) the average energy costs which will tend to decline over a period for renewable
generation (ii) as variable costs are limited to operations and maintenance and do not include fuel (iii) RE assets
are insulated from fluctuations in fossil fuel prices, which are historically volatile and subject to geopolitical
disruptions. Coal, gas and oil-fired generation costs, in contrast, increase when the cost of the relevant fuel
increases. Fig. 1 represents world electricity generation till the year 2035.
Fig. 1 World electricity generations till the year 2035
2.3. Expanding Energyaccess
Energy demand increase rapidly in each country due to the development in the technology. In that case
RE source will be a great asset in the years to come to meet out the demand of every country. More energy will
be required in the years to come as every individual in the world are being given access to electricity. Fig. 2
shows the required electricity demand in MW.
Fig. 2 Electricity demands in MW
III. WIND ENERGY
Wind turbine generators extract energy from wind and convert it into electricity via an aerodynamic
rotor, which is connected by a transmission system to an electric generator today’s mainstream Wind energy
turbines have three blades rotating on a horizontal axis, upwind of the tower shown in Fig. 3. And vertical-axis
Wind energy turbines have shown in Fig. 4.
Improved Efficiency of Large Capacity Renewable Energy - Integration with Grid
www.theijes.com The IJES Page 14
Fig. 3 Horizontal axis wind turbine
Fig. 4 Vertical axis wind turbine
In general, a Wind energy turbines can begin to produce power in winds of about 3 m/s and reach its
maximum output around 10 m/s to 13 m/s. Power output from a Wind energy turbines increases by the third
power of wind speed, a 10 % increase in wind speed increases available energy by 33 %, and is directly
proportional to the rotor-swept area (the area swept by the rotating blades). Power output can be controlled both
by rotating the nacelle horizontally (yawing) to adapt to changes in wind direction, and rotating the blades
around their long axes (pitching) to adapt to changes in wind strength. The capacity of Wind energy turbines has
doubled approximately every five years, but a slowdown in this rate is likely for onshore applications due to
transport, weight and installation constraints. Typical commercial Wind energy turbines at present have a
capacity of 1.5 MW-3 MW; larger ones can reach 5 MW-6 MW, with a rotor diameter of up to 126 meters.
Since a single Wind energy turbines has limited capacity, much less than a conventional power generator, a
wind power plant. Normally consists of many Wind energy turbines connected together by overhead lines or
cables. Their power output is collected and transmitted to the grid through an alternating current (AC) or direct
current (DC) line, after voltage step-up at the substation in the wind power plant Fig 5.Some WPPs now have a
capacity comparable to that of conventional power generators.
Fig. 5 Substation in the wind power plant
Improved Efficiency of Large Capacity Renewable Energy - Integration with Grid
www.theijes.com The IJES Page 15
IV. SOLAR ENERGY
According to the materials and design, current PV power generation technologies can be classified into
crystalline silicon, thin-film and concentrating PV Fig. 6 and Fig. 7.Crystalline silicon PV is currently the best
established PV technology, with an energy conversion efficiency of up to 20 %. More recently, thin-film PV,
which can also use non silicon semiconductor materials, is gaining attention. Although thin-film PV generally
has a lower efficiency than silicon PV (around 11 %), it is less expensive and less energy-intensive to
manufacture and is also more flexible for versatile applications. Concentrating PV, in which sunlight is
concentrated and strengthened by a lens before it reaches the PV cells, is on the edge of entering full market
deployment. Concentrating PV can reach an efficiency of up to 40 %. Other technologies, such as organic PV
cells, are still in the research phase.
Fig. 6 Solar power plant
Fig. 7 Solar power plant
One of the key components of PV systems is the inverter. DC output from PV systems is changed into
AC by inverters. The performance of the inverter is especially important for grid connected PV power plants,
since it directly influences whether the PV power plant can meet the requirements of grid operation. Most
inverters have low voltage ride through (LVRT) and flexible active and reactive power control capabilities.
However, since there is no rotating component, PV systems cannot supply inertia support to the power system.
Fig. 8 shows basic solar principle representation diagram.
4.1. Concentrated solar power generation
CSP generation, also known as solar thermal power generation, is much like conventional thermal
power generation that converts thermal energy into electricity, but differs in how the thermal energy is obtained.
CSP plants use various mirror configurations (with a sun tracking system) to reflect and concentrate direct-beam
sunlight to heat the working fluid flows (such as air, water, oil or molten salt) in the receivers to a high
temperature, thus converting solar energy into thermal energy. Fig. 8 shows concentrated solar power.
V. TYPES OF CONCENTRATED SOLAR POWER PLANTS:
1. Parabolic trough systems use long rows of parabolic mirrors to reflect and concentrate sunlight beams
onto a linear receiver tube that contains the working fluids.
Improved Efficiency of Large Capacity Renewable Energy - Integration with Grid
www.theijes.com The IJES Page 16
2. Linear Fresnel reflector systems use long rows of flat or slightly curved mirrors to concentrate the sunlight
beams onto a downward-facing linear receiver tube fixed in space above the mirrors.
Fig. 8 Concentrated solar power
3. Solar tower systems, also known as central receiver systems, use numerous large, flat mirrors to concentrate
sunlight beams onto a receiver at the top of a tower.
4. Parabolic dish systems, also known as dish/engine systems, concentrate sunlight beams onto the focal point
of a single dish, where the receiver and an engine/ generator (such as a Sterling machine or a micro-turbine) are
installed.
VI. NON CONTROL VARIABLITY
Variability in the context of wind and solar resources refers to the fact that their output is not constant.
It is distinct from unpredictability, which we discuss in the following section. Even if operators could predict the
output of wind and solar plants perfectly, that output would still be variable, and pose specific challenges to the
grid operator. On the seconds to minutes time scale, grid operators must deal with fluctuations in frequency and
voltage on the transmission system that, if left unchecked, would damage the system as well as equipment on it.
To do so, operators may order generators to inject power (active or reactive) into the grid not for sale to
consumers, but in order to balance the actual and forecasted generation of power, which is necessary to maintain
frequency and voltage on the grid. These ancillary services go by a plethora of names and specific descriptions.
Typical services for an impressionistic overview include:
• Frequency regulation: occurs on a seconds-to-minutes basis, and is done through automatic generation
control signals to generators;
• Spinning reserves: Generators available to provide power typically within 10 minutes.
These reserves are used when another generator on the system goes down or deactivates unexpectedly
• Non-spinning reserves: these generators serve the same function as spinning reserves, but have a slower
response time.
• Voltage support: generators used for reactive power to raise voltage when Necessary.
• Black-start capacity: generators available to re-start the power system in case of a cascading black-out.
High penetrations of wind and solar generation will add more variability to the energy system than grid
operators have traditionally managed in the past, and thus increase demand for ancillary services and balancing
energy overall. It is more difficult, and sometimes impossible, to manage such challenges at the device level,
and so grid-level actions, technologies and strategies are often needed. Wind and solar resources in sufficient
amounts may also complicate load following functions when large demand shifts coincide with weather events
that alter power output from wind or solar resources. Grid operators located in more remote regions and serving
smaller loads may have less flexibility to provide ancillary services and load following than their larger
counterparts. Compounding matters, plentiful RE resources are often located in these remote locations.
Improved Efficiency of Large Capacity Renewable Energy - Integration with Grid
www.theijes.com The IJES Page 17
VII. PARTIAL UNPREDICTABILITY
Partial unpredictability, also called uncertainty, is distinct from variability. The variability of wind and
solar generation is ever-present, a result of reliance on the ever-changing wind and sun, and affects the system at
the moment-to-moment time scale as a cloud passes over a PV plant or the wind drops. Partial unpredictability,
on the other hand, refers to our inability to predict with exactness whether the wind and sun will be generally
available for energy production an hour or a day from now. This hour-to-day uncertainty is significant because
grid operators manage the great majority of energy on the grid through “unit commitment”, the process of
scheduling generation in advance, generally hours to a full day ahead of time, in order to meet the expected
load. When actual production does not match the forecast, the grid operator must balance the difference. RE
generation increases the cost of this function by increasing the spread between predicted and supplied energy, a
cost that is ultimately borne by consumers.
VIII. LOCATION DEPENDANCY
Far removed from the day-to-day management of the grid is its long-term planning – specifically the
sitting and utilization of new transmission lines. Here RE generation plays a significant role and introduces new
challenges. Because wind and solar resources are often located in remote locations, far from load centers,
developing sufficient transmission to move RE to markets is critical to their integration. Transmission planning
processes are highly varied, and tend to be influenced by regional politics. For example, a transmission line may
provide capacity for energy produced in one country or state, passed through another, and consumed in yet
another. These disparities in generation capacity, transmission location and load size between locations can
make the development of transmission for RE contentious and complex, particularly with respect to cost
allocation. Because new transmission lines built out to RE generation resources will carry primarily renewably
generated, variable and partially unpredictable electricity, technical needs arise regarding the transmission
technology to be used. On the other hand, distributed energy resources provide for an alternative vision of the
future grid, where energy is generated and used locally on a micro-grid, avoiding the cost of line losses and the
high capital cost of transmission lines. In such a schema, the electricity grid could be conceptualized as a
collection of independent micro-grids with vastly reduced long-distance energy transmission needs.
IX. CONCLUSION
Thus by these methods a large capacity RE can be integrated to the grid and hence a maximum
efficiency will be obtained. RE will be an inevitable source of energy that can be even considered as the future
of energy. Therefore natural forces can be used to its maximum efficiency for producing energy that can neither
be created nor be destroyed.
REFERANCES
[1]. Gaviano A, Weber K, Dirmeier C. “Challenges and Integration of PV and Wind Energy”, Elsevier Energr
Procedia,Volume 34, pp.282-290,2013.
[2]. Facilities from a Smart Grid Point of View. Energy Procedia 2012 Menke C. The future of PV in Germany and
prospective for Thailand. Renewable Energy Project Development Programme (PDP) South-East Asia 20 years of
grid connected PV ystems:Lessons learnt from Germany why quality matters. Bangkok, Thailand, 2012.
[3]. Darie, S.“Guidelines for Large Photovoltaic System Integration,” Transmission and Distribution Conference and
Exposition (T&D), 2012 IEEE PES, May 7-12, 2002, pp. 1-6
[4]. Sherwood, L. “U.S. Solar Market Trends 2011,”Interstate Renewable Energy Council, August 2012, pp. 2-17.
[5]. IEEE Standard 1547-2003, “IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems.”
[6]. State Grid EnergyResearch Institute, Vestas Wind Energy Technology (China): Integrated Solution Strategies
for Coordinated Wind Power and Grid Development-International Experiences and China Practices, Report,
Oct 2011
[7]. P. Denholm, E. Ela, B. Kirby, M. Milligan: The Role of Energy Storage with Renewable Electricity Generation,
U.S. National Renewable Energy Laboratory Technical Report NREL/ TP-6A2-47187, Report, 2011
[8]. G. Bathurst, G. Strbac: Value of Combining Energy Storage and Wind in Short-term Energy and Balancing
Markets,Electric Power SystemsResearch 67 (2003), pp.1-8.

More Related Content

What's hot

impact of renewable energy sources on power system opeartion
impact of renewable energy sources on power system opeartionimpact of renewable energy sources on power system opeartion
impact of renewable energy sources on power system opeartionVipin Pandey
 
GBF2014 - Rob Thornton - Flexible, Local, Resilient Energy Generation
GBF2014 - Rob Thornton - Flexible, Local, Resilient Energy GenerationGBF2014 - Rob Thornton - Flexible, Local, Resilient Energy Generation
GBF2014 - Rob Thornton - Flexible, Local, Resilient Energy GenerationToronto 2030 District
 
Renewable Energy and conventional power integration
Renewable Energy and conventional power integrationRenewable Energy and conventional power integration
Renewable Energy and conventional power integrationManish Sah
 
Opportunities and challenges for renewable energy policy in India
Opportunities and challenges for renewable energy policy in IndiaOpportunities and challenges for renewable energy policy in India
Opportunities and challenges for renewable energy policy in IndiaPallav Purohit
 
technical paper
technical papertechnical paper
technical paperJ K Shree
 
FEASIBILITY STUDY OF ORKNEY’S WINDFARM DEVELOPMENT FOR SELF-SUFFICIENT FOR EN...
FEASIBILITY STUDY OF ORKNEY’S WINDFARM DEVELOPMENT FOR SELF-SUFFICIENT FOR EN...FEASIBILITY STUDY OF ORKNEY’S WINDFARM DEVELOPMENT FOR SELF-SUFFICIENT FOR EN...
FEASIBILITY STUDY OF ORKNEY’S WINDFARM DEVELOPMENT FOR SELF-SUFFICIENT FOR EN...aeijjournal
 
Status and outlook of solar energy use in pakistan
Status and outlook of solar energy use in pakistanStatus and outlook of solar energy use in pakistan
Status and outlook of solar energy use in pakistanAamir Hassan
 
Renewable energy in India: Present Status and Policy
Renewable energy in India: Present Status and PolicyRenewable energy in India: Present Status and Policy
Renewable energy in India: Present Status and PolicyMalik Sameeullah
 
Hybrid power generation using renewable energy sources for domestic purposes
Hybrid power generation using renewable energy sources for domestic purposesHybrid power generation using renewable energy sources for domestic purposes
Hybrid power generation using renewable energy sources for domestic purposesIAEME Publication
 
Renewable energy - India- future
Renewable energy - India- futureRenewable energy - India- future
Renewable energy - India- futureH Janardan Prabhu
 
Development of hybrid power generation model using system composed of rain wa...
Development of hybrid power generation model using system composed of rain wa...Development of hybrid power generation model using system composed of rain wa...
Development of hybrid power generation model using system composed of rain wa...APJ ABDUL KALAM TECHNICAL UNIVERSITY
 
DESIGNING OF HYBRID POWER GRID FOR REMOTE VILLAGE
DESIGNING OF HYBRID POWER GRID FOR REMOTE VILLAGEDESIGNING OF HYBRID POWER GRID FOR REMOTE VILLAGE
DESIGNING OF HYBRID POWER GRID FOR REMOTE VILLAGERAJBALA PURNIMA PRIYA
 
International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)inventionjournals
 
Construction Regulatory Issues for Large Scale Solar (PWC 2016)
Construction Regulatory Issues for Large Scale Solar (PWC 2016)Construction Regulatory Issues for Large Scale Solar (PWC 2016)
Construction Regulatory Issues for Large Scale Solar (PWC 2016)Turlough Guerin GAICD FGIA
 
Implementation of Hybrid Generation Power System in Pakistan
Implementation of Hybrid Generation Power System in PakistanImplementation of Hybrid Generation Power System in Pakistan
Implementation of Hybrid Generation Power System in PakistanIJAPEJOURNAL
 

What's hot (18)

impact of renewable energy sources on power system opeartion
impact of renewable energy sources on power system opeartionimpact of renewable energy sources on power system opeartion
impact of renewable energy sources on power system opeartion
 
GBF2014 - Rob Thornton - Flexible, Local, Resilient Energy Generation
GBF2014 - Rob Thornton - Flexible, Local, Resilient Energy GenerationGBF2014 - Rob Thornton - Flexible, Local, Resilient Energy Generation
GBF2014 - Rob Thornton - Flexible, Local, Resilient Energy Generation
 
Renewable Energy and conventional power integration
Renewable Energy and conventional power integrationRenewable Energy and conventional power integration
Renewable Energy and conventional power integration
 
Opportunities and challenges for renewable energy policy in India
Opportunities and challenges for renewable energy policy in IndiaOpportunities and challenges for renewable energy policy in India
Opportunities and challenges for renewable energy policy in India
 
technical paper
technical papertechnical paper
technical paper
 
FEASIBILITY STUDY OF ORKNEY’S WINDFARM DEVELOPMENT FOR SELF-SUFFICIENT FOR EN...
FEASIBILITY STUDY OF ORKNEY’S WINDFARM DEVELOPMENT FOR SELF-SUFFICIENT FOR EN...FEASIBILITY STUDY OF ORKNEY’S WINDFARM DEVELOPMENT FOR SELF-SUFFICIENT FOR EN...
FEASIBILITY STUDY OF ORKNEY’S WINDFARM DEVELOPMENT FOR SELF-SUFFICIENT FOR EN...
 
Status and outlook of solar energy use in pakistan
Status and outlook of solar energy use in pakistanStatus and outlook of solar energy use in pakistan
Status and outlook of solar energy use in pakistan
 
211 1022-3-pb
211 1022-3-pb211 1022-3-pb
211 1022-3-pb
 
Renewable energy in India: Present Status and Policy
Renewable energy in India: Present Status and PolicyRenewable energy in India: Present Status and Policy
Renewable energy in India: Present Status and Policy
 
Hybrid power generation using renewable energy sources for domestic purposes
Hybrid power generation using renewable energy sources for domestic purposesHybrid power generation using renewable energy sources for domestic purposes
Hybrid power generation using renewable energy sources for domestic purposes
 
Report
ReportReport
Report
 
Renewable energy - India- future
Renewable energy - India- futureRenewable energy - India- future
Renewable energy - India- future
 
Development of hybrid power generation model using system composed of rain wa...
Development of hybrid power generation model using system composed of rain wa...Development of hybrid power generation model using system composed of rain wa...
Development of hybrid power generation model using system composed of rain wa...
 
DESIGNING OF HYBRID POWER GRID FOR REMOTE VILLAGE
DESIGNING OF HYBRID POWER GRID FOR REMOTE VILLAGEDESIGNING OF HYBRID POWER GRID FOR REMOTE VILLAGE
DESIGNING OF HYBRID POWER GRID FOR REMOTE VILLAGE
 
International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)
 
Construction Regulatory Issues for Large Scale Solar (PWC 2016)
Construction Regulatory Issues for Large Scale Solar (PWC 2016)Construction Regulatory Issues for Large Scale Solar (PWC 2016)
Construction Regulatory Issues for Large Scale Solar (PWC 2016)
 
Implementation of Hybrid Generation Power System in Pakistan
Implementation of Hybrid Generation Power System in PakistanImplementation of Hybrid Generation Power System in Pakistan
Implementation of Hybrid Generation Power System in Pakistan
 
Fundamentals on Renewable Energy Sources - Juan Manuel Gers
Fundamentals on Renewable Energy Sources - Juan Manuel GersFundamentals on Renewable Energy Sources - Juan Manuel Gers
Fundamentals on Renewable Energy Sources - Juan Manuel Gers
 

Viewers also liked

Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...
Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...
Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...Gabriel Peyré
 
Low Complexity Regularization of Inverse Problems
Low Complexity Regularization of Inverse ProblemsLow Complexity Regularization of Inverse Problems
Low Complexity Regularization of Inverse ProblemsGabriel Peyré
 
Low Complexity Regularization of Inverse Problems - Course #1 Inverse Problems
Low Complexity Regularization of Inverse Problems - Course #1 Inverse ProblemsLow Complexity Regularization of Inverse Problems - Course #1 Inverse Problems
Low Complexity Regularization of Inverse Problems - Course #1 Inverse ProblemsGabriel Peyré
 
Mesh Processing Course : Multiresolution
Mesh Processing Course : MultiresolutionMesh Processing Course : Multiresolution
Mesh Processing Course : MultiresolutionGabriel Peyré
 
Mesh Processing Course : Active Contours
Mesh Processing Course : Active ContoursMesh Processing Course : Active Contours
Mesh Processing Course : Active ContoursGabriel Peyré
 
Robust Sparse Analysis Recovery
Robust Sparse Analysis RecoveryRobust Sparse Analysis Recovery
Robust Sparse Analysis RecoveryGabriel Peyré
 
Signal Processing Course : Fourier
Signal Processing Course : FourierSignal Processing Course : Fourier
Signal Processing Course : FourierGabriel Peyré
 

Viewers also liked (7)

Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...
Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...
Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...
 
Low Complexity Regularization of Inverse Problems
Low Complexity Regularization of Inverse ProblemsLow Complexity Regularization of Inverse Problems
Low Complexity Regularization of Inverse Problems
 
Low Complexity Regularization of Inverse Problems - Course #1 Inverse Problems
Low Complexity Regularization of Inverse Problems - Course #1 Inverse ProblemsLow Complexity Regularization of Inverse Problems - Course #1 Inverse Problems
Low Complexity Regularization of Inverse Problems - Course #1 Inverse Problems
 
Mesh Processing Course : Multiresolution
Mesh Processing Course : MultiresolutionMesh Processing Course : Multiresolution
Mesh Processing Course : Multiresolution
 
Mesh Processing Course : Active Contours
Mesh Processing Course : Active ContoursMesh Processing Course : Active Contours
Mesh Processing Course : Active Contours
 
Robust Sparse Analysis Recovery
Robust Sparse Analysis RecoveryRobust Sparse Analysis Recovery
Robust Sparse Analysis Recovery
 
Signal Processing Course : Fourier
Signal Processing Course : FourierSignal Processing Course : Fourier
Signal Processing Course : Fourier
 

Similar to C03403012017

Grid Integration of Renewables: Challenges and Solutions
Grid Integration of Renewables: Challenges and SolutionsGrid Integration of Renewables: Challenges and Solutions
Grid Integration of Renewables: Challenges and SolutionsPower System Operation
 
Impact of Renewable Energy Sources on Power System
Impact of Renewable Energy Sources on Power SystemImpact of Renewable Energy Sources on Power System
Impact of Renewable Energy Sources on Power Systempaperpublications3
 
Challenges and Benefits of Integrating the Renewable Energy Technologies into...
Challenges and Benefits of Integrating the Renewable Energy Technologies into...Challenges and Benefits of Integrating the Renewable Energy Technologies into...
Challenges and Benefits of Integrating the Renewable Energy Technologies into...Power System Operation
 
IRJET- Techno Commercial Feasibility Study of Renewable Energies
IRJET-  	  Techno Commercial Feasibility Study of Renewable EnergiesIRJET-  	  Techno Commercial Feasibility Study of Renewable Energies
IRJET- Techno Commercial Feasibility Study of Renewable EnergiesIRJET Journal
 
Grid connected PV systems and their growth in power system
Grid connected PV systems and their growth in power systemGrid connected PV systems and their growth in power system
Grid connected PV systems and their growth in power systemijtsrd
 
Physical design and modeling of 25 v dc dc boost converter for stand alone so...
Physical design and modeling of 25 v dc dc boost converter for stand alone so...Physical design and modeling of 25 v dc dc boost converter for stand alone so...
Physical design and modeling of 25 v dc dc boost converter for stand alone so...ecij
 
Analysis of Various Power Quality Issues of Wind Solar System – A Review
Analysis of Various Power Quality Issues of Wind Solar System – A ReviewAnalysis of Various Power Quality Issues of Wind Solar System – A Review
Analysis of Various Power Quality Issues of Wind Solar System – A Reviewijtsrd
 
Design and Modeling of Grid Connected Hybrid Renewable Energy Power Generation
Design and Modeling of Grid Connected Hybrid Renewable Energy Power GenerationDesign and Modeling of Grid Connected Hybrid Renewable Energy Power Generation
Design and Modeling of Grid Connected Hybrid Renewable Energy Power GenerationIJERA Editor
 
IRJET- A Review on Hybrid Solar PV and Wind Energy System
IRJET- A Review on Hybrid Solar PV and Wind Energy SystemIRJET- A Review on Hybrid Solar PV and Wind Energy System
IRJET- A Review on Hybrid Solar PV and Wind Energy SystemIRJET Journal
 
Modeling and Simulation of Grid Connected PV System
Modeling and Simulation of Grid Connected PV SystemModeling and Simulation of Grid Connected PV System
Modeling and Simulation of Grid Connected PV SystemYogeshIJTSRD
 
SPACE VECTOR MODULATION BASED INDUCTION MOTOR DRIVE
SPACE VECTOR MODULATION BASED INDUCTION MOTOR DRIVESPACE VECTOR MODULATION BASED INDUCTION MOTOR DRIVE
SPACE VECTOR MODULATION BASED INDUCTION MOTOR DRIVEpreeti naga
 
Modeling and Simulation for a 3.5 Kw Grid Connected Photo Voltaic Power System
Modeling and Simulation for a 3.5 Kw Grid Connected Photo Voltaic Power SystemModeling and Simulation for a 3.5 Kw Grid Connected Photo Voltaic Power System
Modeling and Simulation for a 3.5 Kw Grid Connected Photo Voltaic Power Systemijtsrd
 
PHYSICAL DESIGN AND MODELING OF 25V DC-DC BOOST CONVERTER FOR STAND ALONE SOL...
PHYSICAL DESIGN AND MODELING OF 25V DC-DC BOOST CONVERTER FOR STAND ALONE SOL...PHYSICAL DESIGN AND MODELING OF 25V DC-DC BOOST CONVERTER FOR STAND ALONE SOL...
PHYSICAL DESIGN AND MODELING OF 25V DC-DC BOOST CONVERTER FOR STAND ALONE SOL...ecij
 
Modeling and Simulation of Grid Connected PV System
Modeling and Simulation of Grid Connected PV SystemModeling and Simulation of Grid Connected PV System
Modeling and Simulation of Grid Connected PV SystemYogeshIJTSRD
 
IRJET - Multi-Hybrid Renewable Energy Source based on Solar, Wind and Biogas ...
IRJET - Multi-Hybrid Renewable Energy Source based on Solar, Wind and Biogas ...IRJET - Multi-Hybrid Renewable Energy Source based on Solar, Wind and Biogas ...
IRJET - Multi-Hybrid Renewable Energy Source based on Solar, Wind and Biogas ...IRJET Journal
 
Rural electrification through solar and wind hybrid system
Rural electrification through solar and wind hybrid systemRural electrification through solar and wind hybrid system
Rural electrification through solar and wind hybrid systemnissy marla
 

Similar to C03403012017 (20)

Grid Integration of Renewables: Challenges and Solutions
Grid Integration of Renewables: Challenges and SolutionsGrid Integration of Renewables: Challenges and Solutions
Grid Integration of Renewables: Challenges and Solutions
 
Impact of Renewable Energy Sources on Power System
Impact of Renewable Energy Sources on Power SystemImpact of Renewable Energy Sources on Power System
Impact of Renewable Energy Sources on Power System
 
Challenges and Benefits of Integrating the Renewable Energy Technologies into...
Challenges and Benefits of Integrating the Renewable Energy Technologies into...Challenges and Benefits of Integrating the Renewable Energy Technologies into...
Challenges and Benefits of Integrating the Renewable Energy Technologies into...
 
IRJET- Techno Commercial Feasibility Study of Renewable Energies
IRJET-  	  Techno Commercial Feasibility Study of Renewable EnergiesIRJET-  	  Techno Commercial Feasibility Study of Renewable Energies
IRJET- Techno Commercial Feasibility Study of Renewable Energies
 
Grid connected PV systems and their growth in power system
Grid connected PV systems and their growth in power systemGrid connected PV systems and their growth in power system
Grid connected PV systems and their growth in power system
 
Physical design and modeling of 25 v dc dc boost converter for stand alone so...
Physical design and modeling of 25 v dc dc boost converter for stand alone so...Physical design and modeling of 25 v dc dc boost converter for stand alone so...
Physical design and modeling of 25 v dc dc boost converter for stand alone so...
 
Analysis of Various Power Quality Issues of Wind Solar System – A Review
Analysis of Various Power Quality Issues of Wind Solar System – A ReviewAnalysis of Various Power Quality Issues of Wind Solar System – A Review
Analysis of Various Power Quality Issues of Wind Solar System – A Review
 
Design and Modeling of Grid Connected Hybrid Renewable Energy Power Generation
Design and Modeling of Grid Connected Hybrid Renewable Energy Power GenerationDesign and Modeling of Grid Connected Hybrid Renewable Energy Power Generation
Design and Modeling of Grid Connected Hybrid Renewable Energy Power Generation
 
IRJET- A Review on Hybrid Solar PV and Wind Energy System
IRJET- A Review on Hybrid Solar PV and Wind Energy SystemIRJET- A Review on Hybrid Solar PV and Wind Energy System
IRJET- A Review on Hybrid Solar PV and Wind Energy System
 
Modeling and Simulation of Grid Connected PV System
Modeling and Simulation of Grid Connected PV SystemModeling and Simulation of Grid Connected PV System
Modeling and Simulation of Grid Connected PV System
 
S01231117120
S01231117120S01231117120
S01231117120
 
pali2016.pdf
pali2016.pdfpali2016.pdf
pali2016.pdf
 
SPACE VECTOR MODULATION BASED INDUCTION MOTOR DRIVE
SPACE VECTOR MODULATION BASED INDUCTION MOTOR DRIVESPACE VECTOR MODULATION BASED INDUCTION MOTOR DRIVE
SPACE VECTOR MODULATION BASED INDUCTION MOTOR DRIVE
 
Wind turbine report
Wind turbine reportWind turbine report
Wind turbine report
 
Modeling and Simulation for a 3.5 Kw Grid Connected Photo Voltaic Power System
Modeling and Simulation for a 3.5 Kw Grid Connected Photo Voltaic Power SystemModeling and Simulation for a 3.5 Kw Grid Connected Photo Voltaic Power System
Modeling and Simulation for a 3.5 Kw Grid Connected Photo Voltaic Power System
 
PHYSICAL DESIGN AND MODELING OF 25V DC-DC BOOST CONVERTER FOR STAND ALONE SOL...
PHYSICAL DESIGN AND MODELING OF 25V DC-DC BOOST CONVERTER FOR STAND ALONE SOL...PHYSICAL DESIGN AND MODELING OF 25V DC-DC BOOST CONVERTER FOR STAND ALONE SOL...
PHYSICAL DESIGN AND MODELING OF 25V DC-DC BOOST CONVERTER FOR STAND ALONE SOL...
 
Modeling and Simulation of Grid Connected PV System
Modeling and Simulation of Grid Connected PV SystemModeling and Simulation of Grid Connected PV System
Modeling and Simulation of Grid Connected PV System
 
H0371056061
H0371056061H0371056061
H0371056061
 
IRJET - Multi-Hybrid Renewable Energy Source based on Solar, Wind and Biogas ...
IRJET - Multi-Hybrid Renewable Energy Source based on Solar, Wind and Biogas ...IRJET - Multi-Hybrid Renewable Energy Source based on Solar, Wind and Biogas ...
IRJET - Multi-Hybrid Renewable Energy Source based on Solar, Wind and Biogas ...
 
Rural electrification through solar and wind hybrid system
Rural electrification through solar and wind hybrid systemRural electrification through solar and wind hybrid system
Rural electrification through solar and wind hybrid system
 

Recently uploaded

247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).pptssuser5c9d4b1
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordAsst.prof M.Gokilavani
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...ranjana rawat
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Call Girls in Nagpur High Profile
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxupamatechverse
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations120cr0395
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...ranjana rawat
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...RajaP95
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxupamatechverse
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Christo Ananth
 

Recently uploaded (20)

247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptx
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
 
Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptx
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
 

C03403012017

  • 1. The International Journal Of Engineering And Science (IJES) || Volume || 3 ||Issue|| 4 || Pages || 12-17 || 2014 || ISSN (e): 2319 – 1813 ISSN (p): 2319 – 1805 www.theijes.com The IJES Page 12 Improved Efficiency of Large Capacity Renewable Energy - Integration with Grid Chandragupta Mauryan.K.S1 M.Abuvatamizhan2 V.Balaji3 R.Mani4 1 Assistant Professor, Department of Electrical and electronics engineering, Sri Krishna College of Technology 2, 3, 4 PG Scholar, Department of Electrical and electronics engineering, Sri Krishna College of Technology ----------------------------------------------------------ABSTRACT------------------------------------------------ Renewable energy is predicted to be the future of energy around the globe. The Renewable energy sources include energy from wind, sun, hydro, tidal, geothermal and energy from renewable bio mass, but wind and solar power takes an important place in the production of energy from the Renewable energy sources. These sources are subjected to natural variability and it creates distinct challenges for their integration into the large power system. De-carbonization, energy security and expanding energy access are the major driving forces towards Renewable energy sources. But there are certain difficulties that are faced when a large capacity of Renewable energy is being integrated to the grid, Non-controllable variability, Partial unpredictability, Location dependency, transmission technology seems to be major concerns when they are being integrated with the grid. We are providing solution for these above listed problems to obtain maximum efficiency from the Renewable energy sources. --------------------------------------------------------------------------------------------------------------------------------------- Date of Submission: 02 April 2014 Date of Publication: 15 April 2014 --------------------------------------------------------------------------------------------------------------------------------------- I. INTRODUCTION The non-renewable energy sources are in the verge of their extinction and its damage to the environment has increased the awareness on Renewable energy sources. Almost in a decade Renewable energy has grown considerably and proving to play a major role in the production of energy in the coming years. There are certain difficulties that are faced in the present environment which is making the integration of large capacity Renewable energy in the grid. Solution for some of the problems faced being offered in this paper that might improve the integration of large capacity Renewable energy into the grid. This eco-friendly energy source is not predictable as it entirely depends on nature but minor adjustments made in the power plant of Renewable energy sources can play a vital role in the integration process and will surely lead to a system that can satisfy the required demand. Thus maximum energy and efficiency can be Renewable energy sources around the globe. Climatic conditions will be varying around the place and the efficiency cannot be maximum with the present technology be followed but our paper deals with these drawbacks and most certainly will improve the efficiency of the Renewable energy sources. II. DRIVING FORCES OF RENEWABLE ENERGY SOURCES Renewable energy is a growing component of electricity grid due to its contribution in (i) Energy system de- carbonization (ii) Expansion of energy access to the new consumers in the developing world (iii) Energy security in a long term. These factors have been so important in the increased usage of renewable energy. 2.1. De-carbonization The importance of addressing global climatic change, a worldwide environmental phenomenon which will affect all the people on the planet earth. UN recently said that “warming of the climate system is unequivocal, as is now evident from observations of increases in global average air and ocean temperatures, widespread melting of snow and ice and rising global average sea level and most of the global average warming over the past 50 years is very likely due to anthropogenic greenhouse gas increases and it is likely that there is a discernible human-induced warming averaged over each continent excluding Antarctica. The emission of carbon dioxide related to 70% of the total greenhouse gas emitted and production of electricity will cause half of the total carbon dioxide emitted in the greenhouse gases emitted. The RE will result in the reduction carbon dioxide emitted in the electricity production and it will have a greater influence in the environment protection. One of the fast developing countries, China is planning to reach 180MW by wind power plants and 20GW in solar energy by the year of 2020.
  • 2. Improved Efficiency of Large Capacity Renewable Energy - Integration with Grid www.theijes.com The IJES Page 13 2.2. Energysecurity Driven by the natural forces, RE has no fuel costs. The zero-fuel-cost of RE manifests itself in having three great benefits. (i) the average energy costs which will tend to decline over a period for renewable generation (ii) as variable costs are limited to operations and maintenance and do not include fuel (iii) RE assets are insulated from fluctuations in fossil fuel prices, which are historically volatile and subject to geopolitical disruptions. Coal, gas and oil-fired generation costs, in contrast, increase when the cost of the relevant fuel increases. Fig. 1 represents world electricity generation till the year 2035. Fig. 1 World electricity generations till the year 2035 2.3. Expanding Energyaccess Energy demand increase rapidly in each country due to the development in the technology. In that case RE source will be a great asset in the years to come to meet out the demand of every country. More energy will be required in the years to come as every individual in the world are being given access to electricity. Fig. 2 shows the required electricity demand in MW. Fig. 2 Electricity demands in MW III. WIND ENERGY Wind turbine generators extract energy from wind and convert it into electricity via an aerodynamic rotor, which is connected by a transmission system to an electric generator today’s mainstream Wind energy turbines have three blades rotating on a horizontal axis, upwind of the tower shown in Fig. 3. And vertical-axis Wind energy turbines have shown in Fig. 4.
  • 3. Improved Efficiency of Large Capacity Renewable Energy - Integration with Grid www.theijes.com The IJES Page 14 Fig. 3 Horizontal axis wind turbine Fig. 4 Vertical axis wind turbine In general, a Wind energy turbines can begin to produce power in winds of about 3 m/s and reach its maximum output around 10 m/s to 13 m/s. Power output from a Wind energy turbines increases by the third power of wind speed, a 10 % increase in wind speed increases available energy by 33 %, and is directly proportional to the rotor-swept area (the area swept by the rotating blades). Power output can be controlled both by rotating the nacelle horizontally (yawing) to adapt to changes in wind direction, and rotating the blades around their long axes (pitching) to adapt to changes in wind strength. The capacity of Wind energy turbines has doubled approximately every five years, but a slowdown in this rate is likely for onshore applications due to transport, weight and installation constraints. Typical commercial Wind energy turbines at present have a capacity of 1.5 MW-3 MW; larger ones can reach 5 MW-6 MW, with a rotor diameter of up to 126 meters. Since a single Wind energy turbines has limited capacity, much less than a conventional power generator, a wind power plant. Normally consists of many Wind energy turbines connected together by overhead lines or cables. Their power output is collected and transmitted to the grid through an alternating current (AC) or direct current (DC) line, after voltage step-up at the substation in the wind power plant Fig 5.Some WPPs now have a capacity comparable to that of conventional power generators. Fig. 5 Substation in the wind power plant
  • 4. Improved Efficiency of Large Capacity Renewable Energy - Integration with Grid www.theijes.com The IJES Page 15 IV. SOLAR ENERGY According to the materials and design, current PV power generation technologies can be classified into crystalline silicon, thin-film and concentrating PV Fig. 6 and Fig. 7.Crystalline silicon PV is currently the best established PV technology, with an energy conversion efficiency of up to 20 %. More recently, thin-film PV, which can also use non silicon semiconductor materials, is gaining attention. Although thin-film PV generally has a lower efficiency than silicon PV (around 11 %), it is less expensive and less energy-intensive to manufacture and is also more flexible for versatile applications. Concentrating PV, in which sunlight is concentrated and strengthened by a lens before it reaches the PV cells, is on the edge of entering full market deployment. Concentrating PV can reach an efficiency of up to 40 %. Other technologies, such as organic PV cells, are still in the research phase. Fig. 6 Solar power plant Fig. 7 Solar power plant One of the key components of PV systems is the inverter. DC output from PV systems is changed into AC by inverters. The performance of the inverter is especially important for grid connected PV power plants, since it directly influences whether the PV power plant can meet the requirements of grid operation. Most inverters have low voltage ride through (LVRT) and flexible active and reactive power control capabilities. However, since there is no rotating component, PV systems cannot supply inertia support to the power system. Fig. 8 shows basic solar principle representation diagram. 4.1. Concentrated solar power generation CSP generation, also known as solar thermal power generation, is much like conventional thermal power generation that converts thermal energy into electricity, but differs in how the thermal energy is obtained. CSP plants use various mirror configurations (with a sun tracking system) to reflect and concentrate direct-beam sunlight to heat the working fluid flows (such as air, water, oil or molten salt) in the receivers to a high temperature, thus converting solar energy into thermal energy. Fig. 8 shows concentrated solar power. V. TYPES OF CONCENTRATED SOLAR POWER PLANTS: 1. Parabolic trough systems use long rows of parabolic mirrors to reflect and concentrate sunlight beams onto a linear receiver tube that contains the working fluids.
  • 5. Improved Efficiency of Large Capacity Renewable Energy - Integration with Grid www.theijes.com The IJES Page 16 2. Linear Fresnel reflector systems use long rows of flat or slightly curved mirrors to concentrate the sunlight beams onto a downward-facing linear receiver tube fixed in space above the mirrors. Fig. 8 Concentrated solar power 3. Solar tower systems, also known as central receiver systems, use numerous large, flat mirrors to concentrate sunlight beams onto a receiver at the top of a tower. 4. Parabolic dish systems, also known as dish/engine systems, concentrate sunlight beams onto the focal point of a single dish, where the receiver and an engine/ generator (such as a Sterling machine or a micro-turbine) are installed. VI. NON CONTROL VARIABLITY Variability in the context of wind and solar resources refers to the fact that their output is not constant. It is distinct from unpredictability, which we discuss in the following section. Even if operators could predict the output of wind and solar plants perfectly, that output would still be variable, and pose specific challenges to the grid operator. On the seconds to minutes time scale, grid operators must deal with fluctuations in frequency and voltage on the transmission system that, if left unchecked, would damage the system as well as equipment on it. To do so, operators may order generators to inject power (active or reactive) into the grid not for sale to consumers, but in order to balance the actual and forecasted generation of power, which is necessary to maintain frequency and voltage on the grid. These ancillary services go by a plethora of names and specific descriptions. Typical services for an impressionistic overview include: • Frequency regulation: occurs on a seconds-to-minutes basis, and is done through automatic generation control signals to generators; • Spinning reserves: Generators available to provide power typically within 10 minutes. These reserves are used when another generator on the system goes down or deactivates unexpectedly • Non-spinning reserves: these generators serve the same function as spinning reserves, but have a slower response time. • Voltage support: generators used for reactive power to raise voltage when Necessary. • Black-start capacity: generators available to re-start the power system in case of a cascading black-out. High penetrations of wind and solar generation will add more variability to the energy system than grid operators have traditionally managed in the past, and thus increase demand for ancillary services and balancing energy overall. It is more difficult, and sometimes impossible, to manage such challenges at the device level, and so grid-level actions, technologies and strategies are often needed. Wind and solar resources in sufficient amounts may also complicate load following functions when large demand shifts coincide with weather events that alter power output from wind or solar resources. Grid operators located in more remote regions and serving smaller loads may have less flexibility to provide ancillary services and load following than their larger counterparts. Compounding matters, plentiful RE resources are often located in these remote locations.
  • 6. Improved Efficiency of Large Capacity Renewable Energy - Integration with Grid www.theijes.com The IJES Page 17 VII. PARTIAL UNPREDICTABILITY Partial unpredictability, also called uncertainty, is distinct from variability. The variability of wind and solar generation is ever-present, a result of reliance on the ever-changing wind and sun, and affects the system at the moment-to-moment time scale as a cloud passes over a PV plant or the wind drops. Partial unpredictability, on the other hand, refers to our inability to predict with exactness whether the wind and sun will be generally available for energy production an hour or a day from now. This hour-to-day uncertainty is significant because grid operators manage the great majority of energy on the grid through “unit commitment”, the process of scheduling generation in advance, generally hours to a full day ahead of time, in order to meet the expected load. When actual production does not match the forecast, the grid operator must balance the difference. RE generation increases the cost of this function by increasing the spread between predicted and supplied energy, a cost that is ultimately borne by consumers. VIII. LOCATION DEPENDANCY Far removed from the day-to-day management of the grid is its long-term planning – specifically the sitting and utilization of new transmission lines. Here RE generation plays a significant role and introduces new challenges. Because wind and solar resources are often located in remote locations, far from load centers, developing sufficient transmission to move RE to markets is critical to their integration. Transmission planning processes are highly varied, and tend to be influenced by regional politics. For example, a transmission line may provide capacity for energy produced in one country or state, passed through another, and consumed in yet another. These disparities in generation capacity, transmission location and load size between locations can make the development of transmission for RE contentious and complex, particularly with respect to cost allocation. Because new transmission lines built out to RE generation resources will carry primarily renewably generated, variable and partially unpredictable electricity, technical needs arise regarding the transmission technology to be used. On the other hand, distributed energy resources provide for an alternative vision of the future grid, where energy is generated and used locally on a micro-grid, avoiding the cost of line losses and the high capital cost of transmission lines. In such a schema, the electricity grid could be conceptualized as a collection of independent micro-grids with vastly reduced long-distance energy transmission needs. IX. CONCLUSION Thus by these methods a large capacity RE can be integrated to the grid and hence a maximum efficiency will be obtained. RE will be an inevitable source of energy that can be even considered as the future of energy. Therefore natural forces can be used to its maximum efficiency for producing energy that can neither be created nor be destroyed. REFERANCES [1]. Gaviano A, Weber K, Dirmeier C. “Challenges and Integration of PV and Wind Energy”, Elsevier Energr Procedia,Volume 34, pp.282-290,2013. [2]. Facilities from a Smart Grid Point of View. Energy Procedia 2012 Menke C. The future of PV in Germany and prospective for Thailand. Renewable Energy Project Development Programme (PDP) South-East Asia 20 years of grid connected PV ystems:Lessons learnt from Germany why quality matters. Bangkok, Thailand, 2012. [3]. Darie, S.“Guidelines for Large Photovoltaic System Integration,” Transmission and Distribution Conference and Exposition (T&D), 2012 IEEE PES, May 7-12, 2002, pp. 1-6 [4]. Sherwood, L. “U.S. Solar Market Trends 2011,”Interstate Renewable Energy Council, August 2012, pp. 2-17. [5]. IEEE Standard 1547-2003, “IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems.” [6]. State Grid EnergyResearch Institute, Vestas Wind Energy Technology (China): Integrated Solution Strategies for Coordinated Wind Power and Grid Development-International Experiences and China Practices, Report, Oct 2011 [7]. P. Denholm, E. Ela, B. Kirby, M. Milligan: The Role of Energy Storage with Renewable Electricity Generation, U.S. National Renewable Energy Laboratory Technical Report NREL/ TP-6A2-47187, Report, 2011 [8]. G. Bathurst, G. Strbac: Value of Combining Energy Storage and Wind in Short-term Energy and Balancing Markets,Electric Power SystemsResearch 67 (2003), pp.1-8.