SlideShare ist ein Scribd-Unternehmen logo
1 von 59
Downloaden Sie, um offline zu lesen
Department of Civil Engineering                                                      viTüasßanCatiBhubec©keTskm<úCa

                            XI.   eRKOgbgÁúMrgkarsgát; nigrgkarBt;
    1> esckþIepþIm
        eRKOgbgÁúMbBaÄrCaEpñkmYyrbs;eRKagsMNg; EdlrgkMlaMgsgát; nigm:Um:g;. kMlaMgTaMgenH )anBIkMlaMg
xageRkAdUcCa bnÞúkefr bnÞúkGefr nigbnÞúkxül;. kMlaMgRtUv)ankMNt;eday karKNnaedayéd b¤edaykMuBüÚT½r
EdlQrelIeKalkarN¾sþaTic nigviPaKeRKOgbgÁMú (structural analysis). Ca]TahrN¾ sMrab;rUb (1) bgðajfa
eRKagQrelITMr hinged BIr EdlrgbnÞúkemKuNBRgayesμI enAelIGgát; BC. düaRkamm:Um:g;Bt;RtUv)anKUrenA
EpñkxagTaj. kMNat;ssr AB nig CD rgnUvkMlaMgsgát; nigm:Um:g;Bt;. pleFobrvagm:Um:g;Bt; nigkMlaMg
sgát; RtUv)aneGayeQμaHfa cMgaycakp©it e Edl e = M . e CacMgayBITIRbCMuTMgn;)aøsÞic(plastic centroid)
                                                           n
                                                           P
                                                           n

énmuxkat;eTA cMnucénbnÞúkmanGMeBI. TIRbCMuTMgn;)aøsÞic (plastic centroid) RtUv)anTTYledaykarkMNt;TItaMgkM
laMgpÁÜbbegáItedaysésEdk nigebtug edaysnμt;kugRtaMgsgát;sMrab;Edk f nigkugRtaMgsgát;sMrab;ebtug
                                                                              y


0.85 f ' . sMrab;muxkat;sIuemRTI TIRbCMuTMgn;)aøsÞic (plastic centroid) RtYtsIuKñaCamYyTIRbCMuTMgn;rbs;muxkat;.
       c


sMrab;muxkat;minsIuemRTI TIRbCMuTMgn;)aøsÞic (plastic centroid) RtUv)ankMNt;edayeRbIm:Um:g; eFobnwgGkS½
arbitrary axis.

                                                    rUbTI1³ eRKagTMr pin BIrCamYynwgdüaRkamm:Um:g;




        ]TahrN_1³ kMNt;TIRbCMuTMgn;)aøsÞic (plastic centroid)
        énmuxkat;dUcbgðajkñúgrUbTI2. smμtikmμ³       f 'c = 28MPa

        nig f = 400MPa .
               y


        dMeNaHRsay³
        !> kugRtaMgsgát;sMrab;ebtugRtUv)ankMNt;yk 0.85 f ' rUbTI2³ TIRbCuMTMgn;)øasÞic (P.C)énmuxkat;
                                                               c


        F = kMlaMgkñúgrbs;ebtug = 0.85 f ' A
           c                                c   g



Members in Compression and Bending                                                                            196
T.Chhay                                                                                               NPIC

                = (0.85 × 28) × 350 × 500 = 4165kN
           Fc sßitenAelITIRbCMuTMgn;énmuxkat;ebtug ¬enAcMgay 250mm BIGkS½ A − A ¦
          @> kMlaMgenAkñúgsésEdk
                                   π × 282
           Fs1 = As1 f y = 4 ×           × 400 = 985.2kN
                                   4
                                 π × 282
           Fs 2 = As 2 f y = 2 ×         × 400 = 492.6kN
                                    4
          #> kMNt;m:Um:g;eFob A − A
                 (4165 × 250) + (985.2 × 65) + (492.6 × 435)
           x=                                                = 233.85mm
                           4165 + 985.2 + 492.6
          dUcenH TIRbCMuTMgn;)aøsÞic (plastic centroid) RtUvsßitenAelIcMgay 233.85mm BIGkS½ A − A
          $> RbsinebI A = A ¬muxkat;sIuemRTI¦ dUcenH x = 250mm BIGkS½ A − A .
                             s1     s2



     2> karsnμt;sMrab;KNnassr
          GaRs½ytam ACI Code EdnkMNt;sMrab;karKNnassrkMNt;dUcxageRkam³
          !> kMhUcRTg;RTayeFob strain enAkñúgebtug nigEdk RtUvsmamaRteTAnwgcMgayBIGkS½NWt.
          @> RtUvEtbMeBjlkçxNÐ smIkarlMnwgénkMlaMg nigPaBRtUvKñaénkMhUcRTg;RTayeFob strain
          compatibility.

          #> kMhUcRTg;RTayeFobrbs;ebtugrgkarsgát;EdleRbIR)as;GtibrmaKW 0.003 .
          $> ersIusþg;rbs;ebtugrgkarTajGacRtUvecal.
          %> kugRtaMgenAkñúgEdkKW f = εE ≤ f .
                                         s     s      y


          ^> bøúkkugRtaMgGackMNt;manragctuekaNCamYykugRtaMg 0.85 f ' BRgayBIRbEvg a = β c . Edl
                                                                              c                   1


          c CacMgayBIGkS½NWt nig
                ⎧        0.85                                                 f 'c ≤ 28MPa
                ⎪             f ' −28
           β1 = ⎨0.85 − 0.05( c
                                  7
                                      )      sMrab;ebtugEdlmanersIusþg;   28MPa < f 'c ≤ 56 MPa
                ⎪                                                             f 'c > 56MPa
                ⎩        0.65

     3> düaRkamGnþrkmμbnÞúk-m:Um:g;                Load-moment interaction diagram

         enAeBlEdlbnÞúktamGkS½RtUv)anGnuvtþmkelIssrxøI krNIdUcxageRkamGacekIteLIg edayGaRs½y
    eTAnwgTItaMgGnuvtþbnÞúkedayeFobeTAnwg TIRbCMuTMgn;)aøsÞic (plastic centroid). rUb


eRKOgbgÁúMrgkarsgát; nigrgkarBt;                                                                       197
Department of Civil Engineering                                                        viTüasßanCatiBhubec©keTskm<úCa
       kMlaMgsgát;tamGkS½ P CakMlaMgsgát;tamGkS½EdlmantMélFMGnuvtþenAelITIRbCMuTMgn;)aøsÞic (plastic
                             o


  centroid) e = 0 nig M = 0 . kar)ak;rbs;ssr ekIteLIgedayebtugEbk nigEdkeFVIkardl; yielding.
                         n


  vaRtUv)ansMEdgeday P enAelIExSekag.
                         o




                                                            rUbTI3 a³ düaRkamGnþrkmμbnÞúk-m:Um:g;
       !> Maximum nominal axial load P : CakrNIEdlkMlaMgtamGkS½GnuvtþeTAelImuxkat;CamYy cM
                                          n max


  gaycakp©it eccentricity Gb,rma. tam ACI Code, P = 0.80P sMrab;ssrEdkkgdac;² tie
                                                                   n max           o


  column nig P     = 0.85P sMrab;ssrEdlmanEdkkgdUcrWus½r spirally reinforced column . kar)ak;
                n max        o


  ekIteLIgedayebtugEbk nigEdkeFVIkardl; yielding.
       @> Compression failure: CakrNIEdlbnÞúktamGkS½FMGnuvtþenAcMgaycakp©ittUc. bnÞúktamGkS½kñúg
  krNIenHmantMélERbRbYlBI tMélGtibrma P = P eTAtMélGb,rma P = P (balanced load). s
                                                n       n max                      n   b


  r)ak;edayebtugEbkenAEpñkrgkarsgát;CamYYynwgbMErbMrYlrageFob strain = 0.003 ÉcMEnkkugRtaMgkñúgEdk
  ¬EpñkrgkarTaj¦ KWtUcCag yield strength f < f . kñúgkrNIenH P > P nig e < e .
                                            s       y                      n   e            n


       #> Balanced condition P : lkçxNÐenHekItmaneLIgenAeBlEdl bMErbMrYlrageFobrgkarsgát;
                                  b


  compression strain enAkñúgebtugmantMélesμI 0.003 ehIybMErbMrYlrageFobrbs;EdkrgkarTajmantMél




Members in Compression and Bending                                                                              198
T.Chhay                                                                                           NPIC

    εy =
            fy
            Es
                 . kar)ak;rbs;ebtugekIteLIgtMNalKñanwgEdk yield. m:Um:g;EdlekItedaysarbnÞúkenHRtUv)an
   eKehAfa balanced moment M cMgaycakp©itRtUv)aneKehAfa balanced eccentricity e = M .
                                       b
                                                                                       P
                                                                                          b
                                                                                              b

                                                                                              b

        $> Tension failure: CakrNIekItmanenAxN³Edl bnÞúktamGkS½tUc nigcMNakp©itFM ehIyEdlmanm:U
m:g;FM. muneBl)ak; kugRtaMgTajekItmanenAelIEpñkd¾FMénmuxkat; bNþaleGayEdkrgkarTaj yield muneBl




                          rUbTI3 b³ muxkat;ssrEdlbgðajBITItaMgbnÞk P sMrab;lkçxNÐbnÞúkepSg²
                                                                 ú n

eRKOgbgÁúMrgkarsgát; nigrgkarBt;                                                                   199
Department of Civil Engineering                                             viTüasßanCatiBhubec©keTskm<úCa
ebtugEbk. enAeBl)ak; bMErbMrYlrageFobrbs;EdkrgkarTajmantMélFMCagbMErbMrYlrageFob yield ε           y


ehIybMErbMrYlrageFobenAkñúgebtugesIμ 0.003 . krNIenHekItmanBI Balanced condition eTAdl; pure
flexure P < P nig e > e .
         n    b          e


        %> Pure flexure: muxkat;kñúgkrNIenHrgm:Um:g;Bt; M Edl P = 0 . kar)ak;dUcKñanwg kar)ak;rbs;
                                                       n        n


FñwmrgkarBt;. cMNakp©itRtUv)ansnμt;fa Gnñn.
     4> karpþl;nUvsuvtßiPaB Safety provisions
        !> emKuNbnÞúksMrab; bnÞúk gravity nigbnÞúkxül;
                       U = 1 .4 D

                       U = 1 .2 D + 1 .6 L

                       U = 1.2 D + 1.6 L + 0.8W

                       U = 1.2 D + 1.0 L + 1.6W

                       U = 0.9 D + 1.6W
             bnSMbnÞúkemKuNEdlmantMélsFMCageKRtUv)anykmkeRbIR)as;sMrab;karKNna.
      @> emKuNkat;bnßyersIusþg; φ eRbIsMrab;KNnassrGaRs½yeTAnwgkrNIxageRkam³
             k> enAeBl P = φP ≥ 0.1 f ' A eBlenaH φ = 0.65 sMrab;ssrEdkkgdac;² tie column
                             u      n        c   g


ehIy φ = 0.7 sMrab;muxkat;ssr EdlmanEdkkgdUcrWus½r spirally reinforced column .
krNIenHssrRtUv )anrMBwg fa)ak;edaykarrsgát;.




       rUbTI4³ tMélemKuN φ
Members in Compression and Bending                                                                     200
T.Chhay                                                                                                  NPIC

              x> muxkat;EdlbMErbMrYlrageFobrgkarTajsuT§ net tensile strain ε sMrab;ersIusþg;Fmμta t


nominal strength enAkñúgEdkrgkarTajeRkAeKbMput KWsißtenAcenøaH 0.005 nig 0.002 (transition region)

φ ERbRbYlCalkçN³bnÞat;cenøaH 0.9 nig 0.67 b¤ ¬ 0.7 ¦.
              sMrab;muxkat;EdlmanEdkkgdUcrWus½r spiral section
                                                            ⎡ 1    5⎤
                                         ) b¤ φ = 0.7 + 0.2 ⎢
                                     200
              φ = 0.7 + (ε − 0.002)(   t                         − ⎥                       (-1)
                                      3                       c/d 3        ⎣       t        ⎦
                     sMrab;muxkat;epSgeTot
                     φ = 0.65 + (ε t − 0.002)(
                                                    250
                                                        )   b¤ φ = 0.65 + 0.25⎡ c /1d
                                                                              ⎢
                                                                                             5⎤
                                                                                            − ⎥       (-2)
                                                     3                         ⎣        t    3⎦

               K> enAeBl P = 0 kñúgkrNIrgkarBt;suT§ φ = 0.9 sMrab; muxkat; tension-control section
                                           u


nig ERbRbYlBI 0.9 nig 0.65 b¤ ¬ 0.7 ¦ enAkñúgtMbn; transion region.
     5> Balanced condition – muxkat;ctuekaN
        Balanced condition ekItmanenAkñúgmuxkat;ssrenAeBlEdl bnÞúkEdlGnuvtþmkelImuxkat;ssr

Edlman nominal strength begáItbMErbMrYlrageFobesμI 0.003 enAkñúgsésrgkarsgát;rbs;ebtug nigbMEr
bMrYlrageFobesμI ε = E enAkñúgr)arEdkrgkarTajkñúgeBldMNalKña. enHKWCakrNIBiessEdl GkS½NWt
                       f
                         y
                                   y

                                   s

GacRtUv)ankMNt;BI strain diagram edaysÁal;tMélFMbMput. enAeBlEdlbnÞúkcakp©itmantMél FMCag P                        b


enaHeKehAmuxkat;enaHfa compression control. pÞúymkvijeKehAfa tension control .




          karviPaK balanced column section GacRtUv)anBnül;dUcxageRkam³
          !> yk c CacMgayBIsésrgkarsgát;q¶aybMputmkGkS½NWt. BI strain diagram
                     b

           cb (balanced)               0.003
                         =                                                                            (-3)
                 d                             fy
                                   0.003 +
                                               Es
eRKOgbgÁúMrgkarsgát; nigrgkarBt;                                                                             201
Department of Civil Engineering                                                               viTüasßanCatiBhubec©keTskm<úCa
       eday E    s   = 200000MPa
                      600d
        ⇒ Cb =
                     600 + f y

       kMBs;bøúkrgkarsgát;smmUl equivalent compressive block
                    ⎛ 600 ⎞
        ab = β1cb = ⎜          ⎟β d                                                                             (-4)
                    ⎜ 600 + f ⎟ 1
                    ⎝        y ⎠

                  ⎧        0.85                                                      f 'c ≤ 28MPa
                  ⎪              f ' −28
       Edl   β1 = ⎨0.85 − 0.05( c
                                     7
                                         )          sMrab;ebtugEdlmanersIusþg;   28MPa < f 'c ≤ 56 MPa
                  ⎪                                                                  f 'c > 56MPa
                  ⎩        0.65
       @> BIsmIkarlMnwg plbUkkMlaMgtamTisedkesIμsUnü
        Pb − Cc − C s + T = 0
       Edl       Cc = 0.85 f 'c ab                nig T = A f
                                                           s    y                                               (-5)

                 Cs = A' ( f 's −0.85 f 'c )                      enAeBlEdlEdkrgkarsgát;eFVIkardl; yield
                                                         f 's = f y
                                                                  ⎛ c − d'⎞
                                                         f ' = 600⎜
                                                           s              ⎟ ≤ f pÞúymkvij
                                                                                 y
                                                                  ⎝ c ⎠
    ⇒ Pb = 0.85 f 'c ab + A's ( f 's −0.85 f 'c ) − As f y                                                      (-6)

        #> cMNakp©it e RtUv)anvas;BI plastic centroid nig e' RtUv)anvas;BITIRbCMuTMgn;énEdkrgkarTaj.
                          b


    e' = e + d " ¬sMrab;krNIrnH e' = e + d " ¦ Edl d " CacMgayBITIRbCMuTMgn;)øasÞiceTATIRbCMuTMgn;Edkrgkar
                                              b


    Taj. e RtUv)anKNnaedayKitm:Um:g;Rtg; plastic centroid
             b

                     a
    Pb eb = Cc (d −     − d " ) + C s (d − d '− d " ) + Td "                                                    (-7)
                     2
    b¤                            a
       Pb eb = 0.85 f 'c ab(d − − d " ) + A' ( f 's −0.85 f 'c )(d − d '−d " ) + As f y d "
                                  2
                                                                                                                (-8)

    cMNakp©it balanced eccentricity
           Mb
    eb =                                                                                                        (-9)
           Pb
     sMrab;muxkat;minEmnctuekaN eyIgeRbIviFIsaRsþdUcKñakñúgkarviPaK edayKitRkLaépÞBitR)akdrbs;ebtug
rgkarsgát;.
     emKuNkat;bnßyersIusþg; φ sMrab; balanced condition CamYy f = 400MPa RtUv)ansnμt;yk 0.65
                                                                             y


  b¤ 0.7 . enHedaysar ε = ε = E = 0.002 .
                                 f
                                  s   t
                                          y

                                          s

     ]TahrN_2³ kMNt;kMlaMgsgát; balanced compressive force P rYckMNt; e nig M sMrab;muxkat;
                                                                            b             b            b


bgðajkñúgrUb. eKeGay f ' = 27MPa nig f = 400MPa .
                              c                      y


    dMeNaHRsay³
Members in Compression and Bending                                                                                     202
T.Chhay                                                                                        NPIC

     !> sMrab; balanced condition bMErbMrYlrageFobenAkñúgebtugKW 0.003 ehIy bMErbMrYlrageFobenAkñúgEdk
                  400
      εy =              = 0.002
                 200000
     @> TItaMgGkS½NWt
                   600
      cb =                 d = 0.6 × 500 = 300mm
                 600 + f y




                                                            rUbTI6³ balanced condition
      ab = β1cb = 0.85 × 300 = 255mm
     @> RtYtBinitü Edkrgkarsgát;/ BI strain diagram
          ε 's        c − d ' 300 − 50
                  =          =
      0.003             c       300
      ⇒ ε 's = 0.0025 > ε y           dUcenHEdkrgkarsgát; yield
                                  ⎛ c − d" ⎞
     b¤RtYtBinitütam    f 's = 600⎜
                                  ⎝ c ⎠
                                           ⎟ ≤ fy

                 ⎛ 300 − 50 ⎞
       f 's = 600⎜           ⎟ = 500MPa > 400 MPa
                 ⎝ 300 ⎠
     dUcenH f ' = f = 400MPa
                      s       y


     $> KNnakMlaMgmanGMeBImkelImuxkat;
      Cc = 0.85 f 'c ab = 0.85 × 27 × 255 × 350 = 2048.3kN
      Ts = As f y = 28 2 × π × 400 = 985.2kN

      C s = A' s ( f y − 0.85 f 'c ) = 28 2 π (400 − 0.85 × 27) = 928.7 kN

     %> KNna P nig e      e       b


      Pb = Cc + Cs − T = 2048.3 + 928.7 − 985.2 = 1991.8kN
                           a
      M b = Pb eb = Cc (d − − d " ) + C s (d − d '− d " ) + Td "
                           2


eRKOgbgÁúMrgkarsgát; nigrgkarBt;                                                                  203
Department of Civil Engineering                                                            viTüasßanCatiBhubec©keTskm<úCa
                                               255
    M b = 1991.8eb = 2048.3(500 −                  − 225) + 928.7(500 − 50 − 225) + 985.2 × 225 = 732.8kN .m
                                                2
                732.8
    ⇒ eb =            = 0.368m
               1991.8
    ^> sMrab; balanced condition φ = 0.65
    φPb = 0.65 × 1991.8 = 1294.67kN
    φM b = 0.65 × 732.8 = 476.32kN .m

    6> muxkat;ssreRkamGMeBIbnÞúkcakp©it Column sections under eccentric loading
        sMrab;krNIBIr enAeBlEdlmuxkat;ssr)ak;edaykarsgát;b¤karTaj smIkarlMnwgmUldæanBIrGac
    RtUv)aneRbIsMrab;viPaKssrEdlrgbnÞúkcakp©it.




                                                    rUbTI7³ krNITUeTA muxkat;ctuekaNEkg
       !> plbUkkMlaMgtamGkS½edk b¤tamGkS½QRtUvesμIsUnü
       @> plbUkm:Um:g;eFobnwgGkS½NamYyRtUvesμIsUnü
       eyagtamrUb eKGacsresrsmIkarTaMgBIrxagelI dYcxageRkam
       !> P − C − C + T = 0
           n      c       s                                                            (-10)

       Edl C = 0.85 f ' ab
                   c              c


                C = A' ( f ' −0.85 f ' )
                      s       s   s        ¬RbsinebIEdkrgkarsgát; yield enaH f ' = f ¦
                                                c                                                   s       y


                T=A f     s   s            ¬RbsinebIEdkrgkarTaj yield enaH f = f ¦              s       y


       @> Kitm:Um:g;Rtg;cMnuc A       s

                     a
        Pn e'−Cc (d − ) − Cs (d − d ' ) = 0                                                                     (-11)
                     2
       Edl       e' = e + d "             ¬ d " CacMgayBITIRbCMuTMgn;)øasÞiceTATIRbCMuTMgn;rbs;EdkrgkarTaj¦
       b¤        e' = e + d −
                                  h
                                  2
                                          sMrab;muxkat;ssrEdlmanEdksIuemRTI
Members in Compression and Bending                                                                                      204
T.Chhay                                                                                                                                       NPIC

                       1⎡          a                   ⎤
              Pn =        ⎢Cc (d − 2 ) + C s (d − d ' )⎥                                                                                 (-12)
                       e' ⎣                            ⎦
              Kitm:Um:g;Rtg; C                 c

                 ⎡         a ⎤       a         a
              Pn ⎢e'−(d − )⎥ − T (d − ) − C s ( − d ' ) = 0                                                                              (-13)
                 ⎣         2 ⎦       2         2
                           a       a
                    T (d − ) + Cs ( − d ' )
              Pn =         2       2                                                                                                     (-14)
                               a
                          (e'+ − d )
                               2
              RbsidnebI A = A' ehIy       s           s           f s = f 's = f y   enaH
                   As f y (d − d ' ) As f y (d − d ' )
              Pn =                   =                                                                                                   (-15)
                           a                 h a
                    e'+ − d                e− +
                           2                 2 2
                                    h a
                           Pn (e − + )
              As = A's =            2 2                                                                                                  (-16)
                             f y (d − d ' )

     7> ersIusþg;rbs;ssrsMrab;kar)ak;edaykarTaj                                                      Stregth of columns for tension failure

         enAeBlEdlssrrgbnÞúkcakp©itCamYynwgcMNakp©it e FM enaHeKrMBwgfassrnwg)ak;edaykarTaj.
     ssr)ak;edayEdkeFIVkardl; yield ebtugEbkenAeBlEdl strain rbs;EdkFMCag ε (ε = f E ) . Kñúg                                y   y
                                                                                                                                     y
                                                                                                                                          s

     krNIenH nominal strength P nwgmantMéltUcCag P b¤k¾ cMNakp©it e = M P FMCag balanced
                                                               n                             b
                                                                                                                     n
                                                                                                                         n

     eccentricity e . edaysarkñúgkrNIxøHeKmankarBi)akkñúgkarTsSn_TayfavaCamuxkat; tension control
                                   b


     b¤ compression control enaHeKGacsnμt;fa tension failure GacekIteLIgenAeBl e > d . Karsnμt;enH
     GaceFVIeLIgenAeBleRkay.
         smIkarlMnwgTUeTA
          P − C − C + T = 0 nig
               n        c              s


          P e'−C (d − ) − C (d − d ' ) = 0 GacRtUv)aneRbIR)as;sMrab;KNna nominal strength rbs;ssr.
                       a
               n         c                             s
                       2
         !> sMrab;kar)ak;edaykarTaj EdkrgkarTaj yield f = f . snμt;fakugRtaMgEdkrgkarsgát;       s      y


      f' = f .
          s        y


         @> KNna P = C + C − T     n               c       s


         Edl C = 0.85 f ' ab   c                       c


                             Cs = A's ( f y − 0.85 f 'c )

                            T = As f y

              #> KNna P edayKitm:Um:g;Rtg; A
                                       n                                 s

eRKOgbgÁúMrgkarsgát; nigrgkarBt;                                                                                                                 205
Department of Civil Engineering                                                                                     viTüasßanCatiBhubec©keTskm<úCa
                       a
        Pn e' = Cc (d − ) + C s (d − d ' )
                       2
        Edl e' = e + d " b¤ e' = e + d − h enAeBl A = A'
                                         2
                                                                               s        s


        $> BICMhan @ nig # eyIg)an
                           1⎡          a                   ⎤
        Cc + C s − T =        ⎢Cc (d − 2 ) + C s (d − d ' )⎥
                           e' ⎣                            ⎦
        vaCasmIkarTIdWeRkTI2 EdlmanGBaØti a . CMnYstMél C / C nig T ehIyedaHRsayrk a .
                                                                                    c               s


        %> eRkayBICMnYs C / C nig T smIkardWeRkTI2 Gacsresry:agsMrYldUcxageRkam
                               c           s


        Aa 2 + Ba + C = 0
        Edl         A = 0.425 f 'c b

                    B = 0.85 f 'c b(e'− d ) = 2 A(e'− d )
                   C = A's ( f 's −0.85 f 'c )(e'− d + d ' ) − As f y e'
                            − B ± B 2 − 4 AC
                   ⇒a=
                                  2A
                RbsinebI f ' −0.85 f ' < 0 RtUvykvaesμI 0 .
                                   s               c


        ^> CMnYs a eTAkñúsmIkarCMhan @edIm,ITTYl P . m:Um:g; M kMNt;tam
                                                                      n                     n


        M n = Pn e
        &> RtYtBinitüemIlfaetIEdkrgkarsgát; yield dUckarsnμt;b¤Gt;. RbsinebI ε ' ≥ ε enaH Edkrgkar                   s       y


        sgát; yield . pÞúymkvij f ' = E ε ' . Gnuvtþn_CMhan @ dl;% mþgeTot. ε ' = [(c − d ' ) / c]0.003 /
                                               s       s       s                                                     s


        ε =
          y
              E
               f
               y
                   nig c = a / β .     1
                s

        *> RtYtBinitüfamuxkat;Ca tension control . Tension control enAeBlNa e > e b¤ P < P .                                 b     n     b


       (> Net tensile strain ε enAkñúgmuxkat; CaFmμtaFMCag limit strain sMrab;muxkat; compression-
                                       t


controlled section 0.002 . dUcenHtMélénemKuNkat;bnßyersIusþg; φ ERbRbYlcenøaHBI 0.65 ¬b¤ 0.70 ¦

nig 0.90 . smIkar φ = 0.7 + (ε − 0.002)( 200 ) b¤ φ = 0.7 + 0.2⎡ c /1d − 5 ⎤ sMrab;muxkat; EdlmanEdk
                                           t                    ⎢           ⎥
                                            3                             3                     ⎣       t   ⎦

kgdUcrWus½r spiral section nig φ = 0.65 + (ε               t   − 0.002)(
                                                                           250
                                                                               )   b¤ φ = 0.65 + 0.25⎡ c /1d
                                                                                                     ⎢
                                                                                                                              5⎤
                                                                                                                             − ⎥   sMrab;muxkat;
                                                                            3                                   ⎣        t    3⎦

epSgeTot RtUv)aneRbIsMrab;KNnark emKuNkat;bnßyersIusþg; φ .
]TahrN_3³ kMNt; nominal compressive strength P sMrab;muxkat;EdleGaydUckñúgrUbxageRkam Rbsin
                                                                           n


ebI e = 500mm .
dMeNaHRsay³
Members in Compression and Bending                                                                                                           206
T.Chhay                                                                                             NPIC

!> eday e = 500mm > d = 485mm snμt;famuxkat;)ak;kñúglkçxNÐ tension failure condion controls
¬EdlRtUveFVIkarRtYtBinitüenAeBleRkayeTot¦. Strain rbs;EdkrgkarTaj ε GacFMCag ε dUcenHeyIg
                                                                                    s      y


ykkugRtaMg f . edaysnμt;faEdkrgkarsgát; yield f ' = f EdlRtUvRtYtBinitüenAeBleRkay.
                   y                                            s   y




          rUbTI8³ ]TahrN_TI3 kar)ak;edaykarTaj Tension failure
@> BIsmIkarlMnwg P = C + C − T
                           n       c   s


Edl C = 0.85 f ' ab = 0.85 × 27 × 350a = 8.03akN
             c                 c

                                               282 π
           C s = A's ( f y − 0.85 f 'c ) = 4         (400 − 0.85 × 27) = 928.68kN
                                                 4
          T = As f y = 28 2 π 400 = 985.2kN

⇒ Pn = 8.03a + 928.68 − 985.2 = 8.03a − 56.52                                                     ¬1¦
#> Kitm:Um:g;Rtg; A    s

                  1⎡          a                   ⎤
           Pn =      ⎢Cc (d − 2 ) + C s (d − d ' )⎥
                  e' ⎣                            ⎦
          edayTIRbCMuTMgn;)øasÞic plastic centroid sßitenAelITIRbCMuTMgn;énmuxkat; d "= 210mm .
           e' = e + d " = 500 + 210 = 710mm
                   1 ⎡                                    ⎤
           Pn =
                 710 ⎣
                                    a
                       ⎢8.03a(485 − 2 ) + 928.68(485 − 65)⎥ = −0.0056a + 5.49a + 549.36
                                                          ⎦
                                                                      2
                                                                                                  ¬2¦
$> pÁúMsmIkar ¬1¦ nig ¬2¦ eyIg)an
           0.0056a 2 + 2.54a − 605.88 = 0

           ⇒ a = 172.74mm
%>         Pn = 8.03 × 172.74 − 56.52 = 1330.58kN


eRKOgbgÁúMrgkarsgát; nigrgkarBt;                                                                        207
Department of Civil Engineering                                              viTüasßanCatiBhubec©keTskm<úCa
        M n = 1330.58 × 0.5 = 665.29kN .m
^> RtYtBinitüfa Edkrgkarsgát; yield b¤Gt;
            172.74
        c=          = 203.22mm
              0.85
              203.22 − 65
       ε 's =
                 203.22
                          0.003 = 0.00204 > ε y =
                                                   400
                                                  200000
                                                         = 0.002   dUcenHEdksgát; yield
       RtYtBinitü strain enAkñúgEdkTaj
             ⎛ 485 − 203.22 ⎞
       εs = ⎜               ⎟0.003 = 0.00416 > ε y
             ⎝ 203.22 ⎠
      RbsinebIEdksgát;Gt; yield eRbI f ' = ε ' E rYceFVIkarKNnaeLIgvij.
                                            s       s   s


&> KNna φ ³ eday ε = 0.00416 muxkat;sßitenAkñúgtMbn; transition region
                     t

                             ⎛ 250 ⎞
       φ = 0.65 + (ε t − 0.002 )⎜  ⎟ = 0.83
                             ⎝ 3 ⎠
       φPn = 0.83 × 1330.58 = 1104.38kN
       φM n = 0.83 × 665.29 = 552.19kN .m
    8> ersIusþg;rbs;ssrsMrab;kar)ak;edaykarsgát; Stregth of columns for compression failure
       RbsinebIbnÞúkGnuvtþn_sgát; P FMCagbnÞúk balanced force P b¤cMNakp©it e = M tUcCag e enaH
                                    n                          b
                                                                                P
                                                                                    n
                                                                                                   b
                                                                                   n

ssrnwgrMBwgfaRtUv)ak;edaykarsgát;. kñúgkrNI compression controls ehIy strain rbs;ebtugnwgmantMél
0.003 Edl strain rbs;EdkmantMéltUcCag ε . PaKeRcInrbs;muxkat;ssrnwgrgkarsgát;. GkS½Nwtxit
                                                y


eTArkEdkrgkarTaj edaybegáInmuxkat;sgát; dUcenHcMgayeTAGkS½NWt c > c .  b




                            rUbTI9³ düaRkam strain enAeBl compression controls



Members in Compression and Bending                                                                     208
T.Chhay                                                                                                                      NPIC

        edaysareKBi)akkñúgkarTsSn_TaynUvmuxkat;ssrfa tension failure b¤ compression failure
eK)ansnμt;fa enAeBl e < 2d enaHssr)ak;eday compression failure EdlRtUvepÞógpÞat;enAeBleRkay.
                          3
edIm,IKNna nominal load strength P eKeRbIeKalkarN_sþaTic. karviPaKmuxkat;ssrsMrab;kar)ak;eday
                                                    n


karsgát; compression failure eKGaceRbIsmIkar P − C − C + T = 0 nigsmIkar
                                                                   n        c     s


 P e'−C (d − ) − C (d − d ' ) = 0 nigdMeNaHRsaymYykñúgcMeNamdMeNaHRsayxageRkam.
             a
  n         c                       s
             2
        8>1> dMeNaHRsay Trial solution
        dMeNaHRsayenHRtUv)ansegçbdUcCMhanxageRkam³
        !> KNnacMgayeTAGkS½NwtsMrab;muxkat; balanced section c                               b

                        600d t
                cb =                                                                                                      (-3)
                       600 + f y

            @> kMNt; P edayeRbIlkçxNÐlMnwg
                               n

                Pn = Cc + Cs − T                                                                                          (-10)
            #> KNna P edayKitm:Um:g;Rtg;EdkrgkarTaj A
                                n                                           s

                               a
                Pn e' = Cc (d − ) + Cs (d − d ' )                                                                         (-11)
                               2
            Edl             e' = e + d "kñúgkrNITUeTA
            b¤              e' = e + d − enAeBl A = A'
                                         h
                                         2
                                                           s   s


                            Cc = 0.85 f 'c ab

                            Cs = A's ( f 's −0.85 f 'c )

                            T = As f s
            $> edaysnμt;tMél c > c KNna a = β c . snμt;
                                              b                1                f 's = f y

            %> KNna f           s

                                  ⎛d −c⎞
                f s = ε s Es = 600⎜ t  ⎟ ≤ fy
                                  ⎝ c ⎠
        ^> CMnYstMélEdlrkeXIjeTAkñúgsmIkarCMhan @ nigCMhan # edIm,Irk P nig P . RbsinebI                   n1        n2


 P ≈ P eRCIsyktMéltUcCageK b¤mFümPaKén P nig P . EtebI P mantMélxusKñaq¶ayBI P eK
  n1        n2                                                         n1       n2               n1                         n2


RtUvsnμt; c b¤ a fμI ehIyeFVIkarKNnaeLIgvijcab;epþImBICMhan $ rhUtdl; P ≈ P . ¬eKGacTTYlyk)an         n1        n2


ebI P nig P xusKña 1% ¦.
       n1              n2




eRKOgbgÁúMrgkarsgát; nigrgkarBt;                                                                                                  209
Department of Civil Engineering                                                              viTüasßanCatiBhubec©keTskm<úCa
         &> epÞógpÞat;fa Edkrgkarsgát; yield edayKNna ε ' = 0.003[(c − d ') / c] ehIyeRbobeFobCamYy
                                                                          s


εy   =
       fy
          E
             . enAeBlEdl ε ' ≥ ε Edkrgkarsgát; yield RbsinebImindUcenaHeT f ' = ε ' E b¤
              s
                                          s   y                                                s       s   s


         ⎛ c − d' ⎞
f s = 600⎜        ⎟ ≤ fy
         ⎝ c ⎠
       *> epÞógpÞat;fa e < e b¤ P > P sMrab; compression failure.
                                      b       n       b


       (> sMrab;muxkat; compression controlled section CaTUeTA net tensile strain ε enAkñúgmuxkat;tUc
                                                                                                   t


Cag 0.002 . dUcenH emKuNkat;bnßyersIusþg; φ = 0.65 ¬b¤ 0.70 sMrab;ssrEdleRbIEdkkgCab;¦.
]TahrN_4³ kMNt; nominal compressive strength P sMrab;muxkat;EdleGay RbsinebI e = 254mm .
                                                                     n




                                                              rUbTI10³ ]TahrN_TI4 Compression controls
dMeNaHRsay³
!> edaysar e = 254mm < 23d = 333.33mm . snμt; compression failure. karsnμt;enHRtUvepÞógpÞat;enA
eBleRkay. KNnacMgayeTAGkS½NwtsMrab; balanced section c :                      b

        600d t    600 × 500
cb =            =           = 300mm
       600 + f y 600 + 400

@> BIsmIkarlMnwg
Pn = Cc + Cs − T                                                                                       (-10)
Edl         Cc = 0.85 f 'c ab = 0.85 × 27 × a × 350 = 8.03akN

            C s = A' s ( f y − 0.85 f 'c ) = 282 π (400 − 0.85 × 27) = 928.68kN

edaysnμt;Edkrgkarsgát; yield ¬karsnμt;enHRtUvepÞógpÞat;enAeBleRkay¦
     T = A f = 28 πf = 2.46 f kN ¬ f < f ¦
                  s   s
                              2
                                  s               s       s      y


            Pn = 8.03a + 928.68 − 2.46 f s
#> Kitm:Um:g;Rtg; A       s




Members in Compression and Bending                                                                                    210
T.Chhay                                                                                                NPIC

                    1⎡          a                  ⎤
           Pn =        ⎢Cc (d − 2 ) + Cs (d − d ' )⎥                                          (-11)
                    e' ⎣                           ⎦
          TIRbCMuTMgn;)øasÞicsßitenAelITIRbCMuTMgn;rbs;muxkat; d "= 225mm
           e' = e + d " = 254 + 225 = 479mm
                   1 ⎡        ⎛      a⎞                   ⎤
           Pn =        ⎢8.03a⎜ 500 − 2 ⎟ + 928.8(500 − 50)⎥ = 8.38a − 0.0084a + 872.57
                                                                             2

                 479 ⎣        ⎝        ⎠                  ⎦
$> edaysnμt; c = 342mm EdlmantMélFMCag c               b   = 300mm

           a = 0.85 × 342 = 290.7 mm
          CMnYstMél a eTAkñúgsmIkarkñúgCMhanTIBIrxagelIeyIg)an
           Pn1 = 8.38 × 290.7 − 0.0084 × 290.7 2 + 872.57 = 2598.78kN
%> KNna f BIdüaRkam strain enAeBlEdl c = 340mm
                s

                500 − 342
           fs =           600 = 277.19 MPa
                    342
                      f   277.19
          ε s = εt = s =         = 0.00139
                     Es 200000
^> edayCMnYs a = 290.7mm nig              f s = 277.19MPa   eTAkñúgsmIkarCMhanTImYyedIm,IKNna P  n2


           Pn 2 = 8.03 × 290.7 + 928.68 − 2.46 × 277.19 = 2581.11kN
          eday P nig P mantMélxusKñamindl; 1% dUcenHeyIgyk P = 2581.11kN
                      n1       n2                                            n


           M n = Pn e = 2581.11 × 0.254 = 655.6kN .m
&> epÞógpÞat;fa Edkrgkarsgát; yield BIdüaRkam strain
                    342 − 50
          ε 's =             0.003 = 0.00256 > ε y = 0.002
                      342
       dUcenH Edkrgkarsgát; yield dUckarsnμt;.
*> P = 2581.11kN > P = 1991.8kN ehIy e = 254mm < e = 368mm bgðajfavaCamuxkat;
      n                            b                                 b


compression control dUckarsnμt;. cMNaM³ eKGaceFVIkarsakl,gKNnaedIm,IeGay P nig P mantMél n1       n2


kan;EtesμIkña.
(> KNna φ
           d t = d = 500mm               c = 342mm
                                                   500 − 342
          εt   ¬enAnIv:UedkrgkarTaj¦       = 0.003
                                                     342
                                                             = 0.00139 < 0.002   enaH φ = 0.65
          φPn = 0.65 × 2581.11 = 1677.72kN
          φM n = 0.65 × 655.6 = 426.14kN .m


eRKOgbgÁúMrgkarsgát; nigrgkarBt;                                                                        211
Department of Civil Engineering                                                             viTüasßanCatiBhubec©keTskm<úCa
        8>2> dMeNaHRsayviPaKcMnYn Numerical Analysis Solution
        enAeBl compression control karviPaKssrGaceFVIeTA)anedaykat;bnßykarKNnamkRtwmsmIkar
dWeRkTI3 EdlmanTMrg; Aa + Ba + Ca + D = 0 rYcedaHRsayrktMél a edayviFIcMnYn numerical method
                                 3           2



b¤ a GacTTYl)anBIm:asIunKitelx. BIsmIkarlMnwg
          Pn = Cc + C s − T = (0.85 f 'c ab) + A's ( f y − 0.85 f 'c ) − As f s                               (-10)

         Kitm:Um:g;Rtg;EdkTaj A          s

       1⎡          a                  ⎤ 1⎡                     a                                      ⎤
Pn =      ⎢Cc (d − 2 ) + Cs (d − d ' )⎥ = e' ⎢0.85 f 'c ab(d − 2 ) + A's ( f y − 0.85 f 'c )(d − d ' )⎥       (-11)
       e' ⎣                           ⎦      ⎣                                                        ⎦
         BIdüaRkam strain
                                                      a
                                         (d −             )
              ⎛d −c⎞                                 β1
         εs = ⎜ t  ⎟0.003 =                                   0.003
              ⎝ c ⎠                              a
                                                 β1
         kugRtaMgenAkñúgEdkTajKW
                                                 600
          f s = ε s E s = 200000ε s =                ( β1 d − a )
                                                  a
      edayCMnYstMél f eTAkñúgsmIkar (-10) nigedaHRsaysmIkar (-10) nig (-11) eRkayBIsMrYlrYceyIg
                             s


TTYl)an
⎛ 0.85 f 'c b ⎞ 3
⎜             ⎟a + [0.85 f 'c b(e'− d )]a + [ A's ( f y − 0.85 f 'c )(e'−d + d ' ) + 600 As e' ]a − 600 As e' β1d = 0
                                         2

⎝     c       ⎠
enHCasmIkardWeRkTI3 EdlmanTMrg; Aa                        3
                                                              + Ba 2 + Ca + D = 0

Edl A = 0.852f ' b     c




          B = 0.85 f 'c b(e'− d )
         C = A's ( f y − 0.85 f 'c )(e'− d + d ' ) + 600 As e'

          D = −600 As e' β1d
       enAeBlEdleKKNna)antMél A / B / C nig D enaH a GacRtUv)anKNnaedayviFIsakl,g b¤
TTYl)anedaypÞal;Bim:asIunKitelx. dMeNaHRsaysmIkardWeRkTI3 GacTTYl)anedayeRbIviFI Newton-
Raphson . viFIenHmanRbsiT§PaBkñúgkaredaHRsayrkb¤srbs; f ( x ) = 0 . vaTak;Tgnwgbec©keTssamBaØ

ehIyeKqab;TTYl)ancMelIyedayeFVItamCMhanxageRkam³
!> eGay f (a) = Aa + Ba + Ca + D nigKNna A / B / C nig D
                       3             2



@> KNnaedrIevTImYyén f (a) ³ f ' (a) = 3 Aa + 2Ba + C             2



#> edaysnμt;tMéldMbUg a KNnatMélbnÞab;
                             o




Members in Compression and Bending                                                                                    212
T.Chhay                                                                                                   NPIC
                           f ( ao )
           a1 = ao −
                          f ' ( ao )
$> edayeRbItMél a KNna a dUcsmIkarxagelI
                          1            2

                          f (a1 )
            a2 = a1 −
                          f ' (a1 )
%> Gnuvtþn_nUvviFIenHrhUtdl;)antMélsuRkitmYy a ≅ a . kñúgkrNIviPaKssrenAeBl compression
                                                           n   n −1


control tMél a EtgEtFMCag a . dUcenH eKcab;epþImCamYy a = a ehIyGnuvtþsmIkarxagelIBIrdgedIm,I
                                           b                          o        b


TTYl)ancMelIy.
]TahrN_5³ eFVI]TahrN_TI4eLIgvijedayeRbIviFI numerical analysis
dMeNaHRsay³
!> KNna A / B / C nig D nigkMNt;                   f (a)
                  0.85 f 'c b 0.85 × 27 × 350
           A=                =                = 4016.25
                      2              2
           B = 0.85 f 'c b(e'− d ) = 0.85 × 27 × 350(479 − 500) = −168682.5
           C = A' s ( f y − 0.85 f 'c )(e'−d + d ' ) + 600 As e'
           C = 282 π (400 − 0.85 × 27)(479 − 500 + 50) + 600 × 282 π × 479
           C = 734800328.08
           D = −600 As e' β1d = −600 × 282 π × 479 × 0.85 × 500 = −300844190383.4
           f (a) = 4016.25a 3 − 168682.5a 2 + 734800328.08a − 300844190383.4
@> KNnaedrIevTI1
           f ' (a) = 12048.75a 2 − 337365a + 734800328.08
#> eGay a     o   = ab = 255mm         sMrab;muxkat; balanced section c   b   = 300mm   nig a
                                                                                            b   = 255mm
                              f (255)
           a1 = 255 −                   = 295.39
                              f ' (255)
$> nigKNna a ³        2

                                 f (295.39)
           a2 = 295.39 −                      = 292.4mm
                                 f ' (295.39)
tMélrbs; a mantMélRsedognwg a enAkñúg]TahrN_TI3. CMnYstMél a eTAkñúgsmIkar (-10) b¤ (-11)
eKTTYl)an P = 2594.66kN
                  n


        8>3> dMeNaHRsayRbEhl Approximate Solution
        smIkar approximate RtUv)anesñIreLIgeday Whitney edIm,IedaHRsayrk nominal compressive
strength sMrab;ssrxøI enAeBl compression control.



eRKOgbgÁúMrgkarsgát; nigrgkarBt;                                                                           213
Department of Civil Engineering                                                                viTüasßanCatiBhubec©keTskm<úCa
                       bhf 'c         A's f y
        Pn =                    +                                                                                (-17)
                     3he             e
                         + 1.18              + 0.5
                     d 2
                                  (d − d ' )
smIkarxagelIenHGaceRbIeTA)ansMrab;EtssrEdlmansésEdksIuemRTItMerobEtmYyRsTab; ehIyRsbeTA
nwgGkS½énkarBt;.
        smIkar approximate TI2 RtUv)anesñIeLIgeday Hsu
                                  1.5
        Pn − Pb ⎛ M n ⎞
               +⎜     ⎟                 = 1.0                                                                    (-18)
        Po − Pb ⎜ M o ⎟
                ⎝     ⎠
Edl          =
        Pn nominal axial strength                énmuxkat;ssr
                      =
        Pb , M b nominal load               nig nominal moment énmuxkat; balanced section
        M n = nominal bending moment = Pn ⋅ e
                              enAeBl e=0 P = 0.85 f ' ( A − A ) + A f
        Po = nominal axial load                            o         c       g   st   st   y


      A = gross area énmuxkat; = bh
         g


      A = muxkat;EdkbeNþayminEmnkugRtaMgsrub
         st


]TahrN_6³ kMNt; nominal compressive strength P sMrab;muxkat;EdleGaydUckñúg]TahrN_TI4
                                                                n


edaysmIkar ¬*>#>!¦ nig ¬*>#>@¦edayeRbInUvcMNakp©itdUcKña e = 254mm rYceRbobeFobcMelIy.
dMeNaHRsay³
!> dMeNaHRsaytamsmIkar Whitney
        k> lkçN³énmuxkat; b = 350mm / h = 550mm / d = 500mm / d ' = 50mm / A' = 2463mm                               2



nig (d − d ' ) = 450mm
        x> GnuvtþsmIkar Whitney
                        350 × 550 × 27      2463 × 400
        Pn =                              +            = 2745.15kN
                     3 × 550 × 254           254
                                   + 1.18        + 0.5
                          500 2              450
       φPn = 0.65 × 2745.15 = 1784.35kN
       K> P EdlKNnaedaysmIkar Whitney CatMélEdlminsnSMsMécenAkñúg]TahrN_enH ehIytMél
                 n


P = 2745.15kN KWFMCagtMélsuRkit P = 2581.11kN EdlKNnaedaysmIkarsþaTickñúg]TahrN_TI4.
 n                                                n


@> dMeNaHRsaytamsmIkar Hsu
       k> sMrab; balanced condition P = 1991.8kN nig M = 732.8kN ¬]TahrN_TI2¦
                                                  b                      b


       x> P = 0.85 f ' ( A − A ) + A f = 0.85 × 27 × (550 × 350 − 2 × 2463) + 2 × 2463 × 400
                 o            c         g   st    st   y


        Po = 6275.22kN



Members in Compression and Bending                                                                                       214
T.Chhay                                                                                                           NPIC

                  Pn − 1991 .8
                                                    1 .5
                                  ⎛ 0254 Pn ⎞
          K>                     +⎜
               6275 .22 − 1991 .8 ⎝ 732 .8 ⎠
                                            ⎟              =1

          edayKuNnwg 1000 ehIyedaHRsayrk P      n


           0.23346 Pn + 0.00654 Pn1.5 = 1465
          Edaykarsakl,gtMél P = 2587.65kN EdlmantMélRbEhl 2581.11kN EdlKNnaedaysþa
                                   n


Tic.
       9> ]TahrN_sMrab;düaRkamGnþrkmμ          Interaction Diagram Example

        enAkñúg]TahrN_TI2 bnÞúk balanced load P , M nig e RtUv)anKNnasMrab;muxkat;dUckñúgrUbTI6
                                                     b      b                 b


¬ e = 368mm ¦. dUcKña enAkñúg]TahrN_TI3 nigTI4 load capacity sMrab;muxkat;dUcKñaRtUv)anKNnasMrab;
   b


krNIenAeBl e = 500mm ¬tension failure¦ nigenAeBl e = 254mm ¬compression failure¦. tMélTaMg
enHnwgRtUvbgðajenAkñúgtaragTI1.
        edIm,IKUrdüaRkamGnþrkmμbnÞúk-m:Um:g; tMélepSg²én φP nig φM RtUv)anKNnasMrab;tMél e epSg²
                                                                          n          n


Edl e ERbRbYlBI e = 0 eTA e = Gtibrma sMrab;krNIm:Um:g;Bt;suT§ pure moment enAeBl P = 0 . düa             n


Rkamnþr kmμbnÞúk-m:Um:g;RtUv)anbgðajkñúgrUbTI11. bnÞÞúk φP = 4078.90kN CabnÞúkcMGkS½tamRTwsþI enAeBl
                                                                no


e = 0 . Et ACI Code GnuBaØatibnÞúkGb,brmaRtwmEt 0.8φP = 3263.12kN EdlRtUvKñanwg cMNakp©wtGb,
                                                                     no


brma. cMNaMfa sMrab;kar)ak;edaykarsgát; compression failure e < e nig P > P ehIysMrab;kar)ak;
                                                                                      b      n    b




taragTI1³taragKNnasegçb                                                           rUbTI11³düaRkamGnþrkmμbnÞúk-m:Um:g;
eRKOgbgÁúMrgkarsgát; nigrgkarBt;                                                                                    215
Department of Civil Engineering                                                     viTüasßanCatiBhubec©keTskm<úCa
edaykarTaj tension failure e > e nig P < P . krNI e = Gtibrma ssrrgnUvm:Um:g;Bt;suT§dUckrNIFñwm.
                                  b     n           b


     10> ssrmuxkat;ctuekaNCamYyEdkxag Rectangular columns with side bars
     enAkñúgmuxkat;ssrxøH EdkRtUv)aneKdak;BRgaytamRCugTaMgGs;. EdkxagRtUv)andak;tamkMBs;énmux
kat;edaybEnßmeTAelIEdkTaj nigEdksgát; A nig A' ehIyRtUv)aneKkMNt;eGayeQμaH A ¬rUbTI12¦.
                                                s           s                                       ss


kñúgkrNIenH viFIsaRsþkñúgkarKNnaEdl)anBnül;rYcmkehIyGacRtUv)anGnuvtþ edayKitBicarNabEnßmkar
pøas;bþÚr strain tamkMBs;énmuxkat; nigTMnak;TMngkMlaMgenAkñúgEdkxagnImYy²eTAkñúgtMbn;sgát; b¤tMbn;Taj
énmuxkat;. kMlaMgTaMgenHRtUv)anbUkbEnßmeTAelI C C nig T edIm,IkMNt; P smIkarmanragdUcxag
                                                        c       s                    n


eRkam³
         Pn = Cc + ∑ C s − ∑ T                                                                           (-10a)

    ]TahrN_TI7 Bnül;BIkarKNnaenH. cMNaMfa RbsinebIEdkxagsßitenAEk,rGkS½NWt ¬rUb12 b¦ strain
nigkMlaMg enAkñúgEdkmantMéltUcNas;EdleKGacecal)an. cMENkEdkEdlsßitenAEk,r A nig A' mantM        s           s


élFMKYrsm nigCYybegáInlT§PaBRTRTg;bnÞúkénmuxkat;.




       rUbTI12³ EdkxagenAkñúgmuxkat;ctuekaNEkg

      ]TahrN_7³ kMNt;bnÞúk   m:Um:g; M nigcMNakp©it e sMrab;muxkat;bgðajkñúgrUbTI13. edayeRbI
                             Pb             b                           b


 f ' = 28MPa nig f = 400 MPa .
  c                 y


     dMeNaHRsay³ muxkat; balanced section RtUv)anKNnadUcKñanwg]TahrN_TI2Edr. eKeGay
                                                             π 32
b = h = 550mm / d = 485mm nig d ' = 65mm . A = A' = 5
                                                                                2
                                                                   = 4021.24mm (5DB32 ) /
                                                                    s       s
                                                                                                    2

                                                               4
nigEdkxag 6DB32 ¬ 3DB32 sMrab;mçag¦.
     1> KNnacMgayeTAGkS½NWt
Members in Compression and Bending                                                                              216
T.Chhay                                                                            NPIC

                ⎛ 600 ⎞
           cb = ⎜          ⎟d = ⎛ 600 ⎞485 = 291mm
                ⎜ 600 + f ⎟ t ⎜ 600 + 400 ⎟
                                ⎝         ⎠
                ⎝        y ⎠


           ab = 0.85cb = 0.85 × 291 = 247.35mm
     2> KNnakMlaMgenAkñúgebtug nigEdk tamry³rUb 13 a . enAtMbn;sgát;
           Cc = 0.85 f 'c ab = 0.85 × 28 × 247.35 × 550 = 3237.81kN

           C s = A' s ( f ' s −0.85 f 'c )
               enAnIv:U − 65mm
                                  ⎛ c − d'⎞      ⎛ 291 − 65 ⎞
                      f ' s1 = 600⎜       ⎟ = 600⎜          ⎟ = 466 MPa > 400MPa
                                  ⎝ c ⎠          ⎝ 291 ⎠
                     dUcenH    f 's = 400MPa

                     Cs1 = 4021.24(400 − 0.85 × 28) = 1512.79kN




eRKOgbgÁúMrgkarsgát; nigrgkarBt;                                                    217
Department of Civil Engineering                                       viTüasßanCatiBhubec©keTskm<úCa




           enAnIv:U − 170mm
                           ⎛ c − d'⎞      ⎛ 291 − 170 ⎞
               f 's 2 = 600⎜       ⎟ = 600⎜           ⎟ = 249.48MPa
                           ⎝ c ⎠          ⎝ 291 ⎠
                          π 32 2
               Cs 2 = 2 ×        (249.48 − 0.85 × 28) = 363kN
                             4
           enAnIv:U − 275mm
                           ⎛ c − d' ⎞      ⎛ 291 − 275 ⎞
               f 's 3 = 600⎜        ⎟ = 600⎜           ⎟ = 32.99MPa
                           ⎝ c ⎠           ⎝ 291 ⎠
                          π 32 2
               Cs 3 = 2 ×        (32.99 − 0.85 × 28) = 14.78kN
                             4
       enAkñúgtMbn;Taj ¬nIv:U − 380mm ¦
Members in Compression and Bending                                                             218
T.Chhay                                                                                                NPIC

                              380 − 291
                     ε s4 =             × 0.003 = 917.53 ⋅ 10 −6
                                291
                      f s 4 = 200000 × 917.53 ⋅ 10 −6 = 183.5MPa
                                   π 32 2
                     T1 = 2 ×               (183.5) = 295.16kN
                                     4
                     T2 = 4021.24 × 400 = 1608.5kN
     3> KNna           Pb = Cc + ∑ C s − ∑ T

           Pb = 3237.81 + (1512.79 + 363 + 14.78) − (295.16 + 1608.5) = 3224.72kN
     4> KNnam:Um:g;Rtg;TIRbCMuTMgn;)øasÞic
           M b = 3237.81× 151.325 + 1512.79 × 210 + 363 × 105 + 295.16 × 105 + 1608.5 × 210

           M b = 1214.54kN .m
                M     1214.54
           eb = b =           = 0.377m
                Pb 3224.72
     5> KNna φ sMrab; balanced section ε                t                 /
                                                            = ε y = 0.002 φ = 0.65

          φPn = 0.65 × 3224.72 = 2096.07kN
        niig φM b = 0.65 ×1214.54 = 749.45kN .m
     ]TahrN_8³ edaHRsay]TahrN_TI7 eLIgvijenAeBlEdl e = 152mm .
     dMeNaHRsay³
     1> edaysar                          enaHvaCalkçxNÐ)ak;edaykarsgát; compression failure
                         e = 152mm < eb = 326mm

        condition. snμt; c = 399.5mm ¬edaykarsakl,g¦ nig a = 399.5 × 0.85 a = 339.58mm

        ¬ rUbTI13 b ¦.
     2> KNnakMlaMgenAkñúgebtug nigEdk
      Cc = 0.85 × 28 × 339.58 × 550 = 4445.1kN
     dUcKñanwgkrNI balanced                  f s1 = 400MPa          nig       C s1 = 1512.79kN

                                                    f s 2 = 344.68MPa         nig    Cs 2 = 516.13kN

                                                    f s3 = 186.98MPa          nig    Cs 3 = 262.48kN

                                                    f s 4 = 29.29MPa          nig    Cs 4 = 8.83kN

                                                    f s 5 = 128.41MPa         nig    T = 516.37 kN

     3> KNna         Pn = Cc + ∑ C s − ∑ T = 6228.96kN

           M n = Pn ⋅ e = 6228.96 × 152 = 946.8kN .m


eRKOgbgÁúMrgkarsgát; nigrgkarBt;                                                                        219
Department of Civil Engineering                                                               viTüasßanCatiBhubec©keTskm<úCa
    4> KNna Pn edayKitm:Um:g;Rtg; As
               1⎡          a                                                                                     ⎤
        Pn =      ⎢Cc (d − 2 ) + Cs1 (d − d ' ) + C s 2 (d − d '− s ) + C s 3 (d − d '−2s ) + C s 4 (d − d '−3s )⎥
               e' ⎣                                                                                              ⎦
                      h                 550
        e' = e + d − = 152 + 485 −             = 362mm
                      2                  2
        s = 105mm     KMlatrvagEdkxag ¬efr sMrab;]TahrN_enH¦
                 ⎡      ⎛      339.58 ⎞                                              ⎤
              1 ⎢4445.1⎜ 485 −         ⎟ + 1512.79(485 − 65) + 516.13(485 − 65 − 105)⎥
        Pn =            ⎝         2 ⎠
             362 ⎢                                                                   ⎥
                 ⎢+ 262.48(485 − 65 − 2 × 105) + 8.83(485 − 65 − 3 × 105)
                 ⎣                                                                   ⎥
                                                                                     ⎦
        Pn = 6230kN
    5> KNna φ
        d t = d = 485mm             c = 399.5mm
       εt ¬enAnIv:UEdkTaj¦ = 0.03(dt − c ) / c = 0.03(485 − 399.5) / 399.5 = 0.00064
       eday ε t < 0.002 enaH φ = 0.65
       φPn = 0.65 × 6228.96 = 4048.8kN
       φM n = 0.65 × 946.8 = 615.42kN .m
    cMNaM³ RbsinebIEdkxagminRtUv)anKit enaH
        Pb = 3142.1kN
        Pn  ¬enA e = 152mm ¦ = 4592.23 + 1512.79 − 422.48 = 5682.54kN
   RbsinebIeKKitEdkxagenaH Pb ekIneLIgRbEhl 2.6% nig Pn ekIneLIgRbEhl 9.6% .
   11> lT§PaBRTbnÞúkrbs;ssrmuxkat;mUl Load Capacity of Circular Columns
       11>1 lkçxNÐ Balanced Condition
       tMélénbnÞúk balanced load Pn nig m:Um:g; balanced moment M n sMrab;muxkat;mUlGacRtUv)ankM
Nt;edayeRbIsmIkarlMnwgdUckrNImuxkat;cuekaNpgEdr. sésrEdkenAkñúgmuxkat;rgVg;EdlRtUv)antMerobeTA
tamcMNayBIGkS½TIRbCMuTMgn;)øasÞicERbRbYl KWGaRs½yeTAnwgcMnYnEdkenAkñúgmuxkat;. bBaðacMbgKWrkkMBs;bøúk
sgát; a nigkugRtaMgenAkñúgsésrEdk. ]TahrN_xageRkamBnül;BIkarviPaKmuxkat;eRkamlkçxNÐ balanced
condition. nitiviFIdUcKñaGacRtUv)aneRbIedIm,IviPaKmuxkat;sMrab; tension control b¤ compression control.

]TahrN_9³ kMNt;bnÞúk balanced load Pn nig m:Um:g; balanced moment M n sMrab;ssrmuxkat;rgVg;Edkkg
vNÐGgát;p©it 400mm CamYynig 8DB28 dUcbgðajkñúgrUbTI14. eKeGay f 'c = 28MPa nig Fy = 400MPa .
    dMeNaHRsay³

Members in Compression and Bending                                                                                     220
T.Chhay                                                                                          NPIC

     1> edaysarEtEdksIuemRTInwgGkS½ A − A Edlkat;tamTIRbCMuTMgn;rgVg; enaHTIRbCMuTMgn;)øasÞicsßitenAelI
        GkS½enaH.
     2> kMNt;TItaMgTIRbCMuTMgn;GkS½NWt
                                          fy
           d t = 329.34mm          εy =
                                          Es
           cb    0.003       600
              =           =
           d t 0.003 + ε y 600 + f y
                    600
           cb =             329.34 = 197.6mm
                  600 + 400
           ab = 167.96mm
     3> kMNt;lkçN³rbs;cMerokrgVg; circular segment ¬rgVg;TI15¦
        RkLaépÞcMerokrgVg; = r 2 (α − sin α cos α )                                          (-19)

        TItaMgTIRbCMuTMgn; x ¬BITIRbCMuTMgn; 0¦
              2 (r sin 3 α )
         x=                                                                                  (-20)
              3 α − sin α cos α
           Z =r−x                                                                            (-21)
                                                   ⎛ a⎞
           r cos α = (r − a )      b¤      cos α = ⎜1 − ⎟
                                                   ⎝ r⎠
                                                                                             (-22)

                   ⎛ 167.96 ⎞
           cos α = ⎜1 −     ⎟ = 0.16
                   ⎝    200 ⎠
                        /
           ⇒ α = 80.79o sin α = 0.987      nig α = 1.41rad
          RkLaépÞcMerokrgVg; = 2002 (1.41 − 0.16 × 0.987)
           = 50083.2mm 2
               ⎛2⎞       200 × 0.987 3
           x =⎜ ⎟                          = 102.39mm
               ⎝ 3 ⎠ (1.41 − 0.987 × 0.16)

           Z = 200 − 102.39 = 97.61mm
     4> kMNt;kMlaMgsgát; Cc
        Cc = 0.85 f 'c × RkLaépÞcMerokrgVg;

           = 0.85 × 28 × 50083.2 = 1192kN
          vaeFVIGMeBIenA 102.39mm BITIRbCMuTMgn;ssr



eRKOgbgÁúMrgkarsgát; nigrgkarBt;                                                                     221
Department of Civil Engineering      viTüasßanCatiBhubec©keTskm<úCa




Members in Compression and Bending                            222
T.Chhay                                                                                     NPIC




     5> KNna strain, stress nig kMlaMgenAkñúgEdkrgkarTaj nigEdkrgkarsgát;.
        kMNt;bMErbMrYlrageFob strain BIdüaRkambMErbMrYlrageFob.
        sMrab; T1
          ε = ε y = 0.002              f s = f y = 400MPa
                   π 282
          T1 = 2            × 400 = 492.6kN
                       4
          sMrab; T2
                    55.98
          ε s3 =          ε y = 8.5 ⋅ 10 − 4
                   131.74
           f s 3 = 8.5 ⋅ 10 −4 × 200000 = 170MPa
                    π 282
          T2 = 2             × 170 = 209.36kN
                       4
          sMrab; Cs1
                   126.94
          ε s1 =          × 0.003 = 1.93 ⋅10−3
                   197.6
           f s1 = 1.93 ⋅ 10 −3 × 200000 = 386MPa < 400 MPa
                      282 π
           C s1 = 2         (386 − 0.85 × 28) = 446.05kN
                        4
          sMrab; Cs2
                   51.18
          ε s2 =         × 0.003 = 7.77 ⋅10 − 4
                   197.6
           f s 2 = 7.77 ⋅10−4 × 200000 = 155.4 MPa
                      282 π
           cs 2 = 2         (155.4 − 0.85 × 28) = 162.07kN
                        4
     6> kugRtaMgenAkñúgEdkrgkarsgát;RtUv)ankat;bnßy edIm,IKitenAkñúgebtugEdlCMnYsedayEdk.
eRKOgbgÁúMrgkarsgát; nigrgkarBt;                                                             223
Department of Civil Engineering                                                   viTüasßanCatiBhubec©keTskm<úCa
       kMlaMg balanced KW Pb = Cc + ∑ Cs − ∑ T
        Pb = 1192 + (446.05 + 162.07) − (492.6 + 209.36) = 1098.16kN
       sMrab;muxkat; balanced ε t = 0.002 nig φ = 0.65
       φPb = 713.8kN
    7> Kitm:Um:g;Rtg;TIRbCMuTMgn;)øasÞic ¬GkS½ A − A kat;tamGkS½TIRbCMuTMgn;¦ sMrab;kMlaMgTaMgGs;
        M b = Pb eb = [Cc × 102.39 + Cs1 × 129.34 + Cs 2 × 53.58 + T1 × 129.34 + T2 × 53.58)

        M b = 263.36kN .m

       φM b = 171.18kN .m
                263.36
        eb =           = 239.8mm
               1098.16
       11>2 ersIusþg;rbs;muxkat;mUlsMrab;kar)ak;edaykarsgát; Strength of circular column
       for compression failure
         muxkat;ssreRkamkMlaMgcMNakp©it GacRtUv)anviPaKtamCMhandUcmuxkat; balanced Edr. va
TTYl)anedaykarsnμt; C > Cb b¤ a > ab nigKNnakMlaMgenAkñúgebtug nig EdkenATItaMgepSgKñaedIm,I
kMNt; Pn1 = Cc + ∑ Cs − ∑ T . dUcKña M n GacRtUv)anKNnaedayKitm:Um:g;Rtg;TIRbCMuTMgn;)øasÞic
¬TIRbCuMTMgn;rbs; muxkat;¦ ehIykMNt; Pn2 = Men . RbsinebItMél Pn1 nig Pn2 minRbhak;RbEhl
KñaeTenaH snμt; C b¤ a fμI ehIyeFVIkarKNnaeLIgvij ¬emIlcMnucTI8¦. tMélxusKñarvag Pn1 nig Pn2 sßit
enArgVg; 1% . muxkat; Camuxkat; compression controls enAeBl e < eb b¤ Pn > Pb .
         sMrab;]TahrN_ RbsinebIvaTamTarkMNt;ersIusþg;rbs;muxkat;ssrenAkñúg]TahrN_TI9 enAeBlEdl
e = 150mm Pn GacRtUv)anKNnaedayCMhandUcnwg]TahrN_TI 9.

     1> eday e = 150mm tUcCag eb = 239.8mm lkçxNÐ)ak;edaykarsgát; compression failure
         condion ekIteLIg.

     2> snμt; c = 225mm ¬edaykarsμan¦ > Cb = 197.6 nig a = 191.25mm
     3> KNna x = 89.63mm / Z = 110.37mm RkLaépÞcMerokrgVg; = 59332.97mm2
     4> -5> KNnakMlaMg³ Cc = 1412.125kN / Cs1 = 463.29kN Cs 2 = 228.73kN / T1 = 342.66kN /
         T2 = 93.84kN
    6> KNna Pn1 = Cc + ∑ Cs − ∑ T = 1667.64kN
    7> Kitm:Um:g;Rtg;GkS½ssr ¬TIRbCMuTMgn;)øasÞic¦³
        M n = 248.1kN .m



Members in Compression and Bending                                                                         224
T.Chhay                                                                                                       NPIC

           Pn 2 =
                    Mn
                     e
                       = 1653.97 mm            EdlmantMélRbEhl            Pn1   ¬tMélxusKñaRbEhl   1%      ¦. dUcenH
           Pn = 1653.97 kN
      cMNaM³ RbsinebIEdkkgrbs;ssrCaEdkkgvNÐdUcrWus½renaH φ = 0.70 .
      smIkartMélRbEhl approximate equation sMrab;karKNna Pn sMrab;muxkat;mUl enAeBl
compression controls RtUv)anesñIeLIgedayelak Whitney
                                    Ag f ' c             Ast f y
           Pn =                                     +                                              (-23)
                  ⎡       9.6he               ⎤         ⎛ 3e   ⎞
                  ⎢                     + 1.18⎥         ⎜
                                                        ⎜ D + 1⎟
                                                               ⎟
                  ⎢ (0.8h + 0.67 Ds )                   ⎝ s    ⎠
                                      2
                  ⎣                           ⎥
                                              ⎦
          Edl          RkLaépÞmuxkat; gross area
                        Ag =

                 h = Ggát;p©itmuxkat;

                 Ds = Ggát;p©itmuxkat;ssrEdlvas;BITIRbCMuTMgn;EdkmçageTATIRbCMuTMgn;EdkmçageTot

                 Ast = RkLaépÞmuxkat;EdkbBaÄr

                 e = cMNakp©itEdlvas;BITIRbCMuTMgn;)øasÞic

          ]TahrN_10³ KNnaersIusþg;kMlaMgsgát; nominal Pn sMrab;muxkat;sMrab;]TahrN_TI9 edayeRbIsmI
          kar Whitney RbsinebIcMNakp©it e = 150mm
          dMeNaHRsay³
          1> e = 150mm tUcCag eb = 239.8mm . tamkarKNnadUceBlmun bgðajfamuxkat;ssrCamuxkat;
          compression controls.

          2> edayeRbIsmIkar Whitney
           h = 400mm
                    π           π
           Ag =
                    4
                        h2 =
                                4
                                    400 2 = 125663.7mm 2   /
           D s = 400 − 120 = 280mm
                        π × 28 2
           As = 8 ×                   = 4926mm 2
                            4
                                    125663.7 × 28                   4926 × 400
           Pn =                                                +                 = 1785.94kN
                  ⎡       9.6 × 400 × 150             ⎤            ⎛ 3 × 150 ⎞
                  ⎢                             + 1.18⎥            ⎜        + 1⎟
                  ⎢ (0.8 × 400 + 0.67 × 280 )                      ⎝ 280       ⎠
                                              2
                  ⎣                                   ⎥
                                                      ⎦
          3> M n = Pn e = 1785.94 × 0.15 = 267.89kN .m
          tMél Pn enAeBlenHFMCagtMél Pn = 1653.97kN EdlKNnaenAeBlmunedaysþaTic.

eRKOgbgÁúMrgkarsgát; nigrgkarBt;                                                                                225
Department of Civil Engineering                                           viTüasßanCatiBhubec©keTskm<úCa
       11>3 ersIusþg;rbs;muxkat;mUlsMrab;kar)ak;edaykarTaj Strength of circular column
       for tension failure
        kar)ak;edaykarTajsMrab;ssrmUlenAeBlbnÞúkRtUv)anGnuvtþn_enARtg;cMNakp©it e > eb b¤
 Pn < Pb . enAkñúgkrNIenH muxkat;ssrGacRtUv)anviPaKtamCMhandUckarviPaKmuxkat; balanced nigdUc

kñúg]TahrN_TI8. karviPaKRtUv)aneFVIeLIgedaysnμt; C < Cb b¤ a < ab rYcehIyGnuvtþn_tamCMhanBnül;
kñúgEpñkTI11>1. cMNaMfa edaysarEtsésrEdkRtUv)antMerobedaymancenøaHefrtambrimaRtmuxkat;rgVg;
enaHEdkTaj As Edlpþl;eGayGacmantMéltUc ehIylT§PaBRTbnÞúkk¾køayCamantMéltUc. dUcenH
eK)anENnaMeGayeCosvagkareRbIR)as;muxkat;mUlsMrab;krNIkar)ak;edaykarTaj tension failure.
12> karviPaK nigkarKNnassredayeRbIdüaRkam                     Analysis and Design of
       Column Using Charts
          karviPaKmuxkat;ssrEdl)anBnül;BIxagedImKWQrelIeKalkarN_sþaTic. sMrab;karviPaK b¤kar
KNnassrCaCMhandMbUg düaRkamb¤taragBiessGacRtUv)aneRbIedIm,IkMNt; φPn nig φM n sMrab;muxkat;
EdleGay nigkar KNnamuxkat;EdkcaM)ac;sMrab; Pu nig M u EdleGay. düaRkam nigtaragenHRtUv)ane)aH
Bum<pSayeday viTüasßanebtugGaemric American Concrete Institute (ACI) viTüasßanebtugBRgwgedayEdk
Concrete Reinforcing Steel Institute (CRSI) nigsmaKmsIum:g;t_Br½Eln Porland Cement Association

(PCA). karKNnassrcugeRkayRtUvEteFVIeLIgedayQrelIsmIkarsþaTic edaykarKNnaedayéd b¤eday

kmμviFIkMuBüÚTr½. kareRbIdüaRkam ACI RtUv)anbgðajenAkñúg]TahrN_xageRkam. düaRkamRtUv)anbgðajkñúgrUb
TI16 nigrUbTI17. Tinñn½yTaMgenHRtUv)ankMnt;sMrab;mxkat;ssrdUcbgðajenARCugxagelIEpñkxagsþaMéntarag.
                                                    u
          ]TahrN_11³ kMnt;sésrEdkcaM)ac;sMrab;ssr short tied column dUcbgðajenAkñúgrUbTI 18 a
edIm,IRTnUvbnÞúkemKuN 2150kN nigm:Um:g;emKuN 440kN.m . ssrmanTTwg 350mm nigbeNþaysrub
h = 500mm . eRbI f 'c = 28MPa / f y = 400MPa .

       dMeNaHRsay³
    1> cMNakp©it e = M u = 2150 = 204.65mm
                     Pu
                            440


       yk d = 500 − 60 = 440mm
       γh = 500 − 120 = 380mm enaH γ =
                                       380
                                             = 0.76
                                       500
    2> eday e = 204.65 < d snμt;famuxkat;)ak;edaykarsgát; compression-controlled section
       CamYynwg φ = 0.65


Members in Compression and Bending                                                                 226
T.Chhay                            NPIC




eRKOgbgÁúMrgkarsgát; nigrgkarBt;    227
Department of Civil Engineering      viTüasßanCatiBhubec©keTskm<úCa




Members in Compression and Bending                            228
T.Chhay                            NPIC




eRKOgbgÁúMrgkarsgát; nigrgkarBt;    229
Department of Civil Engineering      viTüasßanCatiBhubec©keTskm<úCa




Members in Compression and Bending                            230
T.Chhay                                                                                       NPIC
                2150
           Pn =        = 3307.7kN
                0.65
          nig Mn =
                      440
                      0.65
                            = 676.9kN .m

                    Pn        3307.7 ⋅ 10 3
           Kn =           =                 = 0.675
                 f 'c Ag 28 × 350 × 500
                    ⎛e⎞        ⎛ 204.65 ⎞
           Rn = K n ⎜ ⎟ = 0.675⎜        ⎟ = 0.276
                    ⎝h⎠        ⎝ 500 ⎠
     3> BItaragkñúgrUbTI16 sMrab; γ = 0.7 / ρ = 0.048 dUcKñasMrab; γ = 0.8 / ρ = 0.043
        eday interpolation sMrab; γ = 0.76 / ρ = 0.045
           As = 0.045 × 500 × 350 = 7875mm 2
          eRbI 10DB32 (As = 8042.48mm 2 )/ R)aMedImenAtamRCugxøI. eRbIEdkkg DB10 @ 350mm
          ¬rUbTI18 a¦




          ]TahrN_12³ eRbItaragedIm,IkMNt;bnÞúkersIusþg; φP rbs;ssrxøIdUcbgðajkñúgrUbTI 18 b EdlGnuvtþ
                                                                n

enAcMgaycMNakp©it e = 305mm . eRbI         f 'c = 35MPa   nig   f y = 400MPa   .
          dMeNaHRsay³
          A.         lkçN³rbs;muxkat;³ H = 600mm / γh = 600 − 120 = 480mm ¬cMgayrvagEdlTaj
                                                               32 2 × π
                                                                    8×
                     nigEdk sgát;¦. γ = 600 = 0.8 ehIy
                                         480
                                                          ρ=       4
                                                             600 × 350
                                                                        = 0.03

           B.        eday e < d / snμt;vaCamuxkat; compression-controlled section.
eRKOgbgÁúMrgkarsgát; nigrgkarBt;                                                                231
Department of Civil Engineering                                                viTüasßanCatiBhubec©keTskm<úCa
               yk ε t = 0.002 /     fs
                                    fy
                                       = 1.0   ehIy φ = 0.65 BItaragkñúgrUbTI 17 eKTTYl)an
                                      Pn
                 K n = 0.36 =
                                35 × 600 × 350
               dUcenH Pn = 2646kN
        C.     EpÞógpÞat;karsnμt;sMrab;muxkat; compression controlled³
               sMrab; K n = 0.36
                            e
                 Rn = K n     = 0.183
                            h
               BIdüaRkameyIgTTYl)an ρ = 0.019 < 0.03 / dUcenH Pn > 2646kN ¬edIm,I)an ρ = 0.03 ¦
        D.     karsakl,gelIkTI2³ yk ε t = 0.0015 / f s = 0.0015 × 200000 = 300MPa
                 f s 300
                    =    = 0.75                   ρ = 0.03      K n = 0.43
                 f y 400

                 Pn = 0.43 × 35 × 600 × 350 = 3160.5kN

        E.     EpÞógpÞat;karsnμt;³ sMrab; K n = 0.43 / Rn = K n h = 0.219
                                                                e


               BItarag ρ = 0.03 dUcGVIEdleGay
               dUcenH Pn = 3160.5kN
               φPn = 0.65 × 3160.5 = 2054.3kN nig φM n = 626.6kN .m
               tamkarviPaK φPn = 2027kN ¬mantMélRbEhlKñanwgkarKNnaedayeRbItarag¦.
13> karKNnassreRkambnÞúkcakp©it                      Design of Columns Under Eccentric
       Loading
       karKNnassrmanlkçN³sμúKsμajCagkarviPaKssr edaysarEtbnÞúkxageRkA Pu nigm:Um:g; M u
Casmμtikmμ ehIyeKRtUvkarkMNt;nUvGBaØtiCaeRcIndUcCa b / h / As / A's CamYynwgkarkMNt;rbs; ACI Code.
vaCakarGnuvtþn_TueTAedaysnμt;dMbUgnUvmuxkat;ssr ehIykMnt;brimaNmuxkat;EdkRtUvkar. RbsinebIGñk
KNnaRtUvkardUrmuxkat;EdkKNna enaHmuxkat;ssrk¾RtUv)anEkERbeTAtamenaHEdr. ]TahrN_xageRkam
bgðajBIkarKNnassr.
       13>1 KNnassrsMrab;kar)ak;edaykarsgát; Design of Column for Compression
       Failure
     sMrab; compression failure eKniymeRbI As = A's sMrab;muxkat;ctuekaN. cMNakp©it e = M u .
                                                                                        Pu
edayQrenAelItMélrbs; e eKman2krNIRtUv)anbegáIteLIg
     1> enAeBlEdl e ≤ 100mm krNIcMNakp©itGb,brmaGacekItman EdlGaceKNnaedayeRbIrUbmnþ

Members in Compression and Bending                                                                      232
T.Chhay                                                                                                         NPIC

                               [                  (
           Pu = φPn = φK 0.85 f 'c Ag + Ast f y − 0.85 f 'c     )] Edl φ = 0.65 nig K = 0.80 sMrab;ssrEdl
          man dkkgdac;² nig φ = 0.70 nig K = 0.85 sMrab;ssrEdlmanEdkvNн ¬sUmemIl]TahrN_kñúg
          emeronssrrgkMlaMgcMGkS½¦. sMrab;krNIepSgBIenH GñkKNnaGacGnuvtþtamkrNITI2. krNIbnÞúk
          enHRbRBwtþeTAsMrab;ssrGKarCan;eRkaménGKareRcInCan; Edlm:Um:g; M u )anmkBIRbBn§½mYyCan; nig
           Pu )anmkBIbnÞúkRKb;Can;EdlmanGMeBIenABIelIva.

          2> tMbn; compression failure KWtMbn;EdlsßitenAcenøaHGkS½QreTAbnÞat; balanced load dUcbgðaj
          kñúgrUbTI 3 nigrUbTI11. kñúgkrNIenH muxkat; bh GacRtUv)ansnμt; ehIybnÞab;mkmuxkat;EdkRtUv)an
          KNnasMrab; Pu nig M u EdleGay. CMhanénkarKNnaRtUv)ansegçbdUcxageRkam³
                    k> snμt;muxkat;kaer b¤ctuekaN bh rYckMNt; d / d ' nig e = M u
                                                                              P   u
                                                                                             A' s f y
                     x> edaysnμt; As = A's KNna A's BIsmIkar Pn = 3he 'c
                                                                    bhf
                                                                                      +
                                                                                             e
                                                                                                             edayeRbI
                                                                             + 1.18                  + 0.5
                                                                        d2                (d − d ' )
                 TMhMmuxkat;Edl)ansnμt; nig φ = 0.65 sMrab;ssrEdleRbIEdkkgFmμta. yk As = A's rYc
                 eRCIserIsmuxkat;RKb;RKan;. kMNt;muxkat;BitR)akdEdleRbIsMrab; As nig A's . mü:agvij
                 eToteKGaceRbIdüaRkam ACI.
                                                +
                 K> epÞógpÞat;fa 1% ≤ ρ g = As bhA's ≤ 8% . RbsinebI ρ g mantMéltUc kat;bnßymuxkat;
                 snμt; b:uEnþBRgIkmuxkat;RbsinebIeKcg;)anmuxkat;EdktUc.
                 X> epÞógpÞat;PaBRKb;RKan;rbs;muxkat;cugeRkayedayKNna φPn BIsmIkarsþaTic
                 dUcBnül;kñúg]TahrN_xagedIm. φPn ≥ Pu .
                 g> kMNt;EdkkgcaM)ac;.
        rUbmnþRbhak;RbEhl approximate formula y:agsamBaØ sMrab;kMNt;muxkat;ssrdMbUg bh b¤PaK
ryEdksrub total steel retio ρ g KW
         Pn = K c bh 2 b¤         Pu = φPn = φK c bh 2                                      ¬-24¦
        Edl K c mantMéldUcbgðajkñúgtaragTI2 nigbgðajkñúgrUbTI19 sMrab;Edk f y = 400MPa nig
 As = A' s . xñatrbs; K c KW kN / m 3 .

          taragTI2 tMélrbs; K ¬ f      c   y   = 400MPa   ¦
                                                          Kc
               ρ g (% )
                                   f 'c (28MPa)       f 'c (35MPa)    f 'c (42MPa)
               1%                      24817              30246           35286
               4%                      37574              43003           48044

eRKOgbgÁúMrgkarsgát; nigrgkarBt;                                                                                  233
Department of Civil Engineering                                           viTüasßanCatiBhubec©keTskm<úCa
           8%               54675           60103             65144

                  3
     K c ( kN/m )
     69000
     64000
     59000
     54000
     49000
     44000
     39000                                                                           f'c=28MPa
     34000                                                                           f'c=35MPa
     29000                                                                           f'c=42MPa

     24000
              1            2         3           4           5           6              7             8
                                                                                                 ρ g (%)

      rUbTI19 tMél K c nig ρ g
         tMél K c RtUv)anbgðajkñúgtaragTI2 CatMélRbhak;RbEhl niggayRsYleRbI edaysar K c ekIn
eLIgmþg 5429 sMrab;karekIneLIgrbs; f 'c mþg 7 . sMrab;muxkat;dUcKña enAeBlEdlcMNakp©it e = M u
                                                                                           Pu
ekIneLIg Pn fycuH dUcenH K c fycuH. dUcenH tMél K c sMEdgbnÞúk Pn enAelIdüaRkamGnþrkmμcenøaH
0.8Pno nig Pb dUcbgðajkñúgrUbTI 3 nigTI 11.

         Linear interpolation GacRtUv)aneRbI. ]TahrN_ K c = 46124.5 sMrab; ρ g = 6% nig

 f 'c = 28MPa . CMhankñúgkarKNnamuxkat;ssrGacRtUv)ansegçbdUcxageRkam³

         1> snμt;muxkat;dMbUgsMrab;muxkat;ssr bh
         2> KNna K c = (φbh 2 )
                            Pu


       3> kMNt; ρ g BItaragTI 2 sMrab; f 'c EdleGay
       4> kMNt; As = A's = ρ g2bh rYceRCIserIsEdkbBaÄr nigEdkkg.
       5> kMNt; φPn énmuxkat;cugeRkaytamsmIkarsþaTic ¬dMeNaHRsayCak;lak;¦. tMélén φPn KYrEt
          mantMélFMCagb¤esμI Pu . RbsinebImindUecñaHeT EktMrUv bh b¤ ρ g .


Members in Compression and Bending                                                                 234
T.Chhay                                                                                            NPIC

       mü:agvijeTot RbsinebIeKcg;)anPaKryEdksrubCak;lak; ]TahrN_ ρ g = 6% bnÞab;mkGnuvtþdUc
xageRkam³
       1> snμt; ρ g dUcEdlTamTar nigbnÞab;mkKNna e = M u   Pu
       2> edayQrelI f 'c nig ρ g EdleGay/ kMNt; K c BItaragTI2
       3> KNna bh 2 = φPu bnÞab;mkeRCIserIs b nig h . GnuvtþCMhan 4 nig 5 eLIgvij.
                           Kc
           eKKYrEtepÞógpÞat;fa 1% ≤ ρ g ≤ 8% . dUcKña epÞógpÞat;fa c
           Edl)anmkBIkarKNnatamsþaTicmantMélFMCag cb = 600 +dft sMrab; compression failure .
                                                                  600
                                                                        y

]TahrN_13³ kMNt;muxkat;EdkTaj nigmuxkat;Edksgát;sMrab;ssrEdleRbIEdkkgFmμtamanmuxkat;
400 × 600     edIm,IRTbnÞúk Pu = 3470kN nig M u = 530kN .m . edayeRbI   f 'c = 28kN   nig   f y = 400MPa   .




dMeNaHRsay³
     1> KNna e = M u = 3470 = 152.74mm . eyIgman h = 600mm yk d = 550mm nig d ' = 50mm
                 P
                       530
                             u

        edaysar e < 2 d = 366.67mm snμt;fa compression failure.
                     3
     2> snμt; As = A's . kMNt;tMéldMbUgrbs; A's tamrUbmnþ
                     bhf 'c         A' s f y
           Pn =               +                                                         (-17)
                   3he              e
                       + 1.18              + 0.5
                   d 2          (d − d ' )

          sMrab;         P 3470
                    Pn = u =
                         φ     0.65
                                     = 5338.5kN

           A' s = 4271.8mm 2 = As

eRKOgbgÁúMrgkarsgát; nigrgkarBt;                                                                     235
Department of Civil Engineering                                                 viTüasßanCatiBhubec©keTskm<úCa
        eRbIEdk DB32 ⇒ n = 6 edIm
        6 DB32 = 4825.5mm 2 sMrab; As nig A' s ¬rUbTI 20¦

    3> ρ g = 2 × 4825.5 = 4% EdlvaRtUvEttUcCag 0.08 nig FMCag 0.01
               400 × 600
    4> epÞógpÞat;muxkat;edaysmIkarsþaTictamCMhanénkarKNnakñúg]TahrN_TI4 eKTTYl)an
        a = 430.18mm / c = 506.09mm / Cc = 4095.32kN

       C s = 4825.5(400 − 0.85 × 28) = 1815.35kN
                 ⎛d −c⎞      ⎛ 550 − 506.09 ⎞
        f s = 600⎜    ⎟ = 600⎜              ⎟ = 52.06MPa
                 ⎝ c ⎠       ⎝ 506.09 ⎠
       T = As f s = 4825.5 × 52.06 = 251.21kN

        Pn = Cc + C s − T = 5659.5kN > 5338.5kN
       cMNaMfa RbsinebI φPn < Pu cUrdMeLIg As nig A's rYceFVIkarKNnaeLIgvij.
   5> epÞógpÞat; Pn edayeRbIsmIkar Pn = e' ⎡Cc ⎛ d − a ⎞ + Cs (d − d ' )⎤ Edl e' = e + d − h
                                         1
                                           ⎢ ⎜         ⎟                ⎥
                                           ⎣ ⎝       2⎠                 ⎦                  2
       eyIgTTYl)an Pn = 5659kN
   6> sMrab; muxkat; balanced section
             ⎛ 600         ⎞
        cb = ⎜             ⎟d t = 600 550 = 330mm
             ⎜ 600 + f y   ⎟     1000
             ⎝             ⎠
      edaysarEt c = 506.09mm > cb = 330mm vaCakrNI compression failure dUckarsnμt;.
   7> edayeRbIEdkkgmanGgát;p©it 10mm
      KMlatEdkkg
            ⎧48φ       ⎧48 ×10        ⎧480
            ⎪          ⎪              ⎪
        min ⎨16d = min ⎨16 × 32 = min ⎨512 = 400
            ⎪ b        ⎪ 400          ⎪400
            ⎩          ⎩              ⎩
       dUcenHeRbIEdkkg DB10 @ 400 .
       ]TahrN_14³ eFVI]TahrN_TI13 eLIgvijedayeRbIsmIkar ¬-24¦
       dMeNaHRsay³
       1> muxkat;ssrEdleGay 400 × 600
       2> kMNt; K c BIsmIkar ¬-24¦
       3> K c = φbh 2 = 0.65 ×3470× 0.6 2 = 37073 m3
                   Pu
                               0 .4
                                                  kN




Members in Compression and Bending                                                                       236
T.Chhay                                                                                        NPIC

       4> BItaragTI 2 b¤rUbTI19 sMrab; K c = 37073 mm3 f 'c = 28MPa eday interpolation
                                                          kN

                                                               4 −1
           eyIgTTYl)an ρ g = 1 + (37073 − 24817) 37574 − 24817 = 3.88%
       5> KNna As = A's = ρbh / 2 = 0.0388(400)(600)/ 2 = 4656mm 2
           eRbIEdk DB32 ⇒ n = 6 edIm
       6> 6DB32 = 4825.5mm 2
       7> kMNt; φPu edayeFVItamCMhan 4-7 sMrab;]TahrN_TI13. Pn = 5659kN > Pn = 5338.5kN
           dUcenHmuxkat;EdkRKb;RKan;
       8> RbsinebImuxkat;minRKb;RKan; b¤ φPn < Pn tMeLIgmuxkat; As nig A's rYceFVIkarepÞógpÞat;eLIgvij
           edIm,ITTYl)antMélEk,r.
       ]TahrN_15³ KNnamuxkat;ssrctuekaNEkgedIm,IRTbnÞúk Pu = 3150kN nig M u = 630kN .m
CamYynwgPaKryEdksrub ρ g RbEhl 4% . eRbI f ' = 28MPa / f = 400MPa nig b = 450mm .
                                                   c               y


       dMeNaHRsay³
       1> KNna e = M u = 3150 = 0.2m . snμt; compression failure ( φ = 0.65 ) ¬RtUvepÞógpÞat;enA
                          Pu
                                  630


           eBleRkay¦ ehIy As = A's
       2> sMrab; ρ = 4% nig f 'c = 28MPa enaH K c = 37574 ¬taragTI2¦
       3> KNna bh 2 BIsmIkar (-24): Pu = φK cbh 2 rW 3150 = 0.65(37574)(0.45)h 2 dUcenH
           h = 0.535m dUcenHyk h = 550mm .

           KNna As = A's = 0.04(450 × 550) = 4950mm 2 . eRCIserIs 5DB36
                                          2
           ( As = 5089.4mm ) dUcbgðajkñúgrUbTI 21. eRbIEdkkg DB12 @ 450 .
                                2


       4> epÞógpÞat; muxkat;cugeRkayedaykarviPaK RsedogKñanwg]TahrN_TI4 eyIgTTYl)an
           a = 327.8mm / c = 385.65mm / Cc = 0.85 f 'c ab = 3510.7kN / f ' s = 400 MPa /
                                                                 ⎛d −c⎞
           C s = A' s ( f y − 0.85 f 'c ) = 1914.6kN / f s = 600⎜     ⎟ = 146.79 MPa / nig T = 747 kN
                                                                 ⎝ c ⎠
           dUcenH Pn = Cc + Cs − T = 4678.3kN ehIy Pu = φPn = 3041kN < 3150kN
           edaysarmuxkat;minRKb;RKan; eyIgRtUvtMeLIgmuxkat;Edk b¤muxkat;ebtug rYceFVIkarepÞógpÞat;eLIg
           vij. ¬yk h = 600mm ¦ rUbTI21.
       5> sMrab;muxkat; balanced section

eRKOgbgÁúMrgkarsgát; nigrgkarBt;                                                                  237
Department of Civil Engineering                                                viTüasßanCatiBhubec©keTskm<úCa
                 ⎛ 600 ⎞
            cb = ⎜           ⎟d t = 318mm < c = 436.32mm
                 ⎝ 600 + 400 ⎠
                                                            ¬ d = 530mm ¦
           dUcenH vaCa compression failure dUckarsnμt;.




        13>2 KNnassrsMrab;kar)ak;edaykarTaj Design of Column for tension Failure
        Kar)ak;edaykarTaj tension failure ekItmanenAeBl Pn < Pu b¤k¾cMNakp©it e > eb dUckarBnül;
enAkñúgEpñkTI7. kñúgkarKNnassr Pu nig M u RtUv)aneGay ehIyvaTamTarnUvkarkMNt;muxkat;ssr nigmux
kat;Edk. vaGacRtUv)ansnμt; ¬dUckarENnaM¦ favaCa tension control enAeBlNa
        ⎧530 sMrab;      h < 600mm
 M u
      >⎨
          600 sMrab;    h ≥ 600mm
                                   . kñúgkrNIenH muxkat;ssrGacRtUv)ansnμt; ehIybnÞab;mk As nig
 Pu    ⎩
A' s   RtUv)ankMNt;. düaRkam ACI GacRtUv)aneRbIedIm,IKNna ρ g sMrab;muxkat;EdleGayCamYynwg As
= A's . cMNaMfa φ ERbRbYlcenøaH 0.65(0.7) nig 0.9 dUckarBnül;kñúgEpñkTI 4.
           enAeBl tension controls EdkTaj yields b:uEnþEdksgát;Gac yields nigmin yields. karsnμt;dMbUg
 f ' s = f y nig As = A' s . smIkar (-16) ¬kñúgEpñkTI 6¦ GacRtUv)aneRbIedIm,IKNnatMéldMbUgrbs; As nig

A' s .
                      ⎛      h a⎞
                   Pn ⎜ e − + ⎟
        As = A' s = ⎝
                             2 2⎠
                                                                                                 (-16)
                      f y (d − d ')

       edaysar a minRtUv)andwgenAeLIy snμt; a = 0.4d nig Pu = φPn bnÞab;mk
                      Pu (e − 0.5h + 0.2d )
        As = A' s =                                                                              (-25)
                          φf y (d − d ' )
      muxkat;ssrcugeRkayKYrRtUv)anepÞógpÞat;edaysmIkarsþaTicedIm,Ibgðajfa φP      n   ≥ Pu   . ]TahrN_
TI16 Bnül;BIviFIsaRsþkñúgkarKNnaenH.

Members in Compression and Bending                                                                       238
T.Chhay                                                                                                      NPIC

        enAeBlbnÞúk P mantMéltUcNas;ebIeRbobeFobCamYynwgm:Um:g; M TMhMrbs;muxkat;GacRtUv)ankM
                                       u                                                 u


Nt;edayeRbIEt M EtmYy)anehIy edaysnμt;fa P = 0 . muxkat;cugeRkayKYrRtUv)anepÞógpÞat;eday
                             u                                        u


smIkarsþaTic. krNIenHekIteLIgsMrab;eRKagGKarmYyCan; b¤BIrCan; EdlGKarenaHRtUv)aneKeRbIsMrab;eFVICa
saltaMgBiBN’ b¤k¾GKarTaMgLayNaEdlmanlkçN³dUcKñaenaH. sMrab;krNIenH A' GacRtUv)ansnμt;eGay            s


mantMéltUcCag A . karKNnay:aglMGitsMrab;saltaMgBiBN’kMBs;mYyCan;Edlmansnøak;BIrRtUv)anBnül;
                         s


enAkñúgCMBUkTI 16 FñwmCab; nigeRKag.
         ]TahrN_16³ kMNt;sésrEdkcaM)ac;sMrab;ssrragctuekaNEkg 400 × 560 EdlmanEdkkg
FmμtaRTbnÞúk P = 1140kN nig M = 850kN .m . eRbI f ' = 28MPa nig f = 400MPa
                    u                                 u                       c              y




          dMeNaHRsay³
      1> KNna e = M
                  P
                                   u
                                           =
                                                850
                                               1140
                                                    = 0.7456m   . yk d = 560 − 60 = 500mm . edaysar
                                  u

            Mu
            Pu
               = 745.6mm > 530mm       b¤edaysar e > d snμt;fassrenH)ak;edaykrNI tension failure
         enaH φ = 0.9 ¬RtUvepÞógpÞat;enAeBleRkay¦.
      2> snμt; A = A' nig f ' = f nigeRbIsmIkar (-25) edIm,IkMnt; A nig A' . eday P = 1140kN /
                     s             s              s   y                              s           s       u


          e = 745.6mm / h = 560mm / d = 500mm / nig d ' = 60mm
                                 1140 ⋅ 10 3 (745.6 − 0.5 × 560 + 0.2 × 500 )
           As = A' s =                                                        = 4070.71mm 2
                                              0.9 × 400(500 − 60 )
         eRbI 5DB32 (4021.24mm ) sMrab; A nig A' . ¬rUbTI22¦
                                                      2
                                                                 s        s


      3> epÞógpÞat; ρ = 2400 × 560) = 0.0359 EdltUcCag 0.08 nigFMCag 0.01 .
                           (4021.24
                             g


      4> epÞógpÞat;kareRCIserIsmuxkat;edaysmIkarsþaTic EdlkarKNnaRsedogKñanwg]TahrN_TI3
eRKOgbgÁúMrgkarsgát; nigrgkarBt;                                                                              239
Department of Civil Engineering                                                                      viTüasßanCatiBhubec©keTskm<úCa
          a.       kMNt;tMélrbs; a edayeRbIsmIkarTUeTA Aa + Ba + C = 0 CamYynwg
                                                                             2



                   e' = e + d − = 965.6mm / A = 0.425 f ' b = 4760 / B = 2 A(e'− d ) = 4432512 /
                                 h
                                                                         c
                                 2
                   C = A' ( f − 0.85 f ' )(e'− d + d ') − A f e' = −758040793 . eKTTYl)an a = 147.62mm
                           s       y                   c         s   y


                   nig c = a / 0.85 = 173.67mm .
          b.       epÞógpÞat; f ' ³ f ' = 600⎛ c −c d ' ⎞ = 600⎛ 173.67.6760 ⎞ = 392.71MPa
                                       s     ⎜
                                             ⎝
                                               s        ⎟
                                                        ⎠
                                                               ⎜
                                                               ⎝ 173
                                                                        −
                                                                             ⎟
                                                                             ⎠
          c.       KNna a eLIgvij
                   C = A' s ( f ' s −0.85 f ' c )(e'−d + d ') − As f ' s e' = −773454123.3
                   eKTTYl)an a = 150.25mm nig c = 176.77mm
          d.       epÞógpÞat; f ' ³ f ' = 600⎛ c −c d ' ⎞ = 600⎛ 176.77.7760 ⎞ = 396.34MPa
                                       s     ⎜
                                             ⎝
                                               s        ⎟
                                                        ⎠
                                                               ⎜
                                                               ⎝ 176
                                                                        −
                                                                             ⎟
                                                                             ⎠
                   KNna C = 0.85 × 28 × 150.25 × 400 = 1430.38kN
                                           c


                                   C s = A' s ( f ' s −0.85 f ' c ) = 4021.24(396.34 − 0.85 × 28) = 1498.07kN
                                   T = As f y = 4021.24 × 400 = 1608.5kN

          e.                       Pn = C c + C s − T = 1319.95kN

    5> KNna φ ³ ε = 0.003⎛ d c− c ⎞ = 0.0055 edaysarEt ε = 0.0055 > 0.005 enaH φ = 0.9
                           ⎜   t  ⎟                t
                                                                                 t
                           ⎝      ⎠
    6> φP = 0.9 × 1319.95 = 1187.95kN > 1140kN muxkat;RKb;RKan;
               n


14> karBt;tamBIrTis                            Biaxial Bending
        karviPaK nigkarKNnassreRkamGMeBIbnÞúkcakp©itEdl)anBiPakSaknøgmk CakrNIkarBt;mYyTis.
enHmann½yfa P GnuvtþenAelIGkS½ y ¬rUbTI23¦ begáIt)anbnSMénkMlaMgcMGkS½ P nigm:Um:g;Bt;CMuvijGkS½ x
                      n                                                                          n


esμInwg M nx = Pn e y b¤ P GnuvtþenAelIGkS½ x ¬rUbTI24¦ CamYynwgcMNakp©it e begáIt)anbnSMénkMlaMgcM
                                       n                                                     x


GkS½ P nigm:Um:g;Bt; M ny = Pn e x .
      n




Members in Compression and Bending                                                                                            240
Xi members in compression and bending
Xi members in compression and bending
Xi members in compression and bending
Xi members in compression and bending
Xi members in compression and bending
Xi members in compression and bending
Xi members in compression and bending
Xi members in compression and bending
Xi members in compression and bending
Xi members in compression and bending
Xi members in compression and bending
Xi members in compression and bending
Xi members in compression and bending
Xi members in compression and bending

Weitere ähnliche Inhalte

Was ist angesagt?

エニグマ暗号とは何だったのか
エニグマ暗号とは何だったのかエニグマ暗号とは何だったのか
エニグマ暗号とは何だったのかTakahiro (Poly) Horikawa
 
Truss for indeterminacy Check
Truss for indeterminacy CheckTruss for indeterminacy Check
Truss for indeterminacy Checkmahafuzshawon
 
Chapter 6: Pure Bending and Bending with Axial Forces
Chapter 6: Pure Bending and Bending with Axial ForcesChapter 6: Pure Bending and Bending with Axial Forces
Chapter 6: Pure Bending and Bending with Axial ForcesMonark Sutariya
 
Dome Shape Optimization of Composite Pressure Vessels
Dome Shape Optimization of Composite Pressure VesselsDome Shape Optimization of Composite Pressure Vessels
Dome Shape Optimization of Composite Pressure Vesselshamidmohsenimonfared
 
Chapter 3: Generalized Hooke's Law, Pressure Vessels, and Thick-Walled Cylinders
Chapter 3: Generalized Hooke's Law, Pressure Vessels, and Thick-Walled CylindersChapter 3: Generalized Hooke's Law, Pressure Vessels, and Thick-Walled Cylinders
Chapter 3: Generalized Hooke's Law, Pressure Vessels, and Thick-Walled CylindersMonark Sutariya
 
Rによるデータサイエンス13「樹木モデル」
Rによるデータサイエンス13「樹木モデル」Rによるデータサイエンス13「樹木モデル」
Rによるデータサイエンス13「樹木モデル」Takeshi Mikami
 
Formul me-3074683 Erdi Karaçal Mechanical Engineer University of Gaziantep
Formul me-3074683 Erdi Karaçal Mechanical Engineer University of GaziantepFormul me-3074683 Erdi Karaçal Mechanical Engineer University of Gaziantep
Formul me-3074683 Erdi Karaçal Mechanical Engineer University of GaziantepErdi Karaçal
 
Trusses The Method Of Sections
Trusses  The Method Of SectionsTrusses  The Method Of Sections
Trusses The Method Of SectionsAmr Hamed
 
ΙΜΙΑ 1996 Η ΑΛΗΘΕΙΑ
ΙΜΙΑ 1996 Η ΑΛΗΘΕΙΑΙΜΙΑ 1996 Η ΑΛΗΘΕΙΑ
ΙΜΙΑ 1996 Η ΑΛΗΘΕΙΑstratilatis bloger
 
北大有機元素化学雑誌会M1岩本2014
北大有機元素化学雑誌会M1岩本2014北大有機元素化学雑誌会M1岩本2014
北大有機元素化学雑誌会M1岩本2014Hajime Ito
 
[Ajaya kumar gupta]_response_spectrum_method_in_se(book_zz.org)
[Ajaya kumar gupta]_response_spectrum_method_in_se(book_zz.org)[Ajaya kumar gupta]_response_spectrum_method_in_se(book_zz.org)
[Ajaya kumar gupta]_response_spectrum_method_in_se(book_zz.org)Hemant Solanki
 
Unit 3 flexibility-anujajape
Unit 3 flexibility-anujajapeUnit 3 flexibility-anujajape
Unit 3 flexibility-anujajapeanujajape
 
Oracle property and_hdm_pkg_rigorouslasso
Oracle property and_hdm_pkg_rigorouslassoOracle property and_hdm_pkg_rigorouslasso
Oracle property and_hdm_pkg_rigorouslassoSatoshi Kato
 
Sex education in urdu book by doctor syed mubeen akhtar اسلامی نکاح،شادی بیاہ
Sex education in urdu book by doctor syed mubeen akhtar  اسلامی نکاح،شادی بیاہSex education in urdu book by doctor syed mubeen akhtar  اسلامی نکاح،شادی بیاہ
Sex education in urdu book by doctor syed mubeen akhtar اسلامی نکاح،شادی بیاہMyWritings
 

Was ist angesagt? (20)

エニグマ暗号とは何だったのか
エニグマ暗号とは何だったのかエニグマ暗号とは何だったのか
エニグマ暗号とは何だったのか
 
Truss for indeterminacy Check
Truss for indeterminacy CheckTruss for indeterminacy Check
Truss for indeterminacy Check
 
Chapter 6: Pure Bending and Bending with Axial Forces
Chapter 6: Pure Bending and Bending with Axial ForcesChapter 6: Pure Bending and Bending with Axial Forces
Chapter 6: Pure Bending and Bending with Axial Forces
 
Fracture mechanics
Fracture mechanicsFracture mechanics
Fracture mechanics
 
Dome Shape Optimization of Composite Pressure Vessels
Dome Shape Optimization of Composite Pressure VesselsDome Shape Optimization of Composite Pressure Vessels
Dome Shape Optimization of Composite Pressure Vessels
 
stress strain sm
stress strain smstress strain sm
stress strain sm
 
Chapter 3: Generalized Hooke's Law, Pressure Vessels, and Thick-Walled Cylinders
Chapter 3: Generalized Hooke's Law, Pressure Vessels, and Thick-Walled CylindersChapter 3: Generalized Hooke's Law, Pressure Vessels, and Thick-Walled Cylinders
Chapter 3: Generalized Hooke's Law, Pressure Vessels, and Thick-Walled Cylinders
 
Rによるデータサイエンス13「樹木モデル」
Rによるデータサイエンス13「樹木モデル」Rによるデータサイエンス13「樹木モデル」
Rによるデータサイエンス13「樹木モデル」
 
Formul me-3074683 Erdi Karaçal Mechanical Engineer University of Gaziantep
Formul me-3074683 Erdi Karaçal Mechanical Engineer University of GaziantepFormul me-3074683 Erdi Karaçal Mechanical Engineer University of Gaziantep
Formul me-3074683 Erdi Karaçal Mechanical Engineer University of Gaziantep
 
Trusses The Method Of Sections
Trusses  The Method Of SectionsTrusses  The Method Of Sections
Trusses The Method Of Sections
 
Simple Stress & Strain
Simple Stress & StrainSimple Stress & Strain
Simple Stress & Strain
 
Thick cylinders
Thick cylinders Thick cylinders
Thick cylinders
 
5 plastic analysis
5 plastic analysis5 plastic analysis
5 plastic analysis
 
ΙΜΙΑ 1996 Η ΑΛΗΘΕΙΑ
ΙΜΙΑ 1996 Η ΑΛΗΘΕΙΑΙΜΙΑ 1996 Η ΑΛΗΘΕΙΑ
ΙΜΙΑ 1996 Η ΑΛΗΘΕΙΑ
 
北大有機元素化学雑誌会M1岩本2014
北大有機元素化学雑誌会M1岩本2014北大有機元素化学雑誌会M1岩本2014
北大有機元素化学雑誌会M1岩本2014
 
[Ajaya kumar gupta]_response_spectrum_method_in_se(book_zz.org)
[Ajaya kumar gupta]_response_spectrum_method_in_se(book_zz.org)[Ajaya kumar gupta]_response_spectrum_method_in_se(book_zz.org)
[Ajaya kumar gupta]_response_spectrum_method_in_se(book_zz.org)
 
Unit 3 flexibility-anujajape
Unit 3 flexibility-anujajapeUnit 3 flexibility-anujajape
Unit 3 flexibility-anujajape
 
Revenue guide 2021 - ildm revenue guide 2021 of kerala Land revenue departmen...
Revenue guide 2021 - ildm revenue guide 2021 of kerala Land revenue departmen...Revenue guide 2021 - ildm revenue guide 2021 of kerala Land revenue departmen...
Revenue guide 2021 - ildm revenue guide 2021 of kerala Land revenue departmen...
 
Oracle property and_hdm_pkg_rigorouslasso
Oracle property and_hdm_pkg_rigorouslassoOracle property and_hdm_pkg_rigorouslasso
Oracle property and_hdm_pkg_rigorouslasso
 
Sex education in urdu book by doctor syed mubeen akhtar اسلامی نکاح،شادی بیاہ
Sex education in urdu book by doctor syed mubeen akhtar  اسلامی نکاح،شادی بیاہSex education in urdu book by doctor syed mubeen akhtar  اسلامی نکاح،شادی بیاہ
Sex education in urdu book by doctor syed mubeen akhtar اسلامی نکاح،شادی بیاہ
 

Andere mochten auch

Xii.lrfd and stan dard aastho design of concrete bridge
Xii.lrfd and stan dard aastho design of concrete bridgeXii.lrfd and stan dard aastho design of concrete bridge
Xii.lrfd and stan dard aastho design of concrete bridgeChhay Teng
 
10. analysis of statically indeterminate structures by the force method
10. analysis of statically indeterminate structures by the force method10. analysis of statically indeterminate structures by the force method
10. analysis of statically indeterminate structures by the force methodChhay Teng
 
8.eccentric connections
8.eccentric connections8.eccentric connections
8.eccentric connectionsChhay Teng
 
Computer graphic
Computer graphicComputer graphic
Computer graphicChhay Teng
 
Construction plan
Construction planConstruction plan
Construction planChhay Teng
 
7.simple connections
7.simple connections7.simple connections
7.simple connectionsChhay Teng
 
Xix introduction to prestressed concrete
Xix introduction to prestressed concreteXix introduction to prestressed concrete
Xix introduction to prestressed concreteChhay Teng
 
Carpentering work
Carpentering work Carpentering work
Carpentering work Chhay Teng
 
Vii. camber, deflection, and crack control
Vii. camber, deflection, and crack controlVii. camber, deflection, and crack control
Vii. camber, deflection, and crack controlChhay Teng
 
X. connections for prestressed concrete element
X. connections for prestressed concrete elementX. connections for prestressed concrete element
X. connections for prestressed concrete elementChhay Teng
 
4.compression members
4.compression members4.compression members
4.compression membersChhay Teng
 
Viii. prestressed compression and tension member
Viii. prestressed compression and tension memberViii. prestressed compression and tension member
Viii. prestressed compression and tension memberChhay Teng
 
Appendix b structural steel design based on allowable stress
Appendix  b structural steel design based on allowable stressAppendix  b structural steel design based on allowable stress
Appendix b structural steel design based on allowable stressChhay Teng
 
Vi. indeterminate prestressed concrete structures
Vi. indeterminate prestressed concrete structuresVi. indeterminate prestressed concrete structures
Vi. indeterminate prestressed concrete structuresChhay Teng
 

Andere mochten auch (20)

Xviii stairs
Xviii stairsXviii stairs
Xviii stairs
 
Xii.lrfd and stan dard aastho design of concrete bridge
Xii.lrfd and stan dard aastho design of concrete bridgeXii.lrfd and stan dard aastho design of concrete bridge
Xii.lrfd and stan dard aastho design of concrete bridge
 
Euro l
Euro lEuro l
Euro l
 
10. analysis of statically indeterminate structures by the force method
10. analysis of statically indeterminate structures by the force method10. analysis of statically indeterminate structures by the force method
10. analysis of statically indeterminate structures by the force method
 
8.eccentric connections
8.eccentric connections8.eccentric connections
8.eccentric connections
 
Computer graphic
Computer graphicComputer graphic
Computer graphic
 
Construction plan
Construction planConstruction plan
Construction plan
 
Appendix
AppendixAppendix
Appendix
 
7.simple connections
7.simple connections7.simple connections
7.simple connections
 
Xix introduction to prestressed concrete
Xix introduction to prestressed concreteXix introduction to prestressed concrete
Xix introduction to prestressed concrete
 
Euro sq
Euro sqEuro sq
Euro sq
 
Carpentering work
Carpentering work Carpentering work
Carpentering work
 
Vii. camber, deflection, and crack control
Vii. camber, deflection, and crack controlVii. camber, deflection, and crack control
Vii. camber, deflection, and crack control
 
X. connections for prestressed concrete element
X. connections for prestressed concrete elementX. connections for prestressed concrete element
X. connections for prestressed concrete element
 
4.compression members
4.compression members4.compression members
4.compression members
 
Tiling
Tiling Tiling
Tiling
 
Viii. prestressed compression and tension member
Viii. prestressed compression and tension memberViii. prestressed compression and tension member
Viii. prestressed compression and tension member
 
5.beams
5.beams5.beams
5.beams
 
Appendix b structural steel design based on allowable stress
Appendix  b structural steel design based on allowable stressAppendix  b structural steel design based on allowable stress
Appendix b structural steel design based on allowable stress
 
Vi. indeterminate prestressed concrete structures
Vi. indeterminate prestressed concrete structuresVi. indeterminate prestressed concrete structures
Vi. indeterminate prestressed concrete structures
 

Ähnlich wie Xi members in compression and bending

Appendix a plastic analysis and design
Appendix a plastic analysis and designAppendix a plastic analysis and design
Appendix a plastic analysis and designChhay Teng
 
Vi deflection and control of cracking
Vi deflection and control of cracking Vi deflection and control of cracking
Vi deflection and control of cracking Chhay Teng
 
6.beam columns
6.beam columns6.beam columns
6.beam columnsChhay Teng
 
Iii flexural analysis of reinforced concrete
Iii flexural analysis of reinforced concreteIii flexural analysis of reinforced concrete
Iii flexural analysis of reinforced concreteChhay Teng
 
9.composite construction
9.composite construction9.composite construction
9.composite constructionChhay Teng
 
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elementsIv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elementsChhay Teng
 
Ix one way slab
Ix one way slabIx one way slab
Ix one way slabChhay Teng
 
V. shear and torsional strength design
V. shear and torsional strength designV. shear and torsional strength design
V. shear and torsional strength designChhay Teng
 
Xvi continuous beams and frames
Xvi continuous beams and framesXvi continuous beams and frames
Xvi continuous beams and framesChhay Teng
 
13.combined stresses
13.combined stresses13.combined stresses
13.combined stressesChhay Teng
 
12. displacement method of analysis moment distribution
12. displacement method of analysis moment distribution12. displacement method of analysis moment distribution
12. displacement method of analysis moment distributionChhay Teng
 
7. approximate analysis of statically indeterminate structures
7. approximate analysis of statically indeterminate structures7. approximate analysis of statically indeterminate structures
7. approximate analysis of statically indeterminate structuresChhay Teng
 
13 beams and frames having nonprismatic members
13 beams and frames having nonprismatic members13 beams and frames having nonprismatic members
13 beams and frames having nonprismatic membersChhay Teng
 
Ii properties of reinforced concrete
Ii properties of reinforced concreteIi properties of reinforced concrete
Ii properties of reinforced concreteChhay Teng
 
Xv design for torsion
Xv design for torsionXv design for torsion
Xv design for torsionChhay Teng
 
X axial loaded column
X axial loaded columnX axial loaded column
X axial loaded columnChhay Teng
 
I. basic concepts
I. basic conceptsI. basic concepts
I. basic conceptsChhay Teng
 
6.stresses and strain23
6.stresses and strain236.stresses and strain23
6.stresses and strain23Chhay Teng
 
2.analysis of statically determinate structure
2.analysis of statically determinate structure2.analysis of statically determinate structure
2.analysis of statically determinate structureChhay Teng
 
9. deflection using energy method
9. deflection using energy method9. deflection using energy method
9. deflection using energy methodChhay Teng
 

Ähnlich wie Xi members in compression and bending (20)

Appendix a plastic analysis and design
Appendix a plastic analysis and designAppendix a plastic analysis and design
Appendix a plastic analysis and design
 
Vi deflection and control of cracking
Vi deflection and control of cracking Vi deflection and control of cracking
Vi deflection and control of cracking
 
6.beam columns
6.beam columns6.beam columns
6.beam columns
 
Iii flexural analysis of reinforced concrete
Iii flexural analysis of reinforced concreteIii flexural analysis of reinforced concrete
Iii flexural analysis of reinforced concrete
 
9.composite construction
9.composite construction9.composite construction
9.composite construction
 
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elementsIv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elements
 
Ix one way slab
Ix one way slabIx one way slab
Ix one way slab
 
V. shear and torsional strength design
V. shear and torsional strength designV. shear and torsional strength design
V. shear and torsional strength design
 
Xvi continuous beams and frames
Xvi continuous beams and framesXvi continuous beams and frames
Xvi continuous beams and frames
 
13.combined stresses
13.combined stresses13.combined stresses
13.combined stresses
 
12. displacement method of analysis moment distribution
12. displacement method of analysis moment distribution12. displacement method of analysis moment distribution
12. displacement method of analysis moment distribution
 
7. approximate analysis of statically indeterminate structures
7. approximate analysis of statically indeterminate structures7. approximate analysis of statically indeterminate structures
7. approximate analysis of statically indeterminate structures
 
13 beams and frames having nonprismatic members
13 beams and frames having nonprismatic members13 beams and frames having nonprismatic members
13 beams and frames having nonprismatic members
 
Ii properties of reinforced concrete
Ii properties of reinforced concreteIi properties of reinforced concrete
Ii properties of reinforced concrete
 
Xv design for torsion
Xv design for torsionXv design for torsion
Xv design for torsion
 
X axial loaded column
X axial loaded columnX axial loaded column
X axial loaded column
 
I. basic concepts
I. basic conceptsI. basic concepts
I. basic concepts
 
6.stresses and strain23
6.stresses and strain236.stresses and strain23
6.stresses and strain23
 
2.analysis of statically determinate structure
2.analysis of statically determinate structure2.analysis of statically determinate structure
2.analysis of statically determinate structure
 
9. deflection using energy method
9. deflection using energy method9. deflection using energy method
9. deflection using energy method
 

Mehr von Chhay Teng

Advance section properties_for_students
Advance section properties_for_studentsAdvance section properties_for_students
Advance section properties_for_studentsChhay Teng
 
Representative flower of asian countries
Representative flower of asian countriesRepresentative flower of asian countries
Representative flower of asian countriesChhay Teng
 
Composition of mix design
Composition of mix designComposition of mix design
Composition of mix designChhay Teng
 
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelinesChhay Teng
 
Technical standard specification auto content
Technical standard specification auto contentTechnical standard specification auto content
Technical standard specification auto contentChhay Teng
 
Available steel-section-list-in-cam
Available steel-section-list-in-camAvailable steel-section-list-in-cam
Available steel-section-list-in-camChhay Teng
 
Concrete basics
Concrete basicsConcrete basics
Concrete basicsChhay Teng
 
Rebar arrangement and construction carryout
Rebar arrangement and construction carryoutRebar arrangement and construction carryout
Rebar arrangement and construction carryoutChhay Teng
 
1 dimension and properties table of w shapes
1 dimension and properties table of w shapes1 dimension and properties table of w shapes
1 dimension and properties table of w shapesChhay Teng
 
2 dimension and properties table of s shape
2 dimension and properties table of s shape2 dimension and properties table of s shape
2 dimension and properties table of s shapeChhay Teng
 
3 dimension and properties table of hp shape
3 dimension and properties table of hp shape3 dimension and properties table of hp shape
3 dimension and properties table of hp shapeChhay Teng
 
4 dimension and properties table c shape
4 dimension and properties table c shape4 dimension and properties table c shape
4 dimension and properties table c shapeChhay Teng
 
5 dimension and properties table l shape
5 dimension and properties table l shape5 dimension and properties table l shape
5 dimension and properties table l shapeChhay Teng
 
6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shape6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shapeChhay Teng
 
7 dimension and properties table ipn
7 dimension and properties table ipn7 dimension and properties table ipn
7 dimension and properties table ipnChhay Teng
 
8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angle8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angleChhay Teng
 
9 dimension and properties table of upe
9 dimension and properties table of upe9 dimension and properties table of upe
9 dimension and properties table of upeChhay Teng
 
10 dimension and properties table upn
10 dimension and properties table upn10 dimension and properties table upn
10 dimension and properties table upnChhay Teng
 

Mehr von Chhay Teng (20)

Advance section properties_for_students
Advance section properties_for_studentsAdvance section properties_for_students
Advance section properties_for_students
 
Representative flower of asian countries
Representative flower of asian countriesRepresentative flower of asian countries
Representative flower of asian countries
 
Composition of mix design
Composition of mix designComposition of mix design
Composition of mix design
 
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
 
Type of road
Type of roadType of road
Type of road
 
Technical standard specification auto content
Technical standard specification auto contentTechnical standard specification auto content
Technical standard specification auto content
 
Available steel-section-list-in-cam
Available steel-section-list-in-camAvailable steel-section-list-in-cam
Available steel-section-list-in-cam
 
Concrete basics
Concrete basicsConcrete basics
Concrete basics
 
Rebar arrangement and construction carryout
Rebar arrangement and construction carryoutRebar arrangement and construction carryout
Rebar arrangement and construction carryout
 
Mix design
Mix designMix design
Mix design
 
1 dimension and properties table of w shapes
1 dimension and properties table of w shapes1 dimension and properties table of w shapes
1 dimension and properties table of w shapes
 
2 dimension and properties table of s shape
2 dimension and properties table of s shape2 dimension and properties table of s shape
2 dimension and properties table of s shape
 
3 dimension and properties table of hp shape
3 dimension and properties table of hp shape3 dimension and properties table of hp shape
3 dimension and properties table of hp shape
 
4 dimension and properties table c shape
4 dimension and properties table c shape4 dimension and properties table c shape
4 dimension and properties table c shape
 
5 dimension and properties table l shape
5 dimension and properties table l shape5 dimension and properties table l shape
5 dimension and properties table l shape
 
6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shape6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shape
 
7 dimension and properties table ipn
7 dimension and properties table ipn7 dimension and properties table ipn
7 dimension and properties table ipn
 
8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angle8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angle
 
9 dimension and properties table of upe
9 dimension and properties table of upe9 dimension and properties table of upe
9 dimension and properties table of upe
 
10 dimension and properties table upn
10 dimension and properties table upn10 dimension and properties table upn
10 dimension and properties table upn
 

Xi members in compression and bending

  • 1. Department of Civil Engineering viTüasßanCatiBhubec©keTskm<úCa XI. eRKOgbgÁúMrgkarsgát; nigrgkarBt; 1> esckþIepþIm eRKOgbgÁúMbBaÄrCaEpñkmYyrbs;eRKagsMNg; EdlrgkMlaMgsgát; nigm:Um:g;. kMlaMgTaMgenH )anBIkMlaMg xageRkAdUcCa bnÞúkefr bnÞúkGefr nigbnÞúkxül;. kMlaMgRtUv)ankMNt;eday karKNnaedayéd b¤edaykMuBüÚT½r EdlQrelIeKalkarN¾sþaTic nigviPaKeRKOgbgÁMú (structural analysis). Ca]TahrN¾ sMrab;rUb (1) bgðajfa eRKagQrelITMr hinged BIr EdlrgbnÞúkemKuNBRgayesμI enAelIGgát; BC. düaRkamm:Um:g;Bt;RtUv)anKUrenA EpñkxagTaj. kMNat;ssr AB nig CD rgnUvkMlaMgsgát; nigm:Um:g;Bt;. pleFobrvagm:Um:g;Bt; nigkMlaMg sgát; RtUv)aneGayeQμaHfa cMgaycakp©it e Edl e = M . e CacMgayBITIRbCMuTMgn;)aøsÞic(plastic centroid) n P n énmuxkat;eTA cMnucénbnÞúkmanGMeBI. TIRbCMuTMgn;)aøsÞic (plastic centroid) RtUv)anTTYledaykarkMNt;TItaMgkM laMgpÁÜbbegáItedaysésEdk nigebtug edaysnμt;kugRtaMgsgát;sMrab;Edk f nigkugRtaMgsgát;sMrab;ebtug y 0.85 f ' . sMrab;muxkat;sIuemRTI TIRbCMuTMgn;)aøsÞic (plastic centroid) RtYtsIuKñaCamYyTIRbCMuTMgn;rbs;muxkat;. c sMrab;muxkat;minsIuemRTI TIRbCMuTMgn;)aøsÞic (plastic centroid) RtUv)ankMNt;edayeRbIm:Um:g; eFobnwgGkS½ arbitrary axis. rUbTI1³ eRKagTMr pin BIrCamYynwgdüaRkamm:Um:g; ]TahrN_1³ kMNt;TIRbCMuTMgn;)aøsÞic (plastic centroid) énmuxkat;dUcbgðajkñúgrUbTI2. smμtikmμ³ f 'c = 28MPa nig f = 400MPa . y dMeNaHRsay³ !> kugRtaMgsgát;sMrab;ebtugRtUv)ankMNt;yk 0.85 f ' rUbTI2³ TIRbCuMTMgn;)øasÞic (P.C)énmuxkat; c F = kMlaMgkñúgrbs;ebtug = 0.85 f ' A c c g Members in Compression and Bending 196
  • 2. T.Chhay NPIC = (0.85 × 28) × 350 × 500 = 4165kN Fc sßitenAelITIRbCMuTMgn;énmuxkat;ebtug ¬enAcMgay 250mm BIGkS½ A − A ¦ @> kMlaMgenAkñúgsésEdk π × 282 Fs1 = As1 f y = 4 × × 400 = 985.2kN 4 π × 282 Fs 2 = As 2 f y = 2 × × 400 = 492.6kN 4 #> kMNt;m:Um:g;eFob A − A (4165 × 250) + (985.2 × 65) + (492.6 × 435) x= = 233.85mm 4165 + 985.2 + 492.6 dUcenH TIRbCMuTMgn;)aøsÞic (plastic centroid) RtUvsßitenAelIcMgay 233.85mm BIGkS½ A − A $> RbsinebI A = A ¬muxkat;sIuemRTI¦ dUcenH x = 250mm BIGkS½ A − A . s1 s2 2> karsnμt;sMrab;KNnassr GaRs½ytam ACI Code EdnkMNt;sMrab;karKNnassrkMNt;dUcxageRkam³ !> kMhUcRTg;RTayeFob strain enAkñúgebtug nigEdk RtUvsmamaRteTAnwgcMgayBIGkS½NWt. @> RtUvEtbMeBjlkçxNÐ smIkarlMnwgénkMlaMg nigPaBRtUvKñaénkMhUcRTg;RTayeFob strain compatibility. #> kMhUcRTg;RTayeFobrbs;ebtugrgkarsgát;EdleRbIR)as;GtibrmaKW 0.003 . $> ersIusþg;rbs;ebtugrgkarTajGacRtUvecal. %> kugRtaMgenAkñúgEdkKW f = εE ≤ f . s s y ^> bøúkkugRtaMgGackMNt;manragctuekaNCamYykugRtaMg 0.85 f ' BRgayBIRbEvg a = β c . Edl c 1 c CacMgayBIGkS½NWt nig ⎧ 0.85 f 'c ≤ 28MPa ⎪ f ' −28 β1 = ⎨0.85 − 0.05( c 7 ) sMrab;ebtugEdlmanersIusþg; 28MPa < f 'c ≤ 56 MPa ⎪ f 'c > 56MPa ⎩ 0.65 3> düaRkamGnþrkmμbnÞúk-m:Um:g; Load-moment interaction diagram enAeBlEdlbnÞúktamGkS½RtUv)anGnuvtþmkelIssrxøI krNIdUcxageRkamGacekIteLIg edayGaRs½y eTAnwgTItaMgGnuvtþbnÞúkedayeFobeTAnwg TIRbCMuTMgn;)aøsÞic (plastic centroid). rUb eRKOgbgÁúMrgkarsgát; nigrgkarBt; 197
  • 3. Department of Civil Engineering viTüasßanCatiBhubec©keTskm<úCa kMlaMgsgát;tamGkS½ P CakMlaMgsgát;tamGkS½EdlmantMélFMGnuvtþenAelITIRbCMuTMgn;)aøsÞic (plastic o centroid) e = 0 nig M = 0 . kar)ak;rbs;ssr ekIteLIgedayebtugEbk nigEdkeFVIkardl; yielding. n vaRtUv)ansMEdgeday P enAelIExSekag. o rUbTI3 a³ düaRkamGnþrkmμbnÞúk-m:Um:g; !> Maximum nominal axial load P : CakrNIEdlkMlaMgtamGkS½GnuvtþeTAelImuxkat;CamYy cM n max gaycakp©it eccentricity Gb,rma. tam ACI Code, P = 0.80P sMrab;ssrEdkkgdac;² tie n max o column nig P = 0.85P sMrab;ssrEdlmanEdkkgdUcrWus½r spirally reinforced column . kar)ak; n max o ekIteLIgedayebtugEbk nigEdkeFVIkardl; yielding. @> Compression failure: CakrNIEdlbnÞúktamGkS½FMGnuvtþenAcMgaycakp©ittUc. bnÞúktamGkS½kñúg krNIenHmantMélERbRbYlBI tMélGtibrma P = P eTAtMélGb,rma P = P (balanced load). s n n max n b r)ak;edayebtugEbkenAEpñkrgkarsgát;CamYYynwgbMErbMrYlrageFob strain = 0.003 ÉcMEnkkugRtaMgkñúgEdk ¬EpñkrgkarTaj¦ KWtUcCag yield strength f < f . kñúgkrNIenH P > P nig e < e . s y n e n #> Balanced condition P : lkçxNÐenHekItmaneLIgenAeBlEdl bMErbMrYlrageFobrgkarsgát; b compression strain enAkñúgebtugmantMélesμI 0.003 ehIybMErbMrYlrageFobrbs;EdkrgkarTajmantMél Members in Compression and Bending 198
  • 4. T.Chhay NPIC εy = fy Es . kar)ak;rbs;ebtugekIteLIgtMNalKñanwgEdk yield. m:Um:g;EdlekItedaysarbnÞúkenHRtUv)an eKehAfa balanced moment M cMgaycakp©itRtUv)aneKehAfa balanced eccentricity e = M . b P b b b $> Tension failure: CakrNIekItmanenAxN³Edl bnÞúktamGkS½tUc nigcMNakp©itFM ehIyEdlmanm:U m:g;FM. muneBl)ak; kugRtaMgTajekItmanenAelIEpñkd¾FMénmuxkat; bNþaleGayEdkrgkarTaj yield muneBl rUbTI3 b³ muxkat;ssrEdlbgðajBITItaMgbnÞk P sMrab;lkçxNÐbnÞúkepSg² ú n eRKOgbgÁúMrgkarsgát; nigrgkarBt; 199
  • 5. Department of Civil Engineering viTüasßanCatiBhubec©keTskm<úCa ebtugEbk. enAeBl)ak; bMErbMrYlrageFobrbs;EdkrgkarTajmantMélFMCagbMErbMrYlrageFob yield ε y ehIybMErbMrYlrageFobenAkñúgebtugesIμ 0.003 . krNIenHekItmanBI Balanced condition eTAdl; pure flexure P < P nig e > e . n b e %> Pure flexure: muxkat;kñúgkrNIenHrgm:Um:g;Bt; M Edl P = 0 . kar)ak;dUcKñanwg kar)ak;rbs; n n FñwmrgkarBt;. cMNakp©itRtUv)ansnμt;fa Gnñn. 4> karpþl;nUvsuvtßiPaB Safety provisions !> emKuNbnÞúksMrab; bnÞúk gravity nigbnÞúkxül; U = 1 .4 D U = 1 .2 D + 1 .6 L U = 1.2 D + 1.6 L + 0.8W U = 1.2 D + 1.0 L + 1.6W U = 0.9 D + 1.6W bnSMbnÞúkemKuNEdlmantMélsFMCageKRtUv)anykmkeRbIR)as;sMrab;karKNna. @> emKuNkat;bnßyersIusþg; φ eRbIsMrab;KNnassrGaRs½yeTAnwgkrNIxageRkam³ k> enAeBl P = φP ≥ 0.1 f ' A eBlenaH φ = 0.65 sMrab;ssrEdkkgdac;² tie column u n c g ehIy φ = 0.7 sMrab;muxkat;ssr EdlmanEdkkgdUcrWus½r spirally reinforced column . krNIenHssrRtUv )anrMBwg fa)ak;edaykarrsgát;. rUbTI4³ tMélemKuN φ Members in Compression and Bending 200
  • 6. T.Chhay NPIC x> muxkat;EdlbMErbMrYlrageFobrgkarTajsuT§ net tensile strain ε sMrab;ersIusþg;Fmμta t nominal strength enAkñúgEdkrgkarTajeRkAeKbMput KWsißtenAcenøaH 0.005 nig 0.002 (transition region) φ ERbRbYlCalkçN³bnÞat;cenøaH 0.9 nig 0.67 b¤ ¬ 0.7 ¦. sMrab;muxkat;EdlmanEdkkgdUcrWus½r spiral section ⎡ 1 5⎤ ) b¤ φ = 0.7 + 0.2 ⎢ 200 φ = 0.7 + (ε − 0.002)( t − ⎥ (-1) 3 c/d 3 ⎣ t ⎦ sMrab;muxkat;epSgeTot φ = 0.65 + (ε t − 0.002)( 250 ) b¤ φ = 0.65 + 0.25⎡ c /1d ⎢ 5⎤ − ⎥ (-2) 3 ⎣ t 3⎦ K> enAeBl P = 0 kñúgkrNIrgkarBt;suT§ φ = 0.9 sMrab; muxkat; tension-control section u nig ERbRbYlBI 0.9 nig 0.65 b¤ ¬ 0.7 ¦ enAkñúgtMbn; transion region. 5> Balanced condition – muxkat;ctuekaN Balanced condition ekItmanenAkñúgmuxkat;ssrenAeBlEdl bnÞúkEdlGnuvtþmkelImuxkat;ssr Edlman nominal strength begáItbMErbMrYlrageFobesμI 0.003 enAkñúgsésrgkarsgát;rbs;ebtug nigbMEr bMrYlrageFobesμI ε = E enAkñúgr)arEdkrgkarTajkñúgeBldMNalKña. enHKWCakrNIBiessEdl GkS½NWt f y y s GacRtUv)ankMNt;BI strain diagram edaysÁal;tMélFMbMput. enAeBlEdlbnÞúkcakp©itmantMél FMCag P b enaHeKehAmuxkat;enaHfa compression control. pÞúymkvijeKehAfa tension control . karviPaK balanced column section GacRtUv)anBnül;dUcxageRkam³ !> yk c CacMgayBIsésrgkarsgát;q¶aybMputmkGkS½NWt. BI strain diagram b cb (balanced) 0.003 = (-3) d fy 0.003 + Es eRKOgbgÁúMrgkarsgát; nigrgkarBt; 201
  • 7. Department of Civil Engineering viTüasßanCatiBhubec©keTskm<úCa eday E s = 200000MPa 600d ⇒ Cb = 600 + f y kMBs;bøúkrgkarsgát;smmUl equivalent compressive block ⎛ 600 ⎞ ab = β1cb = ⎜ ⎟β d (-4) ⎜ 600 + f ⎟ 1 ⎝ y ⎠ ⎧ 0.85 f 'c ≤ 28MPa ⎪ f ' −28 Edl β1 = ⎨0.85 − 0.05( c 7 ) sMrab;ebtugEdlmanersIusþg; 28MPa < f 'c ≤ 56 MPa ⎪ f 'c > 56MPa ⎩ 0.65 @> BIsmIkarlMnwg plbUkkMlaMgtamTisedkesIμsUnü Pb − Cc − C s + T = 0 Edl Cc = 0.85 f 'c ab nig T = A f s y (-5) Cs = A' ( f 's −0.85 f 'c ) enAeBlEdlEdkrgkarsgát;eFVIkardl; yield f 's = f y ⎛ c − d'⎞ f ' = 600⎜ s ⎟ ≤ f pÞúymkvij y ⎝ c ⎠ ⇒ Pb = 0.85 f 'c ab + A's ( f 's −0.85 f 'c ) − As f y (-6) #> cMNakp©it e RtUv)anvas;BI plastic centroid nig e' RtUv)anvas;BITIRbCMuTMgn;énEdkrgkarTaj. b e' = e + d " ¬sMrab;krNIrnH e' = e + d " ¦ Edl d " CacMgayBITIRbCMuTMgn;)øasÞiceTATIRbCMuTMgn;Edkrgkar b Taj. e RtUv)anKNnaedayKitm:Um:g;Rtg; plastic centroid b a Pb eb = Cc (d − − d " ) + C s (d − d '− d " ) + Td " (-7) 2 b¤ a Pb eb = 0.85 f 'c ab(d − − d " ) + A' ( f 's −0.85 f 'c )(d − d '−d " ) + As f y d " 2 (-8) cMNakp©it balanced eccentricity Mb eb = (-9) Pb sMrab;muxkat;minEmnctuekaN eyIgeRbIviFIsaRsþdUcKñakñúgkarviPaK edayKitRkLaépÞBitR)akdrbs;ebtug rgkarsgát;. emKuNkat;bnßyersIusþg; φ sMrab; balanced condition CamYy f = 400MPa RtUv)ansnμt;yk 0.65 y b¤ 0.7 . enHedaysar ε = ε = E = 0.002 . f s t y s ]TahrN_2³ kMNt;kMlaMgsgát; balanced compressive force P rYckMNt; e nig M sMrab;muxkat; b b b bgðajkñúgrUb. eKeGay f ' = 27MPa nig f = 400MPa . c y dMeNaHRsay³ Members in Compression and Bending 202
  • 8. T.Chhay NPIC !> sMrab; balanced condition bMErbMrYlrageFobenAkñúgebtugKW 0.003 ehIy bMErbMrYlrageFobenAkñúgEdk 400 εy = = 0.002 200000 @> TItaMgGkS½NWt 600 cb = d = 0.6 × 500 = 300mm 600 + f y rUbTI6³ balanced condition ab = β1cb = 0.85 × 300 = 255mm @> RtYtBinitü Edkrgkarsgát;/ BI strain diagram ε 's c − d ' 300 − 50 = = 0.003 c 300 ⇒ ε 's = 0.0025 > ε y dUcenHEdkrgkarsgát; yield ⎛ c − d" ⎞ b¤RtYtBinitütam f 's = 600⎜ ⎝ c ⎠ ⎟ ≤ fy ⎛ 300 − 50 ⎞ f 's = 600⎜ ⎟ = 500MPa > 400 MPa ⎝ 300 ⎠ dUcenH f ' = f = 400MPa s y $> KNnakMlaMgmanGMeBImkelImuxkat; Cc = 0.85 f 'c ab = 0.85 × 27 × 255 × 350 = 2048.3kN Ts = As f y = 28 2 × π × 400 = 985.2kN C s = A' s ( f y − 0.85 f 'c ) = 28 2 π (400 − 0.85 × 27) = 928.7 kN %> KNna P nig e e b Pb = Cc + Cs − T = 2048.3 + 928.7 − 985.2 = 1991.8kN a M b = Pb eb = Cc (d − − d " ) + C s (d − d '− d " ) + Td " 2 eRKOgbgÁúMrgkarsgát; nigrgkarBt; 203
  • 9. Department of Civil Engineering viTüasßanCatiBhubec©keTskm<úCa 255 M b = 1991.8eb = 2048.3(500 − − 225) + 928.7(500 − 50 − 225) + 985.2 × 225 = 732.8kN .m 2 732.8 ⇒ eb = = 0.368m 1991.8 ^> sMrab; balanced condition φ = 0.65 φPb = 0.65 × 1991.8 = 1294.67kN φM b = 0.65 × 732.8 = 476.32kN .m 6> muxkat;ssreRkamGMeBIbnÞúkcakp©it Column sections under eccentric loading sMrab;krNIBIr enAeBlEdlmuxkat;ssr)ak;edaykarsgát;b¤karTaj smIkarlMnwgmUldæanBIrGac RtUv)aneRbIsMrab;viPaKssrEdlrgbnÞúkcakp©it. rUbTI7³ krNITUeTA muxkat;ctuekaNEkg !> plbUkkMlaMgtamGkS½edk b¤tamGkS½QRtUvesμIsUnü @> plbUkm:Um:g;eFobnwgGkS½NamYyRtUvesμIsUnü eyagtamrUb eKGacsresrsmIkarTaMgBIrxagelI dYcxageRkam !> P − C − C + T = 0 n c s (-10) Edl C = 0.85 f ' ab c c C = A' ( f ' −0.85 f ' ) s s s ¬RbsinebIEdkrgkarsgát; yield enaH f ' = f ¦ c s y T=A f s s ¬RbsinebIEdkrgkarTaj yield enaH f = f ¦ s y @> Kitm:Um:g;Rtg;cMnuc A s a Pn e'−Cc (d − ) − Cs (d − d ' ) = 0 (-11) 2 Edl e' = e + d " ¬ d " CacMgayBITIRbCMuTMgn;)øasÞiceTATIRbCMuTMgn;rbs;EdkrgkarTaj¦ b¤ e' = e + d − h 2 sMrab;muxkat;ssrEdlmanEdksIuemRTI Members in Compression and Bending 204
  • 10. T.Chhay NPIC 1⎡ a ⎤ Pn = ⎢Cc (d − 2 ) + C s (d − d ' )⎥ (-12) e' ⎣ ⎦ Kitm:Um:g;Rtg; C c ⎡ a ⎤ a a Pn ⎢e'−(d − )⎥ − T (d − ) − C s ( − d ' ) = 0 (-13) ⎣ 2 ⎦ 2 2 a a T (d − ) + Cs ( − d ' ) Pn = 2 2 (-14) a (e'+ − d ) 2 RbsidnebI A = A' ehIy s s f s = f 's = f y enaH As f y (d − d ' ) As f y (d − d ' ) Pn = = (-15) a h a e'+ − d e− + 2 2 2 h a Pn (e − + ) As = A's = 2 2 (-16) f y (d − d ' ) 7> ersIusþg;rbs;ssrsMrab;kar)ak;edaykarTaj Stregth of columns for tension failure enAeBlEdlssrrgbnÞúkcakp©itCamYynwgcMNakp©it e FM enaHeKrMBwgfassrnwg)ak;edaykarTaj. ssr)ak;edayEdkeFIVkardl; yield ebtugEbkenAeBlEdl strain rbs;EdkFMCag ε (ε = f E ) . Kñúg y y y s krNIenH nominal strength P nwgmantMéltUcCag P b¤k¾ cMNakp©it e = M P FMCag balanced n b n n eccentricity e . edaysarkñúgkrNIxøHeKmankarBi)akkñúgkarTsSn_TayfavaCamuxkat; tension control b b¤ compression control enaHeKGacsnμt;fa tension failure GacekIteLIgenAeBl e > d . Karsnμt;enH GaceFVIeLIgenAeBleRkay. smIkarlMnwgTUeTA P − C − C + T = 0 nig n c s P e'−C (d − ) − C (d − d ' ) = 0 GacRtUv)aneRbIR)as;sMrab;KNna nominal strength rbs;ssr. a n c s 2 !> sMrab;kar)ak;edaykarTaj EdkrgkarTaj yield f = f . snμt;fakugRtaMgEdkrgkarsgát; s y f' = f . s y @> KNna P = C + C − T n c s Edl C = 0.85 f ' ab c c Cs = A's ( f y − 0.85 f 'c ) T = As f y #> KNna P edayKitm:Um:g;Rtg; A n s eRKOgbgÁúMrgkarsgát; nigrgkarBt; 205
  • 11. Department of Civil Engineering viTüasßanCatiBhubec©keTskm<úCa a Pn e' = Cc (d − ) + C s (d − d ' ) 2 Edl e' = e + d " b¤ e' = e + d − h enAeBl A = A' 2 s s $> BICMhan @ nig # eyIg)an 1⎡ a ⎤ Cc + C s − T = ⎢Cc (d − 2 ) + C s (d − d ' )⎥ e' ⎣ ⎦ vaCasmIkarTIdWeRkTI2 EdlmanGBaØti a . CMnYstMél C / C nig T ehIyedaHRsayrk a . c s %> eRkayBICMnYs C / C nig T smIkardWeRkTI2 Gacsresry:agsMrYldUcxageRkam c s Aa 2 + Ba + C = 0 Edl A = 0.425 f 'c b B = 0.85 f 'c b(e'− d ) = 2 A(e'− d ) C = A's ( f 's −0.85 f 'c )(e'− d + d ' ) − As f y e' − B ± B 2 − 4 AC ⇒a= 2A RbsinebI f ' −0.85 f ' < 0 RtUvykvaesμI 0 . s c ^> CMnYs a eTAkñúsmIkarCMhan @edIm,ITTYl P . m:Um:g; M kMNt;tam n n M n = Pn e &> RtYtBinitüemIlfaetIEdkrgkarsgát; yield dUckarsnμt;b¤Gt;. RbsinebI ε ' ≥ ε enaH Edkrgkar s y sgát; yield . pÞúymkvij f ' = E ε ' . Gnuvtþn_CMhan @ dl;% mþgeTot. ε ' = [(c − d ' ) / c]0.003 / s s s s ε = y E f y nig c = a / β . 1 s *> RtYtBinitüfamuxkat;Ca tension control . Tension control enAeBlNa e > e b¤ P < P . b n b (> Net tensile strain ε enAkñúgmuxkat; CaFmμtaFMCag limit strain sMrab;muxkat; compression- t controlled section 0.002 . dUcenHtMélénemKuNkat;bnßyersIusþg; φ ERbRbYlcenøaHBI 0.65 ¬b¤ 0.70 ¦ nig 0.90 . smIkar φ = 0.7 + (ε − 0.002)( 200 ) b¤ φ = 0.7 + 0.2⎡ c /1d − 5 ⎤ sMrab;muxkat; EdlmanEdk t ⎢ ⎥ 3 3 ⎣ t ⎦ kgdUcrWus½r spiral section nig φ = 0.65 + (ε t − 0.002)( 250 ) b¤ φ = 0.65 + 0.25⎡ c /1d ⎢ 5⎤ − ⎥ sMrab;muxkat; 3 ⎣ t 3⎦ epSgeTot RtUv)aneRbIsMrab;KNnark emKuNkat;bnßyersIusþg; φ . ]TahrN_3³ kMNt; nominal compressive strength P sMrab;muxkat;EdleGaydUckñúgrUbxageRkam Rbsin n ebI e = 500mm . dMeNaHRsay³ Members in Compression and Bending 206
  • 12. T.Chhay NPIC !> eday e = 500mm > d = 485mm snμt;famuxkat;)ak;kñúglkçxNÐ tension failure condion controls ¬EdlRtUveFVIkarRtYtBinitüenAeBleRkayeTot¦. Strain rbs;EdkrgkarTaj ε GacFMCag ε dUcenHeyIg s y ykkugRtaMg f . edaysnμt;faEdkrgkarsgát; yield f ' = f EdlRtUvRtYtBinitüenAeBleRkay. y s y rUbTI8³ ]TahrN_TI3 kar)ak;edaykarTaj Tension failure @> BIsmIkarlMnwg P = C + C − T n c s Edl C = 0.85 f ' ab = 0.85 × 27 × 350a = 8.03akN c c 282 π C s = A's ( f y − 0.85 f 'c ) = 4 (400 − 0.85 × 27) = 928.68kN 4 T = As f y = 28 2 π 400 = 985.2kN ⇒ Pn = 8.03a + 928.68 − 985.2 = 8.03a − 56.52 ¬1¦ #> Kitm:Um:g;Rtg; A s 1⎡ a ⎤ Pn = ⎢Cc (d − 2 ) + C s (d − d ' )⎥ e' ⎣ ⎦ edayTIRbCMuTMgn;)øasÞic plastic centroid sßitenAelITIRbCMuTMgn;énmuxkat; d "= 210mm . e' = e + d " = 500 + 210 = 710mm 1 ⎡ ⎤ Pn = 710 ⎣ a ⎢8.03a(485 − 2 ) + 928.68(485 − 65)⎥ = −0.0056a + 5.49a + 549.36 ⎦ 2 ¬2¦ $> pÁúMsmIkar ¬1¦ nig ¬2¦ eyIg)an 0.0056a 2 + 2.54a − 605.88 = 0 ⇒ a = 172.74mm %> Pn = 8.03 × 172.74 − 56.52 = 1330.58kN eRKOgbgÁúMrgkarsgát; nigrgkarBt; 207
  • 13. Department of Civil Engineering viTüasßanCatiBhubec©keTskm<úCa M n = 1330.58 × 0.5 = 665.29kN .m ^> RtYtBinitüfa Edkrgkarsgát; yield b¤Gt; 172.74 c= = 203.22mm 0.85 203.22 − 65 ε 's = 203.22 0.003 = 0.00204 > ε y = 400 200000 = 0.002 dUcenHEdksgát; yield RtYtBinitü strain enAkñúgEdkTaj ⎛ 485 − 203.22 ⎞ εs = ⎜ ⎟0.003 = 0.00416 > ε y ⎝ 203.22 ⎠ RbsinebIEdksgát;Gt; yield eRbI f ' = ε ' E rYceFVIkarKNnaeLIgvij. s s s &> KNna φ ³ eday ε = 0.00416 muxkat;sßitenAkñúgtMbn; transition region t ⎛ 250 ⎞ φ = 0.65 + (ε t − 0.002 )⎜ ⎟ = 0.83 ⎝ 3 ⎠ φPn = 0.83 × 1330.58 = 1104.38kN φM n = 0.83 × 665.29 = 552.19kN .m 8> ersIusþg;rbs;ssrsMrab;kar)ak;edaykarsgát; Stregth of columns for compression failure RbsinebIbnÞúkGnuvtþn_sgát; P FMCagbnÞúk balanced force P b¤cMNakp©it e = M tUcCag e enaH n b P n b n ssrnwgrMBwgfaRtUv)ak;edaykarsgát;. kñúgkrNI compression controls ehIy strain rbs;ebtugnwgmantMél 0.003 Edl strain rbs;EdkmantMéltUcCag ε . PaKeRcInrbs;muxkat;ssrnwgrgkarsgát;. GkS½Nwtxit y eTArkEdkrgkarTaj edaybegáInmuxkat;sgát; dUcenHcMgayeTAGkS½NWt c > c . b rUbTI9³ düaRkam strain enAeBl compression controls Members in Compression and Bending 208
  • 14. T.Chhay NPIC edaysareKBi)akkñúgkarTsSn_TaynUvmuxkat;ssrfa tension failure b¤ compression failure eK)ansnμt;fa enAeBl e < 2d enaHssr)ak;eday compression failure EdlRtUvepÞógpÞat;enAeBleRkay. 3 edIm,IKNna nominal load strength P eKeRbIeKalkarN_sþaTic. karviPaKmuxkat;ssrsMrab;kar)ak;eday n karsgát; compression failure eKGaceRbIsmIkar P − C − C + T = 0 nigsmIkar n c s P e'−C (d − ) − C (d − d ' ) = 0 nigdMeNaHRsaymYykñúgcMeNamdMeNaHRsayxageRkam. a n c s 2 8>1> dMeNaHRsay Trial solution dMeNaHRsayenHRtUv)ansegçbdUcCMhanxageRkam³ !> KNnacMgayeTAGkS½NwtsMrab;muxkat; balanced section c b 600d t cb = (-3) 600 + f y @> kMNt; P edayeRbIlkçxNÐlMnwg n Pn = Cc + Cs − T (-10) #> KNna P edayKitm:Um:g;Rtg;EdkrgkarTaj A n s a Pn e' = Cc (d − ) + Cs (d − d ' ) (-11) 2 Edl e' = e + d "kñúgkrNITUeTA b¤ e' = e + d − enAeBl A = A' h 2 s s Cc = 0.85 f 'c ab Cs = A's ( f 's −0.85 f 'c ) T = As f s $> edaysnμt;tMél c > c KNna a = β c . snμt; b 1 f 's = f y %> KNna f s ⎛d −c⎞ f s = ε s Es = 600⎜ t ⎟ ≤ fy ⎝ c ⎠ ^> CMnYstMélEdlrkeXIjeTAkñúgsmIkarCMhan @ nigCMhan # edIm,Irk P nig P . RbsinebI n1 n2 P ≈ P eRCIsyktMéltUcCageK b¤mFümPaKén P nig P . EtebI P mantMélxusKñaq¶ayBI P eK n1 n2 n1 n2 n1 n2 RtUvsnμt; c b¤ a fμI ehIyeFVIkarKNnaeLIgvijcab;epþImBICMhan $ rhUtdl; P ≈ P . ¬eKGacTTYlyk)an n1 n2 ebI P nig P xusKña 1% ¦. n1 n2 eRKOgbgÁúMrgkarsgát; nigrgkarBt; 209
  • 15. Department of Civil Engineering viTüasßanCatiBhubec©keTskm<úCa &> epÞógpÞat;fa Edkrgkarsgát; yield edayKNna ε ' = 0.003[(c − d ') / c] ehIyeRbobeFobCamYy s εy = fy E . enAeBlEdl ε ' ≥ ε Edkrgkarsgát; yield RbsinebImindUcenaHeT f ' = ε ' E b¤ s s y s s s ⎛ c − d' ⎞ f s = 600⎜ ⎟ ≤ fy ⎝ c ⎠ *> epÞógpÞat;fa e < e b¤ P > P sMrab; compression failure. b n b (> sMrab;muxkat; compression controlled section CaTUeTA net tensile strain ε enAkñúgmuxkat;tUc t Cag 0.002 . dUcenH emKuNkat;bnßyersIusþg; φ = 0.65 ¬b¤ 0.70 sMrab;ssrEdleRbIEdkkgCab;¦. ]TahrN_4³ kMNt; nominal compressive strength P sMrab;muxkat;EdleGay RbsinebI e = 254mm . n rUbTI10³ ]TahrN_TI4 Compression controls dMeNaHRsay³ !> edaysar e = 254mm < 23d = 333.33mm . snμt; compression failure. karsnμt;enHRtUvepÞógpÞat;enA eBleRkay. KNnacMgayeTAGkS½NwtsMrab; balanced section c : b 600d t 600 × 500 cb = = = 300mm 600 + f y 600 + 400 @> BIsmIkarlMnwg Pn = Cc + Cs − T (-10) Edl Cc = 0.85 f 'c ab = 0.85 × 27 × a × 350 = 8.03akN C s = A' s ( f y − 0.85 f 'c ) = 282 π (400 − 0.85 × 27) = 928.68kN edaysnμt;Edkrgkarsgát; yield ¬karsnμt;enHRtUvepÞógpÞat;enAeBleRkay¦ T = A f = 28 πf = 2.46 f kN ¬ f < f ¦ s s 2 s s s y Pn = 8.03a + 928.68 − 2.46 f s #> Kitm:Um:g;Rtg; A s Members in Compression and Bending 210
  • 16. T.Chhay NPIC 1⎡ a ⎤ Pn = ⎢Cc (d − 2 ) + Cs (d − d ' )⎥ (-11) e' ⎣ ⎦ TIRbCMuTMgn;)øasÞicsßitenAelITIRbCMuTMgn;rbs;muxkat; d "= 225mm e' = e + d " = 254 + 225 = 479mm 1 ⎡ ⎛ a⎞ ⎤ Pn = ⎢8.03a⎜ 500 − 2 ⎟ + 928.8(500 − 50)⎥ = 8.38a − 0.0084a + 872.57 2 479 ⎣ ⎝ ⎠ ⎦ $> edaysnμt; c = 342mm EdlmantMélFMCag c b = 300mm a = 0.85 × 342 = 290.7 mm CMnYstMél a eTAkñúgsmIkarkñúgCMhanTIBIrxagelIeyIg)an Pn1 = 8.38 × 290.7 − 0.0084 × 290.7 2 + 872.57 = 2598.78kN %> KNna f BIdüaRkam strain enAeBlEdl c = 340mm s 500 − 342 fs = 600 = 277.19 MPa 342 f 277.19 ε s = εt = s = = 0.00139 Es 200000 ^> edayCMnYs a = 290.7mm nig f s = 277.19MPa eTAkñúgsmIkarCMhanTImYyedIm,IKNna P n2 Pn 2 = 8.03 × 290.7 + 928.68 − 2.46 × 277.19 = 2581.11kN eday P nig P mantMélxusKñamindl; 1% dUcenHeyIgyk P = 2581.11kN n1 n2 n M n = Pn e = 2581.11 × 0.254 = 655.6kN .m &> epÞógpÞat;fa Edkrgkarsgát; yield BIdüaRkam strain 342 − 50 ε 's = 0.003 = 0.00256 > ε y = 0.002 342 dUcenH Edkrgkarsgát; yield dUckarsnμt;. *> P = 2581.11kN > P = 1991.8kN ehIy e = 254mm < e = 368mm bgðajfavaCamuxkat; n b b compression control dUckarsnμt;. cMNaM³ eKGaceFVIkarsakl,gKNnaedIm,IeGay P nig P mantMél n1 n2 kan;EtesμIkña. (> KNna φ d t = d = 500mm c = 342mm 500 − 342 εt ¬enAnIv:UedkrgkarTaj¦ = 0.003 342 = 0.00139 < 0.002 enaH φ = 0.65 φPn = 0.65 × 2581.11 = 1677.72kN φM n = 0.65 × 655.6 = 426.14kN .m eRKOgbgÁúMrgkarsgát; nigrgkarBt; 211
  • 17. Department of Civil Engineering viTüasßanCatiBhubec©keTskm<úCa 8>2> dMeNaHRsayviPaKcMnYn Numerical Analysis Solution enAeBl compression control karviPaKssrGaceFVIeTA)anedaykat;bnßykarKNnamkRtwmsmIkar dWeRkTI3 EdlmanTMrg; Aa + Ba + Ca + D = 0 rYcedaHRsayrktMél a edayviFIcMnYn numerical method 3 2 b¤ a GacTTYl)anBIm:asIunKitelx. BIsmIkarlMnwg Pn = Cc + C s − T = (0.85 f 'c ab) + A's ( f y − 0.85 f 'c ) − As f s (-10) Kitm:Um:g;Rtg;EdkTaj A s 1⎡ a ⎤ 1⎡ a ⎤ Pn = ⎢Cc (d − 2 ) + Cs (d − d ' )⎥ = e' ⎢0.85 f 'c ab(d − 2 ) + A's ( f y − 0.85 f 'c )(d − d ' )⎥ (-11) e' ⎣ ⎦ ⎣ ⎦ BIdüaRkam strain a (d − ) ⎛d −c⎞ β1 εs = ⎜ t ⎟0.003 = 0.003 ⎝ c ⎠ a β1 kugRtaMgenAkñúgEdkTajKW 600 f s = ε s E s = 200000ε s = ( β1 d − a ) a edayCMnYstMél f eTAkñúgsmIkar (-10) nigedaHRsaysmIkar (-10) nig (-11) eRkayBIsMrYlrYceyIg s TTYl)an ⎛ 0.85 f 'c b ⎞ 3 ⎜ ⎟a + [0.85 f 'c b(e'− d )]a + [ A's ( f y − 0.85 f 'c )(e'−d + d ' ) + 600 As e' ]a − 600 As e' β1d = 0 2 ⎝ c ⎠ enHCasmIkardWeRkTI3 EdlmanTMrg; Aa 3 + Ba 2 + Ca + D = 0 Edl A = 0.852f ' b c B = 0.85 f 'c b(e'− d ) C = A's ( f y − 0.85 f 'c )(e'− d + d ' ) + 600 As e' D = −600 As e' β1d enAeBlEdleKKNna)antMél A / B / C nig D enaH a GacRtUv)anKNnaedayviFIsakl,g b¤ TTYl)anedaypÞal;Bim:asIunKitelx. dMeNaHRsaysmIkardWeRkTI3 GacTTYl)anedayeRbIviFI Newton- Raphson . viFIenHmanRbsiT§PaBkñúgkaredaHRsayrkb¤srbs; f ( x ) = 0 . vaTak;Tgnwgbec©keTssamBaØ ehIyeKqab;TTYl)ancMelIyedayeFVItamCMhanxageRkam³ !> eGay f (a) = Aa + Ba + Ca + D nigKNna A / B / C nig D 3 2 @> KNnaedrIevTImYyén f (a) ³ f ' (a) = 3 Aa + 2Ba + C 2 #> edaysnμt;tMéldMbUg a KNnatMélbnÞab; o Members in Compression and Bending 212
  • 18. T.Chhay NPIC f ( ao ) a1 = ao − f ' ( ao ) $> edayeRbItMél a KNna a dUcsmIkarxagelI 1 2 f (a1 ) a2 = a1 − f ' (a1 ) %> Gnuvtþn_nUvviFIenHrhUtdl;)antMélsuRkitmYy a ≅ a . kñúgkrNIviPaKssrenAeBl compression n n −1 control tMél a EtgEtFMCag a . dUcenH eKcab;epþImCamYy a = a ehIyGnuvtþsmIkarxagelIBIrdgedIm,I b o b TTYl)ancMelIy. ]TahrN_5³ eFVI]TahrN_TI4eLIgvijedayeRbIviFI numerical analysis dMeNaHRsay³ !> KNna A / B / C nig D nigkMNt; f (a) 0.85 f 'c b 0.85 × 27 × 350 A= = = 4016.25 2 2 B = 0.85 f 'c b(e'− d ) = 0.85 × 27 × 350(479 − 500) = −168682.5 C = A' s ( f y − 0.85 f 'c )(e'−d + d ' ) + 600 As e' C = 282 π (400 − 0.85 × 27)(479 − 500 + 50) + 600 × 282 π × 479 C = 734800328.08 D = −600 As e' β1d = −600 × 282 π × 479 × 0.85 × 500 = −300844190383.4 f (a) = 4016.25a 3 − 168682.5a 2 + 734800328.08a − 300844190383.4 @> KNnaedrIevTI1 f ' (a) = 12048.75a 2 − 337365a + 734800328.08 #> eGay a o = ab = 255mm sMrab;muxkat; balanced section c b = 300mm nig a b = 255mm f (255) a1 = 255 − = 295.39 f ' (255) $> nigKNna a ³ 2 f (295.39) a2 = 295.39 − = 292.4mm f ' (295.39) tMélrbs; a mantMélRsedognwg a enAkñúg]TahrN_TI3. CMnYstMél a eTAkñúgsmIkar (-10) b¤ (-11) eKTTYl)an P = 2594.66kN n 8>3> dMeNaHRsayRbEhl Approximate Solution smIkar approximate RtUv)anesñIreLIgeday Whitney edIm,IedaHRsayrk nominal compressive strength sMrab;ssrxøI enAeBl compression control. eRKOgbgÁúMrgkarsgát; nigrgkarBt; 213
  • 19. Department of Civil Engineering viTüasßanCatiBhubec©keTskm<úCa bhf 'c A's f y Pn = + (-17) 3he e + 1.18 + 0.5 d 2 (d − d ' ) smIkarxagelIenHGaceRbIeTA)ansMrab;EtssrEdlmansésEdksIuemRTItMerobEtmYyRsTab; ehIyRsbeTA nwgGkS½énkarBt;. smIkar approximate TI2 RtUv)anesñIeLIgeday Hsu 1.5 Pn − Pb ⎛ M n ⎞ +⎜ ⎟ = 1.0 (-18) Po − Pb ⎜ M o ⎟ ⎝ ⎠ Edl = Pn nominal axial strength énmuxkat;ssr = Pb , M b nominal load nig nominal moment énmuxkat; balanced section M n = nominal bending moment = Pn ⋅ e enAeBl e=0 P = 0.85 f ' ( A − A ) + A f Po = nominal axial load o c g st st y A = gross area énmuxkat; = bh g A = muxkat;EdkbeNþayminEmnkugRtaMgsrub st ]TahrN_6³ kMNt; nominal compressive strength P sMrab;muxkat;EdleGaydUckñúg]TahrN_TI4 n edaysmIkar ¬*>#>!¦ nig ¬*>#>@¦edayeRbInUvcMNakp©itdUcKña e = 254mm rYceRbobeFobcMelIy. dMeNaHRsay³ !> dMeNaHRsaytamsmIkar Whitney k> lkçN³énmuxkat; b = 350mm / h = 550mm / d = 500mm / d ' = 50mm / A' = 2463mm 2 nig (d − d ' ) = 450mm x> GnuvtþsmIkar Whitney 350 × 550 × 27 2463 × 400 Pn = + = 2745.15kN 3 × 550 × 254 254 + 1.18 + 0.5 500 2 450 φPn = 0.65 × 2745.15 = 1784.35kN K> P EdlKNnaedaysmIkar Whitney CatMélEdlminsnSMsMécenAkñúg]TahrN_enH ehIytMél n P = 2745.15kN KWFMCagtMélsuRkit P = 2581.11kN EdlKNnaedaysmIkarsþaTickñúg]TahrN_TI4. n n @> dMeNaHRsaytamsmIkar Hsu k> sMrab; balanced condition P = 1991.8kN nig M = 732.8kN ¬]TahrN_TI2¦ b b x> P = 0.85 f ' ( A − A ) + A f = 0.85 × 27 × (550 × 350 − 2 × 2463) + 2 × 2463 × 400 o c g st st y Po = 6275.22kN Members in Compression and Bending 214
  • 20. T.Chhay NPIC Pn − 1991 .8 1 .5 ⎛ 0254 Pn ⎞ K> +⎜ 6275 .22 − 1991 .8 ⎝ 732 .8 ⎠ ⎟ =1 edayKuNnwg 1000 ehIyedaHRsayrk P n 0.23346 Pn + 0.00654 Pn1.5 = 1465 Edaykarsakl,gtMél P = 2587.65kN EdlmantMélRbEhl 2581.11kN EdlKNnaedaysþa n Tic. 9> ]TahrN_sMrab;düaRkamGnþrkmμ Interaction Diagram Example enAkñúg]TahrN_TI2 bnÞúk balanced load P , M nig e RtUv)anKNnasMrab;muxkat;dUckñúgrUbTI6 b b b ¬ e = 368mm ¦. dUcKña enAkñúg]TahrN_TI3 nigTI4 load capacity sMrab;muxkat;dUcKñaRtUv)anKNnasMrab; b krNIenAeBl e = 500mm ¬tension failure¦ nigenAeBl e = 254mm ¬compression failure¦. tMélTaMg enHnwgRtUvbgðajenAkñúgtaragTI1. edIm,IKUrdüaRkamGnþrkmμbnÞúk-m:Um:g; tMélepSg²én φP nig φM RtUv)anKNnasMrab;tMél e epSg² n n Edl e ERbRbYlBI e = 0 eTA e = Gtibrma sMrab;krNIm:Um:g;Bt;suT§ pure moment enAeBl P = 0 . düa n Rkamnþr kmμbnÞúk-m:Um:g;RtUv)anbgðajkñúgrUbTI11. bnÞÞúk φP = 4078.90kN CabnÞúkcMGkS½tamRTwsþI enAeBl no e = 0 . Et ACI Code GnuBaØatibnÞúkGb,brmaRtwmEt 0.8φP = 3263.12kN EdlRtUvKñanwg cMNakp©wtGb, no brma. cMNaMfa sMrab;kar)ak;edaykarsgát; compression failure e < e nig P > P ehIysMrab;kar)ak; b n b taragTI1³taragKNnasegçb rUbTI11³düaRkamGnþrkmμbnÞúk-m:Um:g; eRKOgbgÁúMrgkarsgát; nigrgkarBt; 215
  • 21. Department of Civil Engineering viTüasßanCatiBhubec©keTskm<úCa edaykarTaj tension failure e > e nig P < P . krNI e = Gtibrma ssrrgnUvm:Um:g;Bt;suT§dUckrNIFñwm. b n b 10> ssrmuxkat;ctuekaNCamYyEdkxag Rectangular columns with side bars enAkñúgmuxkat;ssrxøH EdkRtUv)aneKdak;BRgaytamRCugTaMgGs;. EdkxagRtUv)andak;tamkMBs;énmux kat;edaybEnßmeTAelIEdkTaj nigEdksgát; A nig A' ehIyRtUv)aneKkMNt;eGayeQμaH A ¬rUbTI12¦. s s ss kñúgkrNIenH viFIsaRsþkñúgkarKNnaEdl)anBnül;rYcmkehIyGacRtUv)anGnuvtþ edayKitBicarNabEnßmkar pøas;bþÚr strain tamkMBs;énmuxkat; nigTMnak;TMngkMlaMgenAkñúgEdkxagnImYy²eTAkñúgtMbn;sgát; b¤tMbn;Taj énmuxkat;. kMlaMgTaMgenHRtUv)anbUkbEnßmeTAelI C C nig T edIm,IkMNt; P smIkarmanragdUcxag c s n eRkam³ Pn = Cc + ∑ C s − ∑ T (-10a) ]TahrN_TI7 Bnül;BIkarKNnaenH. cMNaMfa RbsinebIEdkxagsßitenAEk,rGkS½NWt ¬rUb12 b¦ strain nigkMlaMg enAkñúgEdkmantMéltUcNas;EdleKGacecal)an. cMENkEdkEdlsßitenAEk,r A nig A' mantM s s élFMKYrsm nigCYybegáInlT§PaBRTRTg;bnÞúkénmuxkat;. rUbTI12³ EdkxagenAkñúgmuxkat;ctuekaNEkg ]TahrN_7³ kMNt;bnÞúk m:Um:g; M nigcMNakp©it e sMrab;muxkat;bgðajkñúgrUbTI13. edayeRbI Pb b b f ' = 28MPa nig f = 400 MPa . c y dMeNaHRsay³ muxkat; balanced section RtUv)anKNnadUcKñanwg]TahrN_TI2Edr. eKeGay π 32 b = h = 550mm / d = 485mm nig d ' = 65mm . A = A' = 5 2 = 4021.24mm (5DB32 ) / s s 2 4 nigEdkxag 6DB32 ¬ 3DB32 sMrab;mçag¦. 1> KNnacMgayeTAGkS½NWt Members in Compression and Bending 216
  • 22. T.Chhay NPIC ⎛ 600 ⎞ cb = ⎜ ⎟d = ⎛ 600 ⎞485 = 291mm ⎜ 600 + f ⎟ t ⎜ 600 + 400 ⎟ ⎝ ⎠ ⎝ y ⎠ ab = 0.85cb = 0.85 × 291 = 247.35mm 2> KNnakMlaMgenAkñúgebtug nigEdk tamry³rUb 13 a . enAtMbn;sgát; Cc = 0.85 f 'c ab = 0.85 × 28 × 247.35 × 550 = 3237.81kN C s = A' s ( f ' s −0.85 f 'c ) enAnIv:U − 65mm ⎛ c − d'⎞ ⎛ 291 − 65 ⎞ f ' s1 = 600⎜ ⎟ = 600⎜ ⎟ = 466 MPa > 400MPa ⎝ c ⎠ ⎝ 291 ⎠ dUcenH f 's = 400MPa Cs1 = 4021.24(400 − 0.85 × 28) = 1512.79kN eRKOgbgÁúMrgkarsgát; nigrgkarBt; 217
  • 23. Department of Civil Engineering viTüasßanCatiBhubec©keTskm<úCa enAnIv:U − 170mm ⎛ c − d'⎞ ⎛ 291 − 170 ⎞ f 's 2 = 600⎜ ⎟ = 600⎜ ⎟ = 249.48MPa ⎝ c ⎠ ⎝ 291 ⎠ π 32 2 Cs 2 = 2 × (249.48 − 0.85 × 28) = 363kN 4 enAnIv:U − 275mm ⎛ c − d' ⎞ ⎛ 291 − 275 ⎞ f 's 3 = 600⎜ ⎟ = 600⎜ ⎟ = 32.99MPa ⎝ c ⎠ ⎝ 291 ⎠ π 32 2 Cs 3 = 2 × (32.99 − 0.85 × 28) = 14.78kN 4 enAkñúgtMbn;Taj ¬nIv:U − 380mm ¦ Members in Compression and Bending 218
  • 24. T.Chhay NPIC 380 − 291 ε s4 = × 0.003 = 917.53 ⋅ 10 −6 291 f s 4 = 200000 × 917.53 ⋅ 10 −6 = 183.5MPa π 32 2 T1 = 2 × (183.5) = 295.16kN 4 T2 = 4021.24 × 400 = 1608.5kN 3> KNna Pb = Cc + ∑ C s − ∑ T Pb = 3237.81 + (1512.79 + 363 + 14.78) − (295.16 + 1608.5) = 3224.72kN 4> KNnam:Um:g;Rtg;TIRbCMuTMgn;)øasÞic M b = 3237.81× 151.325 + 1512.79 × 210 + 363 × 105 + 295.16 × 105 + 1608.5 × 210 M b = 1214.54kN .m M 1214.54 eb = b = = 0.377m Pb 3224.72 5> KNna φ sMrab; balanced section ε t / = ε y = 0.002 φ = 0.65 φPn = 0.65 × 3224.72 = 2096.07kN niig φM b = 0.65 ×1214.54 = 749.45kN .m ]TahrN_8³ edaHRsay]TahrN_TI7 eLIgvijenAeBlEdl e = 152mm . dMeNaHRsay³ 1> edaysar enaHvaCalkçxNÐ)ak;edaykarsgát; compression failure e = 152mm < eb = 326mm condition. snμt; c = 399.5mm ¬edaykarsakl,g¦ nig a = 399.5 × 0.85 a = 339.58mm ¬ rUbTI13 b ¦. 2> KNnakMlaMgenAkñúgebtug nigEdk Cc = 0.85 × 28 × 339.58 × 550 = 4445.1kN dUcKñanwgkrNI balanced f s1 = 400MPa nig C s1 = 1512.79kN f s 2 = 344.68MPa nig Cs 2 = 516.13kN f s3 = 186.98MPa nig Cs 3 = 262.48kN f s 4 = 29.29MPa nig Cs 4 = 8.83kN f s 5 = 128.41MPa nig T = 516.37 kN 3> KNna Pn = Cc + ∑ C s − ∑ T = 6228.96kN M n = Pn ⋅ e = 6228.96 × 152 = 946.8kN .m eRKOgbgÁúMrgkarsgát; nigrgkarBt; 219
  • 25. Department of Civil Engineering viTüasßanCatiBhubec©keTskm<úCa 4> KNna Pn edayKitm:Um:g;Rtg; As 1⎡ a ⎤ Pn = ⎢Cc (d − 2 ) + Cs1 (d − d ' ) + C s 2 (d − d '− s ) + C s 3 (d − d '−2s ) + C s 4 (d − d '−3s )⎥ e' ⎣ ⎦ h 550 e' = e + d − = 152 + 485 − = 362mm 2 2 s = 105mm KMlatrvagEdkxag ¬efr sMrab;]TahrN_enH¦ ⎡ ⎛ 339.58 ⎞ ⎤ 1 ⎢4445.1⎜ 485 − ⎟ + 1512.79(485 − 65) + 516.13(485 − 65 − 105)⎥ Pn = ⎝ 2 ⎠ 362 ⎢ ⎥ ⎢+ 262.48(485 − 65 − 2 × 105) + 8.83(485 − 65 − 3 × 105) ⎣ ⎥ ⎦ Pn = 6230kN 5> KNna φ d t = d = 485mm c = 399.5mm εt ¬enAnIv:UEdkTaj¦ = 0.03(dt − c ) / c = 0.03(485 − 399.5) / 399.5 = 0.00064 eday ε t < 0.002 enaH φ = 0.65 φPn = 0.65 × 6228.96 = 4048.8kN φM n = 0.65 × 946.8 = 615.42kN .m cMNaM³ RbsinebIEdkxagminRtUv)anKit enaH Pb = 3142.1kN Pn ¬enA e = 152mm ¦ = 4592.23 + 1512.79 − 422.48 = 5682.54kN RbsinebIeKKitEdkxagenaH Pb ekIneLIgRbEhl 2.6% nig Pn ekIneLIgRbEhl 9.6% . 11> lT§PaBRTbnÞúkrbs;ssrmuxkat;mUl Load Capacity of Circular Columns 11>1 lkçxNÐ Balanced Condition tMélénbnÞúk balanced load Pn nig m:Um:g; balanced moment M n sMrab;muxkat;mUlGacRtUv)ankM Nt;edayeRbIsmIkarlMnwgdUckrNImuxkat;cuekaNpgEdr. sésrEdkenAkñúgmuxkat;rgVg;EdlRtUv)antMerobeTA tamcMNayBIGkS½TIRbCMuTMgn;)øasÞicERbRbYl KWGaRs½yeTAnwgcMnYnEdkenAkñúgmuxkat;. bBaðacMbgKWrkkMBs;bøúk sgát; a nigkugRtaMgenAkñúgsésrEdk. ]TahrN_xageRkamBnül;BIkarviPaKmuxkat;eRkamlkçxNÐ balanced condition. nitiviFIdUcKñaGacRtUv)aneRbIedIm,IviPaKmuxkat;sMrab; tension control b¤ compression control. ]TahrN_9³ kMNt;bnÞúk balanced load Pn nig m:Um:g; balanced moment M n sMrab;ssrmuxkat;rgVg;Edkkg vNÐGgát;p©it 400mm CamYynig 8DB28 dUcbgðajkñúgrUbTI14. eKeGay f 'c = 28MPa nig Fy = 400MPa . dMeNaHRsay³ Members in Compression and Bending 220
  • 26. T.Chhay NPIC 1> edaysarEtEdksIuemRTInwgGkS½ A − A Edlkat;tamTIRbCMuTMgn;rgVg; enaHTIRbCMuTMgn;)øasÞicsßitenAelI GkS½enaH. 2> kMNt;TItaMgTIRbCMuTMgn;GkS½NWt fy d t = 329.34mm εy = Es cb 0.003 600 = = d t 0.003 + ε y 600 + f y 600 cb = 329.34 = 197.6mm 600 + 400 ab = 167.96mm 3> kMNt;lkçN³rbs;cMerokrgVg; circular segment ¬rgVg;TI15¦ RkLaépÞcMerokrgVg; = r 2 (α − sin α cos α ) (-19) TItaMgTIRbCMuTMgn; x ¬BITIRbCMuTMgn; 0¦ 2 (r sin 3 α ) x= (-20) 3 α − sin α cos α Z =r−x (-21) ⎛ a⎞ r cos α = (r − a ) b¤ cos α = ⎜1 − ⎟ ⎝ r⎠ (-22) ⎛ 167.96 ⎞ cos α = ⎜1 − ⎟ = 0.16 ⎝ 200 ⎠ / ⇒ α = 80.79o sin α = 0.987 nig α = 1.41rad RkLaépÞcMerokrgVg; = 2002 (1.41 − 0.16 × 0.987) = 50083.2mm 2 ⎛2⎞ 200 × 0.987 3 x =⎜ ⎟ = 102.39mm ⎝ 3 ⎠ (1.41 − 0.987 × 0.16) Z = 200 − 102.39 = 97.61mm 4> kMNt;kMlaMgsgát; Cc Cc = 0.85 f 'c × RkLaépÞcMerokrgVg; = 0.85 × 28 × 50083.2 = 1192kN vaeFVIGMeBIenA 102.39mm BITIRbCMuTMgn;ssr eRKOgbgÁúMrgkarsgát; nigrgkarBt; 221
  • 27. Department of Civil Engineering viTüasßanCatiBhubec©keTskm<úCa Members in Compression and Bending 222
  • 28. T.Chhay NPIC 5> KNna strain, stress nig kMlaMgenAkñúgEdkrgkarTaj nigEdkrgkarsgát;. kMNt;bMErbMrYlrageFob strain BIdüaRkambMErbMrYlrageFob. sMrab; T1 ε = ε y = 0.002 f s = f y = 400MPa π 282 T1 = 2 × 400 = 492.6kN 4 sMrab; T2 55.98 ε s3 = ε y = 8.5 ⋅ 10 − 4 131.74 f s 3 = 8.5 ⋅ 10 −4 × 200000 = 170MPa π 282 T2 = 2 × 170 = 209.36kN 4 sMrab; Cs1 126.94 ε s1 = × 0.003 = 1.93 ⋅10−3 197.6 f s1 = 1.93 ⋅ 10 −3 × 200000 = 386MPa < 400 MPa 282 π C s1 = 2 (386 − 0.85 × 28) = 446.05kN 4 sMrab; Cs2 51.18 ε s2 = × 0.003 = 7.77 ⋅10 − 4 197.6 f s 2 = 7.77 ⋅10−4 × 200000 = 155.4 MPa 282 π cs 2 = 2 (155.4 − 0.85 × 28) = 162.07kN 4 6> kugRtaMgenAkñúgEdkrgkarsgát;RtUv)ankat;bnßy edIm,IKitenAkñúgebtugEdlCMnYsedayEdk. eRKOgbgÁúMrgkarsgát; nigrgkarBt; 223
  • 29. Department of Civil Engineering viTüasßanCatiBhubec©keTskm<úCa kMlaMg balanced KW Pb = Cc + ∑ Cs − ∑ T Pb = 1192 + (446.05 + 162.07) − (492.6 + 209.36) = 1098.16kN sMrab;muxkat; balanced ε t = 0.002 nig φ = 0.65 φPb = 713.8kN 7> Kitm:Um:g;Rtg;TIRbCMuTMgn;)øasÞic ¬GkS½ A − A kat;tamGkS½TIRbCMuTMgn;¦ sMrab;kMlaMgTaMgGs; M b = Pb eb = [Cc × 102.39 + Cs1 × 129.34 + Cs 2 × 53.58 + T1 × 129.34 + T2 × 53.58) M b = 263.36kN .m φM b = 171.18kN .m 263.36 eb = = 239.8mm 1098.16 11>2 ersIusþg;rbs;muxkat;mUlsMrab;kar)ak;edaykarsgát; Strength of circular column for compression failure muxkat;ssreRkamkMlaMgcMNakp©it GacRtUv)anviPaKtamCMhandUcmuxkat; balanced Edr. va TTYl)anedaykarsnμt; C > Cb b¤ a > ab nigKNnakMlaMgenAkñúgebtug nig EdkenATItaMgepSgKñaedIm,I kMNt; Pn1 = Cc + ∑ Cs − ∑ T . dUcKña M n GacRtUv)anKNnaedayKitm:Um:g;Rtg;TIRbCMuTMgn;)øasÞic ¬TIRbCuMTMgn;rbs; muxkat;¦ ehIykMNt; Pn2 = Men . RbsinebItMél Pn1 nig Pn2 minRbhak;RbEhl KñaeTenaH snμt; C b¤ a fμI ehIyeFVIkarKNnaeLIgvij ¬emIlcMnucTI8¦. tMélxusKñarvag Pn1 nig Pn2 sßit enArgVg; 1% . muxkat; Camuxkat; compression controls enAeBl e < eb b¤ Pn > Pb . sMrab;]TahrN_ RbsinebIvaTamTarkMNt;ersIusþg;rbs;muxkat;ssrenAkñúg]TahrN_TI9 enAeBlEdl e = 150mm Pn GacRtUv)anKNnaedayCMhandUcnwg]TahrN_TI 9. 1> eday e = 150mm tUcCag eb = 239.8mm lkçxNÐ)ak;edaykarsgát; compression failure condion ekIteLIg. 2> snμt; c = 225mm ¬edaykarsμan¦ > Cb = 197.6 nig a = 191.25mm 3> KNna x = 89.63mm / Z = 110.37mm RkLaépÞcMerokrgVg; = 59332.97mm2 4> -5> KNnakMlaMg³ Cc = 1412.125kN / Cs1 = 463.29kN Cs 2 = 228.73kN / T1 = 342.66kN / T2 = 93.84kN 6> KNna Pn1 = Cc + ∑ Cs − ∑ T = 1667.64kN 7> Kitm:Um:g;Rtg;GkS½ssr ¬TIRbCMuTMgn;)øasÞic¦³ M n = 248.1kN .m Members in Compression and Bending 224
  • 30. T.Chhay NPIC Pn 2 = Mn e = 1653.97 mm EdlmantMélRbEhl Pn1 ¬tMélxusKñaRbEhl 1% ¦. dUcenH Pn = 1653.97 kN cMNaM³ RbsinebIEdkkgrbs;ssrCaEdkkgvNÐdUcrWus½renaH φ = 0.70 . smIkartMélRbEhl approximate equation sMrab;karKNna Pn sMrab;muxkat;mUl enAeBl compression controls RtUv)anesñIeLIgedayelak Whitney Ag f ' c Ast f y Pn = + (-23) ⎡ 9.6he ⎤ ⎛ 3e ⎞ ⎢ + 1.18⎥ ⎜ ⎜ D + 1⎟ ⎟ ⎢ (0.8h + 0.67 Ds ) ⎝ s ⎠ 2 ⎣ ⎥ ⎦ Edl RkLaépÞmuxkat; gross area Ag = h = Ggát;p©itmuxkat; Ds = Ggát;p©itmuxkat;ssrEdlvas;BITIRbCMuTMgn;EdkmçageTATIRbCMuTMgn;EdkmçageTot Ast = RkLaépÞmuxkat;EdkbBaÄr e = cMNakp©itEdlvas;BITIRbCMuTMgn;)øasÞic ]TahrN_10³ KNnaersIusþg;kMlaMgsgát; nominal Pn sMrab;muxkat;sMrab;]TahrN_TI9 edayeRbIsmI kar Whitney RbsinebIcMNakp©it e = 150mm dMeNaHRsay³ 1> e = 150mm tUcCag eb = 239.8mm . tamkarKNnadUceBlmun bgðajfamuxkat;ssrCamuxkat; compression controls. 2> edayeRbIsmIkar Whitney h = 400mm π π Ag = 4 h2 = 4 400 2 = 125663.7mm 2 / D s = 400 − 120 = 280mm π × 28 2 As = 8 × = 4926mm 2 4 125663.7 × 28 4926 × 400 Pn = + = 1785.94kN ⎡ 9.6 × 400 × 150 ⎤ ⎛ 3 × 150 ⎞ ⎢ + 1.18⎥ ⎜ + 1⎟ ⎢ (0.8 × 400 + 0.67 × 280 ) ⎝ 280 ⎠ 2 ⎣ ⎥ ⎦ 3> M n = Pn e = 1785.94 × 0.15 = 267.89kN .m tMél Pn enAeBlenHFMCagtMél Pn = 1653.97kN EdlKNnaenAeBlmunedaysþaTic. eRKOgbgÁúMrgkarsgát; nigrgkarBt; 225
  • 31. Department of Civil Engineering viTüasßanCatiBhubec©keTskm<úCa 11>3 ersIusþg;rbs;muxkat;mUlsMrab;kar)ak;edaykarTaj Strength of circular column for tension failure kar)ak;edaykarTajsMrab;ssrmUlenAeBlbnÞúkRtUv)anGnuvtþn_enARtg;cMNakp©it e > eb b¤ Pn < Pb . enAkñúgkrNIenH muxkat;ssrGacRtUv)anviPaKtamCMhandUckarviPaKmuxkat; balanced nigdUc kñúg]TahrN_TI8. karviPaKRtUv)aneFVIeLIgedaysnμt; C < Cb b¤ a < ab rYcehIyGnuvtþn_tamCMhanBnül; kñúgEpñkTI11>1. cMNaMfa edaysarEtsésrEdkRtUv)antMerobedaymancenøaHefrtambrimaRtmuxkat;rgVg; enaHEdkTaj As Edlpþl;eGayGacmantMéltUc ehIylT§PaBRTbnÞúkk¾køayCamantMéltUc. dUcenH eK)anENnaMeGayeCosvagkareRbIR)as;muxkat;mUlsMrab;krNIkar)ak;edaykarTaj tension failure. 12> karviPaK nigkarKNnassredayeRbIdüaRkam Analysis and Design of Column Using Charts karviPaKmuxkat;ssrEdl)anBnül;BIxagedImKWQrelIeKalkarN_sþaTic. sMrab;karviPaK b¤kar KNnassrCaCMhandMbUg düaRkamb¤taragBiessGacRtUv)aneRbIedIm,IkMNt; φPn nig φM n sMrab;muxkat; EdleGay nigkar KNnamuxkat;EdkcaM)ac;sMrab; Pu nig M u EdleGay. düaRkam nigtaragenHRtUv)ane)aH Bum<pSayeday viTüasßanebtugGaemric American Concrete Institute (ACI) viTüasßanebtugBRgwgedayEdk Concrete Reinforcing Steel Institute (CRSI) nigsmaKmsIum:g;t_Br½Eln Porland Cement Association (PCA). karKNnassrcugeRkayRtUvEteFVIeLIgedayQrelIsmIkarsþaTic edaykarKNnaedayéd b¤eday kmμviFIkMuBüÚTr½. kareRbIdüaRkam ACI RtUv)anbgðajenAkñúg]TahrN_xageRkam. düaRkamRtUv)anbgðajkñúgrUb TI16 nigrUbTI17. Tinñn½yTaMgenHRtUv)ankMnt;sMrab;mxkat;ssrdUcbgðajenARCugxagelIEpñkxagsþaMéntarag. u ]TahrN_11³ kMnt;sésrEdkcaM)ac;sMrab;ssr short tied column dUcbgðajenAkñúgrUbTI 18 a edIm,IRTnUvbnÞúkemKuN 2150kN nigm:Um:g;emKuN 440kN.m . ssrmanTTwg 350mm nigbeNþaysrub h = 500mm . eRbI f 'c = 28MPa / f y = 400MPa . dMeNaHRsay³ 1> cMNakp©it e = M u = 2150 = 204.65mm Pu 440 yk d = 500 − 60 = 440mm γh = 500 − 120 = 380mm enaH γ = 380 = 0.76 500 2> eday e = 204.65 < d snμt;famuxkat;)ak;edaykarsgát; compression-controlled section CamYynwg φ = 0.65 Members in Compression and Bending 226
  • 32. T.Chhay NPIC eRKOgbgÁúMrgkarsgát; nigrgkarBt; 227
  • 33. Department of Civil Engineering viTüasßanCatiBhubec©keTskm<úCa Members in Compression and Bending 228
  • 34. T.Chhay NPIC eRKOgbgÁúMrgkarsgát; nigrgkarBt; 229
  • 35. Department of Civil Engineering viTüasßanCatiBhubec©keTskm<úCa Members in Compression and Bending 230
  • 36. T.Chhay NPIC 2150 Pn = = 3307.7kN 0.65 nig Mn = 440 0.65 = 676.9kN .m Pn 3307.7 ⋅ 10 3 Kn = = = 0.675 f 'c Ag 28 × 350 × 500 ⎛e⎞ ⎛ 204.65 ⎞ Rn = K n ⎜ ⎟ = 0.675⎜ ⎟ = 0.276 ⎝h⎠ ⎝ 500 ⎠ 3> BItaragkñúgrUbTI16 sMrab; γ = 0.7 / ρ = 0.048 dUcKñasMrab; γ = 0.8 / ρ = 0.043 eday interpolation sMrab; γ = 0.76 / ρ = 0.045 As = 0.045 × 500 × 350 = 7875mm 2 eRbI 10DB32 (As = 8042.48mm 2 )/ R)aMedImenAtamRCugxøI. eRbIEdkkg DB10 @ 350mm ¬rUbTI18 a¦ ]TahrN_12³ eRbItaragedIm,IkMNt;bnÞúkersIusþg; φP rbs;ssrxøIdUcbgðajkñúgrUbTI 18 b EdlGnuvtþ n enAcMgaycMNakp©it e = 305mm . eRbI f 'c = 35MPa nig f y = 400MPa . dMeNaHRsay³ A. lkçN³rbs;muxkat;³ H = 600mm / γh = 600 − 120 = 480mm ¬cMgayrvagEdlTaj 32 2 × π 8× nigEdk sgát;¦. γ = 600 = 0.8 ehIy 480 ρ= 4 600 × 350 = 0.03 B. eday e < d / snμt;vaCamuxkat; compression-controlled section. eRKOgbgÁúMrgkarsgát; nigrgkarBt; 231
  • 37. Department of Civil Engineering viTüasßanCatiBhubec©keTskm<úCa yk ε t = 0.002 / fs fy = 1.0 ehIy φ = 0.65 BItaragkñúgrUbTI 17 eKTTYl)an Pn K n = 0.36 = 35 × 600 × 350 dUcenH Pn = 2646kN C. EpÞógpÞat;karsnμt;sMrab;muxkat; compression controlled³ sMrab; K n = 0.36 e Rn = K n = 0.183 h BIdüaRkameyIgTTYl)an ρ = 0.019 < 0.03 / dUcenH Pn > 2646kN ¬edIm,I)an ρ = 0.03 ¦ D. karsakl,gelIkTI2³ yk ε t = 0.0015 / f s = 0.0015 × 200000 = 300MPa f s 300 = = 0.75 ρ = 0.03 K n = 0.43 f y 400 Pn = 0.43 × 35 × 600 × 350 = 3160.5kN E. EpÞógpÞat;karsnμt;³ sMrab; K n = 0.43 / Rn = K n h = 0.219 e BItarag ρ = 0.03 dUcGVIEdleGay dUcenH Pn = 3160.5kN φPn = 0.65 × 3160.5 = 2054.3kN nig φM n = 626.6kN .m tamkarviPaK φPn = 2027kN ¬mantMélRbEhlKñanwgkarKNnaedayeRbItarag¦. 13> karKNnassreRkambnÞúkcakp©it Design of Columns Under Eccentric Loading karKNnassrmanlkçN³sμúKsμajCagkarviPaKssr edaysarEtbnÞúkxageRkA Pu nigm:Um:g; M u Casmμtikmμ ehIyeKRtUvkarkMNt;nUvGBaØtiCaeRcIndUcCa b / h / As / A's CamYynwgkarkMNt;rbs; ACI Code. vaCakarGnuvtþn_TueTAedaysnμt;dMbUgnUvmuxkat;ssr ehIykMnt;brimaNmuxkat;EdkRtUvkar. RbsinebIGñk KNnaRtUvkardUrmuxkat;EdkKNna enaHmuxkat;ssrk¾RtUv)anEkERbeTAtamenaHEdr. ]TahrN_xageRkam bgðajBIkarKNnassr. 13>1 KNnassrsMrab;kar)ak;edaykarsgát; Design of Column for Compression Failure sMrab; compression failure eKniymeRbI As = A's sMrab;muxkat;ctuekaN. cMNakp©it e = M u . Pu edayQrenAelItMélrbs; e eKman2krNIRtUv)anbegáIteLIg 1> enAeBlEdl e ≤ 100mm krNIcMNakp©itGb,brmaGacekItman EdlGaceKNnaedayeRbIrUbmnþ Members in Compression and Bending 232
  • 38. T.Chhay NPIC [ ( Pu = φPn = φK 0.85 f 'c Ag + Ast f y − 0.85 f 'c )] Edl φ = 0.65 nig K = 0.80 sMrab;ssrEdl man dkkgdac;² nig φ = 0.70 nig K = 0.85 sMrab;ssrEdlmanEdkvNн ¬sUmemIl]TahrN_kñúg emeronssrrgkMlaMgcMGkS½¦. sMrab;krNIepSgBIenH GñkKNnaGacGnuvtþtamkrNITI2. krNIbnÞúk enHRbRBwtþeTAsMrab;ssrGKarCan;eRkaménGKareRcInCan; Edlm:Um:g; M u )anmkBIRbBn§½mYyCan; nig Pu )anmkBIbnÞúkRKb;Can;EdlmanGMeBIenABIelIva. 2> tMbn; compression failure KWtMbn;EdlsßitenAcenøaHGkS½QreTAbnÞat; balanced load dUcbgðaj kñúgrUbTI 3 nigrUbTI11. kñúgkrNIenH muxkat; bh GacRtUv)ansnμt; ehIybnÞab;mkmuxkat;EdkRtUv)an KNnasMrab; Pu nig M u EdleGay. CMhanénkarKNnaRtUv)ansegçbdUcxageRkam³ k> snμt;muxkat;kaer b¤ctuekaN bh rYckMNt; d / d ' nig e = M u P u A' s f y x> edaysnμt; As = A's KNna A's BIsmIkar Pn = 3he 'c bhf + e edayeRbI + 1.18 + 0.5 d2 (d − d ' ) TMhMmuxkat;Edl)ansnμt; nig φ = 0.65 sMrab;ssrEdleRbIEdkkgFmμta. yk As = A's rYc eRCIserIsmuxkat;RKb;RKan;. kMNt;muxkat;BitR)akdEdleRbIsMrab; As nig A's . mü:agvij eToteKGaceRbIdüaRkam ACI. + K> epÞógpÞat;fa 1% ≤ ρ g = As bhA's ≤ 8% . RbsinebI ρ g mantMéltUc kat;bnßymuxkat; snμt; b:uEnþBRgIkmuxkat;RbsinebIeKcg;)anmuxkat;EdktUc. X> epÞógpÞat;PaBRKb;RKan;rbs;muxkat;cugeRkayedayKNna φPn BIsmIkarsþaTic dUcBnül;kñúg]TahrN_xagedIm. φPn ≥ Pu . g> kMNt;EdkkgcaM)ac;. rUbmnþRbhak;RbEhl approximate formula y:agsamBaØ sMrab;kMNt;muxkat;ssrdMbUg bh b¤PaK ryEdksrub total steel retio ρ g KW Pn = K c bh 2 b¤ Pu = φPn = φK c bh 2 ¬-24¦ Edl K c mantMéldUcbgðajkñúgtaragTI2 nigbgðajkñúgrUbTI19 sMrab;Edk f y = 400MPa nig As = A' s . xñatrbs; K c KW kN / m 3 . taragTI2 tMélrbs; K ¬ f c y = 400MPa ¦ Kc ρ g (% ) f 'c (28MPa) f 'c (35MPa) f 'c (42MPa) 1% 24817 30246 35286 4% 37574 43003 48044 eRKOgbgÁúMrgkarsgát; nigrgkarBt; 233
  • 39. Department of Civil Engineering viTüasßanCatiBhubec©keTskm<úCa 8% 54675 60103 65144 3 K c ( kN/m ) 69000 64000 59000 54000 49000 44000 39000 f'c=28MPa 34000 f'c=35MPa 29000 f'c=42MPa 24000 1 2 3 4 5 6 7 8 ρ g (%) rUbTI19 tMél K c nig ρ g tMél K c RtUv)anbgðajkñúgtaragTI2 CatMélRbhak;RbEhl niggayRsYleRbI edaysar K c ekIn eLIgmþg 5429 sMrab;karekIneLIgrbs; f 'c mþg 7 . sMrab;muxkat;dUcKña enAeBlEdlcMNakp©it e = M u Pu ekIneLIg Pn fycuH dUcenH K c fycuH. dUcenH tMél K c sMEdgbnÞúk Pn enAelIdüaRkamGnþrkmμcenøaH 0.8Pno nig Pb dUcbgðajkñúgrUbTI 3 nigTI 11. Linear interpolation GacRtUv)aneRbI. ]TahrN_ K c = 46124.5 sMrab; ρ g = 6% nig f 'c = 28MPa . CMhankñúgkarKNnamuxkat;ssrGacRtUv)ansegçbdUcxageRkam³ 1> snμt;muxkat;dMbUgsMrab;muxkat;ssr bh 2> KNna K c = (φbh 2 ) Pu 3> kMNt; ρ g BItaragTI 2 sMrab; f 'c EdleGay 4> kMNt; As = A's = ρ g2bh rYceRCIserIsEdkbBaÄr nigEdkkg. 5> kMNt; φPn énmuxkat;cugeRkaytamsmIkarsþaTic ¬dMeNaHRsayCak;lak;¦. tMélén φPn KYrEt mantMélFMCagb¤esμI Pu . RbsinebImindUecñaHeT EktMrUv bh b¤ ρ g . Members in Compression and Bending 234
  • 40. T.Chhay NPIC mü:agvijeTot RbsinebIeKcg;)anPaKryEdksrubCak;lak; ]TahrN_ ρ g = 6% bnÞab;mkGnuvtþdUc xageRkam³ 1> snμt; ρ g dUcEdlTamTar nigbnÞab;mkKNna e = M u Pu 2> edayQrelI f 'c nig ρ g EdleGay/ kMNt; K c BItaragTI2 3> KNna bh 2 = φPu bnÞab;mkeRCIserIs b nig h . GnuvtþCMhan 4 nig 5 eLIgvij. Kc eKKYrEtepÞógpÞat;fa 1% ≤ ρ g ≤ 8% . dUcKña epÞógpÞat;fa c Edl)anmkBIkarKNnatamsþaTicmantMélFMCag cb = 600 +dft sMrab; compression failure . 600 y ]TahrN_13³ kMNt;muxkat;EdkTaj nigmuxkat;Edksgát;sMrab;ssrEdleRbIEdkkgFmμtamanmuxkat; 400 × 600 edIm,IRTbnÞúk Pu = 3470kN nig M u = 530kN .m . edayeRbI f 'c = 28kN nig f y = 400MPa . dMeNaHRsay³ 1> KNna e = M u = 3470 = 152.74mm . eyIgman h = 600mm yk d = 550mm nig d ' = 50mm P 530 u edaysar e < 2 d = 366.67mm snμt;fa compression failure. 3 2> snμt; As = A's . kMNt;tMéldMbUgrbs; A's tamrUbmnþ bhf 'c A' s f y Pn = + (-17) 3he e + 1.18 + 0.5 d 2 (d − d ' ) sMrab; P 3470 Pn = u = φ 0.65 = 5338.5kN A' s = 4271.8mm 2 = As eRKOgbgÁúMrgkarsgát; nigrgkarBt; 235
  • 41. Department of Civil Engineering viTüasßanCatiBhubec©keTskm<úCa eRbIEdk DB32 ⇒ n = 6 edIm 6 DB32 = 4825.5mm 2 sMrab; As nig A' s ¬rUbTI 20¦ 3> ρ g = 2 × 4825.5 = 4% EdlvaRtUvEttUcCag 0.08 nig FMCag 0.01 400 × 600 4> epÞógpÞat;muxkat;edaysmIkarsþaTictamCMhanénkarKNnakñúg]TahrN_TI4 eKTTYl)an a = 430.18mm / c = 506.09mm / Cc = 4095.32kN C s = 4825.5(400 − 0.85 × 28) = 1815.35kN ⎛d −c⎞ ⎛ 550 − 506.09 ⎞ f s = 600⎜ ⎟ = 600⎜ ⎟ = 52.06MPa ⎝ c ⎠ ⎝ 506.09 ⎠ T = As f s = 4825.5 × 52.06 = 251.21kN Pn = Cc + C s − T = 5659.5kN > 5338.5kN cMNaMfa RbsinebI φPn < Pu cUrdMeLIg As nig A's rYceFVIkarKNnaeLIgvij. 5> epÞógpÞat; Pn edayeRbIsmIkar Pn = e' ⎡Cc ⎛ d − a ⎞ + Cs (d − d ' )⎤ Edl e' = e + d − h 1 ⎢ ⎜ ⎟ ⎥ ⎣ ⎝ 2⎠ ⎦ 2 eyIgTTYl)an Pn = 5659kN 6> sMrab; muxkat; balanced section ⎛ 600 ⎞ cb = ⎜ ⎟d t = 600 550 = 330mm ⎜ 600 + f y ⎟ 1000 ⎝ ⎠ edaysarEt c = 506.09mm > cb = 330mm vaCakrNI compression failure dUckarsnμt;. 7> edayeRbIEdkkgmanGgát;p©it 10mm KMlatEdkkg ⎧48φ ⎧48 ×10 ⎧480 ⎪ ⎪ ⎪ min ⎨16d = min ⎨16 × 32 = min ⎨512 = 400 ⎪ b ⎪ 400 ⎪400 ⎩ ⎩ ⎩ dUcenHeRbIEdkkg DB10 @ 400 . ]TahrN_14³ eFVI]TahrN_TI13 eLIgvijedayeRbIsmIkar ¬-24¦ dMeNaHRsay³ 1> muxkat;ssrEdleGay 400 × 600 2> kMNt; K c BIsmIkar ¬-24¦ 3> K c = φbh 2 = 0.65 ×3470× 0.6 2 = 37073 m3 Pu 0 .4 kN Members in Compression and Bending 236
  • 42. T.Chhay NPIC 4> BItaragTI 2 b¤rUbTI19 sMrab; K c = 37073 mm3 f 'c = 28MPa eday interpolation kN 4 −1 eyIgTTYl)an ρ g = 1 + (37073 − 24817) 37574 − 24817 = 3.88% 5> KNna As = A's = ρbh / 2 = 0.0388(400)(600)/ 2 = 4656mm 2 eRbIEdk DB32 ⇒ n = 6 edIm 6> 6DB32 = 4825.5mm 2 7> kMNt; φPu edayeFVItamCMhan 4-7 sMrab;]TahrN_TI13. Pn = 5659kN > Pn = 5338.5kN dUcenHmuxkat;EdkRKb;RKan; 8> RbsinebImuxkat;minRKb;RKan; b¤ φPn < Pn tMeLIgmuxkat; As nig A's rYceFVIkarepÞógpÞat;eLIgvij edIm,ITTYl)antMélEk,r. ]TahrN_15³ KNnamuxkat;ssrctuekaNEkgedIm,IRTbnÞúk Pu = 3150kN nig M u = 630kN .m CamYynwgPaKryEdksrub ρ g RbEhl 4% . eRbI f ' = 28MPa / f = 400MPa nig b = 450mm . c y dMeNaHRsay³ 1> KNna e = M u = 3150 = 0.2m . snμt; compression failure ( φ = 0.65 ) ¬RtUvepÞógpÞat;enA Pu 630 eBleRkay¦ ehIy As = A's 2> sMrab; ρ = 4% nig f 'c = 28MPa enaH K c = 37574 ¬taragTI2¦ 3> KNna bh 2 BIsmIkar (-24): Pu = φK cbh 2 rW 3150 = 0.65(37574)(0.45)h 2 dUcenH h = 0.535m dUcenHyk h = 550mm . KNna As = A's = 0.04(450 × 550) = 4950mm 2 . eRCIserIs 5DB36 2 ( As = 5089.4mm ) dUcbgðajkñúgrUbTI 21. eRbIEdkkg DB12 @ 450 . 2 4> epÞógpÞat; muxkat;cugeRkayedaykarviPaK RsedogKñanwg]TahrN_TI4 eyIgTTYl)an a = 327.8mm / c = 385.65mm / Cc = 0.85 f 'c ab = 3510.7kN / f ' s = 400 MPa / ⎛d −c⎞ C s = A' s ( f y − 0.85 f 'c ) = 1914.6kN / f s = 600⎜ ⎟ = 146.79 MPa / nig T = 747 kN ⎝ c ⎠ dUcenH Pn = Cc + Cs − T = 4678.3kN ehIy Pu = φPn = 3041kN < 3150kN edaysarmuxkat;minRKb;RKan; eyIgRtUvtMeLIgmuxkat;Edk b¤muxkat;ebtug rYceFVIkarepÞógpÞat;eLIg vij. ¬yk h = 600mm ¦ rUbTI21. 5> sMrab;muxkat; balanced section eRKOgbgÁúMrgkarsgát; nigrgkarBt; 237
  • 43. Department of Civil Engineering viTüasßanCatiBhubec©keTskm<úCa ⎛ 600 ⎞ cb = ⎜ ⎟d t = 318mm < c = 436.32mm ⎝ 600 + 400 ⎠ ¬ d = 530mm ¦ dUcenH vaCa compression failure dUckarsnμt;. 13>2 KNnassrsMrab;kar)ak;edaykarTaj Design of Column for tension Failure Kar)ak;edaykarTaj tension failure ekItmanenAeBl Pn < Pu b¤k¾cMNakp©it e > eb dUckarBnül; enAkñúgEpñkTI7. kñúgkarKNnassr Pu nig M u RtUv)aneGay ehIyvaTamTarnUvkarkMNt;muxkat;ssr nigmux kat;Edk. vaGacRtUv)ansnμt; ¬dUckarENnaM¦ favaCa tension control enAeBlNa ⎧530 sMrab; h < 600mm M u >⎨ 600 sMrab; h ≥ 600mm . kñúgkrNIenH muxkat;ssrGacRtUv)ansnμt; ehIybnÞab;mk As nig Pu ⎩ A' s RtUv)ankMNt;. düaRkam ACI GacRtUv)aneRbIedIm,IKNna ρ g sMrab;muxkat;EdleGayCamYynwg As = A's . cMNaMfa φ ERbRbYlcenøaH 0.65(0.7) nig 0.9 dUckarBnül;kñúgEpñkTI 4. enAeBl tension controls EdkTaj yields b:uEnþEdksgát;Gac yields nigmin yields. karsnμt;dMbUg f ' s = f y nig As = A' s . smIkar (-16) ¬kñúgEpñkTI 6¦ GacRtUv)aneRbIedIm,IKNnatMéldMbUgrbs; As nig A' s . ⎛ h a⎞ Pn ⎜ e − + ⎟ As = A' s = ⎝ 2 2⎠ (-16) f y (d − d ') edaysar a minRtUv)andwgenAeLIy snμt; a = 0.4d nig Pu = φPn bnÞab;mk Pu (e − 0.5h + 0.2d ) As = A' s = (-25) φf y (d − d ' ) muxkat;ssrcugeRkayKYrRtUv)anepÞógpÞat;edaysmIkarsþaTicedIm,Ibgðajfa φP n ≥ Pu . ]TahrN_ TI16 Bnül;BIviFIsaRsþkñúgkarKNnaenH. Members in Compression and Bending 238
  • 44. T.Chhay NPIC enAeBlbnÞúk P mantMéltUcNas;ebIeRbobeFobCamYynwgm:Um:g; M TMhMrbs;muxkat;GacRtUv)ankM u u Nt;edayeRbIEt M EtmYy)anehIy edaysnμt;fa P = 0 . muxkat;cugeRkayKYrRtUv)anepÞógpÞat;eday u u smIkarsþaTic. krNIenHekIteLIgsMrab;eRKagGKarmYyCan; b¤BIrCan; EdlGKarenaHRtUv)aneKeRbIsMrab;eFVICa saltaMgBiBN’ b¤k¾GKarTaMgLayNaEdlmanlkçN³dUcKñaenaH. sMrab;krNIenH A' GacRtUv)ansnμt;eGay s mantMéltUcCag A . karKNnay:aglMGitsMrab;saltaMgBiBN’kMBs;mYyCan;Edlmansnøak;BIrRtUv)anBnül; s enAkñúgCMBUkTI 16 FñwmCab; nigeRKag. ]TahrN_16³ kMNt;sésrEdkcaM)ac;sMrab;ssrragctuekaNEkg 400 × 560 EdlmanEdkkg FmμtaRTbnÞúk P = 1140kN nig M = 850kN .m . eRbI f ' = 28MPa nig f = 400MPa u u c y dMeNaHRsay³ 1> KNna e = M P u = 850 1140 = 0.7456m . yk d = 560 − 60 = 500mm . edaysar u Mu Pu = 745.6mm > 530mm b¤edaysar e > d snμt;fassrenH)ak;edaykrNI tension failure enaH φ = 0.9 ¬RtUvepÞógpÞat;enAeBleRkay¦. 2> snμt; A = A' nig f ' = f nigeRbIsmIkar (-25) edIm,IkMnt; A nig A' . eday P = 1140kN / s s s y s s u e = 745.6mm / h = 560mm / d = 500mm / nig d ' = 60mm 1140 ⋅ 10 3 (745.6 − 0.5 × 560 + 0.2 × 500 ) As = A' s = = 4070.71mm 2 0.9 × 400(500 − 60 ) eRbI 5DB32 (4021.24mm ) sMrab; A nig A' . ¬rUbTI22¦ 2 s s 3> epÞógpÞat; ρ = 2400 × 560) = 0.0359 EdltUcCag 0.08 nigFMCag 0.01 . (4021.24 g 4> epÞógpÞat;kareRCIserIsmuxkat;edaysmIkarsþaTic EdlkarKNnaRsedogKñanwg]TahrN_TI3 eRKOgbgÁúMrgkarsgát; nigrgkarBt; 239
  • 45. Department of Civil Engineering viTüasßanCatiBhubec©keTskm<úCa a. kMNt;tMélrbs; a edayeRbIsmIkarTUeTA Aa + Ba + C = 0 CamYynwg 2 e' = e + d − = 965.6mm / A = 0.425 f ' b = 4760 / B = 2 A(e'− d ) = 4432512 / h c 2 C = A' ( f − 0.85 f ' )(e'− d + d ') − A f e' = −758040793 . eKTTYl)an a = 147.62mm s y c s y nig c = a / 0.85 = 173.67mm . b. epÞógpÞat; f ' ³ f ' = 600⎛ c −c d ' ⎞ = 600⎛ 173.67.6760 ⎞ = 392.71MPa s ⎜ ⎝ s ⎟ ⎠ ⎜ ⎝ 173 − ⎟ ⎠ c. KNna a eLIgvij C = A' s ( f ' s −0.85 f ' c )(e'−d + d ') − As f ' s e' = −773454123.3 eKTTYl)an a = 150.25mm nig c = 176.77mm d. epÞógpÞat; f ' ³ f ' = 600⎛ c −c d ' ⎞ = 600⎛ 176.77.7760 ⎞ = 396.34MPa s ⎜ ⎝ s ⎟ ⎠ ⎜ ⎝ 176 − ⎟ ⎠ KNna C = 0.85 × 28 × 150.25 × 400 = 1430.38kN c C s = A' s ( f ' s −0.85 f ' c ) = 4021.24(396.34 − 0.85 × 28) = 1498.07kN T = As f y = 4021.24 × 400 = 1608.5kN e. Pn = C c + C s − T = 1319.95kN 5> KNna φ ³ ε = 0.003⎛ d c− c ⎞ = 0.0055 edaysarEt ε = 0.0055 > 0.005 enaH φ = 0.9 ⎜ t ⎟ t t ⎝ ⎠ 6> φP = 0.9 × 1319.95 = 1187.95kN > 1140kN muxkat;RKb;RKan; n 14> karBt;tamBIrTis Biaxial Bending karviPaK nigkarKNnassreRkamGMeBIbnÞúkcakp©itEdl)anBiPakSaknøgmk CakrNIkarBt;mYyTis. enHmann½yfa P GnuvtþenAelIGkS½ y ¬rUbTI23¦ begáIt)anbnSMénkMlaMgcMGkS½ P nigm:Um:g;Bt;CMuvijGkS½ x n n esμInwg M nx = Pn e y b¤ P GnuvtþenAelIGkS½ x ¬rUbTI24¦ CamYynwgcMNakp©it e begáIt)anbnSMénkMlaMgcM n x GkS½ P nigm:Um:g;Bt; M ny = Pn e x . n Members in Compression and Bending 240